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Abstract. The third phase of the Sudbury Neutrino Observatory (SNO)
experiment added an array of 3He proportional counters to the detector. The
purpose of this neutral-current detection (NCD) array was to observe neutrons
resulting from neutral-current solar-neutrino–deuteron interactions. We have
developed a detailed simulation of current pulses from NCD array proportional
counters, from the primary neutron capture on 3He through NCD array signal-
processing electronics. This NCD array MC simulation was used to model the
alpha-decay background in SNO’s third-phase 8B solar-neutrino measurement.
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1. The Sudbury Neutrino Observatory

The Sudbury Neutrino Observatory (SNO) was a heavy-water Cherenkov neutrino detector [1]
located in the INCO (now Vale) Creighton Mine near Sudbury, ON, Canada. The overburden
of the experiment is 5890 meters-water-equivalent [2]. The solar-neutrino target consisted of
1000 ton of heavy water (D2O) contained in a 12-m-diameter spherical acrylic vessel. An array
of 9456 inward-looking photomultiplier tubes (PMTs), supported by a stainless steel geodesic
sphere, was used to detect the Cherenkov light produced by the recoil electrons coming from
neutrino interactions. The SNO experiment was operated from 1999 to 2006; the third of three
phases of the experiment took place between 2004 and 2006, accumulating 385.17 live days of
data.

The SNO experiment was the first neutrino detector capable of detecting the total 8B solar-
neutrino flux above 2.22 MeV. SNO was designed to provide direct evidence of solar-neutrino
flavor change by comparing the observed rates of three different reactions [3]:

νx + e−
→ νx + e− (ES),

νe + d → p + p + e−
− 1.44 MeV (CC),

νx + d → p + n + νx − 2.22 MeV (NC).

(1)

The elastic scattering (ES) of neutrinos and electrons is common to all water Cherenkov
detectors. It is primarily sensitive to electron neutrinos and the direction of the scattered electron
is strongly correlated with the direction of the incoming neutrino.

Electron neutrinos can interact with deuterons via a charged-current (CC) interaction.
It takes place exclusively for electron neutrinos, and the energy of the outgoing electron is
understood to be a function of the energy of the incoming neutrino. The kinematic threshold for
this interaction is 1.44 MeV.

The third reaction is the neutral-current (NC) breakup of a deuteron. It is equally sensitive
to all neutrino flavors, and therefore provides a direct measurement of the total active flux of 8B
solar neutrinos above an energy threshold of 2.22 MeV.

The SNO experiment consisted of three phases. During each phase, a different method was
used to detect the neutron liberated in the NC reaction. In the first phase, neutron capture by
deuterons was detected by observing the single 6.13 MeV γ emitted. The results were reported
in [4–7].

For the second phase, 2 ton of salt (NaCl) were added to D2O. Neutron capture on 35Cl
significantly increased the neutron detection efficiency because of the larger neutron-capture
cross-section and Q value (8.6 MeV). The emitted γ cascade improved the statistical separation
between the CC and NC events. Results from phase two were reported in [8, 9], and a combined
analysis of the data from phases one and two was reported in [10].

In the third and final phase of SNO, an array of 3He proportional counters, known as
the neutral-current detection (NCD) array, was installed in D2O [11]. A summary of the
proportional-counter system will be given in the following section. The NCD array allowed
SNO to measure the NC flux independent of the ES and CC fluxes. The results for the third
phase are reported in [12].
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2. The neutral-current detection (NCD) array

Based on the pp-chain neutrino fluxes predicted by the Standard Solar Model (SSM), neutrino
cross-sections in D2O and target properties, approximately 10 neutrons per day would be
produced by NC interactions inside the SNO detector. To successfully measure this small
signal, it was essential that the background rates were extremely small and well-determined.
Proportional counters are well-suited for low-background measurements: the active detection
medium is a gas, which can be highly purified. Therefore the primary sources of background are
the materials that make up the body of the counters, and contaminants produced cosmogenically
or introduced from external sources. The NCD array was designed to be an efficient, low-
background method of detecting free neutrons in D2O [11].

Neutrons were captured on 3He by the following reaction:
3He + n → p + 3H + 764 keV. (2)

The proton (p) carried 573 keV of kinetic energy and the triton (3H or t elsewhere) carried
191 keV. The energetic ions created electron–ion pairs as they deposited energy in the gas.
The electrons drifted towards the anode. In the high-electric-field region near the anode, they
initiated an avalanche of secondary ionization, multiplying the amount of charge collected on
the anode by a factor of approximately 220.

The NCD array consisted of 40 strings of 5 cm diameter cylindrical proportional counters.
A diagram of one such string is shown in figure 1. Each string was made of three or four
electrically continuous individual counters placed end-to-end. The strings were between 9 and
11 m in length and were distributed on a 1 m square grid in the D2O volume. Thirty-six strings
were filled with 3He and were sensitive to neutrons, while four strings were filled with 4He and
acted as background control strings with no sensitivity to neutrons. The shape of the neutron-
capture energy spectrum was primarily a result of the geometry of the counters: the proton or
triton could hit the wall before depositing all of its energy in the gas. Figure 2 shows the energy
spectrum obtained during calibration of the NCD array with a neutron source. A more detailed
description of the NCD array is given in [11].

One of the primary methods for performing neutron calibrations of the NCD array was
a 24Na source uniformly distributed in the D2O volume [13]. The 2.75 MeV γ emitted from
each 24Na decay could disintegrate a deuteron, releasing a free neutron into the D2O. Two such
calibrations were performed during SNO’s third phase. Another method for performing neutron
calibrations was the use of an encapsulated 241Am9Be source that could be moved to different
positions within the detector.

During operation the copper anode wires were held at 1950 V relative to the counter
bodies. The gas consisted of an 85 : 15 mixture (by pressure) of 3He and CF4, with a total
gas pressure for each NCD counter of 2.50 ± 0.01 atm. 3He is a well-known target for detecting
thermalized neutrons [14]. The thermal-neutron-capture cross-section (5333 b [15]) is seven
orders of magnitude larger than that of deuterium. The CF4 component of the gas mixture acted
as quenching gas and reduced the effects of the proton or triton hitting the counter wall.

The NCD array signals were read out only from the tops of the strings since they were
submerged vertically in the D2O. The bottoms of the strings were open circuits to reflect the
downward-going portion of current pulses. A 90 ns delay line at the bottom of the strings
further separated the direct and reflected pulses to help in determining the location of the neutron
capture along the axis of the NCD string.
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Figure 1. Schematic representation of an NCD string, including the readout
cable, endcap regions, active volume, delay line and anchor system. The active
volumes of the strings were 9–11 m long (not shown to scale), and consisted
of three or four individual counters connected electrically but with separate gas
volumes.

The primary backgrounds to the neutron-capture signal were alpha particles emitted by
radioactive contaminants within and on the surfaces of the counter bodies and internal parts.
Therefore, the necessity of maintaining low backgrounds placed certain restrictions on the
design and construction of the proportional counters [11]. Low-background materials were
used in all stages of construction, and they were manufactured, treated and stored carefully
to avoid unwanted radon contamination and cosmogenically created backgrounds. The 232Th
and 238U contaminations in the entire NCD array were measured to be less than the goals of 0.5
and 3.8 µg, respectively. Another major background component was Rn daughters deposited
on surfaces, in particular 210Po on the counter body walls and other surfaces. Despite efforts
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Figure 2. NCD array neutron-capture spectrum from a uniformly distributed
24Na calibration. The neutron peak is clearly visible at 764 keV and corresponds
to the deposition of the full kinetic energy of the proton and triton in the active
volume of the NCD counter. The 573 keV shoulder is due to events where the
triton energy is fully absorbed by the wall, although it is not visible due to
the much larger shoulder that is a result of the space-charge effect discussed
in section 3.4. The 191 keV shoulder caused by total absorption of the proton
energy in the wall is not visible in this plot due to data-quality cuts that sacrifice
most of the neutrons below 0.2 MeV.

to remove the contamination during NCD array construction, some surface contamination
remained: the average 210Po alpha rate was about 2 alphas m2 day−1 over the entire 63.52 m2

of the NCD array.
The NCD array electronics consisted of two independently triggered readout systems: the

‘MUX’ path that digitized the current pulses, and the ‘Shaper’ path that integrated the pulses
to measure the total energy deposited [16]. The basic schematic for the electronics and data
acquisition system is shown in figure 3.

The MUX system recorded the full current pulses from ionization events in the
counters with either of two digitizing oscilloscopes. It allowed the use of offline pulse-shape
discrimination between neutron-capture signal pulses, and alpha and instrumental background
pulses. The MUX path was limited to event rates of several Hz, which was sufficient for solar-
neutrino data taking. In contrast, the Shaper path measured only the total charge of the detected
events using a shaping/peak-detection network. This system could acquire data at an event rate
of several kHz, allowing the measurement of high-rate calibrations, or a galactic supernova,
should one have occurred, without being hampered by the system dead-time.

An accurate simulation of the NCD array current pulses is essential for the understanding
and elimination of backgrounds in the 8B solar-neutrino analysis; the available calibrations
of the backgrounds were not sufficient to fully characterize the backgrounds in the data. The
following sections describe our simulation of the physics processes and electronics response
that contributed to the characteristics of the observed ionization pulses.
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Figure 3. Schematic representation of the NCD array electronics and readout
system.

3. Simulation of pulses in the NCD array

The calculation of current waveforms from events in the NCD system consists of three
parts: (i) propagation of the ionizing particle and resulting electrons in the NCD counter gas,
(ii) calculation of its induced current on the anode and (iii) evaluation of the effects of NCD array
hardware on the pulse. In the next section, we describe a general method for generating pulse
shapes, and sections 3.2–3.6 describe the major issues pertinent to steps (i) and (ii). Section 4
describes the details of step (iii).

3.1. Method

All ionization pulses, regardless of the ionizing particle, are calculated using the same
procedure. First, the charged particle trajectory is determined, and divided into N small
segments of length l. Next, the energy deposited in the gas within each segment is computed.
The total current resulting from the whole track at time t is a sum of individual currents from
all segments i , evaluated at time t :

Itrack(t) =

N∑
i=1

G i npair,i Ii(t − t0), (3)

where

npair,i =
dE

dx

li

W
(4)

is the number of ion pairs in segment i and W is the mean energy required to produce an
electron–ion pair (see section 3.5). The energy loss, dE , for a given distance traveled, dx , is
dE/dx . Stopping powers and the generation of trajectories for the different ionizing particles
of interest are described in section 3.2. The gas gain applied to the electrons from segment i is
G i ; the value of G i differs from one segment to another because of statistical and space-charge
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http://www.njp.org/


8

effects (see section 3.4). The ‘start time’ for the current from the i th segment is t0, which is
the difference between the drift times (described in section 3.3) of ionization electrons from the
i th segment, and that of the segment closest to the wire. Ii(t − t0) is the induced current of a
positive charge qi = e · npair,i drifting towards the cathode. It is given by [17]

Ii(t − t0) = −
qi

2 ln(b/a)

1

t − t0 + τ
, (5)

where τ is the ion-drift time constant, which is related to the ion mobility. It is characteristic of
the NCD counter gas, and was determined to be 5.50 ± 0.14 ns (section 3.6). The NCD counter
anode and cathode radii are a = 25 µm and b = 2.54 cm, respectively. Itrack is subsequently
convolved with the hardware response as described in section 4.

The contribution of avalanche electrons to Itrack is negligible, because the mean radius
at which the cascade begins is small (∼2a). All electrons in a typical avalanche shower are
collected within ∼0.6 ns, during which time the ions are nearly motionless. The electrons
and ions are in close proximity during the shower, so the induced charges at the wire are
approximately equal and opposite. Therefore, the net induced current during the electron
collection time is small and can be neglected; the current is essentially due to the positive ion
drift.

An efficient way of evaluating equation (3) is to first calculate the distribution of arrival
times of electrons at the wire, and then convolve that distribution with equation (5) using a fast
Fourier transform (FFT) algorithm20. The speed of calculation depends, to a large extent, on the
number of segments into which a trajectory is divided. The optimal segment length is governed
by the frequency of the pulse digitization (1 GHz); it is desirable for electrons from two adjacent
segments to reach the wire within one bin width (1 ns). The restriction on the largest permissible
segment size comes from tracks that are perpendicular to the wire and point radially inwards,
in which case the segment length should not exceed 4.5 µm. It should also be noted that the
segment length is roughly comparable with the mean free path of the primary charged particles.
For computational accuracy, the size of a segment is chosen to be 1 µm everywhere along the
track, which amounts to ∼11 000 divisions for a fully contained 1.1 cm long proton–triton (p–t)
track. The various steps in the calculation of Itrack are illustrated in figure 4 for a p–t track
perpendicular to the anode, with the proton moving radially inwards.

The power of this numerical approach is that any pulse can be computed, given the location
and number of ionization electrons in the event. Ignoring for the moment variations in the
particle trajectory, it is convenient to formulate pulses as a function of four variables, in addition
to t : Itrack(E, r, θ, φ), where E is the particle energy, r its starting radius, θ the track angle
relative to the wire and φ an azimuthal angle relative to the radial vector (see figure 5). Figure 6
(top row) shows typical Itrack shapes from the three classes of physics events of interest: a
neutron capturing at r = 1.29 cm, with the proton traveling outwards at θ = 67◦ and φ = 13◦

(first column), a 5 MeV alpha particle starting at r = 2.5 cm, with θ = 105◦ and φ = 14◦ (second
column), and a 5 MeV electron starting at r = 2.5 cm and scattering thrice on the walls before
being absorbed in the nickel. A small δ-ray resulting from a Möller scatter can be seen at
(x, y) = (−1.2, 1.5) cm. Track projections onto the radial plane are displayed in the bottom
row.
20 The FFTW software package, (http://www.fftw.org).
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Figure 4. Calculation of Itrack (3) for a p–t track perpendicular to the anode,
with the proton moving radially inwards. The gray distribution shows the energy
deposition per unit of length, dE/dx , for the proton and triton tracks; the track-
distance axis is on the top of the plot, with the origin being the start of proton
and triton tracks. The proton travels to the left and the triton to the right. The
peak in the proton energy deposition is the Bragg peak. The initial triton energy
is already below its Bragg peak, so it has a continuously falling distribution. The
black curve is the distribution of electron arrival times at the wire. This curve
appears stretched relative to the energy deposition because of the shape of the
electron-drift-time distribution and the difference in drift times for each end of
the track. The noise on the first two curves is the result of rebinning the track
segments. The blue short-dashed curve results from applying the gas gains G i ,
including space-charge effects; the large noise fluctuations are due to avalanche
statistics. The red long-dashed pulse is Itrack. The effects of the ion drift are added
by convolving (5) with the previous curve; it effectively acts as a low-pass filter,
smoothing out the high-frequency fluctuations and adding a long tail to the pulse.
All curves are normalized to the same area.

3.2. Ionizing particles in the NCD counters

3.2.1. Protons, tritons and alphas. In the energy range of interest (0.2–8 MeV), the energy
losses, dE/dx , for protons, tritons and alphas in the NCD counter gas are accurately calculated
by the software package TRIM [18].21 The mean stopping ranges of protons and tritons in
the NCD counters are 0.73 and 0.28 cm, respectively, corresponding to a mean electron arrival
interval of ∼1000 ns for perpendicular, fully contained p–t tracks. The stopping powers and
ranges are shown in figure 7.

21 TRIM has been extensively verified against measurements of energy loss in He, C, F and CF4, with agreement
at the few-percent level.

New Journal of Physics 13 (2011) 073006 (http://www.njp.org/)

http://www.njp.org/


10

θ

θ

φ

φ

Figure 5. Graphical definition of the angles θ and φ used to parameterize the
alpha and p–t tracks. θ is with respect to the z-axis, and r always lies in the x–y
plane.

Figure 6. Representative pulses from the three classes of ionization events: (a) a
neutron, (b) a 5 MeV alpha and (c) a β particle. The particle trajectories viewed in
the radial plane are shown in (d), (e) and (f), respectively. The track coordinates
are given in the text.

To take the effects of lateral straggling on time resolution into account, multiple scattering
in the gas has to be considered. Particle trajectories in nickel and counter gas are calculated
with the Ziegler–Biersack–Littmark method as described in [19]. The RMS of the distribution
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Figure 7. dE/dx (solid lines) and stopping ranges (dashed lines) of protons (red),
tritons (blue), alphas (magenta) and electrons (black) in the NCD counter gas
volume.

of track endpoints from our calculation is in good agreement with full TRIM MC (MC)
calculations [18], differing by up to 16% at 9 MeV. More details on the simulation of ionizing
particles in the NCD counters can be found in [20].

All tracks are assumed to appear instantaneously in the gas. This is a reasonable
approximation, since a non-relativistic calculation yields flight times of ∼2 ns for the proton
and ∼4 ns for the triton. Hence, any broadening effects on pulse shapes due to transit time of
the primary particle are negligible. It is further assumed that all primary and secondary ion pairs
are created along the trajectory. According to Rudd et al [21], the kinetic energy imparted to
ionized electrons in helium by ∼1 MeV protons is likely to be less than 1 keV. The range of
1 keV electrons in the NCD counter gas is less than 60 µm or, at most, only 0.5% of the total
length of a fully contained p–t track. This means that secondary ion pairs (e.g. occurring from
ionization of CF4 by ionization electrons) are created close to the particle path. The effect on
pulse shapes, apart from a minor smearing effect, is negligible.

3.2.2. β particles. The propagation of β particles and γ s in the NCD counter gas is handled by
the software package EGS4 [22]. The energy loss per unit length, dE/dx , and range are shown
in figure 7 as a function of energy. On account of the very low stopping power, most β pulses
are low amplitude and do not trigger the proportional counter. The probability of a triggered
event resulting from an electron possessing more than 0.2 MeV of kinetic energy is <0.1%.
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Figure 8. Mean electron-drift time in the NCD counters as a function of radius.
The cyan/light shaded region is the set of possible td(r), conservatively assuming
existing measurements [24] to have an uncertainty of ±10% (none were given
in [24]). The green/dark and cyan/light shaded regions combined represent
a ±20% (2-σ ) uncertainty. Regions above the dotted curve are disfavored by
wire α pulses, which require td(r = 2.54 cm) < 3451 ns (denoted by the dashed-
dotted lines). The dashed curve is a weaker constraint from low-energy 210Po
events, whereas the magenta solid curve is the actual function adopted in pulse
simulations. GARFIELD calculations are the red diamond data points.

The estimated number of detected β events above 0.2 MeV in SNO’s third phase resulting from
U and Th impurities was ∼1.3.

3.3. Electron-drift times

An MC-based low-energy electron-transport simulation was developed to evaluate the mean
drift times, td, of electrons in the NCD counter gas mixture as a function of initial radius. This
simulation was used instead of other available simulations (such as GARFIELD [23]) because
the latter were not well suited for situations where the thermalization time of the electrons is
relatively long.

The electron-transport simulation we developed showed good agreement with GARFIELD
predictions in benchmarks using a constant electric field. We also compared with past
measurements by Kopp et al [24]. Figure 8 shows the 1-σ (cyan/light shading) and 2-σ
(green/dark shading) allowed regions for td in an 85 : 15 3He–CF4 mixture, conservatively
assuming experimental uncertainties of ±10% at all electric field values (no uncertainties are
given in [24]).

Further verifications can be made by inspecting specific types of alpha pulses. In particular,
we considered 5.3 MeV 210Po alphas that deposit between 0.9 and 1.2 MeV in the gas. The
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maximum radial length of these events is, on average, 0.12 cm; the first electrons to arrive at the
anode will have come from a radius of 2.42 cm, and the last electrons from a radius of 2.54 cm.
The corresponding pulse full-width at half-maximum (FWHM) is observed to be ∼400 ns. This
means that, if one allows for a broadening of ∼100 ns by the electronic reflection, the time
difference between drift times of electrons starting at 2.54 cm and 2.42 cm cannot exceed 300 ns.
The dashed curve in figure 8 shows this requirement. A slightly more stringent constraint is
obtained by examining the widest alpha particle events, which originate from the anode (dotted
line in figure 8). The drift times were increased by a scaling factor of 10 ± 4% to match the
calculations to observed pulse-width distributions. Taking all of the above into account, the drift
time curve for the NCD counter simulation, as a function of radius, is

td = 121.3r + 493.9r 2
− 36.71r 3 + 3.898r 4, (6)

with td in ns and r in cm. The uncertainty on td(r) was conservatively assumed to be ±10%,
based on the agreement of the data and simulations shown in figure 8.

Electron diffusion results in a radius-dependent smearing on all pulses, and dominates the
time resolution. A smearing factor σD is determined as a function of r from the electron-drift
simulation, and is applied in pulse calculations. σD and td are found to be linearly related:

σD(td) = 0.0124td + 0.559. (7)

The differences between the drift curves and the electron diffusion for 3He gas and 4He gas were
found to be insignificant compared to the uncertainties in the model.

In the endcap regions of the NCD counters, the electric field is not purely cylindrical
(i.e. radial in the x–y plane and constant along the z-axis). Electrons were not propagated in
the non-cylindrical-field region, since we do not know how the drift speeds or gas gain are
affected. The line determining approximately where the field transitioned from cylindrical to
non-cylindrical was determined with a rough calculation of the fields in the endcap region.
Electrons from particles in the non-cylindrical-field region were not propagated. We estimate
that approximately 1% of all neutron and alpha pulses were affected by the endcap region. The
impact of these pulses in the data analysis is discussed in section 5.2.

3.4. The gas gain

The mean NCD counter gas-gain (averaging over many events in a counter), Ḡ, as a function of
voltage, is well described by the Diethorn formula [25]:

ln Ḡ =
V

ln(b/a)

ln 2

W

(
ln

V

pa ln(b/a)
− ln K

)
. (8)

The Diethorn parameters are the average electric potential change between ionization events,
W , and the cylindrical electric field at the avalanche radius, K ,

K ≡ E(r = rav) =
V

ln(b/a)rav
, (9)

E depends on the anode voltage, V , the NCD counter’s anode wire and inner-wall radii, a and b,
respectively, and the mean avalanche radius, rav. p is the gas pressure. All of these parameters
were measured for the NCD counters and are listed in table 1.

However, the Ḡ can vary in several ways from the array average. These changes can affect
the detected energies and pulse shapes. The gain on a particular string can be different from the
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Table 1. Space-charge model input values. ForWs , the energy E is in MeV, and
the uncertainties for both the gradient and offset are given.

Parameter Value Uncertainty
η 1.5 0.1
Ws (µm) 154E + 782 31, 120
Ḡ 219 10
µ (10−8 cm2 ns V−1) 1.082 0.027
W (eV) 34 5
rav (µm) 58 10
a (µm) 25 0.05
b (cm) 2.54 0.0025
p (atm) 2.50 0.01

array average if, for example, V is slightly different on that string. Within a string, Ḡ can vary
by counter because of subtle differences in the gas pressure or inner-wall radius, b. The spread
in gains between the counters was approximately 3%. String and counter variations in the mean
gas gain were measured with neutron calibrations, and those variations were implemented in
the NCD simulation.

Besides variations in Ḡ, during the formation of a current pulse G i will differ from Ḡ
for each track segment, i . There are random statistical fluctuations in the size of an ionization
avalanche from a single electron. For a mean gas gain of approximately 220, the avalanche size
varies exponentially [24]. These fluctuations are easily simulated by randomly choosing the gas
gain from an exponential distribution with mean Ḡ. This effect results in a subtle smoothing of
the pulse shape.

More significantly from the point of view of energy spectra and pulse shapes, under
the typical NCD array operating conditions (i.e. for anode voltage V = 1950 V) the charge
multiplication is sufficiently high for ion shielding to become non-negligible. The energy spectra
and wide-angle (large θ ) pulse shapes are substantially modified by this so-called ‘space-charge’
effect.

A two-parameter model that accounts quantitatively for the space-charge effect was
implemented. Consider a cluster of ions of total charge q formed in an electron cascade close to
the wire, located at a mean radius r̄ . The charge induced by these ions on the anode modifies the
local wire charge density22. The change in gas gain, δG, resulting from a change in wire charge
density, δλ(r̄), is derived from (8)

δG ∝ Ḡ ln Ḡ
ln(b/a)

2πε0 V

(
1 +

1

ln(rav/a)

)
δλ(r̄). (10)

δλ is obtained by dividing the induced charge by a characteristic shower width in the spatial
dimension parallel to the anode wire,Ws, which, for simplicity, is assumed to be a constant for
all avalanches:

δλ(r) =
q

Ws

ln(b/r̄)

ln(b/a)
. (11)

22 In the steady state, the anode wire has a global charge density that depends on the applied voltage.
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Electrons originating from a given segment, i , of a particle track are affected by the density
changes brought about by ions formed in previous electron cascades, δλ j . Each of these ion
clusters moves slowly towards the cathode, while the primary electrons are being collected.
In the presence of many ion clusters, the total change in the anode charge density at time t ,
affecting the evolution of the electrons from the i th track segment, is therefore

δλi =
e

Ws

i−1∑
j=1

ln[b/r̄ j(t)]

ln(b/a)
G j npair, j +

e

Ws

ln(b/r̄)

ln(b/a)
npair,i . (12)

npair, j is the number of ion pairs formed in the j th segment, and j loops over all the previous
ion clusters, which have moved to different radii r̄ j(t) at time t . r̄ j(t) is solved by integrating
the relation

dr j

dt
= µE(r j) −→ r̄ j(t)

2
=

2µV t

ln(b/a)
+ r 2

av, (13)

with E(r j) being the value of the electric field at r j and µ the ion mobility.
A charge segment cannot have a significant impact on the gain of another segment if their

avalanches are far apart in the z-direction. For simplicity, the shower width is assumed to be
a step function; an electron shower centered at a position z0 on the wire is only affected by
segments collecting within the limits z0 −Ws < z < z0 +Ws. This approximation is crude, but
efficient. For those which do overlap, the common distance between cascades is calculated
and the induced charge density weighted by an overlap factor ξ . As an example, a group of
electrons arriving at the anode at z1 < z0, with z1 +Ws/2 > z0 −Ws/2, has an overlap factor of
(Ws + z1 − z0)/Ws. Equation (12) then becomes

δλi =
e

Ws

i−1∑
j=1

ln[b/r̄ j(t)]

ln(b/a)
G j npair, jξ j +

e

Ws

ln(b/r̄)

ln b/a
npair,i . (14)

It is implicitly assumed that ions produced in avalanches induce an image charge of uniform
density along the wire.

The mean gas gain of the i th track segment is therefore

Ḡ i = Ḡ − δG i . (15)

δG i is evaluated with (10), using (14) as an input.
In this numerical model, the two parameters that need to be optimized are: (1) the constant

of proportionality in (10) (referred to as η in table 1) and (2) the avalanche width Ws. These
two quantities share a strong inverse correlation. Their values are determined by tuning the
210Po peak position relative to the neutron peak, the position of the bump in the 210Po spectrum
caused by the space charge relative to the 210Po peak, and the shape of the neutron spectrum.
The parameters Ws and η are needed to accurately reproduce both neutrons and 210Po alphas,
which implies that at least one of the two parameters varies with energy. In this model all of the
energy dependence is given toWs, while η is fixed. Further information about the electron-drift
and gas-gain simulation can be found in [20].

Other physics parameters, such as Ḡ, µi , W and rav, are constrained independently. They
are listed in table 1. The following two sections describe the measurements made to determine
W (section 3.5) and µ (section 3.6).
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3.5. The gas gain and the average energy per ion pair

Two parameters are primarily responsible for determining the integrated current, I , measured
with a proportional counter in response to a given mean amount of energy, Ē , deposited in the
gas: the average energy deposited per ion pair created, W , and the gas gain, Ḡ. Integrating over
many current pulses, the relationship between E , W and Ḡ is [25]

W

Ḡ
=

neĒ

I
, (16)

where n is the rate of neutron captures and e is the electron charge. W is a characteristic of the
ion and the medium in which it is traveling. In this simulation, we have assumed that W is the
same for protons, tritons and alphas, and that W is independent of energy. This is valid except
at low energies, which will have little effect on the NCD pulses [26].

To our knowledge W has not been measured before for the gas mixture used in the NCD
counters, but the values for protons and alphas in a variety of other gases are all fairly similar to
each other [26]. To obtain a precise value of W for the SNO counters, we have measured Ḡ/W
both in the ion saturation region (low voltage) and at the operating voltage of the NCD counters.

We conducted this test with an undeployed NCD counter. Three radioactive sources were
used simultaneously to provide a large neutron flux: 241AmBe, 252Cf and Pu-13C. They were
set within approximately 30 cm of the NCD counter with blocks of polypropylene in between
to act as a neutron moderator. A layer of aluminum foil was wrapped around the counter as a
Faraday cage to avoid currents induced on the NCD counter by external electromagnetic fields.
The foil was separated from the NCD counter body by a layer of plastic bubble wrap, and it
was electrically connected to the ground. The counter was first set up with standard SNO data
acquisition hardware to determine the event rate, which, after being corrected for dead times,
was (429.9 ± 1.1) Hz.

The second setup replaced the SNO data acquisition system with a picoammeter to read
the dc current from the NCD counter. Instead of reading the current from the digital display
on the picoammeter, which fluctuated rapidly due to statistical variations at the low current
levels we were measuring, the analogue output was fed into a digital oscilloscope that averaged
the reading over periods of a few seconds. It was found that the average value would stabilize
reliably within that amount of time. The high-voltage supply was connected to the anode wire,
and its setting was controlled by the data-acquisition system. The picoammeter read the current
from the cathode (i.e. the nickel wall of the NCD counter).

The results from these measurements are shown in figure 9. The lowest measurement
setting on the picoammeter (range: 2 nA) was able to make a high-sensitivity measurement of the
current up to 1500 V, which is shown with the squares in figure 9. The next-higher current range
(20 nA) was used to make a lower-sensitivity measurement up to 2000 V (circles in figure 9).
Due to differences in how the high-voltage supply was calibrated relative to the supplies used
in the actual NCD array system, the setting that corresponded to the voltage used for the NCD
array was 1943.9 V. The data point at this voltage determines Ḡ/W to be

Ḡ/W = 6.36 ± 0.33(stat) ± 0.03(syst) eV−1. (17)

Using the value of Ḡ = 219 as shown in table 1, W was found to be 34 ± 5 eV.
The high-sensitivity measurements can be used as a comparison. A fit with a zeroth-order

polynomial in the ion saturation region, between 200 and 800 V, determines Ḡ/W :

Ḡ/W = [2.93 ± 0.65(stat) ± 0.84(syst)] × 10−2 eV−1. (18)
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Figure 9. The two measurements of Ḡ/W . The uncertainties plotted are
statistical only, and are smaller than the data-point markers for almost every
point. The square points are a high-sensitivity measurement using the lowest
measurement setting on the picoammeter. The circle points are a lower-
sensitivity measurement that goes to higher voltages, using the next-higher
picoammeter setting. Both measurements agree well, although there may be a
small systematic shift between the two that is accounted for by the systematic
error due to picoammeter accuracy.

Since G = 1 in the ion saturation region, we find W = 34.13 ± 12.4 eV. These results are in
excellent agreement with each other, and the value of W = 34 ± 5 eV was implemented in the
NCD array MC.

3.6. Ion mobility

The small ion mobility, relative to that of the electrons, results in the long tail that is
characteristic of pulses from ionization in the NCD counters, as shown in figure 4. Therefore, it
is important to know the ion mobility so that the tail of each pulse can be simulated correctly.

The evolution of a current pulse in a cylindrical proportional counter is described in (5).
τ is the ion time constant, which is inversely proportional to the ion mobility, µ:

τ =
a2 p ln(b/a)

2µV0
; (19)

V0 is the applied voltage, p is the gas pressure and a and b are the radii of the anode wire and
the inner radius of the NCD counter, respectively.

If the underlying shape of a pulse, not including the tail, is known, it is simple to extract the
shape of that tail. There is one class of pulses that has a relatively simple underlying structure:
ionization tracks that are parallel to the anode wire. All the primary ionization electrons reach
the anode at approximately the same time, with some spread due to straggling. Therefore, the
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Figure 10. An example of a fit to extract the value of the ion-tail time constant.

basic shape of the underlying pulse is approximately Gaussian. Reflections and the effects of
propagation along the counter and through the electronics also affect the shape of the pulse.
These secondary effects have all been modeled independent of the ion mobility.

The procedure for extracting ion mobility is to select the narrowest neutron pulses from
a calibration data set and fit each pulse with a Gaussian convolved with a reflection and
the electronics model. The free parameters in each fit are τ , the three Gaussian parameters
(amplitude, mean and width) and the reflection time. A fit example is shown in figure 10. The
generic pulse model fits the peaks well enough to allow for a characterization of the ion tail.

A subset of the AmBe neutron calibration runs was analyzed in this study. An initial
selection of pulses was made by restricting the ADC charge to be between 100 and 150. The
neutron peak (764 keV) typically falls between 120 and 130 ADC counts, so these are pulses
where neither the proton nor the triton hit the wall. A second selection cut was based on the
width and height of each pulse. The sharpness of a pulse can be approximately characterized
by the ratio of the amplitude to the width. A cut of 0.5 × 10−4 < amplitude/width(V ns−1) <

1 × 10−4 removed 99.36% of the pulses.
Figure 11 shows the results from all of the fits in the data set. The histogram has a broad

peak of successful fits, and a smaller peak at low τ of non-physics background pulses (e.g. spikes
from electrical discharges do not have an ion tail). Of the 393 pulses fit, 337 (≈86%) are above
τ = 2 ns. The main peak was fit to a Gaussian using a log-likelihood minimization because of the
small number of entries in many of the bins. The mean of the Gaussian fit is τ = 5.50 ± 0.14 ns
(σ = 2.15 ± 0.12 ns). The uncertainty is the statistical uncertainty of the fit for τ (the effects
of changing the pulse-selection criteria were small compared to this uncertainty). This result
is expected to be correlated with the time constants of the electronics, which were measured
ex situ (i.e. the RC constants discussed in section 4).
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Figure 11. Fit results for the ion-tail time constant. The data set includes 393
pulses. The low-τ peak is due to non-physics background pulses. By fitting
a Gaussian to the main peak with a log-likelihood minimization, the ion time
constant is determined to be 5.50 ± 0.14 ns.

The time constant corresponds to a mean ion mobility of µ = (1.082 ± 0.027) ×

10−8 cm2 ns−1 V−1. This value of the ion mobility was implemented in the NCD array MC,
and the uncertainty was used to calculate its systematic effects.

4. Electronics and data acquisition simulation

4.1. Pulse propagation in the counters

In the NCD array simulation, after a current pulse forms on an anode wire, it propagates along
the counter through the NCD cable to the preamplifier. The amplified pulse is then transferred
to the multiplexer system, at which point it is split between the two data-acquisition paths.
One path integrates the pulse with a Shaper-ADC to determine the energy deposited in the
counter. Its trigger is based on the pulse integral. The second path is triggered by the pulse
amplitude. The pulse is logarithmically amplified and digitized with a sampling rate of 1 GHz.
Each recorded pulse is 15 µs long. The electronic and data acquisition components are described
in more detail in [11]. Each current pulse is simulated using a 17 000-element array with 1 ns
bin widths; a 15 000-element subset of the array is eventually stored in the standard SNO data
structure for each pulse that causes a trigger. The extra 2000 array elements are used to ensure
that the beginning and end of each pulse are treated as if the current from the NCD counter exists
continuously beyond the 15 µs long pulse. The start of the recorded 15 µs pulse is determined
by the trigger conditions, downstream of the pulse simulation. Figure 12 shows a simulated
neutron pulse at various stages of the electronics simulation.
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Figure 12. A simulated neutron pulse (r = 1 cm, θ = 90◦ and φ = 0◦) at
different stages of the electronics simulation to show the effects of the different
components. The most significant changes to the pulse shape are due to
propagation in the NCD counters, and logarithmic amplification (1t in (21)).
The shift of the start of the pulse is the time delay in the logarithmic amplifier.
The preamplifier, on the other hand, has little effect on the pulse shape.

4.2. Electronics simulation

Propagation of the pulse along the NCD string is simulated with a lossy transmission line (LTL)
model [27]. Half of the pulse is propagated down the NCD string, through the delay line, and
back to the point of origin of the pulse. The delay line attenuation is also simulated as an LTL.
Both halves of the pulse (reflected and direct) are subsequently transmitted up to the top of the
NCD string. The attenuation of the pulse due to transmission along the NCD string is dependent
on the distance traveled, so pulses starting at different z positions will look slightly different
when they exit the string.

The simulation parameters for the NCD counter wire and delay line come from fitting
the LTL model implemented with the SPICE simulation package [28] to ex situ electronics
calibration data. The best-fit parameters are given in table 2. Skin effects in the anode wire,
the resistances for the counters, and the delay lines result in frequency-dependent values for
the parameters of the LTL model. To take the frequency dependence into account, the measured
resistance (R, in � cm−1) is fit between 0 and 200 MHz with an empirical formula that illustrates
the dc and frequency-dependent contributions:

R( f ) =
A

exp[( f − B)/C] + 1
+

D
√

f + E

exp[(B − f )/C] + 1
, (20)

where the fit parameters A, B, C , D and E are given in table 2, and the frequency is given
in MHz.

An LTL model using parameters calculated analytically, assuming an infinite cylindrical
geometry, gave somewhat different results. However, since the analytical model did not include
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Table 2. Parameters used in the LTL model of the NCD counters and of the
delay line. The resistance parameters are not all resistances because, as shown
in (20), parameters B and C determine the frequency dependence of the different
contributions.

Parameter Value
Counter

Inductance (10−8 H cm−1) 1.33
Capacitance (10−14 F cm−1) 7.68
Conductance (S cm−1 MHz−1) 0.0

Delay line
Inductance (10−7 H cm−1) 9.91
Capacitance (10−12 F cm−1) 5.53
Conductance (10−12 S cm−1 MHz−1) 3.0

Counter and delay line
Resistance - A (� cm−1) 0.1024
Resistance - B (MHz) 13.4
Resistance - C (MHz) 8.4

Resistance - D (10−2 � cm
√

MHz−1) 1.643
Resistance - E (10−2 � cm−1) 2.32

the effects of counter endcaps, junctions and the frequency-dependent permeability of nickel
walls, the SPICE fit was deemed superior, and those parameters were chosen for usage in the
NCD array simulation.

Propagation in the NCD cable is simulated with a low-pass filter with an RC ≈ 3 ns. There
is a small reflection of 15% magnitude at the preamplifier input due to the slight impedance
mismatch between the preamplifier input and the cable23. The fraction of the pulse that reflects
off the preamplifier input travels to the bottom of the cable, reflects off the top of the NCD
string, and subsequently travels back up the cable.

The preamplifier converts the current pulse to a voltage pulse, with a gain of 27 500 V A−1.
The circuit elements of the preamp also affect the shape of the pulse. We simulate this with
a low-pass filter (RC ≈ 22 ns) and a high-pass filter (RC = 58 000 ns). The RC constants were
measured by fitting the model to ex situ injected pulses.

The multiplexer branch of the electronics chain consists primarily of an ∼300 ns delay
cable, a logarithmic amplifier, and a digital oscilloscope. The frequency response of the delay
cable and the electronics between the preamplifier and the logarithmic amplifier are simulated
with a low-pass filter (RC ≈ 13.5 ns). The analytic form of the logarithmic amplification is

Vlog(t) = a log10

(
1 +

Vlin(t − 1t)

b

)
+ cchan + VPreTrig, (21)

where Vlog and Vlin are the logarithmic and linear voltages, respectively, and a, b, cchan, 1t
and VPreTrig are constants determined by regular in situ calibrations during data taking. The
circuit elements after the logarithmic amplification are simulated with the final low-pass filter

23 The frequency dependence of the reflection coefficient is not known, and it was assumed to be constant. The
15% reflection coefficient was found to match the data well.
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(RC ≈ 16.7 ns). The RC constants for the two low-pass filters in the multiplexer simulation were
determined by fitting the model to pulses injected into the components ex situ. The final element
of the multiplexer branch of the simulation is the digital oscilloscope. The pulse array values
are rounded off to the nearest integer to replicate the digitization.

4.3. Noise simulation

There are a variety of electronic noise sources within the NCD system. Due to the difficulty of
identifying and measuring all of the individual contributions, noise is added to the pulses after
the rest of the simulation is complete. This situation also requires that noise is added to the
multiplexer and Shaper branches of the electronics independently. For the multiplexer branch,
the frequency spectrum of the noise was measured for each channel using the baseline portions
of injected calibration pulses. This provides the mean value, µi , of the noise power spectrum at
each frequency. Assuming that the real and imaginary components of the noise are independent
Gaussian-distributed random variables, then the standard deviation of the noise is related to the
mean value by

µi = 2σ 2
i . (22)

To avoid passing the noise through the final low-pass filter in the linear domain, the final
simulated pulses without noise are ‘de-logged’ (by inverting (21)), convolved with the noise
and subsequently ‘re-logged’.

The Shaper branch of the electronics is simulated by a sliding-window integral of the
preamplified pulse. This number is then converted to units of ADC counts by doing an inverse
energy calibration. The constants used in the ‘uncalibration’ are the same constants that are used
to calibrate the data. Since the Shaper simulation acts on electronic-noise-free pulses, noise is
added to the Shaper value with a Gaussian-distributed random number. The mean and standard
deviation of the noise for each channel were determined by comparing the energy spectra from
in situ neutron calibrations to the simulated electronic-noise-free energy spectra. The noise
characteristics of each NCD string were determined independently. The typical RMS noise (in
units of ADC values) is 2.0, with a variance of 0.7 (roughly RMS = 0.012 ± 0.004 MeV) across
the array.

4.4. Trigger simulation

Once all elements of each system are simulated for a given pulse, a trigger decision is made
in the simulation based on whether the MUX or Shaper thresholds are exceeded. The MUX
and Shaper systems include independent triggers and the thresholds for both are determined by
in situ calibrations. After a MUX trigger, the system is open for further triggers for 15 µs, after
which all MUX channels are dead for 1 ms. The oscilloscope recording the pulse is dead for
0.9 s after it is recorded (the other oscilloscope is still live, provided it is not already reading out
an event). The oscilloscope used to read out an event is determined by which is not busy, or by
toggling between them if neither is busy. After a Shaper trigger, the system is open to further
triggers for 180 ns, after which all Shaper channels are dead for 350 µs. These times are only
simulated within each MC event and not between events. For instance, a single MC event can
involve the spontaneous fission of a 252Cf nucleus during a calibration24. Such a fission releases

24 252Cf calibrations were not used in tuning the simulation of the NCD array.
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multiple neutrons and will result in multiple multiplexer and Shaper events. The dead-time will
then be simulated, but it will not apply between multiple 252Cf events.

All NCD-system triggers are then integrated with the SNO photomultiplier (PMT) signals.
The PMT trigger simulation time-orders an array of all PMT signals (i.e. each individual hit
on a PMT) in MC event and scans through it to determine if any of the trigger conditions are
satisfied (the trigger window is 430 ns long). If that occurs, then a ‘global trigger’ is created and
the simulated data are recorded. The NCD array signals (i.e. each pulse from the NCD system)
are integrated with the PMT trigger simulation by inserting each NCD signal into the time-
ordered array of PMT signals. As the simulation scans over the combined PMT + NCD signals,
any individual NCD signal is sufficient to cause a global trigger.

5. Impact and implementation of the NCD array simulation

5.1. Tuning

We tuned and validated the NCD array simulation by comparing simulated pulses to calibration
data using a number of pulse-shape variables:

1. The physics model and detector response were tuned and validated by comparing 24Na
neutron calibration data with 24Na neutron simulation [13].

2. The string-to-string variation of the alpha contamination was tuned on data above the
neutron-analysis energy window (above 1.0 MeV) and up to 7.0 MeV, where a pure alpha
sample resides.

3. The alpha simulation, including systematic uncertainties, was validated in the region of
interest for the NCD analysis by comparing it with calibration data from the alpha strings
that were filled with 4He.

This procedure was designed to ensure that the simulation accurately reproduces the data,
without training on a data set that contains the NC neutron signal.

Comparing the simulation to neutron calibration data tests nearly all aspects of the
simulation physics model downstream of the primary energy loss by ions in the NCD counter
gas. We compared simulated and real 24Na calibration data using the distributions of a number
of pulse-shape-analysis variables. These included shape variables such as pulse mean, width,
skewness, kurtosis, amplitude and integral, as well as timing variables, including various rise
times (10–50% and 10–90% of the pulse amplitude), integral rise times and full width at half
maximum. These comparisons were used to estimate parameter values and uncertainties for
electron and ion motion in the NCD counter gas, as well as for the space charge model. After
tuning, the agreement between data and simulation in these variables is generally good, as shown
in figure 13. Using neutron calibration data to test the level of agreement with simulation is very
valuable because it provides high statistics in the most relevant energy region for the analysis.
Although the first analysis of the data from the NCD array [12] relied on energy and did not
use pulse-shape or timing variables, such comparisons build confidence that the simulation
accurately models the development of signal pulses as a function of time, and that the physics
is correctly modeled.

To compare data and MC in regions of parameter space that contain significant numbers of
alphas, it was necessary to construct a ‘cocktail’ of simulated alpha pulses with the appropriate
mixture of NCD cathode-surface polonium and bulk uranium and thorium alpha events. This
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Figure 13. Comparison of pulse-shape variables in 24Na neutron calibration
data (black points) and the NCD array MC (cyan curve) in the neutron energy
window, 0.4–1.2 MeV, with statistical errors only. From top left to bottom right:
fraction of events as a function of pulse amplitude, time-axis mean of the pulse,
10–90% rise time and FWHM. All distributions are normalized to unit area.

step was necessary because the pulse-shape, timing and energy distributions of polonium and
bulk alpha events are rather different, as shown in figure 14 and the right-hand plot of figure 17,
respectively. Furthermore, the polonium-to-bulk ratio varies significantly from string to string,
as does the total number of alpha events. We estimated the fraction of polonium and bulk alpha
events on each string by fitting each string’s energy distribution in the region of 1.2–7.0 MeV
with simulated polonium and bulk alpha-energy probability distribution functions (PDFs). We
chose to fit in energy for two reasons: (i) this variable provides excellent discrimination between
surface polonium and bulk radioactivity, as can be seen in the right-hand plot of figure 17; (ii) we
found that energy is quite a robust variable against changes in MC physics models. The latter
point is not surprising since the energy depends on the total charge deposited in the counter.
Therefore, to first order it is independent of the details of the charge deposition process, unlike
pulse-shape and timing variables.
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Figure 14. Comparison of pulse-shape variables in 4He alpha calibration data
(black points) and the NCD MC alpha cocktail (gray curve), polonium alphas
(red dashed line) and bulk alphas (green dotted line) in the NCD analysis energy
window, 0.4–1.2 MeV. The data points are shown with statistical errors; alpha
cocktail MC is shown with statistical (hatched) and systematic (gray filled)
errors. From top left to bottom right: fraction of events versus pulse amplitude,
time-axis mean of the pulse, 10–90% rise time and FWHM. The data and cocktail
distributions are normalized to unit area, whereas the polonium- and bulk-alpha
distributions are normalized to their fractional contribution to the alpha cocktail.

Before the energy-spectrum fit, we calibrated the MC energy for each string such that the
peak of the polonium energy distribution in MC matches that in data. The size of the calibration
constant (essentially an extra gain factor, applied as a multiplicative scale to the event energy)
is typically 1–3%, and is different for each string. After the fit, we calculated an event weight,
w (string, αtype), which is a function of string number and alpha type (polonium, uranium or
thorium) describing the best-fit fraction of alphas on each string due to each source25. In general,

25 The bulk alpha events were assumed to be composed of equal parts of uranium and thorium because their energy
spectra are very similar. We were unable to measure the ratio of uranium and thorium on each string with sufficient
accuracy because the normalizations of the independent uranium and thorium spectra were highly correlated in
every energy fit. A single combined bulk spectrum was used instead.
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polonium comprised ∼60% of the alpha population; however, there were ±20% (absolute)
variations between strings. The weights for the best-fit alpha fractions, and the data/MC energy
scale correction, were applied on an event-by-event basis in the analysis.

We validated the resulting cocktail alpha simulation by comparing with alpha data from
the four 4He-filled strings, from 0.4 to 1.2 MeV, and from the 36 3He-filled strings, from 1.2
to 7 MeV. This comparison is shown in figure 14 for several pulse-shape-analysis variables of
interest. The agreement between the MC and alpha calibration data is generally good, and builds
confidence that the simulation physics model describes the alpha-background well in the region
of interest for the phase-three analysis.

5.2. Identification of alpha backgrounds

The fully developed NCD array MC improved our understanding of the alpha background events
in the data. The most common type of alpha event was due to a decaying nucleus in or on the
nickel wall of a counter. There should also be some radioactive contamination from the anode
wire, although the characteristics of these pulses had not been well understood before the NCD
MC was developed. There should also be alpha decays occurring in the endcap regions of the
counters. While an alpha travels in the gas in the endcap region, the electrons created as the
alpha ionizes the gas do not reach the anode wire because of the silica feedthrough (see [11]
for details of the construction of the NCD counters). Once the alpha reaches the region where
the ionization electrons can drift to the anode wire, the drifting electrons may be affected by the
locally distorted electric field. The shapes of the endcap-alpha pulses were not well understood
previously due to both these effects. The NCD array MC was used to characterize both types of
minority alpha pulses.

The simulation of anode-wire-alpha pulses is a straightforward extension of standard ‘wall-
alpha’ pulses. The origin of the alpha particle was set on or in the copper of the anode wire; the
initial direction may be away from or into the wire (since alpha particles with enough energy
can pass through the wire and still produce a pulse). We simulated both bulk 238U and 232Th,
and surface 210Po contaminations for the anode wires.

The simulation of endcap-alpha pulses had the additional complication of tracking
ionization electrons in the region where ionization electrons may not reach the anode wire,
or where the electric field distortions may affect the pulse shapes. Based on a rough calculation
of the fields in the endcap regions, we used a conical surface to describe the boundary where
electrons start to drift to the anode. Furthermore, we found that the field distortions were
relatively small and could be ignored for the purpose of generally characterizing alpha pulses
originating in the endcap regions.

Figure 15 shows the pulse-width versus energy distribution for a variety of simulated alpha-
pulse types and neutrons. Besides the wall-alpha pulses there are also wire-alpha pulses and
endcap-alpha pulses. An isolated population of wire-alpha events extends from the top of the
210Po-alpha peak, and some of the low-energy pulses are narrower than the wall alphas and
neutrons. Many of the endcap-alpha pulses overlap with the wall alphas, but some of the low-
energy endcap alphas are also narrower than the wall alphas and neutrons. The pulse-width
versus energy distributions for simulated events in figure 15 can be compared to the distribution
for the NCD array data in figure 16. There are clearly populations of events that match up
with the wide wire-alpha pulses and with the narrow endcap-alpha pulses. Prior to the full
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Figure 15. Pulse-width versus energy distributions for simulated neutrons (gray)
and alphas. The alpha populations include surface wall 210Po alphas (red), bulk
wall 238U alphas (magenta), surface wire 210Po alphas (green), bulk wire 238U
alphas (blue) and bulk endcap 238U alphas (black, distributed with the blue
points).

development of the NCD array MC, these populations in the data were not understood. By
simulating a variety of alpha-pulse types, we were able to identify these unexplained pulses in
the data.

5.3. Use in the solar-neutrino signal extraction

In the SNO Phase-3 analysis [12], the number of events as a function of energy in the NCD
array data was fit with neutron and alpha PDFs simultaneously with the PMT data. The best-
fit number of neutrons is proportional to the detected 8B solar-neutrino flux plus the deuteron
photodisintegration background. The neutron PDF comes from 24Na calibration data, while the
alpha PDF is calculated with the NCD array simulation described in this paper. Due to the lack
of an adequate in situ alpha calibration, we needed the simulation to produce a data set with
sufficient statistical accuracy and the correct bulk-to-surface event ratio. We produced a data set
with approximately 10 times the number of alpha events expected in the data from SNO’s third
phase. The final step was to determine the energy-dependent systematic uncertainties for the
alpha-energy spectrum.

The systematic uncertainties we considered are listed in table 3; these reflect the range of
these parameters in the physics model of the NCD array. Systematics are assessed by generating
large sets of variational MC data, each with one simulation input parameter varied by one σ with
respect to its default value, and with similar statistics to the standard MC data set. In the standard
MC data all parameters are fixed to their default values. No other parameters, including energy
scale and polonium/bulk fractions, are different between the default and variational MC sets.
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Table 3. Parameters used in the NCD array simulation and their associated
uncertainties, listed in descending order of importance. The alpha cocktail
fractions, the mean 238U and 232Th depths and the instrumental background cuts
vary from string to string.

Parameter Value Range
Mean Po depth (µm) 0.1 ±0.1
Mean U and Th depth Varies Varies
Instrumental background cuts Varies Varies
Avalanche width gradient 154 ±31
Avalanche width offset 782 ±120
Electron-drift curve (scaling, %) 10 ±4
Ion mobility (10−8 cm2 ns−1 V−1) 1.082 ±0.027
Alpha cocktail Varies Varies
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Figure 16. Pulse-width versus energy distributions for the NCD array data. Prior
to studies with the NCD array MC, the populations of extremely wide and
narrow pulses were not well understood. By comparing with the simulated data
in figure 15, they can be identified as wire-alpha pulses and possibly endcap-
alpha pulses.

The size of the systematic-parameter variations for the NCD array MC was estimated from
ex situ, off-line measurements of the NCD array signal-processing electronics response, and
in situ constraints from the NCD array data. In the latter case, we used orthogonal data sets to
assess the variations, either from calibration data or from the data set above 1.2 MeV.
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The 1-σ uncertainties for the selected systematic parameters were determined in different
ways. As described in section 5.1, the uncertainty on the alpha cocktail fractions comes from the
high-energy fits. The alpha-depth uncertainties are conservatively assumed to be the difference
between the best-fit values for the mean depths and completely uniform/surface distributions.
Qualitatively, varying the alpha depth changes the slope of the energy distribution in the neutron
window because the width and the amplitude of the pulses depend on the origin of the alpha
particles. We fit the mean depths using alpha data above the neutron analysis window. The
uncertainty on the electron-drift curve scaling is estimated from the analysis of the widest
wire alphas, since this variation tends to change the average pulse width. The uncertainties
on the space-charge offset and gradient parameters, which are the coefficients ofWs described
in section 3.4, are determined by looking at how the features of the alpha-energy-spectrum
shift as each parameter is changed. Qualitatively, tuning these parameters changes the charge
deposited versus time on the anode, and therefore the energy scale. The ion mobility uncertainty
is determined from the analysis of extremely narrow neutron calibration pulses. The ion mobility
variation affects the total amount of charge versus time as well. The alpha fraction variation is
also determined from the string-by-string fits described in section 5.1. Qualitatively, varying
these parameters changes the slope of the alpha-background energy distribution in the neutron
energy window since the bulk and 210Po alphas have somewhat different slopes.

We propagated the MC systematic uncertainties to the alpha-energy distribution by
calculating first derivatives [29]. For each of the eight systematic uncertainties, the first
derivatives for each bin of the energy distribution were calculated by taking the difference
between histograms containing the standard MC prediction for the shape of the energy
distribution, and the variational MC energy-distribution shapes. Then, the total systematic
uncertainty in each energy bin was assessed by summing the eight contributions in quadrature.
We calculate the uncertainty on the shape only (rather than shape and normalization) because the
third-phase solar-neutrino analysis used an unconstrained fit for the neutron-signal and alpha-
background normalizations. We note that this procedure treats all systematic uncertainties as
uncorrelated by fitting the variations as deviations.

To incorporate the simulation systematic uncertainties, the solar-neutrino analysis of the
third phase used the alpha-background first derivatives described above. For ease of use, we
generated analytical functions describing the fractional first derivatives as a function of energy,
which are shown in the left-hand plot of figure 17. The best-fit functions were determined by
χ2 minimization to be second-order polynomials. These functions multiply the standard MC
energy distribution to produce the 1-σ variational background PDFs. In the third-phase analysis,
each function was multiplied by a nuisance parameter for the normalization of that particular
uncertainty. The nuisance parameters were constrained with a penalty term in the likelihood
function.

To estimate the impact of these systematic uncertainties, we performed two kinds of tests.
Firstly, we estimated the errors on the pulse-shape and timing distributions to give guidance on
which variables are most robust against NCD array MC physics model uncertainties. We found
that some variables were much more sensitive to certain systematic variations than others. For
example, the space-charge model parameters primarily affect the rise-time distributions, while
the alpha-depth variations have a large effect on most variables. Secondly, we fit the energy
spectrum of an unknown fraction of the data (to maintain blindness) to determine the number
of neutrons between 0.4 and 1.2 MeV, using each of the variational MC sets as the alpha-
background PDF. The variation in the number of neutrons provided the most relevant estimate of
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Figure 17. Top left: fractional first derivatives versus energy (MeV) for
significant systematic variations of the simulation. Top right: number of events
versus energy (MeV) in the NCD analysis energy window, for data (black points,
with statistical uncertainties), neutron PDF from calibration data (purple dashed
curve), alpha cocktail PDF from simulation (cyan curve) and total predicted
number of events (gray curve, with systematic uncertainties). Bottom center:
number of events versus energy (MeV) above the NCD array analysis energy
window, for data (black points, with statistical uncertainties), alpha cocktail
(wide gray curve, with systematic uncertainties), polonium (red curve) and bulk
(blue dashed curve) simulation.

the uncertainty, and possible bias, due to each systematic source. In general, these fits showed
that the alpha-depth variation systematic uncertainty has the largest impact, followed by the
noise model, the electron-drift time curve and the ion mobility variation. The total systematic
uncertainty assessed in this way on the number of neutrons was approximately 4%.

The final simulated alpha-energy spectrum in the analysis energy window is shown in the
center plot of figure 17, with systematic uncertainties. This alpha spectrum was used as the
background PDF in the third-phase analysis, together with the neutron signal PDF from 24Na
neutron calibration data, to extract the best-fit total number of neutron events.
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Table 4. Number of pulses generated and used for the neutron, wall-alpha and
wire-alpha libraries. The number of pulses generated is determined by the grid
spacings in the respective parameter spaces. Some pulses were removed because
their deposited energies were either too high or too low. Pulses in the energy
range 0.2 < E < 1.2 MeV were kept.

Neutron Wall alpha Wire alpha
Generated 3350 4200 3500
Used 3329 2974 2599

5.4. Pulse fitting

Another approach to separating neutron and alpha events is to fit individual pulses with neutron
and alpha template pulses. In particular, we can use the NCD array MC to generate libraries of
such templates for both signal neutrons and alpha backgrounds26. A library of simulated pulses
consists of a set of a single class of pulses (either neutrons, wall alphas or wire alphas), where
the pulse shapes included cover as many of the available pulse shapes as possible. The parameter
space for the available pulse shapes consists of five variables: the radius, r , the two track angles,
θ and φ, the position along the NCD string, z, and the initial energy, E . A data pulse is fit by
finding the best match in the library.

The three types of events, neutrons, wall alphas and wire alphas, are catalogued in separate
libraries. The three libraries are generated by varying the parameters on the four-dimensional
(4D) grids in their respective parameter spaces. For neutrons the relevant coordinates of the
parameter space are r , θ , φ and z. The initial energy is fixed at 574 and 191 keV for the proton
and triton, respectively. For alphas the relevant coordinates are E , θ , φ and z, with the radius
fixed at either the inner radius of the wall or the outer radius of the wire (the pulse shape for any
alpha leaving the wall with a given E , θ , φ and z will be the same regardless of whether or not
it started out deeper in the nickel or on the surface). Table 4 shows the number of pulses in the
three libraries. Further details about the creation of the pulse libraries can be found in [31].

When comparing a data pulse to a library of simulated pulses, the quality of each fit is
determined by a Pearson’s χ2 test. The library pulse that has the smallest χ 2 per degree of
freedom (dof) when compared to the data pulse is the best fit to the data.

The fit region for each pulse is determined by finding where the pulse amplitude drops
to a given fraction of the peak amplitude on the rising and falling edges. The tail of each
neutron-capture and alpha pulse quickly becomes dominated by the characteristic ion-drift time
constants, while the rising edge contains information about the particle that produced the pulse.
As a result, the left (rising) and right (falling) edges of the pulse are treated differently. The left
edge of the fit region is the point at which the pulse crosses 10% of its peak value. 10% of the
peak amplitude is typically above the baseline noise, even for low pulses, and almost the entire
rise of the pulse is included in the fit region. The right edge of the fit region is the point at which

26 It would be inefficient to generate the pulses as a fit is performed because of the time needed to generate each
pulse. Furthermore, most minimizing routines perform best when the fit function (i.e. the simulated pulse shape)
changes smoothly as a function of its parameters (r , E , θ , φ and z). This is not the case in the NCD array simulation
when a change of any of those coordinates can cause a track to hit the wall or wire and therefore change the pulse
shape discontinuously.
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the pulse crosses 30% of its peak value. A larger percentage is chosen for the falling edge than
the rising edge to avoid most of the ion-drift tail, which is almost the same for every pulse and
would therefore make the χ2 parameter less effective in separating pulse shapes.

The variance used in the χ2 calculation is also determined for each pulse. There are four
sources of variance that can contribute to the difference between an MC library pulse and a data
pulse:

• Electronic noise: Various parts of the electronics contribute to the background noise
on a pulse. The exact frequency spectrum of that noise depends on the bandwidths of
downstream electronics components, but it can be approximated by taking the RMS of the
tail of a pulse about the mean value. In particular, bins 11 000–14 999 (from approximately
10.2 to 14.2 µs after the start of the pulse) are used. This contribution to the variance is the
largest of the four.

• Digitization: When the pulse is digitized, some uncertainty is added to every bin because
each digitized value could represent a range of actual values. The non-voltage-dependent
portion of the digitization variance is already accounted for by taking the RMS of the tail
of the pulse. The voltage-dependent portion is calculated separately.

• Library sparseness: Since the MC libraries are created on grids in the pulse parameter
spaces before any fitting is performed, they represent a selection of the available pulse
shapes. Differences between the best-fit MC library pulse and the actual track parameters
of the pulse being fit will add to the variance.

• MC imperfections: Since the MC is not perfect, even if an MC pulse is created with the
exact same track parameters as a real pulse there will still be differences between the two
pulses because the MC is not an exact model.

The digitization contribution to the variance depends on the size of a single step in the
digitizer, 1:

σ 2
D =

12

12
. (23)

This factor, known as ‘Sheppard’s correction,’ [30] is the correction that would need to be
applied to determine the true width of a Gaussian peak in a spectrum that has been binned.
The contribution to the variance due to digitization is

σ 2
D =

1

12

(
Vlin(t − 1t) + b

a log10 e

)2

. (24)

Equation (24) can be expanded and separated into two voltage-dependent terms and a voltage-
independent term. The latter is a part of the variance that is calculated by taking the RMS
of the noise in the tail of each pulse. The voltage-dependent component of the digitization
variance turns out to be a relatively small contribution to the total variance. It is an order of
magnitude smaller than the voltage-independent variance (including the electronics and part of
the digitization) for pulses with large amplitudes (and therefore the largest digitization variance).

Unfortunately, there is no well-defined method for quantifying the contributions to the
variance from the sparseness of the libraries or the imperfections in the MC. We studied the
increase in the mean reduced χ 2 as a result of these two contributions by fitting simulated and
real 24Na neutron pulses with the neutron library. The library was used to fit a simulated 24Na
neutron data set; the excess χ2/dof above 1 was a result of the variance contribution from the
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Figure 18. An example of an MC neutron pulse fit with the neutron library (a),
and the same pulse fit with the alpha library (b). The vertical blue lines indicate
the fit region, in which χ2 was calculated. The χ2 in (b) is larger than in (a),
although this example serves to show how a neutron pulse (even one that is not
extremely narrow) can still be fit fairly well with the alpha library. Plots (c) and
(d) are the respective fit residuals.

library sparseness. The library was then used to fit a real 24Na neutron data set, and the excess
χ2/dof above the value from fitting the simulated data was a result of the variance contribution
from MC imperfections. We found that their contributions were small and had no significant
impact on the ability to separate neutron and alpha pulses.

An energy term of the form (E − Efit)
2/V [E] is also added to the χ2 statistic to take into

account the difference in energy between the library pulse and the pulse being fit. The variance
for the energy term is set by the alpha-library energy spacing, 1Eα: V [E] ≡ (1Eα/2)2. For
the libraries used, 1Eα = 0.1 MeV. This factor has a small effect on the total χ 2 when the
difference between the energies is small, particularly since the number of bins in each pulse’s
fit region is large.

We first fit simulated data with the pulse libraries. Figure 18 shows an example MC neutron
pulse fit with both the neutron library and the alpha library (the latter is a combination of the
wall- and wire-alpha libraries), accompanied by the respective fit residuals. Figure 19 shows a
fit of an alpha MC pulse with the neutron and alpha libraries. The neutron pulse selected is fit
well with the neutron library (χ2/dof = 0.58, with approximately 1070 degrees of freedom) and
fairly well with the alpha library (χ2/dof = 0.97). Qualitatively, it is clear that the fit with the
neutron library better represents the overall structure of the pulse. Some neutrons have a more
generic pulse shape and are fit reasonably well with both the neutron and alpha libraries. The
alpha pulse, as is the case with most alpha pulses, fits well with both libraries (χ2/dof = 0.267
for both fits).
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Figure 19. An example of an MC alpha-pulse fit with the neutron library (a), and
the same pulse fit with the alpha library (b). The vertical blue lines indicate the
fit region, in which the χ2 was calculated. Alphas tend to be fit well with both
the neutron and alpha libraries, as is the case with this example. Plots (c) and (d)
are the respective fit residuals.

Fitting calibration neutrons and 4He alpha pulses with the simulated-pulse libraries
is a strong test of the data-MC agreement. Figure 20 shows two examples: (a) a 24Na
neutron pulse and (b) a 4He alpha-pulse fit with the neutron and alpha libraries, respectively
((a) χ 2/dof = 0.319; (b) χ2/dof = 1.091). In general, these fits work well.

The fit results can be used to separate neutron and alpha events because low-energy alpha
pulses (<1 MeV) resemble neutron pulses, but a significant fraction of the neutron pulses look
distinctly different from any alpha pulse. The comparison of the fit results, χ2

α versus χ2
n , where

χ2
α is the result of the fit with the alpha library and χ2

n is the result of the fit with the neutron
library, is an effective discriminator of different pulse classes. Figure 21 shows the distributions
of log χ2

α versus log χ2
n for calibration neutrons, 4He-string alphas and the NCD-phase data set.

The alphas are grouped along the χ2
α = χ2

n line, as are some of the neutrons. There is a large
group of neutron pulses that fit better with the neutron library than with the alpha library.

The 1D projection 1 log(χ2) ≡ log(χ2
α) − log(χ 2

n ) is more useful for seeing the ability
to select a sample of neutrons with almost no alpha background. This projection is shown
in figure 22. The peak on the left is due to alpha and alpha-like neutron pulses. The wider
distribution of neutrons on the right is the sample of neutron pulses that are easily distinguished
from alpha pulses. These neutron pulses can be selected and analyzed with little background
alpha contamination. This type of pulse-shape analysis has the potential to increase the signal-
to-noise ratio in the extraction of the number of neutrons detected in future analyses of SNO
phase-three data. The details of such an analysis are beyond the scope of this paper, but can be
found in [31]. The simulation-based pulse-shape analysis will be used in the final SNO three-
phase analysis [32].
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Figure 20. (a) A pulse from the 24Na data set fit with the neutron library and
(b) a pulse from the 4He strings fit with the alpha library. The blue lines indicate
the fit region, in which χ2 was calculated. Plots (c) and (d) are the respective fit
residuals.

Figure 21. Comparison of the fit results for fitting neutrons and alphas with the
simulated neutron and alpha-pulse libraries. The axes are log χ2

α versus log χ2
n .

The neutrons are from 24Na calibrations and the alphas are from 4He strings. The
full NCD-phase data set is also plotted. The 24Na calibration data are comprised
of approximately 36 times the expected number of neutrons in the phase-three
data, and the 4He alpha data are comprised of approximately half as many alphas
expected in the NCD-phase data. There is a subset of the neutron pulses that can
be selected with little contamination from alpha pulses.
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Figure 22. Fit results from the previous figure projected along the 1 log(χ 2) ≡

log(χ 2
α) − log(χ2

n ) axis. The wide distribution of neutron pulses on the right can
be selected with little alpha background. The histograms are normalized to unit
area.

6. Conclusions

We have developed a unique and detailed simulation of the current pulses from the NCD
proportional counters. The simulation model includes energy loss by particles traveling through
the NCD counter gas, walls, endcaps and wire, as well as energy straggling. In the gas, the
simulation includes ion drift and electron diffusion. Near the anode wire, the simulation models
avalanche multiplication and the effects of space charge. The signal-processing chain model
includes the full NCD array data-acquisition electronics response and its associated frequency-
dependent noise.

The simulation accurately models the current pulse shapes collectively and on a pulse-by-
pulse basis, for both signal neutrons and background alphas. First-principles calculations are
used for the majority of the simulation physics. Some model parameters are measured with
calibration data, and others are parameterized to match neutron calibration and high-energy
alpha data. The dominant systematic uncertainties on the simulation physics come from the
alpha implantation depth in the NCD counter walls, the electronics noise model, the electron-
drift time curve and the ion mobility variation.

The NCD array MC simulation has been used to great effect in identifying classes of alpha
backgrounds, in modeling the energy spectrum for the total alpha background in the third-phase
8B solar-neutrino measurement [12], and in pulse fitting to help identify neutron and alpha
pulses. The simulation-based pulse-shape analysis has great potential to increase the signal-
to-noise ratio in the determination of the number of neutrons detected by the NCD array. It is
therefore being used in conjunction with other pulse-shape analyses in the final SNO three-phase
solar-neutrino analysis.
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