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Abstract

The microscopic origin of glass transition, when liquid viscosity changes continuously by more than ten orders of
magnitude, is challenging to explain from first principles. Here we describe the detailed derivation and implementation of a
Markovian Network model to calculate the shear viscosity of deeply supercooled liquids based on numerical sampling of an
atomistic energy landscape, which sheds some light on this transition. Shear stress relaxation is calculated from a master-
equation description in which the system follows a transition-state pathway trajectory of hopping among local energy
minima separated by activation barriers, which is in turn sampled by a metadynamics-based algorithm. Quantitative
connection is established between the temperature variation of the calculated viscosity and the underlying potential energy
and inherent stress landscape, showing a different landscape topography or ‘‘terrain’’ is needed for low-temperature
viscosity (of order 107 Pa?s) from that associated with high-temperature viscosity (1025 Pa?s). Within this range our results
clearly indicate the crossover from an essentially Arrhenius scaling behavior at high temperatures to a low-temperature
behavior that is clearly super-Arrhenius (fragile) for a Kob-Andersen model of binary liquid. Experimentally the manifestation
of this crossover in atomic dynamics continues to raise questions concerning its fundamental origin. In this context this
work explicitly demonstrates that a temperature-dependent ‘‘terrain’’ characterizing different parts of the same potential
energy surface is sufficient to explain the signature behavior of vitrification, at the same time the notion of a temperature-
dependent effective activation barrier is quantified.
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Introduction

A longstanding problem in the molecular theory of transport is

the calculation of the temperature variation of the shear viscosity

of highly viscous liquids [1]. It is well known that below a certain

temperature range the shear stress relaxation becomes too slow for

molecular dynamics (MD) simulation [2] to directly address

experimental data [3,4] that vary by 15 orders of magnitude.

Recently we proposed a modified Green-Kubo method for the

viscosity using a master-equation formulation with transition state

pathway (TSP) sampling. Two versions have evolved from this

approach, a heuristic model of an effective temperature-dependent

activation barrier [5,6] and a Network model in the framework of

linear response theory. Both make use of TSP trajectories [5,6]

sampled by a metadynamics [7] activation-relaxation algorithm as

the input.

In this paper we analytically derive and provide numerical

details of the implementation of the Network model. The

calculation shows that more than one typical energy landscape

(‘‘terrain’’) is needed in to span the full temperature range of

existing data. For liquids and modestly supercooled liquids,

terrains of shallow minima and low activation energies lead to

viscosity variation in agreement with molecular dynamics

simulations. For highly supercooled liquids deep minima and

large activation energies give results that compare well with

experimental data [3,4]. The demonstration of a method to

calculate the viscosity over a range of 10 or more orders of

magnitude means we now have an explanation of the molecular

origin of the phenomenon of dynamic crossover in the

temperature variation of the viscosity of glass-forming liquids.

The crossover from Arrhenius behavior at high temperature to

super-Arrhenius behavior across a characteristic temperature has
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been recently emphasized as a significant universal feature of glass

transition [8] after an extensive analysis of the data on 84 liquids.

Methods

Derivation of Markov Network Model
We recast the Green-Kubo theory of viscosity [9] into a form

where the kinetics of stress relaxation is described by a Markov

system of nodes, with pair-wise transition rates specified by an

activation energy in standard transition state theory. Consider a

system of N interacting particles x3N within volume V at

temperature T. The system is characterized by an ensemble of

basins (nodes in a Markov network, see Fig. 1) indexed by i, with

associated constrained free energy,

Fi:{kBT‘n

ð
x3N [i

dx3Nexp {
V (x3N )

kBT

� �
zconst ð1Þ

where V(x3N) is the interatomic potential and the integration is

over basin i configurational states only. One can define an

‘‘inherent stress’’ for basin i,

si:
1

V
S{NkBTIz

XN

n~1

xn6Lxn VTi ð2Þ

where I is 363 identity matrix, and the thermal averaging of Virial

stress ,.i is performed within basin i configurational states only.

From now on we will only consider the shear component (off-

diagonal component) of stress, and regard the inherent stress si as

a scalar quantity.

We then assume the basins are connected by a set of pairwise

‘‘bridges’’, with transition rate

aij(T)~n0 exp {qij=kBT
� �

ð3Þ

connecting basin i and j, where n0 is a trial frequency, and qij is the

activation barrier separating basin j from basin i. The Network

model is thus specified by the nodal energies, stresses, and the

Markov transition rates fFi, si, aijg. To use this model to

calculate the shear viscosity g(T) of a liquid, we recall the

Green-Kubo formalism in linear response theory where g(T) is

given by the expression,

g(T)~
V

kBT

ð?
0

dtSs(t)s(tzt)T ð4Þ

where Ss(t)s(tzt)T is the time-dependent shear stress correlation

function. Since at any given time the system has to reside in one of

the basins, we can write the shear stress coarse-grained in time as

s(t)~
X

i

sipi(t) ð5Þ

with pi(t) being a state-residence function, equal to unity if the

system is in basin i at time t, and zero otherwise. We expect the

coarse-graining scheme (5) to be asymptotically correct in the limit

of long residence times, i.e. if the basin hoppings are ‘‘rare events’’.

We then introduce a conditionally averaged stress, if the system

is in basin i at time 0,

gi(t):Ss(tzt)Tpi (t)~1

~
X

j

sjSpj(tzt)Tpi (t)~1

ð6Þ

with t-dependence dropped in the above, utilizing the Markovian

(or ‘‘memoryless’’) assumption about the basin hoppings. Again,

we expect (6) to be asymptotically correct in the limit of ‘‘rare-

event’’ hoppings. The stress correlation function then becomes an

average over nodes

Ss(t)s(tzt)T~
X

i

Pisigi(t) ð7Þ

with

Pi:
e
{

Fi

kBT

P
j

e
{

Fj

kBT

ð8Þ

being the probability that the system is in state i at any given time.

Thus the viscosity also becomes a nodal average

g(T)~
V

kBT

X
i

PisiGi ð9Þ

with

Gi:
ð?
0

dtgi(t) ð10Þ

The function gi(t) has the physical interpretation of the average

shear stress at time t given the system was in state i at an earlier

time 0. Based on the Markovian ‘‘memoryless’’ assumption, it

Figure 1. Network of coupled energy basins with free energy
Fi , Eq. (1), average shear stress si , Eq. (2), and pairwise
transition rates aij , Eq. (3).
doi:10.1371/journal.pone.0017909.g001
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should satisfy the balance equation,

gi(t)~
X

j

ðt
0

dt0aijsi(t
0)gj(t{t0)zsi(t)si ð11Þ

Here

si(t)~exp {taið Þ, ai:
X

j

aij , aii~0: ð12Þ

is the probability that the system will stay at node i during a time

interval t. The terms in the j-sum account for the contribution

from processes where the system has moved from state i to a

number of intermediate states, while the last term in (11) is the

contribution if the system remains in state i during the time

interval t.

Eq.(11) is a linear integral equation that can be readily solved.

We can perform Laplace transformation ~ggi(v):
Ð?

0
dte{vtgi(t)

on both sides of (11). In frequency space it reads

~ggi(v)~
X

j

aij~ggj(v)zsi

" #
~ssi(v)

where ~ssi(v)~
1

vzai

, or

(vzai)~ggi(v)~
X

j

aij

vzaj

(vzaj)~ggj(v)zsi ð13Þ

The solution to Eq.(13) is just

~ggi(v)~
1

vzai

A(v){1s
� �

i
ð14Þ

in matrix-vector notation, where (s)i:si and

A(v)ð Þij:dij{
aij

vzaj

ð15Þ

the vector s and matrix A(v) being M61 and M6M, respectively,

if we consider a Markov network of M basins.

Since ~ggi(v?0z)~
Ð?

0
dtgi(t)~Gi, we obtain a closed-form

‘‘fluctuation-dissipation’’ expression for the shear viscosity,

g(T)~
V

kBT

X
i

Pisi
1

ai

A(v~0z){1s
� �

i
ð16Þ

where si is understood to be a stress fluctuation, i.e. there needs to

be

0:
P

i

Pisi ð17Þ

sum rule. In an actual numerical calculation, if the sampled

fPi, sig does not give zero mean, the non-zero mean needs to

be subtracted off from fsig to make sure Eq.(17) constraint is

satisfied.

Eq.(16) is a coarse-grained Green-Kubo expression where the

viscosity g(T) is explicitly resolved as a coarse-grained shear

stress correlation, the product of two ‘‘inherent shear stresses’’

modulated by a propagator matrix A. Dimensionally speaking,

Eq.(16) reminds us that the viscosity unit of stress-time [Pa:s] is a

product of stress fluctuation amplitude and t, with t being an

effective shear relaxation time. This emphasizes the dissipative

(relaxational) aspect of g(T), which is a distinctive feature of the

present Markov network formulation. Such an interpretation is

helpful to see how the model can be applied in practice, keeping in

mind the essential characteristic of the model is the connectivity

between the nodes, expressed by the inverse matrix A21 in Eq.(16).

Matrix A is specified by a set of transition rates, faijg, which are in

turn defined by the activation energies fqijg and the temperature.

Thus our calculation of g(T) amounts to a determination of fqijg
along with the nodal free energies {Fi} which govern the

probabilities {Pi} in Eq.(16).

Note that the above derivation starts from Green-Kubo theory

and assumes the system is in an equilibrium and ergodic condition

among all M basins of the network. Calculations presented in this

paper are performed under this assumption. However, the

Network model can be extended to non-equilibrium conditions.

One such implementation is discussed in the following section.

Extension to Non-Equilibrium Systems
We show the Network model is not strictly limited to

equilibrium liquids; with a simple modification it can be extended

to compute the nonequilibrium viscosity of glass. The extension is

based on treating the system as a broken ergodic system [10,11]

wherein the energy landscape is partitioned into sub-regions or

‘‘metabasins’’ satisfying the conditions of internal ergodicity (i.e.,

fast transitions within the metabasin) and confinement (i.e., slow

transitions between metabasins).

The statistical mechanical treatment of broken ergodic systems

comes in two basic flavors: discrete and continuous. The original

discrete formulation by Palmer [10] considers a sudden break-

down of ergodicity where transitions between metabasins are

strictly forbidden. This requirement is relaxed in the later

treatment of Mauro et al. [12,13,14], who generalize the Palmer

approach to account for a continuous breakdown of ergodicity at the

glass transition. Since the laboratory glass transition is never a

discontinuous process (i.e., an infinitely fast quench is never

achievable in practice), the continuous formulation is more

descriptive of realistic laboratory conditions. We will thus proceed

in generalizing the Network model within the framework of

continuously broken ergodicity (CBE).

Following the approach of Mauro et al. [12,13,14,15,16], the

nonequilibrium dynamics of Pi(t) can be computed for any thermal

profile, T(t), by solving a system of master equations:

dPi tð Þ
dt

~
X
j=i

uo exp {
qij

kBT tð Þ

� �
Pj tð Þ

{
X
j=i

uo exp {
qji

kBT tð Þ

� �
Pi tð Þ,

ð18Þ

where the initial condition is given from equilibrium statistical

mechanics,

Pi 0ð Þ~e
{

Fi
kBT 0ð Þ=

X
j

e
{

Fj
kBT 0ð Þ, ð19Þ

and the transition rates are dependent on the energy barriers qij

and the instantaneous temperature. Taking advantage of the CBE

formalism, the master equations can be solved on any arbitrary

Computing the Viscosity of Supercooled Liquids
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time scale through a dynamic partitioning of the landscape into

metabasins satisfying the abovementioned criteria. The partition-

ing itself depends on three factors: (a) the topography of the

landscape, (b) the instantaneous temperature, and (c) the

observation time (inversely proportional to dT/dt). After partition-

ing, Eq. (18) can be rewritten in terms of a reduced set of master

equations between metabasins (instead of between individual

basins), allowing for solution of Eq. (18) on any arbitrary time

scale. A complete discussion of this technique can be found in

Refs. [12,13,14,15,16], including the calculation of Pi(t) for a

realistic glass-forming system (viz., selenium) using cooling rates

from 10212 to 1012 K/s.

With the above approach, Eq. (16) can be written in completely

general form as:

g T tð Þ½ �~ V

kBT

X
i

Pi T tð Þ½ �si

1

ai

A(v~0z){1s
� �

i
, ð20Þ

where the equilibrium formulation is recovered in the ergodic

limit. With this equation, one can study the effects of thermal

history on the nonequilibrium viscosity of glass accounting for the

continuous breakdown of ergodicity at the glass transition and the

spontaneous relaxation to equilibrium. The subject of the

nonequilibrium viscosity of glass is the subject of a thorough

experimental and theoretical treatment in a separate paper by

Mauro, Allan, and Potuzak [17].

The Concept of Terrain and Network Model Calculation
In Eq.(16) the viscosity is resolved as a shear stress correlation,

the product of two ‘‘inherent shear stresses s’’ modulated by a

propagator A. The calculation of g(T) therefore amounts to a

determination of fqijg along with the nodal energies {Ei} which

govern the probabilities {Pi} in Eq.(16).

While Eq.(16) is exact, in actual calculations one does not have

access to the entire energy landscape, and therefore finite sampling

of the landscape topography must anyhow be performed. While

the potential energy surface (PES), V(x3N), is temperature-

independent, a key insight from previous molecular simulations

is that a liquid experiences different ‘‘parts’’ of the same PES at

different temperatures [18,19]. This is like saying that while the

Sahara and the Himalaya are both parts on the same planet, they

have very different local ‘‘terrains’’. Depending on the tempera-

ture, a liquid’s phase-space trajectory travels in different typical

‘‘terrains’’, and in evaluating Eq.(16) it is not necessary nor

possible to feed the entire Earth’s topography into it, but just a

typical terrain of the ‘‘Sahara’’ or the ‘‘Himalaya’’ corresponding

to that specific temperature. Such a typical ‘‘terrain’’ concept, a

coarse descriptor of the actual PES being experienced, is intuitive

to any traveler. Sastry, Debenedetti and Stillinger characterized

the temperature-dependent terrains by the average valley bottom

energy [18] (our Fig. 2a). Sciortino, Kob and Tartaglia

characterized the degeneracy distribution of valley bottom

energies by a temperature-dependent ‘‘inherent structure entro-

py’’, from which they extracted the Kauzmann temperature TK to

be 0.3 [19].

Results

Viscosity Calculated by Network Model
As a practical approximation, we feed the transition state

pathway (TSP) trajectories [5,6] to Eq.(16), as a representative

terrain for a given temperature. Recall how a system is prepared

for TSP trajectory sampling. We start with a periodic simulation

cell with N particles and an appropriate thermostat for MD

simulation. After the system is equilibrated in the liquid state, it is

supercooled to a temperature T below the melting point. Then

MD simulation is continued at T during which a series of steepest

descent relaxations is performed to obtain a distribution of energy

minima (the inherent structure) and corresponding atomic

configurations [20]. From this distribution an initial state for

TSP trajectory sampling is selected (with a certain local minimum

energy and associated atomic configuration). Each trajectory that

is generated by the activation-relaxation sampling algorithm [5]

therefore corresponds to a temperature T and an initial state

(energy Eo). Four such trajectories, generated at T = 0.5 and

different initial states, are shown in Fig. 2 (see panel (c)) along with

inherent structure calculations at the same T. All the results in the

Figure 2. Data used in the Network model calculation. (a) Average inherent structure (IS) energy of BLJ liquid as a function of temperature, (b)
Distributions of IS energies at four temperatures, 1.0, 0.5, 0.4, and 0.3, (c) Four TSP trajectories initialized at different energy minima (right panel).
doi:10.1371/journal.pone.0017909.g002
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present work are obtained using the Kob-Andersen interatomic

potential [21] for a binary Lennard-Jones (BLJ) model liquid

adopted in Ref. [5]. Temperatures are expressed in reduced units.

In Fig. 2 we see in panel (a) the well-known temperature

variation of the average inherent structure EIS(T) [18]. It is useful

for interpretation purposes to regard EIS(T) as the average well

depth of the local energy minimum that the system on the average

encounters at temperature T. In the liquid or barely supercooled

liquid, 1/T,1.0, the wells are shallow. As the system is

supercooled further, 1.0,1/T,3, the wells become deeper and

reach a maximum depth when 1/T.3. The distribution of well

depths at four temperatures (T = 1.0, 0.5, 0.4, and 0.3) are shown

in Panel (b). They are broad at high temperatures, becoming

narrow with greater supercooling, and narrows abruptly in the

range 0.4,T,0.3, which is close to the inflection point in EIS(T).
Correlated with the behavior in Panels (a) and (b) are the four TSP

trajectories sampled at progressively lower energy initial states,

labeled I, II, III, IV, in Panel (c). One sees the trajectories vary

significantly with different Eo. In Trajectory (I) which starts near

the top of the inherent structure distribution the sampling gives

small local minima and low activation energies. During the

trajectory the system finds another minimum at significantly lower

energy. This feature is not seen in trajectory (II), starting at a lower

energy and apparently staying within the same energy range. In (I)

and (II) the numbers of local energy minima sampled are 70 and

80 respectively. Trajectory (III), starting at still lower energy, is a

larger sample size, 480 minima. It is seen to span a greater range

of energy minima and activation energies which means sampling a

larger region of the potential energy surface. Trajectory (IV) is the

largest sample studied in this work at 3000 minima. Starting at a

very low value of Eo, its overall appearance shows significantly

deeper minima and higher barriers. If we regard the trajectories as

representative potential energy profiles, (IV) could serve as an

example of a rough terrain in contrast to the small and relatively

regular oscillations seen in (I) and (II).

Combining the inherent structure results with the sampled

trajectories we anticipate that terrains (I) and (II) are suitable for the

calculation of g(T) in the liquid and lightly supercooled states,

whereas (IV) would be appropriate for the deeply supercooled states.

On this basis we will use terrains (I) through (IV) in the follow-

ing temperature ranges respectively, 1/T,1.25, 1.25,1/T,2,

2,1/T,2.5, 2.5,1/T.

In numerical calculations each Network node has the energy of

a local minimum. The activation energy qij defines the transition

rate aij , which in turn are used to construct the matrix A. For

example, in using terrain (IV) we have a transition probability

matrix of rank 3250. Each node has a given energy Ei, an

occupation probability Pi, and stress si. The viscosity is then

calculated from Eq.(16).

Fig. 3 shows the viscosities obtained using the four terrains in

the corresponding temperature ranges specified above. The curve

in Fig. 3 is a fit to the calculated values using a cubic spline. The

fitting effectively serves as a coarse-grain average over the

individual terrains. The results given by (I) and (II) are seen to

connect smoothly with each other, with the first point from

trajectory (III), and also with the results from (IV). As for the

second point from (III) we believe the underestimate is an

indication of insufficient sampling of the activation kinetics. The

temperature variation of the viscosity over 12 orders of magnitude,

seen in Fig. 3, is the essential prediction of our calculation. This is

a composite result produced by combining the linear response

(Green-Kubo) theory of transport as formulated in Eq.(16) for the

binary Lennard-Jones interatomic potential model [21] with the

four TSP trajectories, shown in Fig. 2, each of which specifies a

propagator matrix A (see Eq.(16)) for a particular temperature

range. We see the use of the four trajectories to calculate g(T) over

the whole temperature range gives results that appear to be sound.

In particular, high viscosity values correlate well with an energy

landscape with large activation energies.

Verification and Validation
We first test the Network model by comparing the calculated

viscosities with results obtained independently by direct MD

simulation using the same interatomic potential. In Fig. 4 we see

Figure 3. Viscosity computed using the Network model
expression, Eq. (16), with the four TSP trajectories shown in
Fig. 2 as input. Results for each trajectory are denoted by a different
symbol, squares for trajectory I, triangle for II, inverted triangles for III,
and circles for trajectory IV. Solid curve is a spline fit to all the calculated
viscosities.
doi:10.1371/journal.pone.0017909.g003

Figure 4. Comparison of Network model results (solid line)
against Green-Kubo MD (crosses).
doi:10.1371/journal.pone.0017909.g004
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this test can be applied to trajectories (I), (II), and (III) because

direct MD is able to reach viscosity values ,104. The good

quantitative agreement provides verification of both Eq. (16) and

the numerical implementation of the TSP trajectories in specifying

the propagator matrix A.

In the high-viscosity region, the only test available is by direct

comparison with experimental data. Fig. 5 shows the comparison

with measured viscosity in absolute unit for five liquids, where

temperature is scaled by the glass transition temperature Tg. For

the Kob-Andersen potential we have determined Tg to be 0.37

(reduced unit) [5]. We see that overall the combination of Eq.(16)

and use of TSP trajectories accounts quite well the observed

temperature variation, from essentially Arrhenius at high temper-

atures (Tg/T,0.7) through a temperature range where the

viscosity variation is clearly super-Arrhenius (fragile). Comparing

Figs. 2 and 5 we can interpret trajectory (III) as a representative

energy landscape associated with the onset of fragile behavior.

This kind of physical details, despite being fragmentary at present

because of limited sampling, could lead to further insights into the

dynamics of supercooled liquids. The agreement with experimen-

tal trend at low temperatures (T approaching Tg) is noteworthy in

that such viscosity magnitudes have not been reported in previous

atomistic calculations.

Beyond direct comparison with individual measurements,

additional experimental test can be made in terms of an effective

temperature-dependent activation barrier [4]. In this case three

parameters are involved in reducing the experimental data, scaling

in temperature and viscosity, and normalization of barrier height.

The experimental results for the activation barrier for a group of

15 liquids are shown in Fig. 6. They are seen to collapse onto a

universal behavior.

Starting at high temperatures the barrier is a constant

(normalized to zero) until the temperature reaches a characteristic

value T*, where it begins to increase quite sharply. Notice that if

one were to plot the quantity [Q(T)2Q?] against (T*2T)/T*, the

behavior would be very similar to plotting kBT‘n g(T)=g?½ �
against Tg/T (cf. Fig. 5). In Fig. 6 we also show the Network model

calculations reduced in the same way. Previously a similar

comparison was made with the results of a heuristic model (see

Fig. 16 of Ref. [5]) rather than the present Network model results.

Relative to the former significant improvement has been brought

about by the latter; this is especially significant at low

temperatures, T,T*. In this way of comparing calculation with

experiments, fragile behavior begins at the onset of temperature-

sensitive activation around the characteristic temperature T*.

Since the value of T*, which is 0.63, is known from the scaling, we

can compare T* with the so-called critical temperature Tc in mode

coupling theory, where Tc = 0.435 (reduced unit) [21]. A slight

discrepancy (overestimate) between Network model and experi-

ments is seen in the lower barrier region (above Tc).

Discussion

Starting from the Green-Kubo theory [9] and solution of the

master equation, we have developed an analytical expression for

the viscosity of a material that is trapped in deep energy minima

and makes infrequent hops in between. The system is assumed to

be represented by a network of pair-wise coupled nodes (energy

basins), each endowed with an inherent free energy and an

inherent shear stress. The system evolves by hopping from one

node (basin) to another according to a temperature-dependent

transition probability specified by an activation free energy.

We then describe a quantitative study of the shear viscosity of a

supercooled model liquid over a temperature from the onset of

super-Arrhenius behavior down to Tg. If we refer to the former as

T*, the value we find is approximately 0.63 (cf. Fig. 6). Because the

Kob-Andersen model is well studied, we now have the values of

several characteristic temperatures to serve as reference points in

discussing the dynamics of supercooled liquids. The relevant

temperature range includes the Kauzmann temperature TK at 0.3

[19], Tg at 0.37, Tc at 0.435, and T* at 0.63. These values are seen

to be consistent with each other considering the physical

significance ascribed to each temperature. The numerical results

Figure 5. Experimental validation of the Network model. Solid
line indicates the viscosity of BLJ liquid calculated by the Network
model. Symbols are experimental data on fragile glass formers [3].
doi:10.1371/journal.pone.0017909.g005

Figure 6. Comparison of an effective temperature-dependent
activation barrier obtained from experimental data (symbols)
[4] with similarly reduced results of the Network model (solid
curve). The value of T* is 0.63 for the Network model.
doi:10.1371/journal.pone.0017909.g006
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and the comparisons with experiments discussed here suggest that

the underlying TSP trajectories that would be representative for

the temperature range T.Tc, such as (I) and (II), are distinctly

different for those in the range T,Tc, such as (IV). This difference

accounts for the different temperature variations observed

experimentally. It also indicates that one could interpret a

crossover temperature separating the region where the effects of

barrier activation are not important from the region where such

effects play an essential role. This observation, based on the results

presented here, is fully compatible with the current understanding

of mode coupling theory regarding the range of validity of its

original formulation [22] and in an extended form which

incorporates barrier hopping [23].

Our calculation is a master-equation approach that relies on

potential energy landscape sampling to provide the appropriate

transition rate matrix. Angelani and co-workers [24,25] have

studied the long time dynamics of a network system by analyzing

the minima and saddles of small clusters, from 11 to 29 atoms.

They showed the stress correlation displays a stretched exponential

relaxation, and the Stokes-Einstein relation to breakdown at a

temperature where the stretching exponent deviates from unity.

We expect these characteristics to be found also in our Network

model. On the other hand, Angelani et al. did not find the onset of

fragile scaling behavior that we have seen in Figs. 5 and 6.

Presumably one explanation is the absence of distributions of deep

minima and large activation barriers in the energy landscape of

small clusters.

We believe the most significant aspect of our study to be the

calculation of viscosities in the range 108 Pa?s and beyond. Since g
is product of the shear modulus (,1010 Pa) and a relaxation time,

the implication is that atomistic simulation can approach time

scales previously unimagined. The agreement with experiment

that we find in Figs. 5 and 6 for the fragile liquids also extends to a

‘‘strong’’ liquid, silica, as shown in a less rigorous calculation than

Eq. (16) which still makes use of the TSP trajectory [6]. This is

encouraging evidence that the atomistic approach can be

predictive.
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