
MIT Open Access Articles

ZStream: A cost-based query processor
for adaptively detecting composite events

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Yuan Mei and Samuel Madden. 2009. ZStream: a cost-based query processor for
adaptively detecting composite events. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data (SIGMOD '09), Carsten Binnig and Benoit Dageville (Eds.).
ACM, New York, NY, USA, 193-206.

As Published: http://dx.doi.org/10.1145/1559845.1559867

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/72190

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/72190
http://creativecommons.org/licenses/by-nc-sa/3.0/

ZStream: A Cost-based Query Processor for Adaptively
Detecting Composite Events

Yuan Mei
MIT CSAIL

Cambridge, MA, USA
meiyuan@csail.mit.edu

Samuel Madden
MIT CSAIL

Cambridge, MA, USA
madden@csail.mit.edu

ABSTRACT
Composite (or Complex) event processing (CEP) systems
search sequences of incoming events for occurrences of user-
specified event patterns. Recently, they have gained more
attention in a variety of areas due to their powerful and
expressive query language and performance potential. Se-
quentiality (temporal ordering) is the primary way in which
CEP systems relate events to each other. In this paper, we
present a CEP system called ZStream to efficiently process
such sequential patterns. Besides simple sequential patterns,
ZStream is also able to detect other patterns, including con-
junction, disjunction, negation and Kleene closure.

Unlike most recently proposed CEP systems, which use
non-deterministic finite automata (NFA’s) to detect pat-
terns, ZStream uses tree-based query plans for both the
logical and physical representation of query patterns. By
carefully designing the underlying infrastructure and algo-
rithms, ZStream is able to unify the evaluation of sequence,
conjunction, disjunction, negation, and Kleene closure as
variants of the join operator. Under this framework, a sin-
gle pattern in ZStream may have several equivalent physical
tree plans, with different evaluation costs. We propose a
cost model to estimate the computation costs of a plan. We
show that our cost model can accurately capture the actual
runtime behavior of a plan, and that choosing the optimal
plan can result in a factor of four or more speedup versus an
NFA based approach. Based on this cost model and using a
simple set of statistics about operator selectivity and data
rates, ZStream is able to adaptively and seamlessly adjust
the order in which it detects patterns on the fly. Finally, we
describe a dynamic programming algorithm used in our cost
model to efficiently search for an optimal query plan for a
given pattern.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, performance measures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Figure 1

Figure 3

Figure 4

A B C

* * *

1 2 3 4

Seq1

Google

IBM1

IBM2

IBM1.price > (1+x%)

Google.price

IBM2.price < (1-y%)

Google.price

IBM1.name = ‘IBM’ Google.name = ‘Google’ IBM2.name = ‘IBM’

Stocks as IBM1 Stocks as Google Stocks as IBM2

Incoming Stocks

Seq2

Interal Node

Root Node

Leaf

Buffer

K-Seq

Google

IBM1

IBM2

IBM1.price > (1+x%)

avg (Google.price)

IBM2.price < (1-y%)

avg (Google.price)

IBM1.name = ‘IBM’ Google.name = ‘Google’ IBM2.name = ‘IBM’

5

Stocks as IBM1 Stocks as Google Stocks as IBM2

Incoming Stocks

Figure 1: An example NFA for processing the se-
quential pattern A followed by B followed by C

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Complex Event Processing, Streaming, Optimization, Algo-
rithm

1. INTRODUCTION
Composite (or Complex) event processing (CEP) systems

search sequences of incoming events for occurrences of user-
specified event patterns. They have become more popular
in a number of areas due to their powerful and expressive
query language and performance potential [1]. Sequential
queries (based on temporal ordering) are the primary way
in which CEP systems relate events to each other. Exam-
ples of sequential queries include tracing a car’s movement
in a predefined area (where a car moves through a series
of places), detecting anomalies in stock prices (where the
rise and fall of the price of some stocks is monitored over
time), and detecting intrusion in network monitoring (where
a specific sequence of malicious activities is detected). How-
ever, purely sequential queries are not enough to express
many real world patterns, which also involve conjunction
(e.g., concurrent events), disjunction (e.g., a choice between
two options) and negation, all of which make the matching
problem more complex.

Currently, non-deterministic finite automata (NFA) are
the most commonly used method for evaluating CEP
queries [7, 8, 15]. As shown in Figure 1, an NFA represents a
query pattern as a series of states that must be detected. A
pattern is said to be matched when the NFA transitions into
a final state. However, the previously proposed NFA-based
approaches have three limitations that we seek to address in
this work:

Fixed Order of Evaluation. NFA’s naturally express
patterns as a series of state transitions. Hence, current
NFA-based approaches impose a fixed evaluation order de-
termined by this state transition diagram. For example,
the NFA in Figure 1 starts at state 1, transits to state 2

Figure 2: An example NFA for processing the nega-
tion pattern A followed by C without any B in be-
tween

when event A occurs, then to state 3 when B occurs, and
finally to the output state when C occurs. A typical order
that NFA-based model evaluates queries is by performing
backward search starting from the final state 4. However,
there are several other detection orders that are possible
— for example, the system may wait for an instance B to
occur and then search backward in time to find previous A
instances and forward to find C instances. This would be a
more efficient plan if B is much less common than A and C.
As in traditional database join planning, a fixed evaluation
order can be very inefficient. Though it might be possible to
build different NFA’s, or multiple sub-NFA’s, to evaluate a
given query in a different order, to the best of our knowledge
prior work has not explored this possibility.

Negation. It is not straightforward to efficiently model
negation (events that do not occur) in an NFA when
there exist predicates between the negated and non-negated
events. Figure 2 shows an NFA that could be used to process
negation pattern “A followed by C without any event B in
between”. State 3 in Figure 2 is a terminal state reached
after a B event is received; no output is produced in this
case. State 4 is a final state indicating a match for the
pattern. However, if there is a predicate involving B and
C (e.g., as in the pattern “A followed by C such that there
is no interleaving B with B.price > C.price”), there is no
simple way to evaluate the predicate when a B event arrives,
since it requires access to C events that have yet to arrive.
Hence, it has difficulty to decide a B event transition. As
a result, this NFA cannot be used for negation queries with
predicates. For this reason, existing NFA-systems perform
negation as a post-NFA filtering step [15].

Concurrent Events. As with negation, it is also hard to
support concurrent events, such as conjunction queries (e.g.,
A and B), in an NFA-based model because NFA’s explicitly
order state transitions.

In this paper, we describe the design and implementation
of a CEP system called ZStream. ZStream addresses the
above limitations of previously proposed approaches, includ-
ing the following key features:

1. We develop a tree-based query plan structure for CEP
queries that are amenable to a variety of algebraic op-
timizations.

2. We define a notion of an optimal plan and show that
ZStream can effectively search the space of possible
plans that correspond to a specified sequential pattern.
We show that choosing the optimal plan ordering can
improve performance by a factor of four or more over
a fixed plan as would be chosen by an NFA approach.

3. We show that ZStream is able to unify the evaluation
of sequence, conjunction, and disjunction as variants
of the join operator and also enables flexible operator

ordering.
4. We propose a formulation of negation queries so they

can be incorporated into this tree-based model just like
other operators, rather than being applied as a final
filtration step, which we find improves the throughput
of negation queries by almost an order of magnitude.

5. We demonstrate how ZStream can adaptively change
the evaluation plan as queries run and that an adaptive
plan can outperform a static plan significantly when
characteristics of incoming streams change (e.g., event
rates or selectivity).

Our goal in this paper is not to demonstrate that an NFA-
based approach is inherently inferior to a tree-based query-
plan approach, but to show that

1. by carefully designing the underlying infrastructure
and algorithms, a tree-based approach can process
most CEP queries very efficiently, and,

2. without some notion of an optimal plan, as well as
statistics and a cost model to estimate that optimal
plan, any approach that uses a fixed evaluation order
(whether based on NFA’s or trees) is suboptimal.

The rest of the paper is organized as follows: Section 2
and 3 introduces related work and language respectively.
Section 4 presents the system architecture and operator al-
gorithms; Section 5 discusses the cost model and optimiza-
tion; Section 6 shows evaluation results.

2. RELATED WORK
CEP systems first appeared as trigger detection systems

in active databases [5, 6, 9, 10] to meet the requirements
of active functionality that are not supported by tradi-
tional databases. Examples of such work include HiPAC [6],
Ode [10], SAMOS [9] and Sentinel [5]. FSA-based systems,
such like HiPAC and Ode, have difficulty supporting concur-
rent events, because transitions in FSAs inherently incorpo-
rate some orders between states. Petri Nets-based systems
such like SAMOS are able to support concurrency, but such
networks are very complex to express and evaluate. Like
ZStream, Sentinel evaluates its event language using event
trees, but it arbitrarily constructs a physical tree plan for
evaluation rather than searching for an optimal plan, which,
as we show, can lead to suboptimal plans.

Other research has tried to make use of string-based
matching algorithms [13] and scalable regular expres-
sions [12] to evaluate composite event patterns. These meth-
ods only work efficiently for strictly consecutive patterns,
limiting the expressive capability of the pattern matching
language. In addition, they typically focus on searching for
common sub-expressions amongst multiple patterns rather
than searching for an optimal execution plan for a single
pattern.

To support both composite event pattern detection and
high rate incoming events, SASE [4, 15], a high perfor-
mance CEP system, was recently proposed. It achieves good
performance through a variety of optimizations. SASE is,
however, NFA-based, inheriting the limitations of the NFA-
based model described in Section 1. The Cayuga [7] CEP
system is another recently proposed CEP system. Since it is
developed from a pub/sub system, it is also focused on com-
mon sub-expressions searching amongst multiple patterns.
In addition, Cayuga is also NFA-based; hence it too suffers
from the limitations of the NFA-based model.

Recently, commercial streaming companies like Stream-

Base [2] and Coral8 [3] have added support for SQL-like
pattern languages as well. These companies apparently use
join-style operators to support pattern detection. However,
their approach is not documented in the literature, and, as
of this writing, our understanding is that they do not have
a cost model or optimization framework specifically for pat-
tern queries.

3. LANGUAGE SPECIFICATION
In this section, we briefly review the CEP language con-

structs we use in ZStream. The language we adopt here
is a simplified version of the languages used in other CEP
systems [2, 4, 15].

We begin with a few basic definitions. Primitive events
are predefined single occurrences of interest that can not
be split into any smaller events. Composite events are
detected by the CEP system from a collection of primitive
and/or other composite events. Single-class predicates
are predicates that involve only one event class and multi-
class predicates are predicates that involve more than one
event class. Primitive events arrive into the CEP system
from various external event sources, while composite events
are internally generated by the CEP system itself. CEP
queries have the following format (as in [15]):

PATTERN Composite Event Expressions
WHERE Value Constraints
WITHIN Time Constraints
RETURN Output Expression

The Composite Event Expressions describe an event pat-
tern to be matched by connecting event classes together
via different event operators; Value Constraints define the
context for the composite events by imposing predicates on
event attributes; Time Constraints describe the time win-
dow during which events that match the pattern must occur.
The RETURN clause defines the expected output stream
from the pattern query.

Query 1. Sequence Pattern

PATTERN T1; T2; T3
WHERE T1.name = T3.name
AND T2.name =‘Google’
AND T1.price > (1 + x%) ∗ T2.price
AND T3.price < (1− y%) ∗ T2.price
WITHIN 10 secs
RETURN T1, T2, T3

Query 1 shows an example stock market monitoring query
that finds a stock with its trading price first x% higher than
the following Google tick, and then y% lower within 10 sec-
onds. The stock stream has the schema (id, name, price,
volume,ts). The symbol “;” in the PATTERN clause is an
operator that sequentially connects event classes, meaning
the left operand is followed by the right operand.

In our data model, each event is associated with a start-
timestamp and an end-timestamp. For primitive events, the
start-timestamp and end-timestamp are the same, in which
case we refer to a single timestamp. Some CEP systems
make the assumption that a composite event occurs at a
single point in time (the end-timestamp for instance), and
ignore the event duration. This assumption makes the se-
mantics of composite event assembly unclear. For example,
suppose the composite event results generated from Query 1

are further used as inputs to another sequential pattern
“A; B WITHIN tw”. Then simply using the end-timestamps
(to satisfy the new pattern’s time window tw) may result
in the total elapsed time between the start of A and the
end of B exceeding the time bound tw. In other words,
simply matching on end-timestamp can result in composite
events with an arbitrarily long occurrence duration. Hence,
in ZStream, we require that composite events have a total
duration less than the time bound specified in the WITHIN
clause.

3.1 Event Operators
Event operators connect primitive or composite events to-

gether to form new composite events. This section briefly
describes the set of event operators supported in our system,
and presents more example queries.

Sequence (A; B): The sequence operator finds instances of
event B that follow event A within a specified time window.
The output is a composite event C such that A.end-ts <
B.start-ts, C.start-ts = A.start-ts, C.end-ts = B.end-ts and
C.end-ts− C.start-ts ≤ time window.

Negation (!A): Negation is used to express the non-
occurrence of event A. This operator is usually used together
with other operators; for example “A; !B; C” indicates that
C follows A without any interleaving instances of B.

Conjunction (A&B): Conjunction (i.e., concurrent
events) means both event A and event B occur within a
specified time window, and their order does not matter.

Disjunction (A|B). Disjunction means either event A or
event B or both occurs within a specified time window.
Since we allow both A and B to occur in disjunction, it
is simply a union of the two event classes and also satisfies
the time constraint.

Kleene Closure (A∗/A+/Anum). Kleene closure means
that event A can occur zero or more (*) or one or more
(+) times. ZStream also allows the specification of a closure
count to indicate an exact number of events to be grouped.
For example, A5 means five A instances will be grouped
together.

3.2 Motivating Applications
Sequential patterns are widely used in a variety of ar-

eas, from vehicle tracking to system monitoring. We have
illustrated a typical sequential pattern in Query 1. In this
section, we show several more sequential patterns from stock
market monitoring. The input stream has the same schema
as that of Query 1.

Query 2. Negation Pattern

PATTERN T1; !T2; T3
WHERE T1.name = T2.name = T3.name
AND T1.price > x
AND T2.price < x
AND T3.price > x ∗ (1 + 20%)
WITHIN 10 secs
RETURN T1, T3

Query 3. Kleene Closure Pattern

PATTERN T1; T25; T3
WHERE T1.name = T3.name
WHERE T2.name =‘Google’
AND sum(T2.volume) > v
AND T3.price > (1 + 20%) ∗ T1.price
WITHIN 10 secs
RETURN T1, sum(T2.volume), T3

Root Node SEQ2

T3.price < (1‐y%)T2.price
T1.price > (1+x%) T2.price

T2.name = ‘Google’

T1

lookup(T1.name = T3.name)

Hash on Name

Internal Node

Leaf Buffer

Incoming Stock Trades

SEQ1

T2 T3

Figure 3: A left-deep tree plan for Query 1

Query 2 illustrates a negation pattern to find a stock
whose price increases 20% from some threshold price x with-
out any lower price in between during a 10 second window.
Query 3 shows a Kleene closure pattern to aggregate the to-
tal trading volume of Google stock. This pattern is used to
measure the impact on other stocks’ prices after high volume
trading of Google stock. The expression T25 constrains the
number of successive Google events in the Kleene closure to
5; the aggregate function sum() is applied to the attribute
volume of all the events in the closure.

4. ARCHITECTURE AND OPERATORS
In this section, we describe the system architecture and

evaluation of query plans, as well as algorithms for operator
evaluation.

4.1 Tree-Based Plans
To process a query, ZStream first parses and transforms

the query expression into an internal tree representation.
Leaf buffers store primitive events as they arrive, and in-
ternal node buffers store the intermediate results assembled
from sub-tree buffers. Each internal node is associated with
one operator in the plan, along with a collection of pred-
icates. ZStream assumes that primitive events from data
sources continuously stream into leaf buffers in time order.
If disorder is a problem, a reordering operator may be placed
just after the leaf buffer. ZStream uses a batch-iterator model
(see Section 4.3) that collects batches of primitive events be-
fore processing at internal nodes; batches are processed to
form more complete composite events that are eventually
output at the root. Figure 3 shows a tree plan for Query 1.
This is a left-deep plan, because T1 and T2 are first com-
bined, and their outputs are matched with T3. A right-deep
plan, where T2 and T3 are first combined, and then matched
with T1, is also possible.

Single-class predicates (over just one event class) can
be pushed down to the leaf buffers, preventing irrelevant
events from being placed into leaf buffers. For example,
“T2.name = ‘Google’” can be pushed down to the front of
the T2 buffer such that only the events with their names
equal to ‘Google’ are placed into the buffer. More com-
plicated constraints specified via multi-class predicates are
associated with internal nodes. For example, the first se-
quential relation in Query 1 has a multi-class predicate
“T1.price > (1 + x%) ∗ T2.price” associated with it; hence
this predicate is attached to the SEQ1 node. Events com-
ing from the associated sub-trees are passed into the in-
ternal nodes for combination, and multi-class predicates
are applied during this assembly procedure. Notice that
equality multi-class predicates can be further pushed to the

leaf buffers by building hash partitions on the equality at-
tributes. For instance, the equality predicate “T1.name =
T3.name” of Query 1 can be expressed as hashing on
“T1.name” and performing name lookups on the SEQ2
node. Other operators can be represented in the tree model
similarly; we describe ZStream’s operator implementations
in Section 4.4.

4.2 Buffer Structure
For each node of the tree plan, ZStream has a buffer to

temporally store incoming events (for leaf nodes) or inter-
mediate results (for internal nodes). Each buffer contains a
number of records, each of which has three parts: a vector
of event pointers, a start time and an end time. If the buffer
is a leaf buffer, the vector just contains one pointer that
points to the incoming primitive event, and both the start
time and end time are the timestamp of that primitive event.
If the buffer contains intermediate results, each entry in the
event vector points to a component primitive event of the
assembled composite event. The start time and the end time
are the timestamps of the earliest and the latest primitive
event comprising this composite event.

One important feature of the buffer is that its records
are stored sorted in end time order. Since primitive events
are inserted into their leaf buffers in time order, records in
leaf buffers are automatically sorted by end time. For each
internal non-leaf buffer, the node’s operator is designed in
such a way that it extracts records in its child buffers in end
time order and also generates intermediate results in end
time order.

This buffer design facilitates time range matching for se-
quential operations. In addition, The explicit separation of
the start and end time facilitates time comparison between
two buffers A and B in either direction (i.e., A to B and B
to A), so that:

1. It is possible for ZStream to efficiently locate tuples in
leaf buffers, so that ZStream can flexibly choose the
order in which it evaluates the leaf buffers;

2. It is possible for ZStream to efficiently locate tuples
also in internal node buffers matching a specific time
range so that materialization can be used; and

3. ZStream can support conjunction by efficiently joining
events from either buffer with the other buffer.

In addition, by keeping records in the end-time order in
buffers, ZStream does not perform any unnecessary time
comparisons. Since each operator evaluates its input in end-
time order, events outside the time range can be discarded
once the first out-of-time event is found. Other buffer de-
signs, based, for example, on pointers from later buffers to
matching time ranges in earlier buffers (such as the RIP
used in [15]), make flexible reordering difficult for sequential
patterns.

4.3 Batch-Iterator Model
For sequential patterns an output can only be possibly

generated when an instance of the final event class occurs
(e.g., B in the pattern A; B). If events are combined when-
ever new events arrive, previously combined intermediate
results may stay in memory for a long time, waiting for an
event from the final event class to arrive. If no events arrive
from the final event class for a long time, these intermediate
results are very likely to be discarded without even being
used. Hence, ZStream accumulates events in leaf buffers in

Idle rounds, and performs evaluation to populate internal
buffers and produce outputs in Assembly rounds only after
there is at least one instance f in the final event class’s
buffer.

During assembly, the system computes an earliest allowed
timestamp (EAT) based on f ’s timestamp. More specifi-
cally, the EAT in each assembly round is calculated by sub-
tracting the time window constraint from the earliest end-
timestamp of the events in the final event class’s buffer. Any
event with start time earlier than the EAT cannot possibly
satisfy the pattern and can be discarded without further
processing.

Specifically, the batch-iterator model consists of the fol-
lowing steps:

1. A batch of primitive events is read into leaf buffers
with the predefined batch size;

2. If there is no event instance in the final event’s leaf
buffer, go back to step 1; otherwise, go to step 3;

3. Calculate the EAT and pass it down to each buffer
from the root;

4. Assemble events from leaves to root, storing the in-
termediate results in their corresponding node buffers,
and removing out-of-date records, according to the im-
plementation of each operator (see Section 4.4).

Notice that steps 1-2 belong to idle rounds, which are used
to accumulate enough primitive events; and steps 3-4 belong
to assembly rounds, which are used to perform composition
work.

For in-memory pattern matching, memory consumption
is considered an important issue. By taking the advantage
of the batch-iterator model and evaluating the time window
constraints as early as possible (EAT pushed to leaf buffers),
ZStream can bound the memory usage efficiently. We will
show this by reporting the peak memory usage in Section 6.

4.4 Operator Evaluation
In this section, we describe the algorithms for operator

evaluation.

4.4.1 Sequence
Each sequence operator has two operands, representing

the first and second event class in the sequential pattern.
The algorithm used in each assembly round for sequence
evaluation is given as follows:

Input: right and left child buffers RBuf and LBuf , EAT
Output: result buffer Buf

foreach Rr ∈ RBuf do1
if Rr.start-ts < EAT then remove Rr; continue;2
for Lr = LBuf [0]; Lr.end-ts < Rr.start-ts; Lr++ do3

if Lr.start-ts < EAT then remove Lr; continue;4
if Lr and Rr satisfy value constraints then5

Combine Lr and Rr and insert into Buf6

Clear RBuf7

Algorithm 1: Sequence Evaluation

To make sure the intermediate results are generated in
end-time order, the right buffer is used in the outer loop,
and the left buffer is in the inner one. In the algorithm, step
2 and 4 are used to incorporate the EAT constraint into the
sequence evaluation. We assume that all events arriving in
earlier rounds have smaller timestamps than those arriving
in later rounds. This means that for a sequence node, af-
ter the assembly work is done, records in the node’s right

SEQ

T1.price > x

Incoming Stock Trades

NSEQ

T2

Hash Partition on Name

T3T1

T2.price < x T3.price >
x*(1+20%)

T1.ts ≥ T2.ts
T1.ts < T3.ts

T2.name =
‘Google’

Incoming Stock Trades

KSEQ

T2 T3T1

Hash Partition on Name

T3.price >
(1+20%) *
T1.price

Count = 5

Figure 4: A right-deep tree plan for Query 2 (left);
and a query plan for Query 3 (right).

child buffer will not be used any more because all possible
events that can be combined with them have already passed
through the left child buffer and the combined results have
been materialized. Hence, step 7 is applied to clear the
sequence node’s right child buffer.

4.4.2 Negation
Negation represents events that have not yet occurred.

It must be combined with other operators, such as sequence
and conjunction. ZStream does not allow negation to appear
by itself as there is no way to represent the absence of an
occurrence. Though we could add a special “did not occur”
event, it is unclear what timestamp to assign such events or
how frequently to output them. Semantically, it also makes
little sense to combine negation with disjunction (i.e., A|!B)
or Kleene closure (i.e., !A∗).

Negation is more complicated than other operators be-
cause it is difficult to represent and assemble all possible
non-occurrence events. If events specified in the negation
clause occur, they can cause previously assembled compos-
ite events to become invalid. One way to solve this problem
is to add a negation filter on top of the plan to rule out
composite events that have events specified in the negation
part occurred, as has been done in previous work [15]. An
obvious problem with the last-filter-step solution is that it
generates a number of intermediate results, many of which
may be filtered out eventually. A better solution is to push
negation down to avoid unnecessary intermediate results,
which is what we will discuss in this section.

Negation evaluation is performed using the NSEQ opera-
tor. The key insight of the NSEQ operator is that it can find
time ranges when non-negation events can produce valid re-
sults. Consider a simplified pattern “A; !B; C WITHIN tw”
where tw is a time constraint. For an event instance c of C,
suppose there exists a negation event instance b of B such
that

1. Any event instance of A that occurred before b does
not match with c (because it is negated by b).

2. And conversely, any instance of A that occurred after
b and before c definitely matches with c (because not
negated by b).

In this case, we say b negates c. Thus, the NSEQ operator
searches for a negation event that negates each non-negation
event instance (each instance of C in the above example.)

Figure 4(left) illustrates a right-deep plan for Query 2.
Hash Partitioning is performed on the incoming stock
stream to apply the equality predicates on stock.name.

Figure 8

Figure 9-left

 1 2 3 4

 1, 2 2, 3 3, 4

 1, (2, 3) (1, 2), 3 2, (3, 4) (2, 3), 4

Min (1, 2, 3) Min (2, 3, 4)

 1, Min (2, 3, 4) (1, 2), (3, 4) Min (1, 2, 3), 4

Min (1, 2, 3, 4)

List

Size

1

List

Size

2

List

Size

3

List

Size

4

ROOT (1, 2) ROOT (2, 3) ROOT (3,4)

ROOT (1, 2) ROOT (2, 3)

ROOT (2, 3)

N-Seq

2 b2

 b3 3

2

3

5 c5 5

Buffer A

1 a1

 a4 4

1

4

Buffer B

3 b3, c5 5

Seq
4 a4, c5 5

Buffer C

6 b6 6

Next(0)

A.end_time < C.start_time

A.end_time ! B.timestamp
C.start_time

B.timestamp

c.start_time c.end_time b.timestamp

Time Line

b
c

time range of

A allowed

Figure 5: An example of NSEQ evaluation for the
pattern “A; !B; C WITHIN tw”

NSEQ is applied to find an event instance t2 of T2 that
negates each event instance t3 of T3. The output from
NSEQ is a combination of such t2 and t3. In addition,
the extra time constraints T1.ts ≥ T2.ts and T1.ts < T3.ts
are added to the SEQ operator which takes the output of
NSEQ as an input. These time constraints determine the
range of event instances of T1 that can be combined with
the events output from NSEQ directly. Thus, this plan can
reduce the size of unnecessary intermediate results dramat-
ically.

We now discuss the evaluation of NSEQ and we assume
that negation events are primitive. Figure 5 illustrates the
execution of the simplified pattern “A; !B; C WITHIN tw”.
In such cases, the event that negates c of C is the latest nega-
tion event instance b that causes c to become invalid. For
instance, b3 negates c5, which is recorded as “b3, c5” in the
NSEQ buffer. The time predicates A.end-ts < C.start-ts
and A.end-ts ≥ B.ts are pushed into the SEQ operator.
These indicate that, due to negation, only event instances
of A in time range [3, 5) should be considered (i.e. a4).
Finally, the composite result “a4, c5” is returned.

The algorithm to evaluate NSEQ when its left child is a
negation event class is shown in Algorithm 2. NSEQ works
much the same as SEQ except that the left buffer is looped
through from the end to the beginning; and only negation
events that negate events from the right buffer are combined
and inserted into the result buffer (steps 7–9). When no
negation event can be found to negate the instance from the
right buffer, (NULL, Rr) is inserted into the result buffer
instead (steps 5 and 10). The algorithm to evaluate NSEQ
where the right child is a negation class (“B; !C”) can be
constructed similarly. In this case, the event that negates
each b should be the first event from C that arrives after b
and also passes all predicates.

Notice that Algorithm 2 only works for the case where
negation event class’s multi-class predicates all apply to just
one of the non-negation classes. However, if the negation
event class has multi-class predicates over more than one
non-negation event class, locating the direct matching range
is more tricky. Some of the valid composite components may
have been filtered out in NSEQ because NSEQ only contains
the predicate information of two event classes. To solve
this problem, more sophisticated extra predicates need to
be added and more composed components need to be saved.

Input: left negation child buffer LBuf , right child buffer
RBuf , EAT

Output: result buffer Buf

foreach Rr ∈ RBuf do1
if Rr.start-ts < EAT then remove Rr; continue;2
for i = LBuf.length− 1; i ≥ 0; i-- do3

if LBuf [i].start-ts < EAT then4
insert(NULL,Rr) to Buf;5
clear LBuf from position i to 0; break;6

if LBuf [i].end-ts < Rr.start-ts7
AND LBuf [i], Rr satisfy value constraints then8

insert(LBuf [i],Rr) to Buf ;break;9

if no Lr was found then insert (NULL, Rr) to Buf10

Clear RBuf11

Algorithm 2: NSEQ Evaluation

This may cancel out the benefits of NSEQ. Hence, ZStream
applies a negation operator at the top of the query plan
rather than using NSEQ in such cases.

4.4.3 Conjunction
Conjunction is similar to sequence except that it does not

distinguish between the orders of its two operands, as it
assembles events in both directions. The evaluation algo-
rithm is shown in Algorithm 3. It is designed to work like a
sort-merge join. It maintains a cursor on both input buffers
(Lr and Rr), initially pointing to the oldest not-yet-matched
event in each buffer. In each step of the algorithm, it chooses
the cursor pointing at the earlier event e, (lines 3– 7), and
combines e with all earlier events in the other cursor’s buffer
(lines 8–9). This algorithm produces events in end-time or-
der, since it processes the earliest event at each time step.

Input: right and left child buffers RBuf and LBuf , EAT
Output: result buffer Buf

Set Lr = LBuf.initial and Rr = RBuf.initial1
while Lr! = LBuf [end] OR Rr! = RBuf [end] do2

if Lr.start-ts < EAT then remove Lr;Lr++;continue;3
if Rr.start-ts < EAT then remove Rr;Rr++;continue;4
if Lr.end-ts > Rr.end-ts then5

Pr = Rr; Rr++; Cr = Lr; CBuf = LBuf6

else Pr = Lr; Lr++; Cr = Rr; CBuf = RBuf7
for Br = CBuf [0]; Br! = Cr; Br++ do8

if Br, Pr satisfy value and time constraints then9
Br and Pr are combined and inserted into Buf10

Set LBuf.initial = Lr, RBuf.initial = Rr, for next round11

Algorithm 3: Conjunction Evaluation

4.4.4 Disjunction
Disjunction simply outputs union of its inputs, so its eval-

uation is very straightforward: either input can be directly
inserted into the operator’s output buffer if it meets both
time and value constraints. Specifically, the output of dis-
junction is generated by merging events in the left buffer
and the right buffer according to their end time. ZStream
does not materialize results from the disjunction operator
because most of the time, they will simply be a copy of the
inputs.

4.4.5 Kleene Closure
Figure 4(right) shows a tree plan for Query 3. The input

stock stream is first hash partitioned on stock.name, and the
Google buffer can be shared with all the partitions. Kleene

Figure 5

Figure 6

N-Seq

Oracle

B.carid = F.carid

IBM.name = ‘IBM’ Oracle.name = ‘Oracle’

Seq

 I.carid = F.carid

Sun.name = ‘Sun’

Stocks as IBM Stocks as Sun Stocks as Oracle

Incoming Stocks

B.timestamp ! I.timestamp

B.timestamp < F.timestamp

IBM

Sun

K-Seq

2 b2

 b3

 b5

3

5

2

3

5

6 c6 6

start buffer end buffer

1 a1

 a4 4

1

4

closure buffer

Results for unspecified closure count Results for closure count = 2

1 a1, b2-b5, c6

a4, b5, c6 4

6

6

1 a1, b2-b3, c6

a1, b3-b5, c6 1

6

6

Next(0)

Figure 6: Example KSEQ evaluation for the pat-
terns “A; B2; C” and “A; B∗; C”

closure is represented as a trinary KSEQ node in the tree
plan. count = 5 on the top of the T2 buffer indicates that
it will group 5 successive T2 events together. If the number
is not specified, the symbol ‘+’ or ‘∗’ can be used instead to
group the maximal number of possible successive T2 events
together. The KSEQ operator is trinary because a closure
pattern (in general) needs an event class to start and end
the closure. The first operand acts as a start event class,
the last operand acts as an end event class and the Kleene
closure detection is performed on the middle operand. The
start and end classes may be omitted if the Kleene closure
appears at the start or end of a pattern.

The KSEQ operator looks for closure matches in the mid-
dle buffer. If the closure count is not specified, the maximal
number of the middle buffer events between the start point
and the end point is found; only one result is generated
for this pair of start and end points. If the closure count
is specified, a window is applied on the middle buffer with
its window size equal to the count. In each time step, the
window is moved forward one step; one or more results are
generated for each start-end pair in this case. To ensure
intermediate results are arranged in the end-time order, the
end buffer is put in the outer loop of the evaluation algo-
rithm.

Figure 6 illustrates an example of the evaluation of KSEQ.
The buffer on the upper left shows the results when the clo-
sure count is not specified; the one on the upper right shows
the results when the closure count is 2. In both cases, c6
from the end buffer is first picked up to fix the end point;
then a1 from the start buffer is chosen to fix the start point.
When the closure count is not specified, all the events in the
closure buffer between the end time of a1 and the start time
of c6 are grouped together. When the closure count is set
to 2, after a1 and c6 are chosen, two groups of “b2, b3” and
“b3, b5” are formed to match with them. The algorithm to
evaluate KSEQ in each assembly round is shown as Algo-
rithm 4.

5. COST MODEL AND OPTIMIZATIONS
This section presents the cost model and optimization

techniques used in ZStream. Based on the cost model,
ZStream can efficiently search for the optimal execution plan
for each sequential query. We also show that our evaluation
model can easily and seamlessly adapt to a more optimal
plan on the fly, and present optimizations for using hashing
to evaluate equality predicates.

Input: start buffer SBuf , middle buffer MBuf , end buffer
EBuf , closure count cc, EAT

Output: result buffer Buf

foreach Er ∈ EBuf do1
if Er.start-ts < EAT then remove Er; continue;2
foreach Sr ∈ SBuf and Sr.end-ts < Er.start-ts do3

if Sr.start-ts < EAT then remove Sr; continue;4
foreach Mr ∈ MBuf do

if Mr.start-ts < EAT5
OR Mr.start-st <= Sr.end-ts then6

remove Mr; continue;7

if cc is not specified then8
Group Mrs where Mr.start-ts > Sr.end-ts9
and Mr.end-ts < Er.start-ts and Mr
satisfies the value constraints
Insert the composite event into Buf10

else if cc is specified then11
foreach Mr, Mr.start-ts > Sr.end-ts do12

Group from Mr where Gr ∈ Group13
having Gr.end-ts < Er.start-ts and
satisfies value constraints
until Group.length == cc or14
Gr.end-ts ≥ Er.start-ts
Insert the composite event into Buf15
if Gr.end-ts ≥ Er.start-ts then break16

Algorithm 4: KSEQ Evaluation

5.1 Cost Model
In traditional databases, the estimated cost of a query

plan consists of I/O and CPU costs. In ZStream, I/O cost
is not considered because all primitive events are memory
resident. ZStream computes CPU cost for each operator
from three terms: the cost to access the input data, the cost
of predicate evaluation and the cost to generate the output
data. These costs are measured as the number of input
events accessed and the number of output events combined.
Formally, the cost C is:

C = Ci + (nk)Ci + pCo (1)

Here, the cost consists of three parts: the cost of accessing
the input data Ci, the cost to generate the output data pCo

and the cost of predicate evaluation (nk)Ci, where n is the
number of multi-class predicates the operator has (which
cannot be pushed down), and k and p are weights.

Ci and Co stand for the cost of accessing input data and
assembling output results respectively. Since both of them
are measured based on the number of events touched, the
weight p is set to 1 by default, which we have experimen-
tally determined to work well. (nk)Ci stands for the cost
of predicate evaluation. Since predicate evaluation is per-
formed during the process of accessing the input data, its
cost is proportional to Ci. Based on our experiments, k is
estimated to be 0.25 in ZStream.

Table 1 shows the terminology that we use in the rest of
this section. RE determines the number of events per unit
time. Hence RE ∗ TWp ∗ PE can be used as an estimate
of CARDE (all instances of E that are active within the
time period TWp). Consider the plan shown in Figure 3;
the CARD of T2 is RSTOCK ∗ PT2 ∗ (10sec), where PT2 is
the selectivity for the predicate “T2.name = ‘Google′”.

Sequential operators such as SEQ, KSEQ, NSEQ have
implicit time constraints. PtE1,E2 is used to measure the
selectivity of such predicates. For example, the pattern
“E1; E2” implicitly includes a time predicate “E1.end-ts <
E2.start-ts”, indicating that only event instances e1 of E1

Table 1: Terminology Used in Cost Estimation
Term Definition

RE
Rate of primitive events from the event class or par-
tition E. This is the cardinality of E per unit time.

TWp Time window specified in a given query pattern p

PE

Selectivity of all single-class predicates for event class
or partition E. This is the product of selectivity of
each single-class predicate of E.

CARDE

Cardinality of the events from event class E that are
active in time window TWp. This can be estimated
as RE ∗ TWp ∗ PE

PtE1,E2

Selectivity of the implicit time predicate between
event class or partition E1 and E2, with E1.end-ts <
E2.start-ts. The default value is set to 1/2.

PE1,E2

Selectivity of multi-class predicates between event
class or partition E1 and E2. This is the product
of selectivity of the multi-class predicates between
E1 and E2. If E1 and E2 do not have predicates, it
is set to 1.

CiO The cost of the operator O to access its input data.

CoO The cost of the operator O to access its output data.

CARDO
Cardinality of output of operator O. It is used to
measure the output cost of the operator, i.e. CoO

CO

Total estimated cost (in terms of the number of
events touched) of the operator O, it is the sum of
CiO and CARDO(CoO).

that occur before instances e2 of E2 can be combined with
e2. PtE1,E2 does not apply to the cost formula for conjunc-
tion and disjunction as they are not sequential. PE1,E2 is
similar to PtE1,E2 except that it includes the selectivity of
all multi-class predicates between E1 and E2.

Table 2 summarizes the input cost formulas (CiO) and
output cost formulas (CoO) for each individual operator.
The input cost CiO is expressed in terms of the number of
input events that are compared and/or combined; and the
output cost CoO is measured as the number of composite
events generated by the operator (i.e., CARDO). The total
cost of an individual operator is the sum of its input cost,
predicate cost and output cost as indicated in Formula 1.

The implicit time selectivity PtA,B is attached to the
sequence operator’s input cost formula because the buffer
structure automatically filters out all event instances a of
A with a.end-ts ≥ b.start-ts for each event instance b of B.
The evaluation of conjunction and disjunction is indepen-
dent of the order of their inputs; hence time predicates do
not apply to their cost formulas. For disjunction, multi-class
predicates are not included because an event on either of the
two inputs can result in an output.

The cost for Kleene closure is more complicated. If the
closure count cnt is not specified, exactly one group of the
maximal number of closure events is output for each start-
end pair. The number of accessed event instances N from
the middle input B can be estimated as the number of events
from B that match each start-end pair. So N = CARDB ∗
PtA,B ∗ PtB,C , where A and C represent the start and end
event class. If the closure count cnt is specified, then for
any start-end pair, each event instance from B that occurs
in between this pair will be output cnt times on average.
Hence N = CARDB ∗ PtA,B ∗ PtB,C ∗ cnt.

ZStream has two ways to evaluate negation. One is to
put a negation filter on top of the whole plan to rule out
negated events. The other is to use an NSEQ operator to
push the negation into the plan. The cost of the first method
(NEG(SEQ(A, C), B)) includes two parts: the cost of the
SEQ operator and that of NEG. The cost of SEQ can be
estimated as above. The input cost for NEG is CARDSEQ.
It is not related to CARDB because the composite results

from SEQ can be thrown out once an instance b of B be-
tween A and C is found. ZStream can find such a b by
finding the event that negates each c of C, and hence it
does not need to scan B. The cost of the second approach
(Seq(A, NSEQ(B, C))) also contains two parts: the cost to
evaluate the NSEQ and the cost to evaluate the SEQ oper-
ator. The input cost of the NSEQ is CARDC and not re-
lated to CARDB because ZStream can find each c’s negating
event (which is just the latest event in B before c) directly,
without searching the entire B buffer.

The cost formulas shown in Table 2 assume that the
operands of each operator are primitive event classes. They
can be easily generalized to the cases where operands them-
selves are operators by substituting the cardinality of prim-
itive event classes with the cardinality of operators. Then,
the cost of an entire tree plan can simply be estimated by
adding up the costs of all the operators in the tree.

5.2 Optimal Query Plan
Our goal is to find the best physical query plan for a

given logical query pattern. To do this, we define the no-
tion of an equivalent query plan — that is, a query plan
p′ with a different ordering or collection of operators that
produces the same output as some initial plan p. In partic-
ular, we study three types of equivalence: rule-based trans-
formations, hashing for equality multi-class predicates and
operator reordering.

5.2.1 Rule-Based Transformations
As in relational systems, there are a number of equivalent

expressions for a given pattern. For example, the following
two expressions are semantically identical:

1. Expression1: “A; (!B&!C); D”
2. Expression2: “A; !(B|C); D”
Their expression complexity and evaluation cost, however,

are substantially different from each other. ZStream sup-
ports a large number of such algebraic rewrites that are
similar to those used in most database systems; we omit
a complete list due to space constraints. Based on these
equivalence rules, we can generate an exponential number
of equivalent expressions for any given pattern. Obviously,
it is not practical to choose the optimal expression by search-
ing this equivalent expression space exhaustively. Instead,
we narrow down the transition space by always trying to
simplify the pattern expression; a transition is taken only
when the target expression:

1. has a smaller number of operators or,
2. the expression has the same number of operators, but

contains lower cost operators.
Plans with fewer operators will usually include fewer event

classes, and thus are more likely to result in fewer intermedi-
ate composed events being generated and less overall work.
If the alternative plan has the same number of operators,
but includes lower cost operators, it is also preferable. The
cost of operators is as shown in Table 2, which indicates
that CDIS < CSEQ < CCON (NSEQ and KSEQ are not
substitutable for other operators).

Returning to the two expressions given at the beginning
of this section, the optimizer will replace Expression1 with
Expression2 because Expression2 has fewer operators and
the cost of Disjunction is smaller than that of Conjunction.

5.2.2 Hashing for Equality Predicates

Table 2: Input and Output Cost formula for Individual Operators
Operator Description Input Cost Ci Output Cost Co

Sequence
(A; B)

A and B are two input event classes or partitions. The cost is expressed as the
number of input combinations tried. PtA,B captures the fact that the sequence
operator does not try to assemble any a of A with b of B where b occurs before a.

CARDA ∗
CARDB ∗ PtA,B

CARDA ∗
CARDB ∗

PtA,B ∗ PA,B

Conjunction
(A&B)

A and B are two input event classes or partitions. Unlike Sequence, Conjunction
can combine event a of A with any b of B within the time window constraint.

CARDA ∗
CARDB

CARDA ∗
CARDB ∗ PA,B

Disjunction
(A|B)

A and B are two input event classes or partitions. Since Disjunction simply merges
its inputs, its cost is just the cost of fetching each input event.

CARDA +
CARDB

CARDA +
CARDB

Kleene
Closure

(A; Bcnt; C)

A and C are the start and the end event class, respectively. B is the closure
events class. If A or C is missing, the parameters related to A or C are set to
be 1. N = CARDB ∗ PtA,B ∗ PtB,C ∗ cnt, where cnt is the closure number;
N = CARDB ∗PtA,B ∗PtB,C , if cnt is missing; N = 1, if event class B is missing

CARDA ∗
CARDC ∗
PtA,C ∗N

CARDA ∗
CARDC ∗PtA,C ∗
N ∗ PA,C ∗ PA,B ∗

PB,C

Negation
(A; !B; C)

(top)
Negation on top, expressed as: NEG(SEQ(A, C), !B)

CiSeq +
CARDSEQ

CARDSEQ +
CARDSEQ ∗ (1−
PtA,B ∗ PtB,C) ∗

PtA,C

Negation
(A; !B; C)
(pushed
down)

Negation pushed down, expressed as SEQ(A, NSEQ(B, C))
CARDC +
CARDA ∗

CARDC ∗ PtA,C

CARDC +
CARDA ∗
CARDC ∗

PtA,C ∗ (1−
PtA,C ∗ PtB,C)

As a second heuristic optimization step, ZStream replaces
equality predicates with hash-based lookups whenever pos-
sible. Hashing is able to reduce search costs for equality
predicates between different event classes; otherwise, equal-
ity multi-class predicates can be attached to the associated
operators as other predicates.

As shown in Figure 3 (a tree plan for Query 1), the in-
coming stock stream is first hash partitioned on “name” as
T1. Internally, T1 is represented as a hash table, which
is maintained when T1 is combined with T2 in the SEQ1
node. When the equality predicate T1.name = T3.name is
applied during SEQ2, this lookup can be applied directly as
a probe for T3.name in the hash table built on T1.

More formally, suppose P (A, B, f) denotes a predicate
A.f = B.f . If A and B are sequentially combined in the
order A; B, the hash table is built on A.f (because B is
used in the outer loop in Algorithm 1). If A and B are
conjunctively connected, hash tables are built on both A.f
and B.f (because both A and B may have chances to be in
the outer loop).

Hash construction and evaluation can be easily extended
to the case where there are multiple equality predicates.
Suppose P1(A1, B1, f1) and P2(A2, B2, f2) are two equality
predicates for a sequential pattern where Ai is before Bi

(i = 1, 2). Then,
1. If A1 6= A2, build hash tables on both A1.f1 and A2.f2

2. If A1 = A2 and f1 = f2, build a hash table on A1.f1

3. Otherwise A1 = A2 and f1 6= f2; build the primary
hash table on A1.f1 and a secondary hash table on
A1.f2.

5.2.3 Optimal Reordering
Once a query expression has been simplified using alge-

braic rewrites and hashing has been applied on the equal-
ity attributes, ZStream is left with a logical plan. A given
logical plan has a number of different physical trees (e.g.,
left-deep or right-deep) that can be used to evaluate the
query. In this section, we describe an algorithm to search
for the optimal physical tree for the sequential pattern. We
first observe that the problem of finding the optimal order
has an optimal substructure, suggesting it is amenable to
dynamic programming, as in Selinger [14].

Theorem 5.1. For a given query, if the tree plan T is
optimal, then all the sub trees Ti of T must be optimal for

their corresponding sub patterns as well.

Proof. We prove this by contradiction. Suppose the the-
orem is not true; then it should be possible to find a sub tree
plan T ′

i with lower cost than Ti, but with the same output
cardinality. Using T ′

i as a substitute for Ti, we would then
obtain a better tree plan T ′ with lower total cost for the
pattern, which contradicts the assumption that T is opti-
mal.

Based on the optimal substructure observation in Theo-
rem 5.1, we can search for an optimal tree plan by combining
increasingly larger optimal sub plans together until we have
found an optimal plan for the whole pattern. The algorithm
to search for the optimal operator order is shown as Algo-
rithm 5. The algorithm begins by calculating the optimal
sub plans from the event sets of size 2. In this case, there
is only one operator connecting the event classes; hence its
operator order is automatically optimal. In the outermost
loop (line 2), the algorithm increases the event set size by
1 each time. The second loop (line 3) goes over all possible
event sets of the current event set size. The third loop (line
4) records the minimal cost plan found so far by searching
for all possible optimal sub-trees. The root of each opti-
mal sub-tree chosen for the current sub-pattern is recorded
in the ROOT matrix. In the end, the optimal tree plan
can be reconstructed by walking in reverse from the root
of each selected optimal sub-tree. The two function calls:
calc inputcost() and calc CARD() are used to estimate the
input cost and output cost of an operator according to Ta-
ble 2.

Algorithm 5 is equivalent to the problem of enumerating
the power set of the operators, and hence generates O(n2)
subsets in total. For each subset, it performs one pass to
find the optimal root position. Hence the total time com-
plexity is O(n3). Compared to Selinger [14], Algorithm 5
also takes the bushy plans into consideration. In practice,
this algorithm is very efficient, requiring less than 10 ms to
search for an optimal plan with pattern length 20.

Figure 7 illustrates an example of an optimal plan gener-
ated when the pattern length is 4. During the final round,
where the only event set to consider is the pattern (1, 2, 3, 4),
the algorithm tries all possible combination of sub-lists: 1
with (2, 3, 4); (1, 2) with (3, 4); (1, 2, 3) with 4. The root of
each optimal sub tree is marked. The final optimal (bushy)
plan selected for this pattern is shown on the right.

Input: number of event classes N , statistics info
Output: buffer ROOT recording roots of optimal sub trees

Initialize two dimensional matrices Min, Root, and CARD1
for s = 2; s ≤ n; s++ do // s is sub tree size2

for i = 1; i ≤ n− s + 1; i++ do // i is sub tree index3
for r = i + 1; r < i + s; r + + do // r is root pos4

opc = cacl inputcost(CARD[r −5
i][i], CARD[s− r + i][r], r);
cost = Min[r − i][i] + Min[s− r + i][r] + opc;6
if Min[s][i] > Cost then7

Min[s][i] = Cost; ROOT [s][i] = r;8
CARD[s][i] = calc CARD(opc, r);9

Algorithm 5: Searching for Optimal Operator Order

1 2 3 4

1,2 2,3 3,4

1,(2,3)

Min(1,2,3) Min(2,3,4)

1, Min(2,3,4) (1,2),(3,4) Min(1,2,3),4

Min(1,2,3,4)

Set
size 1

ROOT (2,3) ROOT (3,4)
Set

size 2

(1,2),3 2,(3,4) (2,3),4

ROOT (1,2)

ROOT (1,2) ROOT (2,3)

ROOT (2,3)

Set
size 3

Set
size 4

1,2 3,4

1,2,3,4

1 2 3 4

Figure 7: Illustration of searching for the optimal
operator order when pattern length = 4

5.3 Plan Adaptation
As a result of potentially high variability in input stream

rates and selectivities, an initially optimal plan may no
longer be optimal after running for some time. To recompute
the plan on the fly, we maintain a running estimate of the
statistics in Table 1, using sampling operators attached to
the leaf buffers. In our implementation, we use simple win-
dowed averages to maintain the rates of each input stream
and the selectivity of each predicate. When any statistic
used in a plan varies by more than some error threshold t,
we re-run Algorithm 5 and install the new plan if the perfor-
mance improvement predicted by the cost model is greater
than a performance threshold c.

The use of the batch-iterator model simplifies the task
of switching plans on the fly. Notice that in each assembly
round, newly arriving batches can rebuild all the previous in-
termediate results they need from the leaf buffers. To make
this work, we modified our algorithms to not discard tu-
ples from leaf buffers after tuples have been consumed (e.g.,
we do not perform Line 7 of Algorithm 1 for leaf buffers).
Switching plans will not produce any duplicate results as
each round is independent of the previous round. Hence,
ZStream can change a running query plan on assembly round
i using the following two steps:

1. Discard all the intermediate results for the old plan
after finishing assembly round i;

2. Rebuild all the intermediate results for the new plan
in assembly round i + 1 as if it were the first round.

Even though this plan adaptation strategy is simple, it
can outperform the static plan dramatically, as we show
in Section 6. More sophisticated adaptive strategies may
try to reuse some of the intermediate results already stored
and minimize the recalculation [11] or incorporate paral-
lelism [16] when plans are changed. We leave these problems
for future work.

6. PERFORMANCE EVALUATION
In this section, we describe a number of experiments we

have run to evaluate the performance of ZStream. Our
primary objectives were to understand to what extent
the reordering optimizations described in the previous sec-
tions affect overall query performance and by how much
ZStream can outperform a previously-proposed NFA-based
approach [15]. We also look at the performance of negation
push down and the efficiency of plan adaptation. Finally, we
test ZStream on some real world web log data in Section 6.5.

ZStream is implemented in C++ using STL:list to main-
tain the buffer structure. We separately implemented the
NFA-based approach described in [15]. It is also C++
based, and uses STL:deque to support RIP pointers on
its stack structure. In our experiments, STL:deque (for
random lookups) proved to be about 1.5 times faster than
STL:list. Note that materialization is not supported in our
NFA implementation because RIP implementation has dif-
ficulty to support materialization for multi-class range pred-
icates (e.g., A.price > B.price for sequential pattern A; B)

All experiments were run on a dual core CPU 3.2 GHz In-
tel Pentium 4 with one core turned off and 2 GB RAM. We
ran ZStream on a pre-recorded data file; data was pulled into
the system at the maximum rate the system could accept.
System performance was measured by the rate at which in-
put data was processed, i.e.:

rate =
|Input|
telapsed

where |Input| is the size of the input and telapsed is the total
elapsed processing time, not counting time to deliver the
output. The input data is stock trade data with the schema
described in Section 3.2. We generate synthetic stock events
so that event rates and the selectivity of multi-class predi-
cates could be controlled. All experiments are the average
of 30 runs. Peak memory usage are also reported for some
experiments.

6.1 Parameters Affecting Costs
In this section, we experiment on various factors that af-

fect the costs of query plans, showing that the cost model
proposed in Section 5 accurately reflects the system perfor-
mance.

6.1.1 Multi-Class Predicate Selectivity
We ran experiments on Query 4, a sequential pattern with

a single predicate on the first two event classes, using a left-
deep plan, a right-deep plan, and the NFA based approach.
Here, incoming ticks have a uniform distribution over stock
names, meaning relative event rates are 1 : 1 : 1 (that is,
one Sun quote arrives for each IBM quote, and one Oracle
quote arrives for each Sun quote).

Query 4. Sequence Pattern “IBM ; Sun; Oracle” with a
predicate between IBM and Sun

PATTERN IBM ; Sun; Oracle
WHERE IBM.price > Sun.price
WITHIN 200 units

Figure 8 shows the throughput of the two alternative plans
(the left-deep and the right-deep plan) and the NFA ap-
proach for Query 4. The left-deep plan outperforms the
right-deep plan because it evaluates the operator with the

8000

10000

12000

14000

16000

ut
 (e

ve
nt
s/
s) left‐deep

right‐deep
NFA

0

2000

4000

6000

1 1/2 1/4 1/8 1/16 1/32

th
ro
ug

hp

selectivity

Figure 8: Throughputs of different plans for Query 4
with varying selectivity

80

100

120

140

ed
 c
os
t
(1
0^

‐6
)

left‐deep

right‐deep

0

20

40

60

1 1/2 1/4 1/8 1/16 1/32

1/
es
ti
m
at
e

selectivity

Figure 9: 1/estimated cost of different plans for
Query 4 with varying selectivity

multi-class predicate between IBM and Sun first, such that
it generates fewer intermediate results. The lower the se-
lectivity, the fewer intermediate results the left-deep plan
produces. Hence, the gap between the performance of the
two plans increases with decreasing selectivity. When the
predicate is very selective (1/32 for instance), the left-deep
plan outperforms the right-deep plan by as much as a factor
of 5. We also note that the NFA-based approach has simi-
lar performance to the right-deep plan in Figure 8. This is
because the NFA constructs composite events using a back-
wards search on a DAG (Directed Acyclic Graph) [15]. This
results in the NFA evaluating expressions in a similar order
to the right deep plan. Our results show similar results for
varying selectivity in longer sequential patterns.

Figure 9 shows the estimates produced by our cost model
for the left-deep plan and the right-deep plan of Query 4
with varying selectivities. This shows that our cost model
can accurately predict the system behavior with varying se-
lectivity.

6.1.2 Event Rates
In this section, we study how varying the relative event

rates of different event classes affects the cost of query plans
for different queries. The intuition is that query plans that
combine event classes with lower event rates first will gen-
erate a smaller number of intermediate results. Hence such
query plans have better performance. To exclude the effect
of selectivity, we experiment on a simple sequential pattern
(Query 5) without any predicates.

16000

20000

24000

28000

32000

36000

hp
ut
 (e

ve
nt
s/
s) left‐deep

right‐deep
NFA

0

4000

8000

12000

16000

th
ro
ug
h

relative event rate (IBM:Sun:Oracle)

Figure 10: Throughputs of different plans for
Query 5 with varying relative event rates

240

300

360

420

480

d
co
st
 (1

0^
‐6
)

left‐deep

right‐deep

0

60

120

180

1/
es
ti
m
at
ed

relative event rate (IBM:Sun:Oracle)

Figure 11: 1/estimated cost of different plans for
Query 5 with varying relative event rates

Query 5. Sequence Pattern “IBM ; Sun; Oracle”

PATTERN IBM ; Sun; Oracle
WITHIN 200 units

Figure 10 shows the throughput for three plans (left-deep,
right-deep and NFA-based) for Query 5 where we vary the
relative event rate between IBM and the other two event
classes. When IBM has a higher event rate, the right-deep
plan performs the best, since IBM is joined later in this
plan. The left-deep plan becomes best when IBM ’s event
rate starts drops lower than the other two, since IBM is
joined earlier in this plan. Figure 11 shows the estimated
cost of the left-deep and the right-deep plan with varying
relative rates, which turns out with the similar performance
behavior as the real running throughput.

One additional observation from Figures 10 and 11 is that
the performance gap between the best and worst perform-
ing plans on the right side of the figures is greater. These
represent plans where there is a lower relative event rate for
a single event class. Consider the case where event rate is
1 : 1 : 1. In this case, the performance of all the plans is
the same. Now, decreasing a single event class’s rate by a
factor of k is equivalent to increasing each of the other event
classes’ event rates by a factor of k. This results in a factor
of kN−1 (where N is the total number of event classes) skew
in the event distribution. In comparison, on the left side of
the figure, increasing the rate of one stream only increases
skew by a factor of k.

12000

16000

20000

24000

ut
(e
ve
nt
s/
s)

left‐deep right‐deep
bushy inner
NFA

0

4000

8000

12000

rate: 1:100:100:100 sel1: 1/50 sel2: 1/50

th
ro
ug
hp

u

Figure 12: Throughput of different plans for Query 6

6.2 Optimal Plans in More Complex Queries
and Memory Usage

In this section, we show that the performance of different
physical plans can vary dramatically when statistics change.
The experiment is conducted using Query 6, running four
different query plans and the NFA based approach.

Query 6. More Complex Query

PATTERN IBM ; Sun; Oracle; Google
WHERE Oracle.price > Sun.price
AND Oracle.price > Google.price
WITHIN 100 units

The plans are:
1. Left-deep Plan: [[[IBM; Sun]; Oracle]; Google]
2. Right-deep Plan: [IBM; [Sun; [Oracle; Google]]]
3. Bushy Plan: [[IBM; Sun]; [Oracle; Google]]
4. Inner Plan: [IBM; [[Sun; Oracle]; Google]]
5. NFA
We varied the event rate and selectivity of the different

streams to show that the optimal plan changes quite dra-
matically. Figure 12 illustrates the throughput of the four
plans with varying selectivity and relative event rate. For
these experiments, we vary the proportion of inputs from
different streams (from its default of 1 : 1 : 1 : 1), as well as
the selectivities of the two query predicates (from their de-
fault of 1). When the IBM event rate is low, as shown in the
left most cluster of bars (rate = 1 : 100 : 100 : 100), the left-
deep plan does best. The bushy plan also does well because
it also uses IBM in the first (bottommost) operator. The
right-deep plan, inner plan and NFA perform poorly because
they combine with IBM in a later operator. In the second
case where the first predicate (between Sun and Oracle) is
very selective (sel1 = 1/50), the inner plan (which evaluates
the first predicate first) does best, and it is almost two times
faster than the other plans. The bushy plan in this case does
extremely poorly because it defers the evaluation of the first
predicate until the final processing step. The third case is
good for the right-deep plan and the NFA-based approach
because the predicate between the last two event classes is
selective (sel2 = 1/50). As expected, the left-deep plan does
poorly in this case. Figure 13 shows the estimates from our
cost model (for all plans except NFA), showing that it pre-
dicts the real performance behavior well. Based on the cost
model, our dynamic programming algorithm (Algorithm 5)
should be able select the optimal plan efficiently.

Table 3 shows the peak memory consumption by the five
plans for Query 6 in two cases: 1). when the IBM event

20

25

30

35

40

os
t(
10
^‐
5)

left‐deep right‐deep
bushy inner

0

5

10

15

20

rate: 1:100:100:100 sel1: 1/50 sel2: 1/50

1/
es
ti
m
at
ed

 c
o

Figure 13: 1/estimatedcost of different plans for
Query 6

15000

20000

25000

(e
ve
nt
s/
s)

left‐deep
right‐deep
inner
NFA
adaptive

0

5000

10000

rate: 1:100:100:100 sel1: 1/50 sel2: 1/50

th
ro
ug
hp

ut

timeline

Figure 14: Throughput of different plans for Query 6
with concatenated input, vs. adaptive planner

rate is very low (rate = 1 : 100 : 100 : 100); and 2). when the
predicate between Sun and Oracle is very selective (sel1 =
1/50). As can be indicated form Table 3, the peak memory
consumption is relatively stable among different plans (much
more stable than the throughput of these different plans).
In general, the memory consumption is independent of the
input data size. It is the type of the query (pattern length,
operator type and time window constraints) and data fea-
tures (selectivity and event rate) that affect and bound the
memory usage.

6.3 Plan Adaptation
In this section, we describe experiments that test

ZStream’s plan adaptation features (described in Sec-
tion 5.3), as well as our dynamic programming algorithm.
For these experiments, we concatenated the three streams
used in the previous experiment together and ran query 6
again. In this concatenated stream the rate of IBM is ini-
tially 100x less than the other stocks and the selectivities
are both set to 1; then, the IBM rate become equal to the
others but the selectivity of the first predicate goes to 1/50;

Table 3: Peak Memory Usage(in MB) for Query 6
rate = sel1 =

1 : 100 : 100 : 100 1/50

Peak Mem(MB)

Left-deep 7.36 7.06
Right-deep 7.15 6.51

Bushy 6.72 6.73
Inner 7.58 6.47
NFA 6.70 6.55

60000

80000

100000

120000

hp
ut
 (e

ve
nt
s/
s)

NSEQ

Neg on Top

0

20000

40000

1:1:1 1:1:10 1:1:20 1:1:30 1:1:40 1:1:50

th
ro
ug
h

relative event rate (IBM:Sun:Oracle)

Figure 15: Throughputs of different plans for
Query 7 varying Oracle rate

finally, the selectivity of the first predicate returns to 1, but
the selectivity of the second predicate goes to 1/50. We com-
pared the performance of our adaptive, dynamic program-
ming based algorithm which continuously monitors selectiv-
ities and rates to the same fixed plans used in the previous
experiment (we omit bushy for clarity in the figure.) Fig-
ure 14 shows the results, with throughput on the Y axis and
the time on the X axis (with the stream parameters changing
at the tick marks). We show three points for each approach.
These points represent the average throughput for the three
stream segments corresponding to the three varying sets of
parameters. Notice that the adaptive algorithm is able to
select a plan that is nearly as good as the best of the other
plans. The performance of left-deep, right-deep, inner, and
NFA is similar to the results shown in Figure 12.

6.4 Negation Push Down
As discussed earlier, one way to evaluate negation queries

is to put a negation filter NEG on top of the entire query
plan, and filter out the negated composite events as a post-
filtering step. The alternative approach is to use the NSEQ
operator to directly incorporate negation into the query plan
tree. We compare the performance of these two methods in
this section on Query 7:

Query 7. Negation Pattern “IBM ; !Sun; Oracle”

PATTERN IBM ; !Sun; Oracle
WITHIN 200 units

The experiment is run on two query plans:
1. Plan 1: Use an NSEQ operator to combine Sun and

Oracle first. Then a SEQ operator is applied to com-
bine IBM with the results from the NSEQ.

2. Plan 2: Use a SEQ operator to combine IBM and
Oracle first. Then a negation filter NEG is applied
to rule out the (IBM, Oracle) pairs where Sun events
occurred in between.

Figure 15 and 16 illustrate the results for these two plans
with varying relative event rates. In both figures, Plan 1
always outperforms Plan 2. When the event distribution is
skewed, the performance increases faster for Plan 2 because
it generates many fewer intermediate results compared to
Plan 1. As shown in Figure 15, however, when Oracle event
rates increase, the throughput of Plan 1 decreases slightly.
This is due to the way in which NSEQ works. As shown
in Algorithm 2, NSEQ matches each Oracle event o with

100000

125000

150000

175000

200000

hp
ut
 (e

ve
nt
s/
s)

NSEQ

Neg on Top

0

25000

50000

75000

1:1:1 1:10:1 1:20:1 1:30:1 1:40:1 1:50:1

th
ro
ug
h

relative event rate (IBM:Sun:Oracle)

g p

Figure 16: Throughputs of different plans for
Query 7 varying Sun rate

Table 4: Number of Records Accessing Publications,
Projects, and Courses

publication project courses
of accesses 6775 11610 16083

the latest Sun event before o. Hence, increasing the rate
of Oracle will affect the amount of computation done by
NSEQ, which counteracts the benefits introduced by the bi-
ased distribution here (we observe similar results when in-
creasing the IBM event rates). Another observation is that
the throughput of the Plan 2 increases much more quickly
when the event distribution is biased towards Sun events.
This is because the Plan 2 combines IBM and Oracle first.
The distribution biased on Sun will result in relatively fewer
(IBM, Oracle) pairs.

6.5 Web Access Pattern Detection
In this section, we demonstrate the efficiency of ZStream

on real word web log data. The web log data contains one
month period (from 22/Feb/2009 to 22/Mar/2009) of more
than 1.5 million web access records from MIT DB Group
web server. The records have the schema (Time, IP, Access-
URL, Description).

Query 8. Web Access Pattern “Publication; Project; Course”

PATTERN Publication; Project; Course
WHERE same IP address
WITHIN 10 hours

In this data, we observed that some users who are down-
loading publications from our server are also interested in
the web pages for research projects and courses offered by
our group. To detect users with this access pattern, we
wrote Query 8. We chose a sequential pattern here instead
of a conjunction pattern because we wanted to compare with
the performance of NFA, which doesn’t support conjunction.
The statistics of the number of records that access these
different file types are shown in Table 4.

Figure 17 shows the performance of three different plans
(left-deep, right-deep and NFA) on Query 8. Here a left-deep
plan uses a SEQ operator with publications and projects,
followed by a SEQ with courses, while a right deep plan
accesses projects and courses first, and then combined with
publications. The left-deep plan is much faster than the
other two because the number of accesses to publications is

600000

800000

1000000
(e
ve
nt
s/
s)

left‐deep

right‐deep

NFA

0

200000

400000

weblog‐access

th
ro
ug
hp

ut
(

Figure 17: Throughputs of different plans for
Query 8 on one month web access log data

Table 5: Peak Memory Usage (in MB) for Query 8
left-deep right-deep NFA

Peak Mem(MB) 10.13 10.66 10.55

much smaller than the number of accesses to projects and
courses as shown in Table 4. Hence many fewer intermediate
results are generated by the left deep plan. This is consistent
with the results from Section 6.1.2. NFA is a little slower
than right-deep plan because we do not materialize for NFA,
which is relatively important in this case because Query 8
has a very long time window (10 hours) and most of materi-
alized intermediate tuples can be reused. The peak memory
usage for these three plans is shown in Table 5.

7. CONCLUSION
This paper presented ZStream, a high performance CEP

system designed and implemented to efficiently process se-
quential patterns. ZStream is also able to support other rela-
tions such as conjunction, disjunction, negation and Kleene
Closure. Unlike previous systems that evaluate CEP queries
in a fixed order using NFAs, ZStream uses a tree-based plan
for both the logical and physical representation of query pat-
terns. A single pattern may have several equivalent phys-
ical tree plans, with different evaluation costs. Hence, we
proposed a cost model to estimate the computation cost of
a plan. Our experiments showed that the cost model can
capture the real evaluation cost of a query plan accurately.
Based on this cost model and using a simple set of statistics
about operator selectivity and data rates, we showed that
ZStream is able to adjust the order in which it detects pat-
terns on the fly. In addition to these performance benefits, a
tree-based infrastructure allows ZStream to unify the eval-
uation of sequences, conjunctions, disjunctions, sequential
negations and Kleene Closures as variants of the join oper-
ator. This formulation allows flexible operator ordering and
intermediate result materialization.

8. ACKNOWLEDGMENTS
We thank Brian Cooper, Donald Kossmann and other re-

viewers for their invaluable suggestions to this paper. We
also thank Michael Stonebraker for his insightful advices for
us. This work was supported under NSF Grant NETS-NOSS
0520032.

9. REFERENCES
[1] Event Processing Workshop, March 2008.

http://complexevents.com/?page_id=87.

[2] StreamBase corporate homepage, 2009.
http://www.streambase.com/.

[3] Coral8 corporate homepage, 2009.
http://www.coral8.com/.

[4] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman.
Efficient pattern matching over event streams. In
SIGMOD, 2008.

[5] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and
S. Kim. Composite events for active databases:
Semantics, contexts and detection. In VLDB, 1994.

[6] U. Dayal et al. The hipac project: Combining active
databases and timing constraints. SIGMOD
RECORD, 17(1):51–70, March 1988.

[7] A. Demers, J. Gehrke, B. Panda, M. Riedewald,
V. Sharma, and W. White. Cayuga: A general purpose
event monitoring system. In CIDR, January 2007.

[8] F. Fabret, A. Jacobsen, F. Llirbat, J. Pereira, K. Ross,
and D. Shasha. Filtering algorithms and
implementation for very fast publish/subscribe
systems. In SIGMOD, 2001.

[9] S. Gatziu and K. Dittrich. Events in an active
object-oriented database. In Workshop on Rules in
Database Systems, 1994.

[10] N. Gehani and H. V. Jagadish. Ode as an active
database: Constraints and triggers. In VLDB,
September 1991.

[11] S. Madden, M. Shah, J. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over
streams. In SIGMOD, 2002.

[12] A. Majumder, R. Rastogi, and S. Vanama. Scalable
regular expression matching on data streams. In
SIGMOD, 2008.

[13] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi.
Expressing and optimizing sequence queries in
database systems. ACM TODS, 29(2), June 2004.

[14] P. Selinger et al. Access path selection in a relational
database management system. In SIGMOD, 1979.

[15] E. Wu, Y. Diao, and S. Rizvi. High-performance
complex event processing over streams. In SIGMOD,
2006.

[16] Y. Zhu, E. Rundensteiner, and G. Heineman.
Dynamic plan migration for continuous queries over
data streams. In SIGMOD, 2004.

