
MIT Open Access Articles

Privacy and accountability for location-based aggregate statistics

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Raluca Ada Popa, Andrew J. Blumberg, Hari Balakrishnan, and Frank H. Li. 2011.
Privacy and accountability for location-based aggregate statistics. In Proceedings of the 18th
ACM conference on Computer and communications security (CCS '11). ACM, New York, NY, USA,
653-666. DOI=10.1145/2046707.2046781 http://doi.acm.org/10.1145/2046707.2046781

As Published: http://dx.doi.org/10.1145/2046707.2046781

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/73157

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73157
http://creativecommons.org/licenses/by-nc-sa/3.0/

Privacy and Accountability for Location-based Aggregate
Statistics

Raluca Ada Popa
MIT

ralucap@mit.edu

Andrew J. Blumberg
University of Texas, Austin

blumberg@math.utexas.edu

Hari Balakrishnan
MIT

hari@mit.edu

Frank H. Li
MIT

frankli@mit.edu

ABSTRACT
A significant and growing class of location-based mobile applica-
tions aggregate position data from individual devices at a server and
compute aggregate statistics over these position streams. Because
these devices can be linked to the movement of individuals, there
is significant danger that the aggregate computation will violate the
location privacy of individuals. This paper develops and evaluates
PrivStats, a system for computing aggregate statistics over location
data that simultaneously achieves two properties: first, provable
guarantees on location privacy even in the face of any side informa-
tion about users known to the server, and second, privacy-preserving
accountability (i.e., protection against abusive clients uploading
large amounts of spurious data). PrivStats achieves these properties
using a new protocol for uploading and aggregating data anony-
mously as well as an efficient zero-knowledge proof of knowledge
protocol we developed from scratch for accountability. We imple-
mented our system on Nexus One smartphones and commodity
servers. Our experimental results demonstrate that PrivStats is a
practical system: computing a common aggregate (e.g., count) over
the data of 10, 000 clients takes less than 0.46 s at the server and
the protocol has modest latency (0.6 s) to upload data from a Nexus
phone. We also validated our protocols on real driver traces from
the CarTel project.

Categories and subject descriptors: C.2.0 [Computer Communi-
cation Networks]: General–Security and protection

General terms: Security

1. INTRODUCTION
The emergence of location-based mobile services and the interest

in using them in road transportation, participatory sensing [28, 21],
and various social mobile crowdsourcing applications has led to
a fertile area of research and commercial activity. At the core of
many of these applications are mobile nodes (smartphones, in-car
devices, etc.) equipped with GPS or other position sensors, which
(periodically) upload time and location coordinates to a server. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’11, October 17–21, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-0948-6/11/10 ...$10.00.

information is then processed by the server to compute a variety of
aggregate statistics.

As primary motivation, consider applications that process streams
of GPS position and/or speed samples along vehicle trajectories,
sourced from smartphones, to determine current traffic statistics such
as average speed, average delay on a road segment, or congestion at
an intersection. Several research projects (e.g., CarTel [21], Mobile
Millennium [27]) and commercial products (e.g., TomTom [34]) pro-
vide such services. Another motivation is social mobile crowdsourc-
ing, for example, estimating the number of people at a restaurant to
determine availability by aggregating data from position samples
provided by smartphones carried by participating users.

A significant concern about existing implementations of these
services is the violation of user location privacy. Even though
the service only needs to compute an aggregate (such as a mean,
standard deviation, density of users, etc.), most implementations
simply continuously record time-location pairs of all the clients
and deliver them to the server, labeled by which client they belong
to [21, 27, 22]. In such a system, the server can piece together all
the locations and times belonging to a particular client and obtain
the client’s path, violating her location privacy.

Location privacy concerns are important to address because many
users perceive them to be significant (and may refuse to use or even
oppose a service) and because they may threaten personal security.
Recently (as of the time of writing this paper), two users have sued
Google [26] over location data that Android phones collect citing
as one of the concerns “serious risk of privacy invasions, includ-
ing stalking." The lawsuit attempts to prevent Google from selling
phones with software that can track user location. Just a week before,
two users sued Apple [25] for violating privacy laws by keeping a
log of user locations without offering users a way to disable this
tracking or delete the log. Users of TomTom, a satellite navigation
system, have expressed concern over the fact that TomTom logs
user paths and sells aggregate statistics (such as speeding hotspots)
to the police, who in turn install speed cameras [34]. A study by
Riley [35] shows even wider location privacy fears: a significant
number of drivers in the San Francisco Bay Area will not install toll
transponders in their cars because of privacy concerns. Moreover,
online databases are routinely broken into or abused by insiders
with access; if that happens, detailed records of user mobility may
become known to criminals, who can then attempt security attacks,
such as burglarizing homes when they know that their residents are
away [40].

In this paper, we design, implement, and evaluate PrivStats, a
practical system for computing aggregate statistics in the context of
mobile, location-based applications that achieves both strong guar-

antees of location privacy and protection against cheating clients.
PrivStats solves two major problems: it provides formal location
privacy guarantees against any side information (SI) attacks, and it
provides client accountability without a trusted party. Because of
these contributions, in comparison to previous systems [16], Clique-
Cloak [14], [19], [24], [20], and Triplines [18], PrivStats provides
the strongest formal privacy and correctness guarantees while mak-
ing the weakest trust assumptions.

Side information refers to any out-of-bound information the server
may have, which, when used together with the data the server gets
in a system, can help the server compromise user location privacy.
Some previous work ensures that clients upload data free of identi-
fiers (they upload approximate time, location, and data sample), but
even when all data is anonymized, a considerable amount of private
location information can still leak due to side information. As a sim-
ple example, if the server knows that Alice is the only person living
on a street, it can infer that Alice just left or arrived at her house
when receiving some speed updates from that street. SI can come in
many forms and has been shown to leak as much as full client paths
in some cases: Krumm [24], as well as Gruteser and Hoh [17], show
that one can infer driver paths from anonymized data and then link
them to driver identities using side information such as knowledge
of map, typical driving behavior patterns, timing between uploads,
and a public web service with addresses and names. Despite SI’s
ability to leak considerable location privacy, previous systems for
mobile systems aggregates either do not address the problem at all,
or they only treat specific cases of it, such as areas of low density
(see §10).

Our first contribution is to provide an aggregate statistics proto-

col with strong location privacy guarantees, including protection

against any general side information attack. We formalize our
guarantees by providing a definition of location privacy, termed
strict location privacy or SLP (Def. 2), which specifies that the
server learns nothing further about the location of clients in the face
of arbitrary side information other than the desired aggregate result;
then, in §5, we provide a protocol, also termed SLP, that provably
achieves our definition.

While we manage to hide most sources of privacy leakage in our
SLP protocol without any trust assumptions, hiding the number of
tuples generated by clients information-theoretically can be reduced,
under reasonable model assumptions, to a problem in distributed
algorithms that can be shown to be impossible to solve. The reason
is that it requires synchronization among a set of clients that do
not know of each other. Our solution is to use a lightweight and
restricted module, the smoothing module (SM), that helps clients
synchronize with respect to the number of tuples upload and per-
forms one decryption per aggregate. We distribute the SM on the
clients (each “client SM” is responsible for handling a few aggre-
gates) so as to ensure that at most a small fraction of SMs misbehave.
We provide our strong SLP guarantees for all aggregates with honest
SMs, while still ensuring a high level of protection for compromised
SMs:

- A compromised SM cannot change aggregate results undetectably
and cannot collude with clients to allow them to corrupt aggre-
gates.

- Although a malicious SM opens the doors to potential SI leakage
from the number of uploads and the values uploaded, a significant
degree of privacy remains because client uploads are always
anonymized, free of timing and origin information. Our SM is
distributed on the clients, resulting in few compromised client
SMs in practice.

- Our design of the SM (§5) facilitates distribution and ensuring its
correctness: the SM has light load, ≈ 50 times less load than the

server, performs two simple tasks summing up to only 62 lines
of code (excluding libraries) which can be easily scrutinized for
correctness, and only uses constant storage per aggregate.

- In contrast to our limited SM, trusted parties in previous work [18,
14, 20, 16] had the ability to fully compromise client paths and
modify aggregate results when corrupted; at the same time, their
use still did not provide general SI attack protection.

Since clients are anonymous, the problem of accountability be-
comes serious: malicious clients can significantly affect the correct-
ness of the aggregate results. Hoh et al. [19] present a variety of
attacks clients may use to change the aggregate result. For exam-
ple, clients might try to divert traffic away from a road to reduce
a particular driver’s travel time or to keep low traffic in front of
one’s residence, or divert traffic toward a particular road-way to
increase revenue at a particular store. A particular challenge is that
accountability and privacy goals are in tension: if each client upload
is anonymous, it seems that the client could upload as many times
as she wishes. Indeed, most previous systems [16, 14, 24, 20] do
not provide any protection for such client biasing attacks and the
few that provide such verification ([18, 19]) place this task on heav-
ily loaded trusted parties that when compromised can release full
location paths with user identities and can corrupt aggregate results.

Our second contribution is a privacy-preserving accountability

protocol without any trusted parties (§6). We provide a crypto-
graphic protocol for ensuring that each client can upload at most a
fixed quota of values for each aggregate. At the core of the protocol,
is an efficient zero-knowledge proof of knowledge (ZKPoK) that
we designed from scratch for this protocol. The zero-knowledge
property is key in maintaining the anonymity of clients. Therefore,
no trusted party is needed; in particular, the SM is not involved in
this protocol.

Finally, our third contribution is an implementation of the overall
system on Nexus One smartphones and commodity servers (§9).
One of our main goals was to design a practical system, so we strived
to keep our cryptographic protocols practical, including designing
our ZKPoK from scratch. Computing a common aggregate (e.g.
count) over the data of 104 clients takes less than 0.46 s at the server,
the protocol has modest latency of about 0.6 s to upload data from a
Nexus phone, and the throughput is linearly scalable in the number
of processing cores. We believe these measurements indicate that
PrivStats is practical. We also validated that our protocols introduce
little or no error in statistics computation using real driver traces
from the CarTel project [21].

2. MODEL
In this section, we discuss the model for PrivStats. Our setup

captures a wide range of aggregate statistics problems for mobile
systems.

2.1 Setting
In our model, we have many clients, a server, and a smoothing

module (SM). Clients are mobile nodes equipped with smartphones:
drivers in a vehicular network or peers in a social crowdsourcing
application. The server is an entity interested in computing certain
aggregate statistics over data from clients. The SM is a third party
involved in the protocol that is distributed on clients.

We assume that clients communicate with the server and the SM
using an anonymization network (e.g., Tor), a proxy forwarder, or
other anonymizing protocol to ensure that privacy is not compro-
mised by the underlying networking protocol. In this paper, we
assume these systems succeed in hiding the origin of a packet from
an adversary; it is out of our scope to ensure this. We assume that

these systems also hide network travel time; otherwise clients must
introduce an appropriate delay so that all communications have
roughly the same round trip times.

Clients can choose which aggregates they want to participate in;
they can opt-out if the result is deemed too revealing.

A sample is a client’s contribution to an aggregate, such as average
speed, delay on a road, or a bit indicating presence in a certain
restaurant. Clients can generate samples periodically, as is the case
in vehicular systems, or at certain location/times, as is the case for
social mobile crowdsourcing systems. A sample point is a pair
consisting of a location and a time interval where/when clients
should generate a sample. We say that a client passes through a

sample point if the client passes by the location and in the time
interval of a sample point.

An aggregate to be computed consists of a sample point and the
type of data clients should sample. The server may only be interested
in computing certain aggregates. We assume that clients know the
aggregates of interest (e.g., from a public database or a deterministic
algorithm), that is, at which sample points they should upload and
what kind of samples they should generate. We assume that each
aggregate has an identifier id, with the mapping between identifiers
and aggregates publicly known (e.g., a hash). Therefore, clients
generate tuples of the form �id, sample�, meaning that their sample
for aggregate id is sample. We denote by aggregate result the result
of the aggregation of all client samples for an aggregate. Each
aggregate has an associated sample interval denoting an interval
of acceptable values for the sample. For example, suppose that
id = 2 corresponds to an aggregate with sample point road segment
S and time interval between T1 = 4.00 pm to T2 = 4.15 pm, and
type of sample “average speed” (the sample interval could be 0 mph
– 100 mph). A client passing through S, in the interval of time
[T1, T2] should take a sample of their average speed. The client
generates the tuple: �2, 24 mph�. Finally, the aggregate result over
all clients could be 30 mph. (Note that the server may choose to
compute the function in “real time” or at some later point in time.)

To preserve privacy, clients in PrivStats will transform these tuples
(e.g., encrypt and add cryptographic tokens) and use a certain upload
strategy to upload the transformed tuples to the server. Note that
clients are not uploading their identity with the tuples, unlike in
some existing systems [21, 12].

2.2 Threat Model
The server cannot be trusted to protect the privacy of clients:

the server might attempt to recover the path of a given client and
release this information to third parties without a client’s consent
or knowledge (e.g., for advertising), or hackers could break into the
server and steal location data about particular users. These attacks
can use any side information. However, the server is trusted to
compute the aggregate statistics correctly: this is its goal.

Clients are also untrusted: they may attempt to bias the aggregate
result (e.g., to convince a server that the road next to their house
is crowded and no more traffic should come). There are two such
potential threats: uploading a large number of samples or uploading
samples with out-of-range samples, both of which could change an
aggregate result significantly. However, each client is allowed to
upload within a server-imposed quota and an acceptable interval
of sample values; checking that the sample uploaded is precisely
correct is out-of-scope. (See §9.2 for more details).

The smoothing module (SM) can misbehave by trying to change
aggregate results or colluding with clients to help them bias statistics;
PrivStats prevents such behavior. To guarantee full side information
protection, the requirement on the SM is that it does not leak timing
or decrypted samples.

!"#$%&'(

!"#$%&'(()%*+,$%-./012$%-3214%

)*(

)$+,$+(
-%.%/0#1#%2(
%$&3.+4(

567,$%&'(()%+,$%-./812$%/9214%

5678906(:/0$%;3<'-,9$%'77"=>?)%1@""AB%

565:906(:/0$%;#C'-,/$%'77"=>?)%1@""AB%

(5658906(:/0$%;DD/E<'$%'77"=>?)%1@""AB%

Figure 1: Architecture of PrivStats.

3. SIDE INFORMATION AND LOCATION
PRIVACY

Side information can leak information about client paths even
when the server receives tuples without identities. As already dis-
cussed, the number of tuples in areas of low density can leak privacy.
Krumm [24] as well as Gruteser and Hoh [17] inferred driver paths
and their identities using SI such as knowledge of map, driving
patterns, upload timing, and a public web service. Driving patterns
coupled with sample values can also leak private information. For
example, if the server knows that client Bob is a habitual speeder,
tracking uploads with high speed values will likely indicate his path.
Other two interesting examples of SI are physical observation and
information about someone else’s path. For an example of the latter,
assume that the server knows that Alice and Bob both went on street
A and then it sees one upload from street B1 and one upload from
B2, which follow directly from A. Knowing that Bob’s house is on
B1, it can infer that Alice went on B2. To quantify how much pri-
vacy is leaked, Shokri et al. [38] offer a framework for quantifying
privacy leakage in various location privacy schemes that also takes
into account side information.

We now provide a definition of location privacy that is resilient
to arbitrary side information. SI can come in different forms and
reveal varying degrees of information, making it challenging to pro-
vide theoretical guarantees. For example, one can never guarantee
that the path of a client between point A and point B will remain
unknown because the client may simply be observed physically at
some location. Moreover, one cannot prevent the adversary from
having SI: such SI can come from a variety of out-of-bound sources
(public databases, physical observation, collusion with clients, per-
sonal knowledge of a driver’s trends, etc.). Instead, the idea is that
the protocol should not reveal any additional information about
client paths beyond what the server already knows and the desired
aggregate result. In short, the protocol should reveal nothing else
other than the aggregate result.

Consider the following example. Alice, Bob, and some other
clients volunteer to participate in an average speed computation on
street S1 for time interval 7 am to 9 am. Now suppose that the server
has the following side information about the clients: on the days
that Alice goes to work, she leaves home on street S1 at 8:15 am;
also, Bob is a speeder and tends to drive significantly faster than the
average driver. If the protocol satisfies our definition, the server will
learn the average speed, say 30 mph, and nothing else. In particular,
the server will not learn how many people passed through the street
or whether there was an upload at 8:15 am (and hence whether
Alice went to work). Moreover, the server will not see the individual
speed values uploaded so it cannot determine if there were some
high speeds corresponding to Bob.

I. System setup (Runs once, when the system starts).

1: Server generates public and private keys for accountability by running System setup from §6.
2: Both Server and SM generate public and private keys for the aggregation protocols by running System setup from §5.

II. Client join (Runs once per client, when a client signs up to the system).

1: Client identifies herself and obtains public keys and capabilities to upload data for accountability (by running Client join, §6) from
Server and public keys for aggregation (by running Client join, §5) from SM. Server also informs Client of the aggregates Server
wants to compute, and Client decides to which aggregates she wants to contribute (i.e., generate tuples).

III. Client uploads for aggregate id (Runs when a client generates a tuple �id, sample�)
1: Client runs SLP’s Upload protocol (§5) by communicating with the SM for each �id, sample� and produces a set of transformed tuples

T1, . . . , Tk and a set of times, t1, . . . , tk, when each should be uploaded to Server.
2: For each i, Client uploads Ti to Server at time ti.
3: Client also proves to Server using the Accountability upload protocol, §6, that the upload is within the permissible quotas and

acceptable sample interval.

IV. Server computes aggregate result id (Runs at the end of an aggregate’s time interval).

1: Server puts together all the tuples for the same id and aggregates them by running Aggregation with SM, §5.

Figure 2: Overview of PrivStats.

For a security parameter k and an aggregate function F (which
can also be a collection of aggregate functions), consider a protocol
P = PF (k) for computing F . For example, the SLP protocol (§5) is
such a protocol P where F can be any of the aggregates discussed in
§7. Let R be a collection of raw tuples generated by users in some
time period; that is, R is a set of tuples of the form �id, sample�
together with the precise time, client network information, and
client id when they are generated. R is therefore the private data
containing the paths of all users and should be hidden from the
server. We refer to R as a raw-tuple configuration. Let SI be some
side information available at the server about R. Using P, clients
transform the tuples in R before uploading them to the server. (The
sizes of R, F , and SI are assumed to be polynomial in k.)

The following definition characterizes the information available at
the server when running protocol P. Since we consider a real system,
the server observes the timing and network origin of the packets it
receives; a privacy definition should take these into account.

DEF. 1 (SERVER’S VIEW.). The view of the server, ViewP(R),
is all the tuples the server receives from clients or SM in P associated

with time of receipt and any packet network information, when

clients generate raw tuples R and run protocol P.

Let D be the domain for all raw-tuple configurations R. Let res be
some aggregate result. Let RF (res) = {R ∈ D : F (R) = res} be
all possible collections of raw tuples where the associated aggregate
result is res.
Security game. We describe the SLP definition using a game be-
tween a challenger and an adversary. The adversary is a party that
would get access to all the information the server gets. Consider a
protocol P, a security parameter k, a raw-tuple domain D, and an
adversary Adv.

1: The challenger sets up P by choosing any secret and public keys
required by P with security parameter k and sends the public keys
to Adv.

2: Adv chooses SI, res, and R0, R1 ∈ RF (res) (to facilitate guess-
ing based on SI) and sends R0 and R1 to the challenger.

3: Challenger runs P producing ViewP(R0) and ViewP(R1), and
sends them to Adv. It chooses a fair random bit b and sends

ViewP(Rb) to Adv. (ViewP usually contains probabilistic encryp-
tion so two encryptions of Rb will lead to different values.)

4: The adversary outputs its best guess for b∗ and wins this game if
b = b∗. Let winP(Adv, k) := Pr[b = b∗] be the probability that
Adv wins this game.

DEF. 2 (STRICT LOCATION PRIVACY – SLP). A protocol P
has strict location privacy with respect to a raw-tuple domain, D,

if, for any polynomial-time adversary Adv, winP(Adv, k) ≤ 1/2 +
negligible function of k.

Intuitively, this definition says that, when the server examines the
data it receives and any side information, all possible configurations
of client paths having the same aggregate result are equally likely.
Therefore, the server learns nothing new beyond the aggregate result.

Strict location privacy and differential privacy. The guarantee
of strict location privacy is complementary to those of differential
privacy [11], and these two approaches address different models. In
SLP, the server is untrusted and all that it learns is the aggregate
result. In a differential privacy setting, the server is trusted and

knows all private information of the clients, clients issue queries to
the database at the server, and clients only learn aggregate results
that do not reveal individual tuples. Of course, allowing the server
to know all clients’ private path information is unacceptable in our
setting. PrivStats’ model takes the first and most important step for
privacy: hiding the actual paths of the users from the server. Actual
paths leak much more than common aggregate results in practice.
A natural question is whether one can add differential privacy on
top of PrivStats to reduce leakage from the aggregate result, while
retaining the guarantees of PrivStats, which we discuss in §8.

4. OVERVIEW
PrivStats consists of running an aggregation protocol and an ac-

countability protocol. The aggregation protocol (§5) achieves our
strict location privacy (SLP) definition, Def. 2, and leaks virtu-
ally nothing about the clients other than the aggregate result. The
accountability protocol (§6) enables the server to check three prop-
erties of each client’s upload without learning anything about the
identity of the client: the client did not exceed a server-imposed

quota of uploads for each sample point, did not exceed a total quota
of uploads over all sample points, and the sample uploaded is in an
acceptable interval of values.

Figure 1 illustrates the interaction of the three components in
our system on an example: computation of aggregate statistic with
id 14, average speed. The figure shows Alice and Bob generating
data when passing through the corresponding sample point and then
contacting the SM to know how many tuples to upload. As we
explain in §5, we can see that the data that reaches the server is
anonymized, contains encrypted speeds, arrives at random times
independent of the time of generation, and is accompanied by ac-
countability proofs to prevent malicious uploads. Moreover, the
number of tuples arriving is uncorrelated with the real number.

Figure 2 provides an overview of our protocols, with components
elaborated in the upcoming sections.

5. AGGREGATION: THE SLP (STRICT
LOCATION PRIVACY) PROTOCOL

A protocol with strict location privacy must hide all five leakage
vectors (included in Def. 1): client identifier, network origin of
packet, time of upload, sample value, and number of tuples gen-
erated for each aggregate (i.e., the number of clients passing by
a sample point). The need to hide the first two is evident and we
already discussed the last three vectors in §3.
Hiding the identifier and network origin. As discussed in §2,
clients never upload their identities (which is possible due to our
accountability protocol described in §6). We hide the network origin
using an anonymizing network as discussed in §2.1.
Hiding the sample. Clients encrypt their samples using a (seman-
tically secure) homomorphic encryption scheme. Various schemes
can be used, depending on the aggregate to be computed; Pail-
lier [30] is our running example and it already enables most common
aggregates. Paillier has the property that E(a) · E(b) = E(a+ b),
where E(a) denotes encryption of a under the public key, and the
multiplication and addition are performed in appropriate groups.
Using this setup, the server computes the desired aggregate on en-
crypted data; the only decrypted value the server sees is the final
aggregate result (due to the SM, as described later in this section).

It is important for the encryption scheme to be verifiable to pre-
vent the SM from corrupting the decrypted aggregate result. That
is, given the public key PK and a ciphertext E(a), when given a
and some randomness r, the server can verify that E(a) was indeed
an encryption of a using r, and there is no b such that E(a) could
have been an encryption of b for some randomness. Also, the holder
of the secret key should be able to compute r efficiently. Fortu-
nately, Paillier has this property because it is a trapdoor permutation;
computing r involves one exponentiation [30].
Hiding the number of tuples. The server needs to receive a number
of tuples that is independent of the actual number of tuples generated.
The idea is to arrange that the clients will upload in total a constant

number of tuples, Uid, for each aggregate id. Uid is a publicly-known
value, usually an upper bound on the number of clients generating
tuples, and computed based on historical estimates of how many
clients participate in the aggregate. §9 explains how to choose Uid.

The difficulty with uploading Uid in total is that clients do not
know how many other clients pass through the same sample point,
and any synchronization point may itself become a point of leakage
for the number of clients.

Assuming that there are no trusted parties (i.e., everyone tries
to learn the number of tuples generated), under a reasonable for-
malization of our specific practical setting, the problem of hiding
the number of tuples can be reduced to a simple distributed algo-

(1)

(2)

(3)

C passes by sample
point, generates tuple

C contacts SM to sync.
at random timing

C uploads a real and a junk
tuple at S at random timing

time

Figure 3: Staged randomized timing upload for a client C: (1) is the
generation interval, (2) the synchronization interval, and (3) the upload
interval.

rithms problem which is shown to be impossible (as presented in
a longer version of our paper at http://nms.csail.mit.edu/
projects/privacy/). For this reason, we use a party called the
smoothing module (SM) that clients use to synchronize and upload
a constant number of tuples at each aggregate. The SM will also
perform the final decryption of the aggregate result. The trust re-
quirement on the SM is that it does not decrypt more than one value
for the server per aggregate and it does not leak the actual number
of tuples. Although the impossibility result provides evidence that
some form of trust is needed for SLP, we do not claim that hiding
the number of tuples would remain impossible if one weakened the
privacy guarantees or altered the model. However, we think our
trust assumption is reasonable, as we explain in §8: a malicious
SM has limited effect on privacy (it does not see the timing, origin,
and identifier of client tuples) and virtually no effect on aggregate
results (it cannot decrypt an incorrect value or affect accountability).
Moreover, the SM has light load, and can be distributed on clients
ensuring that most aggregates have our full guarantees. For simplic-
ity, we describe the SLP protocol with one SM and subsequently
explain how to distribute it on clients.

Since the number of real tuples generated may be less than Uid,
we will arrange to have clients occasionally upload junk tuples:
tuples that are indistinguishable from legitimate tuples because the
encryption scheme is probabilistic. Using the SM, clients can figure
out how many junk tuples they should upload. The value of the junk
tuples is a neutral value for the aggregate to be computed (e.g., zero
for summations), as we explain in §7.

To summarize, the SM needs to perform only two simple tasks:

• Keep track of the number of tuples that have been uploaded
so far (sid) for an aggregate (without leaking this number to
an adversary). Clients use this information to figure out how
many more tuples they should upload at the server to reach a
total of Uid.

• At the end of the time period for an aggregate id, decrypt the
value of the aggregate result from the server.

Hiding timing. Clients upload tuples according to a staged ran-
domized timing algorithm described in Figure 3; this protocol hides
the tuple generation time from both the server and the SM. The
generation interval corresponds to the interval of aggregation when
clients generate tuples, and the synchronization and upload interval
are added at the end of the generation interval, but are much shorter
(they are not points only to ensure reasonable load per second at the
SM and server).

We now put together all these components and specify the SLP
protocol. Denote an aggregate by id and let quota be the number of
samples a client can upload at id. Let [ts0, ts1] be the sync. interval.

I. System setup: SM generates a Paillier secret and public key.
II. Client joins: Client obtains the public key from the SM.
III. Upload:

◦ GENERATION INTERVAL

1: Client generates a tuple �id, sample� and computes T1 :=
�id, E[sample]� using SM’s public key.

2: Client selects a random time ts in the sync. interval and does
nothing until ts.

◦ SYNCHRONIZATION INTERVAL
3: Client ↔ SM : At time ts, Client requests sid, the number

of tuples other clients already engaged to upload for id from
SM (sid = 0 if Client is the first to ask sid for id).

4: Client should upload ∆s := min(quota, �Uid(ts −
ts0)/(ts1− ts0)�−sid) tuples. If ∆s ≤ 0, but sid < Uid, as-
sign ∆s := 1. (In parallel, SM updates sid to sid := ∆s+sid
because it also knows quota and it assumes that Client will
upload her share.)

5: Client picks ∆s random times, t1, . . . , t∆s, in the upload
interval to use when uploading tuples.

◦ UPLOAD INTERVAL:
6: Client → Server : The client uploads ∆s tuples at times

t1, . . . , t∆s. One of the tuples is the real tuple T1, the others,
if any, are junk tuples.

IV. Aggregation:

1: At the end of the interval, Server computes the aggregate on
encrypted samples by homomorphically adding all samples
for id.

2: Server ↔ SM : Server asks SM to decrypt the aggregate re-
sult. SM must decrypt only one value per aggregate. Server
verifies that SM returned the correct decrypted value as dis-
cussed.

The equation for ∆s is designed so that for each time t in the syn-
chronization interval, approximately a total of Uid(t− ts0)/(ts1 −
ts0) tuples have been scheduled by clients to be uploaded during the
upload interval. Therefore, when t becomes ts1, Uid tuples should
have been scheduled for upload.

We assign sid := 1 when ∆s comes out negative or zero because
as long as sid < Uid, it is better to schedule clients for uploading in
order to reach the value of Uid by the end of the time interval; this
approach avoids too many junk tuples (which do not carry useful
information) being uploaded later in the interval if insufficiently
many clients show up then. Moreover, this ensures that, as long
as Uid is an upper bound on the number of clients passing by, few
clients will refrain from uploading in practice.

Choice of Uid and quota. A reasonable choice for quota is 3
and Uid = avgid + stdid, where avgid is an estimate of the average
of clients passing through a sample point and stdid of the standard
deviation; both these values can be deduced based on historical
records or known trends of the sample point id. We justify and
evaluate this choice of Uid and quota in §9.2.

Let D∗ be the set of all raw-tuple configurations in which clients
succeed in uploading Uid at sample point id. Raw-tuple configura-
tions in practice should be a subset of this set for properly chosen
Uid and quota.

THEOREM 1. The SLP protocol achieves the strict location pri-

vacy definition from Def. 2 for D∗
.

PROOF. Due to space constraints, we provide a high-level proof
leaving a mathematical exposition for an extended version of this pa-

per (http://nms.csail.mit.edu/projects/privacy/); nev-
ertheless, the proof is easy enough to understand in such terms.

According to Def. 2, we need to argue that the information in the
view of the server (besides the aggregate result and any SI the server
already knows) when clients generate two different collections of
raw tuples, R0 and R1, is indistinguishable. The information that
reaches the server for id is a set of tuples consisting of three compo-
nents: time of receipt, network origin, and encrypted sample. Due
to our Uid scheme, the number of tuples arriving at the server in both
cases is the same, Uid. Next, our staged upload protocol ensures
that the timing of upload is uniformly at random distributed and the
network origin is hidden. The encryption scheme of the samples is
semantically-secure so, by definition, any two samples encrypted
with this scheme are indistinguishable to any polynomial adversary.
Since all these three components are independent of each other, the
total set of tuples for R0 and R1 are indistinguishable.

Note that this theorem assumes that the clients, server, and SM
run the SLP protocol correctly; specifically, the server performs all
tasks in the protocol correctly, although it may try to infer private in-
formation from the data it receives. In §8, we discuss the protection
PrivStats provides when these parties deviate from the SLP protocol
in various ways.

Note that we provide the SLP guarantees as long as clients suc-
ceed in uploading Uid tuples (as captured in the definition of D∗).
In the special cases when an aggregate is usually popular (so it has
high Uid), but suddenly falls in popularity (at least quota = 3 times
less), clients may not be able to reach Uid. One potential solution
is to have clients volunteer to “watch” over certain sample points
they do not necessarily traverse, by uploading junk tuples within the
same quota restrictions, if sid is significantly lower than Uid towards
the end of the synchronization interval.

Also note that the results of an aggregate statistics are available
at the server only at the end of the generation, synchronization,
and upload intervals. The last two intervals are short, but the first
one is as long as the time interval for which the server wants to
compute the aggregate. This approach inherently does not provide
real-time statistics; however, it is possible to bring it closer to real-
time statistics, if the server chooses the generation interval to be
short, e.g., the server runs the aggregation for every 5 minutes of an
hour of interest.

5.1 Distributing the Smoothing Module
So far, we referred to the smoothing module as one module for

simplicity, but we recommend the SM be distributed on the clients:
this distributes the already limited trust placed on the SM. Each
client will be responsible for running the SM for one or a few
aggregate statistics. We denote by a client SM the program running
on a client performing the task of the SM for a subset of the sample
points. Therefore, each physical client will be running the protocol
for the client described above and the protocol for one client SM
(these two roles being logically separated).

A set of K clients will handle each aggregate to ensure that the
SLP protocol proceeds even if K − 1 clients become unavailable
(e.g., fail, lose connectivity). Assuming system membership is
public, anyone can compute which K clients are assigned to an ag-
gregate id using consistent hashing [23]; this approach is a standard
distributed systems technique with the property that, roughly, load
is balanced among clients and clients are assigned to aggregates in
a random way (see [23] for more details).

The design of the SM facilitates distribution to smartphones: the
SM has light load (≈ 50 times less than the server), performs two
simple tasks, and uses constant storage per aggregate (see §9).

We now discuss how the the two tasks of a client SM – aggregate

result decryption and maintaining the total number of tuples – are
accomplished in a distributed setting.

During system setup, one of the K clients chooses a secret and a
public key and shares them with the other K − 1 clients. The server
can ask any SM to decrypt the aggregate result: since the server can
verify the correctness of the decryption, the server can ask a different
SM in case it establishes that the first one misbehaved. Client SMs
should notify each other if the server asked for a decryption to
prevent the server from asking different client SMs for different
decryptions. Decryption is a light task for client devices because it
happens only once per aggregate.

For a given aggregate, the aggregate result will be successfully
decrypted if at least one of K client SMs is available. K should
be chosen based on the probability that clients become unavailable,
which depends on the application. Since it is enough for only one
SM to function for correctness, in general we expect that a small
number for K (e.g., K = 4 should suffice in practice).

For maintaining the total number of tuples, we designed our
staged timing protocol (Fig. 3) in such a way that client SMs need
only be available for the synchronization time interval. This interval
is shorter than the generation interval. A client should ask each
client SM corresponding to a sample point for the value of sid in
parallel. Since some client may not succeed in contacting all the
client SMs, the client SMs should synchronize from time to time.
To facilitate client SMs synchronization, each client should choose
a random identifier for the request and provide it to each client
SM so that SMs can track which requests they missed when they
synchronize. (As an optimization, for very popular aggregates, one
might consider not trying to hide the number of tuples because
the leakage is less for such aggregates. For example, an aggregate
can be conservatively considered popular if there are at least 1000
clients passing per hour.)

Our strict privacy guarantees will hold for an aggregate if none
of the K client SMs for that aggregate are malicious. Since the
fraction of malicious clients is small in practice, our strong privacy
guarantees will be achieved for most of the aggregates.

6. ACCOUNTABILITY
Since each client uploads tuples anonymously, malicious clients

might attempt to bias the aggregates by uploading multiple times. In
this section, we discuss PrivStats’s accountability protocol, which
enforces three restrictions to protect against such attacks: a quota
for each client’s uploads for each sample point, a total upload quota
per client, and a guarantee that each sample value must be within an
acceptable interval. The protocol must also achieve the conflicting
goal of protecting location privacy. The most challenging part is to
ensure that each client uploads within quota at each sample point;
the other two requirements are provided by previous work.

We note that the SM is not involved in any part of accountability;
the server will perform the accountability checks by itself. This
is one of the main contributions of PrivStats: with no reliance on
a (even partially or distributed) trusted party, the server is able to
enforce a quota on the number of uploads of each client without
learning who performed any given upload.

The idea is to have each client upload a cryptographic token

whose legitimacy the server can check and which does not reveal
any information about the client; furthermore, a client cannot create
more that her quota of legitimate tokens for a given aggregate. Thus,
if a client exceeds her quota, she will have to re-use a token, and the
server will note the duplication, discarding the tuple.

Notation and conventions. Let SKs be the server’s secret sign-
ing key and PKs the corresponding public verification key. Consider
an aggregate with identifier id. Let Tid be the token uploaded by a

client for aggregate id. All the values in this protocol are computed
in Zn, where n = p1p2, two safe prime numbers, even if we do not
always mark this fact. We make standard cryptographic assump-
tions that have been used in the literature such as the strong-RSA
assumption.

6.1 Protocol
For clarity, we explain the protocol for a quota of one tuple per

aggregate id per client and then explain how to use the protocol for
a larger quota.

The accountability protocol consists of an efficient zero-knowledge

proof of knowledge protocol we designed from scratch for this prob-
lem. Proofs of knowledge [15], [3], [36] are proofs by which one
can prove that she knows some value that satisfies a certain relation.
For example, Schnorr [36] provided a simple and efficient algorithm
for proving possession of a discrete log. The zero-knowledge [15]
property provides the guarantee that no information about the value
in question is leaked.
System setup. The server generates a public key (PKs) and a private
key (SKs) for the signature scheme from [10].
Client joins. Client identifies herself to Server (using her real
identity) and Server gives Client one capability (allowing her to
upload one tuple per aggregate) as follows. Client picks a random
number s and obtains a blind signature from Server on s denoted
sig(s) (using the scheme in [10]). The pair (s, sig(s)) is a capability.
A capability enables a client to create exactly one correct token Tid

for each aggregate id. The purpose of sig(s) is to attest that the
capability of the client is correct. Without the certification provided
by the blind signature, Client can create her own capabilities and
upload more than she is allowed.

The client keeps s and sig(s) secret. Since the signature is blind,
Server never sees s or sig(s). Otherwise, the server could link
the identity of Client to sig(s); it could then test each token Tid

received to see if it was produced using sig(s) and know for which
tuples Client uploaded and hence her path. By running the signing
protocol only once with Client, Server can ensure that it gives only
one capability to Client.
Accountability upload

1. Client → Server : Client computes Tid = ids mod n and
uploads it together with a tuple. Client also uploads a zero-
knowledge proof of knowledge (ZKPoK, below in Sec. 6.2)
with which Client proves that she knows a value s such that
ids = Tid mod n and for which she has a signature from the
server.

2. Server → Client : Server checks the proof and discards the
tuple if the proof fails or if the value Tid has been uploaded
before for id (signaling an overupload).

We prove the security of the scheme in Sec. 6.2 and the appendix.
Intuitively, Tid does not leak s because of hardness of the discrete
log problem. The client’s proof is a zero-knowledge proof of knowl-
edge (ZKPoK) so it does not leak s either. Since Tid is computed
deterministically, more than one upload for the same id will result in
the same value of Tid. The server can detect these over-uploads and
throw them away. The client cannot produce a different T ∗

id for the
same id by using a different s∗ because she cannot forge a signature
of the server for s∗; without such signature, Client cannot convince
Server that she has a signature for the exponent of id in T ∗

id . Here
we assumed that id is randomly distributed.

Quotas. To enforce a quota > 1, the server simply issues a
quota of capabilities during registration. In addition, the server may
want to tie quotas to aggregates. To do so, the server divides the
aggregates into categories. For each category, the server runs system

setup separately obtaining different SKs and PKs and then gives a
different number of capabilities to clients for each category.

Quota on total uploads. We also have a simple cryptographic
protocol to enforce a quota on how much a client can upload in
total over all aggregates, not presented here due to space constraints;
however, any existing e-cash scheme suffices here [8].

Ensuring reasonable values. As mentioned, in addition to quota
enforcement, for each tuple uploaded, clients prove to the server
that the samples encrypted are in an expected interval of values
(e.g., for speed, the interval is (0, 150)) to prevent clients from
uploading huge numbers that affect the aggregate result. Such proof
is done using the efficient interval zero-knowledge proof of [5]; the
server makes such interval publicly available for each aggregate.
We discuss the degree to which fake tuples can affect the result in
section 9.2.

6.2 A Zero-Knowledge Proof of Knowledge
We require a commitment scheme (such as the one in [31]): recall

that a commitment scheme allows a client Alice to commit to a
value x by computing a ciphertext ciph and giving it to another
client Bob. Bob cannot learn x from ciph. Later, Alice can open
the commitment by providing x and a decommitment key that are
checked by Bob. Alice cannot open the commitment for x� �= x and
pass Bob’s verification check.
Public inputs: id, Tid, PKs, g, h
Client’s input: s, σ = sig(s).
Server’s input: SKs

CONSTRUCTION 1. Proof that Client knows s and σ such that
ids = T and σ is a signature by Server on s.

1. Client computes a Pedersen commitment to s: com = gshr

mod n, where r is random. Client proves to Server that

she knows a signature sig(s) from the server on the value

committed in com using the protocol in [10].

2. Client proves that she knows s and r such that Tid = ids and

com = gshr
as follows:

(a) Client picks k1 and k2 at random in Zn. She computes

T1 = gk1 mod n, T2 = hk2 mod n and T3 = idk1

mod n and gives them to the server.

(b) Server picks c a prime number, at random and sends it

to Client.
(c) Client computes r1 = k1 + sc, r2 = k2 + rc and sends

them to Server.

(d) Server checks if comcT1T2
?≡ gr1hr2 mod n and

T c
idT3

?≡ idr1 mod n. If the check succeeds, it out-

puts “ACCEPT”; else, it outputs “REJECT”.

This proof can be made non-interactive using the Fiat-Shamir
heuristic [13] or following the proofs in [5]; due to space limits, we
do not present the protocol here. The idea is that the client computes
c herself using a hash of the values she sends to the server in a way
that is computationally infeasible for the client to cheat.

THEOREM 2. Under the strong RSA-assumption, Construction

1 is a zero-knowledge proof of knowledge that the client knows s and

σ such that ids = Tid mod n and σ is a signature by the server on

s.

Due to space constraints, the proof is presented in a longer ver-
sion of this paper at http://nms.csail.mit.edu/projects/
privacy/.

6.3 Optimization
To avoid performing the accountability check for each tuple up-

loaded, the server can perform this check probabilistically; with a

probability q, it checks each tuple for aggregate id. If the server
notices an attempt to bias the aggregate (a proof failing or a dupli-
cate token), it should then check all proofs for the aggregate from
then on or, if it stored the old proofs it did not verify, it can check
them all now to determine which to disregard from the computation.
Note that the probability of detecting an attempt to violate the up-
load quote, Q, increases exponentially in the number of repeated
uploads, n: Q = 1 − (1 − q)n. For q = 20%, after 10 repeated
uploads, the chance of detection is already 90%. We recommend
using q = 20%, although this value should be adjusted based on the
expected number of clients uploading for an aggregate.

6.4 Generality of Accountability
The accountability protocol is general and not tied to our setting.

It can be used to enable a server to prevent clients from uploading
more than a quota for each of a set of “subjects” while preserving
their anonymity. For example, a class of applications are online
reviews and ratings in which the server does not need to be able to
link uploads from the same user; e.g., course evaluations. Students
would like to preserve their anonymity, while the system needs to
prevent them from uploading more than once for each class.

7. AGGREGATE STATISTICS SUPPORTED
SLP supports any aggregates for which efficient homomorphic

encryption schemes and efficient verification or proof of decryption
exist. Additive homomorphic encryption (e.g., Paillier [30]) already
supports many aggregates used in practice, as we explain below.
Note that if verification of decryption by the SM is not needed (e.g.,
in a distributed setting), a wider range of schemes are available.
Also note that if the sample value is believed to not leak, arbitrary
aggregates could be supported by simply not encrypting the sample.

Table 1 lists some representative functions of practical interest
supported by PrivStats. Note the generality of sum and average of
functions — F could include conditionals or arbitrary transforma-
tions based on the tuple. When computing the average of functions,
some error is introduced due to the presence of junk tuples because
each sample is weighted by the number of uploads. However, as we
show in §9.2, the error is small (e.g., < 3% for average speed for
CarTel).

Note in Table 1 that count is a special case and we can make some
simplifications. We do not need the SM at all. The reason is that the
result of the aggregate itself equals the number of tuples generated at
the sample point, so there is not reason to hide this number any more.
Also, since each sample of a client passing through the sample point
is 1, there is no reason to hide this value, so we remove the sample
encryptions. As such, there is no need for the SM any more. Instead
of contacting the SM in the sync. interval (Fig. 3), clients directly
upload to the server at the same random timing.

Additive homomorphic encryption does not support median, min,
and max. For the median, one possible solution is to approximate
it with the mean. One possible solution is to use order-preserving
encryption [4]: for two values a < b, encryption of a will be smaller
than encryption of b. This approach enables the server to directly
compute median, min, and max. However, it has the drawback that
the server learns the order on the values. An alternative that leaks
less information is as follows: To compute the min, a client needs to
upload an additional bit with their data. The bit is 1 if her sample is
smaller than a certain threshold. The server can collect all values
with the bit set and ask the SM to identify and decrypt the minimum.
(Special purpose protocols for other statistics are similar.)

Table 1: Table of aggregate statistics supported by PrivStats with example applications and implementation.
Aggregation Example Application Implementation
Summation No. of people carpooled

through an intersection.
Each client uploads encryption of the number of people in the car. Junk tuples are encryptions
of zero.

Addition of functions�
F (tuplei)

Count of people exceeding
speed limit. This is a gener-
alization of summation.

Each client applies F to her tuple and uploads encryption of the resulting value. Junk tuples
are encryptions of zero.

Average Average speed or delay. See average of functions where F (tuple) = sample.
Standard Deviation Standard deviation of delays. Compute average of functions (see below) where F (tuple) = sample2 and denote the result

Avg1. Separately compute F (tuple) = sample and denote the result Avg2. The server
computes

�
Avg2 − (Avg1)

2. This procedure also reveals average to the server, but likely
one would also want to compute average when computing std. deviation.

Average of functions�N
i=1 F (tuplei)/N

Average no. of people in a
certain speed range. Average
speed and delay. This is a gen-
eralization of average.

If count (see below) is also computed for the sample point, compute
�N

i=1 F (tuplei) as
above instead, and then the server can divide by the count. Otherwise, compute summation
of functions, where junk tuples equal real tuples. The server divides the result by the
corresponding Uid.

Count Traffic congestion: no. of
drivers at an intersection.

The SM is not needed at all for count computation. Clients do not upload any sample value
(uploading simply �id� is enough to indicate passing through the sample point). There are no
junk tuples.

8. PRIVACY ANALYSIS
We saw that if the clients, smoothing module, and the server

follow the SLP protocol, clients have strong location privacy guar-
antees. We now discuss the protection offered by PrivStats if the
server, SM, or clients maliciously deviate from our strict location
privacy protocol.

Malicious server. The server may attempt to ask the SM to de-
crypt the value of one sample as opposed to the aggregate result.
However, this prevents the server from obtaining the aggregate re-
sult, since the SM will only decrypt once per aggregate id, and we
assume that the server has incentives to compute the correct result.
Nevertheless, to reduce such an attack, the SM could occasionally
audit the server by asking the server to supply all samples it aggre-
gated. The SM checks that there are roughly Uid samples provided
and that their aggregation is indeed the supplied value.

The server may attempt to act as a client and ask the SM for sid
(because the upload is anonymous) to figure out the total number
of tuples. Note that, if the aggregate is not underpopulated, if the
server asks for sid at time t, it will receive as answer approximately
Uid(t− ts0)/(ts1 − ts0), a value it knew even without asking the
SM. This is one main reason why we used the “growing sid” idea
for the sync. interval (Fig. 3), as opposed to just having the SM
count how many clients plan to upload and then informing each
client of the total number at the end of the sync. interval, so that they
can scale up their uploads to reach Uid. Therefore, to learn useful
information, the server must ask the SM for sid frequently to catch
changes in sid caused by other clients. However, when the server
asks the SM for sid, the helper increases sid as well. Therefore, the
SM will reach the Uid quota early in the sync. interval and not allow
other clients to upload; hence, the server will not get an accurate
aggregate result, which is against its interest.

Malicious SM. Since the server verifies the decryption, the SM
cannot change the result. Even if the SM colludes with clients,
the SM has no effect on the accountability protocol because it is
entirely enforced by the server. If the SM misbehaves, the damage
is limited because clients upload tuples without identifiers, network
origin, and our staged timing protocol for upload hides the time
when the tuples were generated even from the SM. A compromised
SM does permit SI attacks based on sample value and number of
tuples; however, if the SM is distributed, we expect the fraction of
aggregates with a compromised SM to be small and hence our SLP
guarantees to hold for most aggregates.

The SM may attempt a DoS attack on an aggregate by telling
clients that Uid tuples have already been uploaded and only allowing
one client with a desired value to upload. However, the server can
easily detect such cheating when getting few uploads.

Malicious clients. Our accountability protocol prevents clients
from uploading too much at an aggregate, too much over all aggre-
gates, and out-of-range values. Therefore, clients cannot affect the
correctness of an aggregate result in this manner. As mentioned in
§2, we do not check if the precise value a client uploads is correct,
but we show in §9.2 that incorrect value in the allowable range likely
will not introduce a significant error in the aggregate result.

Colluding clients may attempt to learn the private path of a spe-
cific other client. However, since our SLP definition models a
general adversary with access to server data, such clients will not
learn anything beyond the aggregate result and the SI they already
knew (which includes, for example, their own paths). A client may
try a DoS attack by repeatedly contacting the SM so that the SM
thinks Uid tuples have been uploaded. This attack can be prevented
by having the SM also run the check for the total number of tuples a
client can upload; Uid for a popular aggregate should be larger than
the number of aggregates a client can contribute to in a day. For a
more precise, but expensive check, the SM could run a check for the
quota of tuples per aggregate, as the server does.

Aggregate result. In some cases, the aggregate result itself may
reveal something about clients’ paths. However, our goal was to
enable the server to know this result accurately, while not leaking
additional information. As mentioned, clients can choose not to
participate in certain aggregates (see §2).

Differential privacy protocols [11] add noise into the aggregate re-
sult to avoid leaking individual tuples; however, most such protocols
leak all the private paths to the server by the nature of the model.
§3 explains how the SLP and differential privacy models are com-
plementary. A natural question is whether one can add differential
privacy on top of the PrivStats protocol, while retaining PrivStats’
guarantees. At a high level, the SM, upon decrypting the result, may
decide how much noise to add to the result to achieve differential
privacy, also using the number of true uploads it knows (the number
of times it was contacted during the sync. interval). The design
of a concrete protocol for this problem is future work. Related to
this question is the work of Shi et al. [37], who proposed a protocol
combining data hiding from the server with differentially-private
aggregate computation at the server; they consider the different

End-to-end metric Result
Setup 0.16 s

Join, Nexus client 0.92 s
Join, laptop client 0.42 s

Upload without account., Nexus 0.29 s
Upload with account., Nexus 2.0 s

Upload with 20% account., Nexus 0.6 s
Upload without account., laptop 0.094 s

Upload with account., laptop 0.84 s
Aggregation (103 samples) 0.2 s
Aggregation (104 samples) 0.46 s
Aggregation (105 samples) 3.1 s

Table 2: End-to-end latency measurements.

setting of n parties streaming data to a server computing an overall
summation. While this is an excellent attempt at providing both
types of privacy guarantees together, their model is inappropriate for
our setting: they assume that a trusted party can run a setup phase
for each specific set of clients that will contribute to an aggregate
ahead of time. Besides the lack of such a trusted party in our model,
importantly, one does not know during system setup which specific
clients will pass through each sample point in the future; even the
number n of such clients is unknown.

9. IMPLEMENTATION AND EVALUATION
In this section, we demonstrate that PrivStats can run on top of

commodity smartphones and hardware at reasonable costs. We
implemented an end-to-end system; the clients are smartphones
(Nexus One) or commodity laptops (for some social crowd-sourcing
applications), the server is a commodity server, and the SM was
evaluated on smartphones because it runs on clients. The system
implements our protocols (Fig. 2) with SLP and enforcing a quota
number of uploads at each aggregate per client for accountability.

We wrote the code in both C++ and Java. For our evaluation
below, the server runs C++ for efficiency, while clients and SM
run Java. Android smartphones run Java because Android does not
fully support C++. (As of the time of the evaluation for this paper,
Android NDK lacks support for basic libraries we require.) We
implemented our cryptographic protocols using NTL for C++ and
BigInteger for Java. Our implementation is ≈ 1300 lines of code for
all three parties, not counting libraries; accountability forms 55%
of the code. The core code of the SM is only 62 lines of code (not
including libraries), making it easy to secure.

9.1 Performance Evaluation
In our experiments, we used Google Nexus One smartphones

(1GHz Scorpion CPU running Android 2.2.2., 512 MB RAM), a
commodity laptop (2.13 GHz Intel Pentium CPU 2-core, 3 GB
RAM), a commodity server (2.53GHz Intel i5 CPU 2-core, 4 GB
RAM), and a server with many cores for our scalability measure-
ments: Intel Xeon CPU 16 cores, 1.60 GHz, 8 GB RAM. In what
follows, we report results with accountability, without accountability
(to show the overhead of the aggregation protocols), and with 20%
of uploads using accountability as recommended in §6.3.

Table 2 shows end-to-end measurements for the four main op-
erations in our system (Fig. 2); these include our operations and
network times. We can see that the latency of setup and join are
insignificant, especially since they only happen once for the service
or once for each client, respectively.

The latency of upload, the most frequent operation, is measured
from the time the client wants to generate an upload until the upload
is acknowledged at the server, including interaction with the SM.
The latency of upload is reasonable: 0.6 s and up to 2 s for Nexus.

 0 0.5 1 1.5 2

Contact SM

Prepare tuples

Prepare account.
proof

Upload to server and wait reply

seconds

Figure 4: Breakdown of Nexus upload latency.

Server 0.29 s Client laptop 0.46 s Client Nexus 1.16 s

Table 3: Runtime of the accountability protocol.

Server metric Measurement
Upload latency, with account. 0.3 s
Upload latency, no account. 0.02 s

Throughput with 0% account. 2400 uploads/core/min
Throughput with 20% account. 860 uploads/core/min
Throughput with 100% account. 170 uploads/core/min

Table 4: Server evaluation for uploads. Latency indicates the time it
takes for the server to process an upload from the moment the request
reaches the server until it is completed. Throughput indicates the num-
ber of uploads per minute the server can handle.

Since this occurs either in the background or after the client triggered
the upload, the user does not need to wait for completion. Figure 4
shows the breakdown into the various operations of an upload. We
can see that the accountability protocol (at client and server) takes
most of the computation time (86%). The cost of accountability is
summarized in Table 3.

For aggregation, we used the Paillier encryption scheme which
takes 33 ms to encrypt, 16.5 ms to decrypt, and 0.03 ms for one
homomorphic aggregation on the client laptop, and 135 ms to en-
crypt and 69 ms to decrypt on Nexus. The aggregation time includes
server computation and interaction with the SM. The latency of
this operation is small: 0.46 s for 104 tuples per aggregate, more
tuples than in the common case. Moreover, the server can aggregate
samples as it receives them, rather than waiting until the end.

In order to understand how much capacity one needs for an appli-
cation, it is important to determine the throughput and latency at the
server as well as if the throughput scales with the number of cores.
We issued many simultaneous uploads to the server to measure these
metrics, summarized in Table 4. We can see that the server only
needs to perform 0.3 s of computation to verify a cryptographic
proof and one commodity core can process 860 uploads per minute,
a reasonable number. We parallelized the server using an adjustable
number of threads: each thread processes a different set of aggregate
identifiers. Moreover, no synchronization between these threads
was needed because each aggregate is independent. We ran the
experiment on a 16-core machine: Fig. 5 shows that the throughput
indeed scales linearly in the number of requests.

We proceed to estimate the number of cores needed in an applica-
tion. In a social crowd-sourcing application, suppose that a client
uploads samples on the order of around 10 times a day when it visits
a place of interest (e.g., restaurant). In this case, one commodity
core can already serve about 120,000 clients.

In the vehicular case, clients upload more frequently. If n is
the number of cars passing through a sample point, a server core
working 24 h can thus support ≈ 24 · 60 · 860/n statistics in one
day. For instance, California Department of Transportation statistics

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18

C
lie

n
t
u
p
lo

a
d
s
/s

e
c

No. of threads

Figure 5: Throughput at the server versus
number of parallel threads, showing linear
scaling on a 16-core machine.

 50

 60

 70

 80

 90

 100

avg avg+std/2 avg+std 3/2avg avg+2std avg*2

P
e

rc
e

n
ta

g
e

 (
%

)

Choice of Uid

Nr. uploads/Uid

Nr. real uploads/Nr. clients

Figure 6: Total uploads at the server divided
by Uid, and the number of clients that upload
over total clients passing by a sample point.

 0

 2

 4

 6

 8

 10

avg avg+std/2 avg+std 3/2avg avg+2std avg*2

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Choice of Uid

Avg. delay

Avg. speed

Figure 7: CarTel data showing the error
in computing the average delay or speed for
various choices of Uid.

[7] indicate that there are about 2, 000 cars on average passing in
an hour through a highway lane. In this setting, one core supports
about ≈ 620 different aggregates. Of course, the precise number
depends on the application, but this estimation suggests our protocol
is feasibly efficient.

We experimented with the SM as well; the throughput of sid
requests was mostly limited by how many http requests the smart-
phone can process. This is because the SM has very little work to do.
The SM spends ≈ 140 ms for decryption and proof of decryption
per aggregate (once per aggregate), and < 5ms per sid request on
a smartphone (once per client), while the server performs 300 ms
worth of checks on a commodity server (once per client), resulting
in more than 50 times more work than the SM especially when
considering the different device capacities.

Bandwidth and storage usage are evaluated in a longer ver-
sion of our paper to be found at http://nms.csail.mit.edu/
projects/privacy/.

9.2 Accuracy and Effectiveness
In this section we evaluate the accuracy of our protocol and its

robustness against malicious uploads. In the process, we justify
recommended values for quota and Uid, the total number of tuples
to be uploaded for aggregate id.

As mentioned in §5, we suggest quota = 3. Our reasoning is
the following: On the one hand, we want the quota to be as small
as possible to limit the error malicious clients can introduce into
the aggregate. On the other hand, a quota of 1 or 2 would make
it difficult for clients to upload Uid tuples in total: for aggregates
with an unexpectedly low client turnout, participating clients need
to upload more tuples in the place of missing clients to reach Uid.

We first analyze how much a single client can affect the aggregates
by malicious uploads. Let N be the number of clients uploading
for a certain aggregate, I the interval of accepted values, and µ the
aggregate result when all clients are honest. For example, using
the statistics in [7], N can be 2000 clients in an hour. For average
speed computation, I = (0, 100) mph and µ might be 60 mph, for
instance. The highest change in the average that a client can induce is
±|I|quota/N and the maximum fractional error is ±|I|quota/Nµ,
where |I| is the length of the interval I . We can see that if N is
large (a popular area), the error introduced by a client is small. For
our example, this is equal to ±0.15 mph and 0.25% for quota = 3,
both rather small.

Next, we evaluate the accuracy of our scheme both analytically
and empirically against real traces. We obtained real traces from
the CarTel project testbed, containing an average of ≈ 400 one-
day paths of taxi drivers in the Boston/MA area for each month of
year 2008 driving mainly through the Boston area, but extending

to MA, NH, RI, and CT areas. In-car devices report segment id
(a segment is a part of a road between two intersections), time,
average speed on the segment and average delay on the segment.
We considered that an aggregate is computed on each segment in
every hour. We restricted our attention to aggregates with at least
50 drivers, which is most often the case in practice. We averaged all
the results reported below over each month of the year and over all
aggregates considered.

As discussed in §7, for “count” aggregates we do not need the
SM and we have no Uid. For non-count aggregates, the choice of Uid

imposes a mild tradeoff between accuracy of aggregate result and
privacy. A low Uid may not allow some drivers to upload (because
at most Uid tuples must reach the server), while a large Uid may
be hard for clients to achieve in cases with an unexpectedly low
client turnout because each client can at most upload quota tuples.
If the server receives a lower number of tuples than Uid, the server
learns some information about the clients because the number of
tuples uploaded is no longer independent of the number of tuples
generated. If the number of tuples uploaded tends to be close to Uid

for most cases, then little information is leaked.
Uid should be chosen as a function of the historical number of

uploads at an aggregate point, as follows. In Figure 6, we vary Uid

by using combinations of avg – the average number of uploads at a
sample point in all our trace over a year – and std – the correspond-
ing standard deviation. In practice, avg and std can be obtained
based on historical data or estimates of the traffic at a sample point.
The decreasing line represents to what extent clients can upload Uid

in total; as expected, this decreases as Uid increases. The increasing
line shows the percentage of clients passing through the sample
point that can upload at least one tuple. Fortunately, we can see
that for most values of Uid, both metrics are high, typically greater
than 90%. This means that our Uid-upload protocol is feasible to
achieve in practice and does not significantly affect the accuracy of
the aggregate.

Examining Fig. 6, Uid = avg + std seems to be the best choice.
We can gain some intuition as follows. Even if the turnout at a
sample point is larger than avg by a standard deviation, most clients
should still be able to upload. At the same time, Uid cannot be too
much larger than avg for cases when there is a small turnout. We
tried larger quotas of 4 and 5 and found that Uid = avg+ (quota−
1)/2 · std still represents the intersection of the lines in Fig. 6.

Finally, we examine the accuracy error introduced by our protocol
for this choice of Uid. Count aggregates of course introduce no error.
For summation-type aggregates (see §7), the increasing line in Fig.
6 provides this answer. If every value summed comes from the same
distribution, the error is roughly 5% which we consider reasonable,
especially since summation-type averages are less common.

For average-type aggregation (§7), the accuracy is very high: even
if only a subset of the clients may be able to upload in certain cases,
this subset is chosen at random from all clients passing through
the sample point due to the random timing in the sync. interval
(See §5 and Fig. 3). Assuming each client’s value is taken from
the same distribution, the expected average of tuples is equal to the
real expected average; moreover, due to the law of large numbers,
for popular aggregates (which therefore also have larger Uid), the
observed average will become very close to the real one. For aggre-
gates with as few as ≈ 100 uploads per aggregate (as is the case in
Cartel), the errors were already small: Fig. 7 shows that the error in
average delay is at most 5% and the error in average speed is 3%.

We do not claim that CarTel traffic patterns are representative, but
one can use a similar analysis of historical data to deduce proper
Uid for other cases. In fact, we expect our protocol to be even more
effective in practice because the CarTel network is very small (≈ 30
drivers); in a system with more participants, both metrics in Fig. 6
will simultaneously be larger, many values of Uid will be suitable,
and errors of averages smaller due to the law of large numbers.

10. RELATED WORK
Aggregate statistics for location privacy. Systems such as [16],
CliqueCloak [14], [19], [24], [20], and Triplines [18], address the
same problem as PrivStats. Their approaches are to use trusted
parties to aggregate time-consecutive driver uploads for the same
location, to avoid uploading in sensitive areas, to distort spatially
and temporally locational services, or to “cloak” the data using
spatial and temporal subsampling techniques.

One problem with these solutions is that they neither provide
rigorous privacy guarantees nor protect against side information.
As discussed in §3, even if a server only sees anonymized tuples,
considerable private information can leak due to SI. For example, in
[20, 18], a trusted party aggregates the upload of each driver on a
piece of road with the uploads of other k − 1 drivers close in time
and location to provide k-anonymity. While one individual tuple has
k-anonymity, when intersecting the sets of k-anonymity for a path,
the driver may not be necessarily k-anonymous over her entire path
among other drivers and their paths. And of course SI can cause
further violations of k-anonymity.

Another difficulty with most of these solutions is their reliance
on fully trusted intermediaries between drivers and server. For
example, trusted parties in [16, 14, 18, 19] receive tuples with
clients identifiers in plaintext and are supposed to remove them
from the tuple. If these parties are compromised or collude with
other trusted parties in the system, so are the paths of the drivers, as
they have access to driver identifiers. In our work, if the SM gets
compromised, the server will still only see anonymized tuples (see
§8), and the use of the SM achieves stronger security.

Moreover, accountability has previously either been ignored (al-
lowing drivers to bias significantly the aggregate result) [16, 14,
24, 20] or handled by having tuples contain driver identifiers [18,
19]. For instance, in [18, 19], users upload tuples containing their
identities to a trusted party that checks if clients have uploaded too
much, while another trusted party performs aggregation. If these
trusted parties collude, driver paths with identities leak.
Other related work. We now discuss systems for protecting loca-
tion privacy that target different but related problems.

VPriv [32] and PrETP [2] compute functions over a particular
driver’s path as opposed to computing statistics over the paths of
multiple clients; for instance, they can compute the total toll that
driver Alice has to pay based on how much she drove in a month.
They associate the result of a function to a client’s id, whereas PrivS-
tats keeps clients anonymous and computes statistics over all clients.

VPriv and PrETP also use the general zero-knowledge concept, but
the actual cryptographic proofs and protocols are different from ours
and inapplicable to our setting: in VPriv and PrETP, all the clients
who provide data for a function must be online and perform work at
the same time, which is impractical for aggregates with hundreds of
clients. Moreover, these protocols do not support aggregates over
data from different clients.

Furthermore, VPriv is vulnerable to side information because the
server sees anonymized tuples with time and location information.
VPriv acknowledges this problem, but does not solve it, leaving it
for future work. PrETP also suffers from SI, but to a lesser extent
than VPriv. Finally, VPriv and PrETP do not provide our type of
accountability: clients can upload as many times as they desire.
They have a random spot check scheme involving a trusted party
that makes sure that clients upload at least once per location. Our
accountability protocol uses no trusted parties, leaks no privacy, and
most importantly performs different enforcements.

SEPIA [6] uses special-purpose secure-multiparty protocols to
compute aggregate statistics over network traffic. However, the
approach in SEPIA is not plausible in our usage scenario. Some
trusted “input peers” provide network data, and a cluster of “privacy
peers” performs all the computation on this data. The protocol
relies on a majority of the privacy peers to not collude. In contrast
to our system, these peers perform almost all computation, and if
they collude, all client data is visible. Furthermore, input peers
are trusted, so SEPIA does not provide any accountability checks
against abusive clients. SEPIA also does not hide the number of
tuples for each aggregate.

There has also been recent work by Narayanan et al. [29], Zhong
et al. [41], and Puttaswamy and Zhao [33] on preserving location
privacy in location-based social networking applications, an area
also full of location privacy concerns. This work has a different goal
than ours: it allows users to exchange location-based information
with friends while protecting their privacy (against disclosure to
both the server and to friends).

Shokri et al. [38] provide a framework for quantifying location pri-
vacy as a way of comparing various location privacy schemes. Given
a certain adversarial goal and models of adversarial knowledge and
of a location privacy scheme, the framework enables quantification
of the performance of the adversary. The authors also argue that
side information (which they call “prior knowledge”) should be con-
sidered when analyzing privacy. However, this work has a different
goal than PrivStats, does not provide a definition of privacy resilient
to side information, and does not propose protocols for accountable
and location private computation of aggregate statistics.

Work on e-cash [9] is related to our accountability protocol (§6):
one might envision giving each client a number of e-coins to spend
on every aggregate. This approach fits well in spam control applica-
tions [1, 39]. However, it is not practical in our setting: coins must
be tied to a particular location, time interval, and sample type, which
requires generating a prohibitively large number of coins. Other
work [8] gives each user n coins for each time period. Again, we
need the coins tied to sample points, so this is not feasible. Also,
e-cash adds a lot of complexity (and thus slowdown) to identify
double-spenders, which we do not require. Our accountability pro-
tocol is simple, specific to our setting, and fast.

Finally, we remark that our approach complements work on dif-
ferential privacy [11], as we discussed in §8.

11. CONCLUSION
In this paper, we presented PrivStats, a system for computing

aggregate statistics for mobile, location-based applications that
achieves both strong guarantees of location privacy and protection

against cheating clients. PrivStats solves two major problems not
solved by previous work: it ensures that no further information leaks
even in the face of arbitrary side information attacks, and it pro-
vides client accountability without a trusted party. We implemented
PrivStats on commodity phones and servers, and demonstrated its
practicality.

12. ACKNOWLEDGMENTS
We thank Nickolai Zeldovich, Mike Walfish, Arvind Narayanan,

and the anonymous reviewers for useful comments and feedback.
This work was supported in part by NSF grants 0931550 and
0716273.

13. REFERENCES
[1] M. Abadi, A. Birrell, M. Burrows, F. Dabek, and T. Wobber.

Bankable postage for network services. In ASIAN, 2003.
[2] J. Balasch, A. Rial, C. Troncoso, B. Preneel, I. Verbauwhede,

and C. Geuens. PrETP: Privacy-preserving electronic toll
pricing. Usenix Security, 2010.

[3] M. Bellare and O. Goldreich. On defining proofs of
knowledge. CRYPTO, 1992.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In EUROCRYPT,
2009.

[5] F. Boudot. Efficient proofs that a committed number lies in an
interval. EUROCRYPT, 2000.

[6] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.
SEPIA: Privacy-preserving aggregation of multi-domain
network events and statistics. Usenix Security, 2010.

[7] California Department of Transportation. Caltrans guide for
the preparation of traffic impact studies.

[8] J. Camenisch, S. Hohenberger, M. Kohlweiss,
A. Lysyanskaya, and M. Meyerovich. How to win the
clonewars: Efficient periodic n-times anonymous
authentication. In CCS, 2006.

[9] J. Camenisch, S. Hohenberger, and A. Lysyanskaya.
Balancing accountability and privacy using e-cash. Security

and Cryptography for Networks, 2006.
[10] J. Camenisch and A. Lysyanskaya. A Signature Scheme with

Efficient Protocols. Security and Cryptography for Networks,
2002.

[11] C. Dwork. Differential privacy: A survey of results. In TAMC

1-19, 2008.
[12] E-ZPass. How it works. http://www.ezpass.com/index.html.
[13] A. Fiat and A. Shamir. How to prove yourself: Practical

solutions to identification and signature problems. CRYPTO,
1986.

[14] B. Gedik and L. Liu. Location privacy in mobile systems: A
personalized anonymization model. In ICDCS, 2005.

[15] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge
complexity of interactive proof-systems. Symposium on the

Theory of Computation, 1985.
[16] M. Gruteser and D. Grunwald. Anonymous usage of

location-based services through spatial and temporal cloaking.
In MobiSys, 2003.

[17] M. Gruteser and B. Hoh. On the anonymity of periodic
location samples. In IEEE Pervasive Computing, 2005.

[18] B. Hoh, M. Gruteser, R. Herring, J. Ban, D. Work, J.-C.
Herrera, A. Bayen, M. Annavaram, and Q. Jacobson. Virtual
trip lines for distributed privacy-preserving traffic monitoring.
In Mobisys, 2008.

[19] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Enhancing
security and privacy in traffic-monitoring systems. In IEEE

Pervasive Computing, 2006.
[20] B. Hoh, M. Gruteser, H. Xiong, and A. Alrabady. Preserving

privacy in GPS traces via uncertainty-aware path cloaking. In
CCS, 2007.

[21] B. Hull, V. Bychkovsky, K. Chen, M. Goraczko, A. Miu,
E. Shih, Y. Zhang, H. Balakrishnan, and S. Madden. CarTel: A
Distributed Mobile Sensor Computing System. Sensys, 2006.

[22] N. Husted and S. Myers. Mobile location tracking in metro
areas: Malnets and others. In CCS, 2010.

[23] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and
R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
World Wide Web. In STOC, 1997.

[24] J. Krumm. Inference attacks on location tracks. In IEEE

Pervasive Computing, 2007.
[25] J. Lowensohn. Apple sued over location tracking in iOS.

http://news.cnet.com/8301-27076_3-20057245-248.html,
2011. CNET News.

[26] E. Mills. Google sued over Android data location collection.
http://news.cnet.com/8301-27080_3-20058493-245.html,
2011. CNET News.

[27] Mobile Millennium. http://traffic.berkeley.edu/.
[28] M. Mun, S. Reddy, K. Shilton, N. Yau, P. Boda, J. Burke,

D. Estrin, M. Hansen, E. Howard, and R. West. PEIR, the
personal environmental impact report, as a platform for
participatory sensing systems research. In MobiSys, 2009.

[29] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and
D. Boneh. Location privacy via private proximity testing.
NDSS, 2011.

[30] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT, 1999.

[31] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. CRYPTO, 1991.

[32] R. A. Popa, H. Balakrishnan, and A. J. Blumberg. VPriv:
Protecting privacy in location-based vehicular services.
Usenix Security, 2009.

[33] K. Puttaswamy and B. Zhao. Preserving privacy in
location-based mobile social applications. International

Workshop on Mobile Computing and Applications, 2010.
[34] R. Reid. TomTom admits to sending your routes and speed

information to the police, 2011. CNET UK.
[35] P. Riley. The tolls of privacy: An underestimated roadblock

for electronic toll collection usage. In Third International

Conference on Legal, Security, and Privacy Issues in IT, 2008.
[36] C. P. Schnorr. Efficient identification and signatures for smart

cards. CRYPTO, 1989.
[37] E. Shi, T.-H. H. Chan, E. Rieffel, R. Chow, and D. Song.

Privacy-preserving aggregation of time-series data. In NDSS,
2011.

[38] R. Shokri, G. Theodorakopoulos, J.-Y. L. Boudec, and J.-P.
Hubaux. Quantifying location privacy. In IEEE Symposium on

Security and Privacy, 2011.
[39] M. Walfish, J. Zamfirescu, H. Balakrishnan, D. Karger, and

S. Shenker. Distributed quota enforcement for spam control.
In NSDI, 2006.

[40] WMUR. Police: Thieves robbed home based on Facebook,
2010. http://www.wmur.com/r/24943582/detail.html.

[41] G. Zhong, I. Goldberg, and U. Hengartner. Louis, Lester, and
Pierre: Three protocols for location privacy. International
Conference on Privacy-Enhancing Technologies, 2007.

