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Abstract Lane estimation for autonomous driving can be
formulated as a curve estimation problem, where local sen-
sor data provides partial and noisy observations of spatial
curves forming lane boundaries. The number of lanes to es-
timate are initially unknown and many observations may
be outliers or false detections (due e.g. to shadows or non-
boundary road paint). The challenges lie in detecting lanes
when and where they exist, and updating lane estimates as
new observations are made.

This paper describes an efficient probabilistic lane esti-
mation algorithm based on a novel curve representation. The
key advance is a principled mechanism to describe many
similar curves as variations of a single basis curve. Locally
observed road paint and curb features are then fused to de-
tect and estimate all nearby travel lanes. The system handles
roads with complex multi-lane geometries and makes no as-
sumptions about the position and orientation of the vehicle
with respect to the roadway.

We evaluate our algorithm using a ground truth dataset
containing manually-labeled, fine-grained lane geometries
for vehicle travel in two large and diverse datasets that in-
clude more than 300,000 images and 44 km of roadway. The
results illustrate the capabilities of our algorithm for robust
lane estimation in the face of challenging conditions and un-
known roadways.

Keywords Lane estimation · Lane tracking · Autonomous
vehicles · Intelligent vehicles
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Fig. 1 (top) MIT’s autonomous vehicle. (bottom) Lane estimates; un-
certainty indicated by short perpendicular lines.

1 Introduction

The past decade has seen enormous progress in the develop-
ment of autonomous land vehicles. From the first DARPA
Grand Challenge in 2004, where vehicles struggled to drive
more than a few miles autonomously, vehicles today have
been tested in continuous operation for hundreds of miles in
complex environments.

Of fundamental importance to autonomous driving is an
accurate model of the roadway and its lanes as the vehi-
cle moves. A system able to automatically and reliably con-
struct such a model (Figure 1) using on-board sensors such
as cameras or laser range scanners (LIDAR) would provide
enormous benefits to an autonomous vehicle. A lane esti-
mator could also be used for tasks ranging from wide-scale
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road and lane quality assessment, to providing inputs to a
driver assistance safety or navigation system.

In some cases, a model of the roadway and nearby lanes
could be obtained by localizing within a previously con-
structed map using a global positioning system (GPS) re-
ceiver and/or local environmental cues (Urmson et al., 2009).
However, this approach fails when the map becomes obso-
lete – e.g., when lanes are reconfigured by construction or
resurfacing, or the road itself is significantly displaced by
an earthquake (Bates, 2010; Voigt, 2011) – or when the lo-
calization process itself fails. In these situations, estimates
constructed from vehicle sensor data could be used to cor-
rect the map, improve localization, or simply guide the ve-
hicle without a map.

As with many robot perception tasks in real-world set-
tings, accurately detecting and estimating lanes from local
sensor data is a complex problem. Roadways and the con-
ditions under which they are observed can range from well-
marked surfaces on clear and sunny days, to poorly marked
lanes obscured by snow, rain, shadow, strong sunlight, and a
host of other factors. Algorithms designed for one scenario
may not work well in others; the ability to robustly handle
new and unfamiliar situations is critically important. Faded
road paint lines still visible after re-painting must be distin-
guished from fresh road paint, and a functional system must
accurately model the width, curvature, topology and other
aspects of the road network required for the task at hand.

In previous work (Huang and Teller, 2009), we described
the lateral uncertainty algorithm for estimating potential lane
boundaries. The algorithm uses probabilistic methods to es-
timate individual curves from noisy observations, but does
not address how to group curves to form lane estimates or
track whole lanes over time. Neither does it distinguish true
lane boundaries from long shadows or other non-boundary
painted lines such as stop lines and pedestrian crossings.

This paper generalizes the lateral uncertainty method to
perform joint inference of multiple curves (i.e., the left and
right boundaries of a lane). It provides a principled frame-
work for ignoring sensor observations that are similar to, but
do not correspond to, lane boundaries, and for using obser-
vations of one curve to update estimates of another (e.g.,
when one lane boundary is faded or occluded by traffic).
We formulate lane estimation as a curve estimation prob-
lem, describe a novel representation for open 2D curves, and
present a Bayesian lane estimation algorithm that is robust
to the noise and outliers typical of image and LIDAR data.1

1 Some of the methods and results of this paper were described in
an earlier form at RSS 2010 (Huang and Teller, 2010).

2 Related Work

Aspects of the lane estimation problem have been studied for
decades in the context of autonomous land vehicle develop-
ment (Dickmanns and Mysliwetz, 1992; Thorpe et al., 1988)
and driver-assistance (Bertozzi and Broggi, 1998; Bertozzi
et al., 2000; Apostoloff and Zelinsky, 2004; Kim, 2008).
Most lane estimation systems have been developed for lane
keeping and lane departure warning (LDW) in highway en-
vironments (McCall and Trivedi, 2006). The goal of these
systems is to estimate the vehicle’s current travel lane and,
in the case of lane keeping systems, apply minor corrective
steering when the vehicle detects an unsignaled lane depar-
ture.

LDW systems have achieved success by restricting the
problem domain in numerous ways, such as assuming the
vehicle begins in a lane and is oriented accordingly, estimat-
ing only the vehicle’s current travel lane, and optimizing for
well-marked highway environments with low road curvature
and few, if any, inflection points. High failure rates are ac-
ceptable (especially in poor observability conditions), as a
human driver can choose to ignore the LDW output.

However, these simplifications also limit applicability
of LDW systems to fully autonomous driving, which has a
much lower margin for error, and requires more situational
awareness than an estimate of the current travel lane. Au-
tonomous vehicle operation on arbitrary road networks will
require estimates of all nearby lane geometries, even under
challenging environmental conditions.

Recent work on lane estimation has focused on opera-
tion in more varied and complex environments. Wang et al.
(2004) used B-Splines to model roads with significant curva-
ture, while still retaining the single lane and other LDW as-
sumptions. Matsushita and Miura (2009) use a particle filter
to detect certain types of intersections, in a step towards esti-
mating road network topology. Our work in the DARPA Ur-
ban Challenge used a RANSAC-based method to estimate
multiple travel lanes from sensor data (Huang et al., 2009).
The primary challenge in all of these approaches lies in de-
termining which (noisy) sensor observations correspond to
lane markings.

Crucial to the effective evaluation of any estimation al-
gorithm is an objective way to assess its performance. How-
ever, existing evaluations of lane estimation systems have
ranged from simply presenting lane estimates superimposed
onto camera images (Sehestedt et al., 2007; Southall and
Taylor, 2001), to providing summary statistics on closed-
loop experiments (Bertozzi and Broggi, 1998; Pomerleau
and Jochem, 1996), to rough analysis of short data sequences
(Kim, 2008; Wang et al., 2004). In the limited cases where
comparisons are made against a set of ground truth images,
there are typically only a few hundred labeled images (Mc-
Call and Trivedi, 2006). In contrast, we provide a detailed
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Fig. 2 Top: Curves of interest in the context of lane estimation include
painted lane boundaries (a), raised curbs (b), and (typically invisible)
lane centerlines (c). Bottom: The spatial extent of curves can be much
larger than a vehicle’s sensor range; in many cases estimates of the
entire curve are not necessary.

analysis of our system on a ground truth dataset containing
precise lane geometry for over 44 km of vehicle travel under
a wide variety of environmental conditions.

3 Method Overview

The geometry of a travel lane can be described by a single
centerline curve f(t) : [t1, tn] → R3 whose width varies
along the length of the curve:

f(t) = (fx(t), fy(t), fh(t))> (1)

where fx(t) and fy(t) describe the lane centerline, and fh(t)

describes the lane half-width, all of which are defined on the
domain t ∈ [t1, tn]. The interpretation of t depends on the
curve model chosen. We describe the curve in a coordinate
system fixed with respect to the local environment, such that
lane geometry is nearly invariant to time and the vehicle’s
own state.

In addition to the lane centerline, several other objects of
interest can also be represented as parametric curves. Painted
lane boundaries, physical road edges such as curbs, and the
invisible road centerline can all be expressed as curves (Fig-
ure 2). Curves can be on the order of meters long for short
streets or merge lanes, or hundreds of meters long for stretches
of highway.

Initially, the number of lanes and their geometries are
unknown. The goal of our system is to detect all nearby

Fig. 3 System diagram. The focus of this paper is on using curve frag-
ments to estimate potential lane boundaries (boundary estimation), and
then combine them into lane estimates (lane estimation). The curve
fragments can come from different feature detectors, such as road paint
detectors or curb detectors, and need only be observations of potential
lane boundaries..

lanes, estimate their geometries, and update these estimates
as the vehicle moves. The system takes as input curve frag-
ments corresponding to potential lane boundary observations,
such as those detected by a vision-based road-paint detec-
tion algorithm, or a LIDAR-based curb-detection algorithm.
While many curve fragments are true observations of the
road and lanes, some may arise from shadows or lens flare,
and others may simply be due to painted markings that do
not correspond to lane boundaries (e.g., crosswalk stripes,
parking spot delimiters, or stop lines). Our system uses the
curve fragments to estimate potential lane boundaries, which
are then combined into lane estimates (Figure 3).

We approximate f(t) as piecewise-linear, describing it
by a series of control points connected by line segments, and
note that approximation error decreases with control point
density. To reason about lanes, their boundaries, and obser-
vations, we introduce the notion of basis curves.

We chose this representation because nearby curves of-
ten share common structure. Factoring out this structure leaves
a set of residuals which are computationally convenient to
manipulate. Within the space of these residuals, which we
call the basis curve space, lane boundary observations can
be expressed as linear transformations of the true lane ge-
ometry, and the Gaussian distribution can be used to model
uncertainty over curve geometry. Standard estimation algo-
rithms such as the Kalman filter can then be used to estimate
complex lane geometries (Bar-Shalom and Li, 2001).



4 Albert S. Huang, Seth Teller

B

g

(a) A basis curve b represented by polyline B (blue), and a uniform
quadratic B-spline g.

B

g

gB1 gB2 . . . gBn

(b) The projection of g onto b, producing the gBi .

B

G

(c) Approximation of curve g as a variation G of the basis curve b.

Fig. 4 A uniform quadratic B-spline (magenta) defined by control
points (green) can be projected onto a basis curve (blue).

4 Basis Curves

Consider a piecewise-linear curve b(t) : [t1, tn] → R2.
As it is piecewise-linear (polyline), b can be represented by
the matrix of control points B = (b1,b2, . . . ,bn)>, where
each control point bi is a 2-D point: bi ∈ R2, i ∈ {1 . . . n}.
Denote the unit normal vectors to the curve at each of the
control points2 by the matrix B̄ = (b̄1, b̄2, . . . , b̄n)>. We
consider another piecewise-linear curve g : [t1, tn] → R2,
represented as G = (g1,g2, . . . ,gn)>, to be a variation of
b if gi, i ∈ {1 . . . n}, can be expressed as:

gi = bi + gBi b̄i (2)

where each gBi is a signed scalar that indicates how much g

varies from b along the normal vector at a particular con-
trol point. In this context, b is a basis curve, and the vector
gB = (gB1 , g

B
2 , . . . , g

B
n )> is the offset vector of g from b.

Here we have defined g as a variation of the basis curve
b. Suppose g is not piecewise-linear, or is expressed using
a different curve representation, possibly a spline or even a
polyline with a different number of control points. If g is
geometrically similar to b, then we can choose a polyline
approximation of g as a variation of b. When the matrix of
control points G is defined in this manner, we call the result-
ing offset vector gB the projection of g onto b (Figure 4).

The error of this approximation (e.g., as measured by the
area between the polyline approximation and the original
curve) is small if g and b have similar geometry, and if the
control point spacing of b is small relative to the curvatures
of the two curves. If the curves are very different (e.g., nearly
orthogonal or without overlap), it may not be meaningful to
project one onto the other.

We can now use b to represent common structure shared
by many curves, and use offset vectors to reason about dif-

2 We use b̄i=

[
0 −1
1 0

]
bi+1−bi

||bi+1−bi||
, i ∈ {1 . . . n−1} and b̄n = b̄n−1.

B

(a) Variation of the first four control points of a basis curve.

B

(b) Variation of a mid-section of a basis curve.

Fig. 5 Variations (magenta) of a subset of the basis curve (blue) can be
described using subspaces of the vector space of the full basis curve.

ferences among curves. In this model, b induces an n-dimensional
vector space, into which we can project any curve. We call
this the basis curve space of b. When projected into a ba-
sis curve space, a curve can be represented by a single n-
dimensional point – its offset vector.

In general, any curve that spans the length of b can be
projected onto b. It is also useful to reason about curves that
do not run the length of b, but do have some “longitudi-
nal overlap” in that they intersect with one or more support
lines of normal vectors of b. In this case, each of the n(n−1)

2

consecutive subsets of the control points of b can be treated
as an individual basis curve with its own basis curve space.
These smaller basis curve spaces are subspaces of the basis
curve space of b (Figure 5).

To review, thus far we have defined:
b A basis curve.

B The n× 2 control point matrix representing b.

bi The i-th control point of B.

B̄ The n × 2 matrix of unit normal vectors of b at
each control point.

b̄i The i-th unit normal vector of B̄.

g A curve geometrically similar to b.

G The n×2 matrix of control points approximating
or representing g.

gi The i-th control point of G.

gB The projection of g onto b, also referred to as the
offset of g from b.

4.1 Basis curve normal distributions

Next, we consider probability distributions on curves. Specif-
ically, consider a random variation of a basis curve b, where
the offset vector gB is normally distributed according to
gB ∼ N

(
µ, Σ

)
. Figure 6 shows a basis curve and several

hundred variations, where the offset vectors of each varia-
tion are drawn from a multivariate Gaussian.

Together, b, µ, and Σ define a distribution over curves.
We refer to a distribution of this form as a basis curve nor-
mal distribution, and represent it with the term Ñ (b,µ,Σ).
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Fig. 6 Normally distributed variations (blue) of a basis curve (red).

The probability density of a curve g is then defined as:

Pg(g;b,µ, Σ) = N
(
gB;µ,Σ

)
(3)

where N
(
x;µ,Σ

)
refers to the probability density function

of the normal distribution with mean µ and covariance Σ.
The intuition behind this formulation is that control point

uncertainty is expressed only orthogonally to the basis curve.
Thus, each control point has one degree of freedom instead
of two; even though G has 2n distinct components, it has
only n degrees of freedom. The covariance matrix Σ repre-
sents the degree and structure of variation between curves
drawn from the distribution. Figure 7 shows samples drawn
from basis curve normal distributions with different covari-
ance matrices.

If a distribution is instead defined on the entire control
point space such that each control point has 2 degrees of
freedom (Blake and Isard, 1998), it is possible to draw two
samples with the same curve shape, but different probability
densities. Thus, distributions over the entire space of con-
trol points are not necessarily good distributions over curve
shape.

Restricting each control point to one degree of freedom
has useful properties. In our case, two random curves drawn
from a basis curve normal distribution with different proba-
bility densities will also exhibit different shapes. Evaluating
the likelihood that an arbitrary curve is drawn from a dis-
tribution becomes a simple process of computing curve and
ray intersections. There are some exceptions to this that arise
when the covariance at a control point is large relative to the
curvature, but this has not had a noticeable impact in our
usage for lane estimation.

4.2 Changing basis curves

It is sometimes desirable to switch the basis curve upon
which a curve distribution is defined, but without changing
the underlying distribution. In general, it is not possible to
match the original distribution exactly, and the approxima-
tion error introduced by the reparameterization is directly
related to the amount by which the basis curve normal vec-
tors change: approximation error is smallest when the new
basis curve is everywhere nearly parallel to the original ba-
sis curve. However, if the new basis curve b′ is similar to
the original, then reasonable choices of a new mean and co-
variance, µ′ and Σ′, are possible.

(a)

(b)

(c)

(d)

Fig. 7 (a) A basis curve, with normal vectors shown at each control
point. (b-d) Three covariance matrices, and five samples drawn from
the distributions defined by the basis curve, µ = 0, and each of the
covariances. Lighter colors indicate higher correlation.

Variation

If b′ is a variation of the original basis curve b, then B′ can
be described by:

B′ = B + diag(b′B)B̄ (4)

where b′B is the projection of b′ onto b. In this case, a new
mean can be defined by subtracting the projection of the new
basis curve, and the covariance can remain unchanged:

µ′ = µ− b′B

Σ′ = Σ
(5)

Re-sampling

If b′ is defined by a re-sampling of the control points of b,
then each of the m control points of b′ is a convex linear
combination of two neighboring control points on the origi-
nal curve b. Thus, B′ can be related to B by:

B′ = HB (6)

where H is a m × n matrix whose rows have at most two
positive entries that are adjacent and sum to unity (represent-
ing the convex linear combination of neighboring control
points). Additionally, Hi,j may be non-zero only if Hi−1,k is
zero for all k > j (i.e., control points may not be re-sampled
out of order).

Since every point on a polyline is either a control point
or an interpolation of neighboring control points, we can de-
fine a new mean and covariance by applying the re-sampling
transformation:

µ′ = Hµ

Σ′ = HΣH>
(7)
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5 Lane boundary estimation

To detect and estimate lanes, our method first estimates po-
tential lane boundaries, then groups boundary curves to form
lane estimates. Here, we develop a recursive algorithm that
estimates an unknown curve f(t) : [t1, tn]→ R2, which we
use to model a potential lane boundary. The algorithm takes
as input an initial curve estimate and a noisy observation of
the curve, and produces an updated estimate that reflects the
novel information provided by the observation.

We refer to our initial belief about f using the basis curve
normal distribution Ñ (b,µ,Σ). The matrix of control points
F̂ = (f̂1, f̂2, . . . , f̂n)> describes our mean estimate f̂ , and is
obtained from b and µ as:

f̂ i = bi + µib̄i (8)

We use fB = (fB1 , f
B
2 , . . . , f

B
n )> to denote the projec-

tion of f onto b. Given a fixed basis curve b, the vector µ is
effectively an estimate of fB. In this sense, there are two es-
timates: the estimate µ of fB, and the estimate f̂ of f , where
f̂ is defined in terms of µ and b as in Eq. (8).

5.1 Observations

We model an observation z of f as a subset of f , corrupted by
zero-mean i.i.d. noise. Note that z is typically a partial obser-
vation of f , since only a portion of a painted road boundary
may be observed at any given moment. For simplicity, we
first consider the case where z is a full observation of f , and
later consider partial observations.

If we project z onto b and refer to the piecewise linear
approximation of z as Z = (z1, z2, . . . , zn)>, then each zi
can be expressed as:

zi = bi + (fBi + vi)b̄i

= bi + zBi b̄i

(9)

where we model the noise terms v = (v1, v2, . . . , vn)> as
jointly Gaussian with zero mean and covariance R, such that
v ∼ N

(
0,R

)
. The projection zB = (zB1 , z

B
2 , . . . , z

B
n )> of z

onto b can then be described as:

zBi = fBi + vi (10)

and:

zB = AfB + v (11)

where the observation matrix A = In×n is a trivial linear
transformation. If z is a partial observation of f , then it can
still be related to f by choosing an observation matrix A of
sizem×n, wherem ≤ n, and A has anm×m identity sub-
matrix and is zero elsewhere. For example, if the basis curve

has three control points and the observation curve spans only
the first two, then the corresponding observation matrix is:

A2×3 =

[
1 0 0

0 1 0

]
(12)

5.2 Data Association

Not all observations correspond to the desired curve f . To
avoid corrupting the curve estimate, only true observations
should be used to update the curve estimate. Determining
whether an observation corresponds to a tracked curve is the
well-known data association problem (Thrun et al., 2005).

We use a standard χ2 outlier rejection approach. Define
the scalar random variable y as the following Mahalanobis
distance (Bar-Shalom and Li, 2001):

y = (zB −Aµ)>(R + AΣA>)−1(zB −Aµ) (13)

If z is an observation of the curve f , then y obeys a χ2

distribution with m degrees of freedom. Observations that
fall in the extremities of this distribution are rejected as out-
liers.

When simultaneously estimating and tracking multiple
curves, we apply a gated greedy matching procedure, in which
each observation is associated with the curve that best “ex-
plains” that observation. Other techniques, such as joint-
compatibility branch and bound (Neira and Tardos, 2001),
may also be used. If no tracked curve is likely to have gener-
ated the observation according to the current estimates, then
the observation is used to initialize a new curve for tracking.

5.3 Curvature Prediction

As the vehicle travels, it may make observations that extend
beyond the end of its current curve estimate. To incorporate
such data, the observation and curve estimate are first ex-
tended (Figure 8b). We use a method described in previous
work (Huang and Teller, 2009), summarized here.

Once we have observed and estimated one portion of a
curve, we can reliably predict the shape of the nearby un-
observed parts of the curve. To do so, we fit a first-order
Markov model of road curvature to a dataset containing the
manually annotated coarse geometry of existing public road-
ways (Commonwealth of Massachusetts Office of Geographic
and Environmental Information, 2008). Given the signed cur-
vature at one point in a road, the model predicts a distribu-
tion over the curvature at a further point along the road.

Using this curve model, we can extend both our estimate
f̂ of f and the observation z. If the original observation z was
reasonably close to the original curve estimate, but did not
actually have any longitudinal overlap, then the extensions
may have enough overlap to robustly determine if the two
correspond to the same underlying curve.
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(a) Curve estimate (left) and a non-
overlapping observation (right)

(b) Predicted extensions of both curves

(c) Final curve estimate

Fig. 8 A curvature prediction model allows us to associate observa-
tions with existing curve estimates when there is little or no overlap.
The short perpendicular line segments indicate one-σ uncertainty.

5.4 Update

Once an observation z has been associated with an existing
curve estimate, the algorithm revises that estimate using a
standard Kalman filter (Bar-Shalom and Li, 2001).

As mentioned earlier, approximation errors resulting from
projection onto a basis curve are minimized when the ba-
sis curve geometry matches the true curve geometry. There-
fore, we reparameterize the curve estimate so that the ba-
sis curve coincides with the newly updated maximum like-
lihood curve estimate. Since this estimate is a variation of
the current basis curve, reparameterization consists of off-
setting the basis curve by the mean vector, then setting the
mean vector to zero (Sec. 4.2). We also re-sample the ba-
sis curve control points to maintain nearly uniform control
point spacing.

Finally, we note that propagating the curve estimate for-
ward through time consists of a simple identity transform,
a consequence of expressing the curve geometry in a co-
ordinate system fixed to the local environment. Algorithm
update curve estimate shows a full update cycle. It
takes as input the initial belief Ñ (b,µ,Σ) over a single
curve, and an observation. If the observation passes the data
association test, then it is used to generate the updated curve
estimate Ñ (b+,µ+,Σ+). Figure 8 illustrates an update step
for a single curve estimate.

5.5 Relationship to Gaussian Processes

One way to view a basis curve normal distribution is as a
specialized Gaussian process (GP) in the basis curve space.
Gaussian processes provide a way to specify distributions
over functions such that any finite sample of points are jointly

Algorithm update curve estimate

Input: an initial belief Ñ (b,µ,Σ)
Input: an observation Ñ (b, zB,R)
Input: an observation matrix A
Output: the new belief Ñ (b+,µ+,Σ+)

1: Augment the initial estimate and observation as necessary via
curve prediction

2: Let m be the dimensionality of zB

3: Let k be the 0.95 percentile of the χ2
m distribution

4: if (zB −Aµ)>(R + AΣA>)−1(zB −Aµ) > k then
5: Reject observation as an outlier
6: return Ñ (b,µ,Σ)

7: K← ΣA>(AΣA> + R)−1

8: µ̃← µ + K(zB −Aµ)
9: Σ̃ ← (I−KA)Σ

10: b+ ← B + diag(µ̃)B̄
11: µ+ ← 0

12: Σ+ ← Σ̃

13: return Ñ (b+,µ+,Σ+)

Gaussian (Rasmussen and Williams, 2006). Our lane bound-
ary estimation algorithm is grounded in traditional Kalman
filtering techniques extended to distributions over curves,
but could also be motivated from a machine learning per-
spective using Gaussian processes. The key issues would be
in maintaining a sufficiently low number of samples to pre-
serve computational performance, and in choosing the GP
covariance function.

6 Combining boundaries into lanes

The boundary curves of a single lane are highly correlated;
information about one boundary gives valuable information
about the other. We would like to leverage this correlation
in a lane estimation algorithm that does more than indepen-
dently estimate multiple lane boundaries. To do this, we rep-
resent a lane as a piecewise linear centerline curve s(t) :

[t1, tn] → R3 whose width varies with t. We represent s
with the matrix S = (s1, s2, . . . , sn)>, where each control
point si is defined as si = (sxi, syi, shi)

>. The sxi and
syi terms describe the centerline geometry of s, and shi de-
scribes the half-width of s.

Using the convention that the normal vectors of a curve
point “left”, two points sli ∈ R2 and sri ∈ R2 on the left
and right boundaries, respectively, can be described as:

sli =

[
sxi + shis̄xi
syi + shis̄yi

]
sri =

[
sxi − shis̄xi
syi − shis̄yi

]
(14)

where s̄i = (s̄xi, s̄yi)
> is the normal vector to the centerline

curve at point i.
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6.1 Lane distributions

As with zero-width curves, a basis curve can be used to rep-
resent and approximate lanes. We describe the projection sB

of s onto b as:

sB = (sBc1, sh1, s
B
c2, sh2, . . . , s

B
cn, shn)> (15)

where sBc1, . . . , s
B
cn is the projection of the centerline of s

onto b. Thus, the projection of a lane onto b is simply the
projection of its centerline augmented by its half-width terms.

A normal distribution over the projections of s onto b

defines a distribution over lanes. We use such a distribution,
parameterized by µ andΣ, to represent a belief over the true
geometry of s. The mean estimate can be represented by a
matrix of control points Ŝ = (ŝ1, ŝ2, . . . , ŝn)>, where each
control point ŝi = (ŝxi, ŝyi, ŝhi)

> can be expressed as:

ŝi =

ŝxiŝyi
ŝhi

 =

bxi + µcib̄xi
byi + µcib̄yi

µhi

 (16)

where each µci describes the mean offset of a centerline con-
trol point, and each µhi describes the mean half-width of the
lane estimate at the control point.

It is sometimes useful to change the basis curve upon
which a lane distribution has been defined, while incurring
minimal changes to the actual distribution. Choosing a new
mean and covariance in the cases of re-sampled and offset
basis curves follows the same procedure as in Sec. 4.2, with
minor modifications. When the new basis curve is a varia-
tion of the original basis curve, the width components of the
mean lane do not change. When the new basis curve is a
re-sampling of the original basis curve, the re-sampling ma-
trix H must account for re-sampling the width components
in addition to the centerline offset values.

6.2 Observation model, data association, and update

A full boundary observation of s is a curve, which we de-
scribe with the matrix of control points Z = (z1, z2, . . . , zn)>,
where each zi can be written:

zi = bi + (sBci + ashi + vi)b̄i

= bi + zBi b̄i
(17)

where a has value +1 or −1 for an observation of the left or
right boundary, respectively, and we model the noise terms
v = (v1, v2, . . . , vn)> jointly as v ∼ N

(
0,R

)
.

Collectively, the offset vector zB = (zB1 , z
B
2 , . . . , z

B
n )>

can then be expressed as:

zB = AsB + v (18)

(a) A lane estimate

(b) A boundary observation

(c) The updated estimate

Fig. 9 A boundary observation is used to update the lane estimate.
The black curve marks the lane centerline, and the blue curves mark
the left and right boundary marginal distributions. Short line segments
along the curves mark control points, and the length of these segments
indicate 1-σ uncertainty. Note that both boundaries are updated even
though only one boundary is observed.

where the elements of the observation matrix A are chosen
to satisfy Eq. (17). If z is a partial observation of the bound-
ary, such that it projects onto only m control points of b,
then A has size 2m× 2n, similar to the case for zero-width
curves.

Data association and update steps can be approached in
the same way as for zero-width curves. Given a lane distri-
bution and observation as expressed above, we can apply a
χ2 test to determine if z is an observation of s. When es-
timating multiple lanes, we use a gated greedy assignment
procedure to assign observations to lanes. Once an observa-
tion has been associated with a lane estimate, the standard
Kalman update steps are used to update the mean and co-
variance.

After the updated estimates have been computed, we
once again reparameterize the distribution such that the ba-
sis curve coincides with the updated maximum likelihood
estimate, to minimize approximation error in future update
steps. Figure 9 shows a full update cycle, where an observa-
tion of a lane boundary is used both to update and extend the
lane. Figure 10 shows a real-world example where the vehi-
cle is able to use observations of a single boundary to main-
tain an accurate estimate of an adjacent lane that is mostly
occluded by vehicles.

6.3 Initial estimate

We initialize a lane estimate by independently estimating
many zero-width curves as described in Sec. 5, while peri-
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Fig. 10 (left) The farthest boundary of the opposite lane is occluded by other vehicles. However, by maintaining a joint distribution over centerline
geometry and lane width, (middle) the system can still maintain an estimate of the opposite lane, using observations of the closer boundary. (right)
A synthesized overhead view of the vehicle and its lane estimates. Black curves correspond to the estimated lane centerlines, and blue curves
denote the marginal distributions of the lane boundaries. Short line segments extending laterally from the curves indicate control point uncertainty.

odically searching for curve pairs that are sufficiently long,
parallel, and separated by an appropriate distance. Once a
suitable pair of boundary curves is identified, they are used
to initialize a lane estimate. The initial lane basis curve b

is chosen by projecting one boundary curve onto the other
and scaling the offset vector by 0.5 (an approximation of
the medial axis); both curve estimates are then reparameter-
ized with b. Referring to the left and right curve estimates as
Ñ (b,µl,Σl) and Ñ (b,µr,Σr), we treat them as indepen-
dent observations of a single lane, and express them jointly
as:

z =

[
µl

µr

]
=

[
Al

Ar

]
sB + v = Azs

B + v (19)

where Al and Ar are the transformation matrices relating a
lane to its left and right boundary observations (Sec. 6.2),
sB is the projection of the unobserved true lane onto b, and
v ∼ N

(
0, Σz

)
is a noise term described by:

Σz =

[
Σl 0

0 Σr

]
(20)

Using the information filter (Thrun et al., 2005), we can
see that the initial distribution parameters best representing
the information provided by the boundary curves can be ex-
pressed as:

Σ0 = (A>z Σ
−1
z Az)−1

µ0 = ΣA>z Σ
−1
z z

(21)

7 Experiments

To quantitatively assess the performance of our system, we
evaluated it against ground truth across two datasets contain-
ing data from a forward-facing wide-angle camera (Point
Grey Firefly MV, 752x480 @22.8 Hz), and a Velodyne HDL-
64E laser range scanner. As input to our system, we used
vision- and LIDAR-based road paint and curb detection al-
gorithms described in previous work (Huang et al., 2009).

The first dataset consists of 30.2 km of travel in 182 min-
utes, and can be characterized by wide suburban lanes, no
pedestrians, generally well-marked roads, few vehicles, and

(a) Vehicle projected onto road
map with initial GPS estimate

(b) Camera image projected on
ground plane

(c) Image overlaid on road map (d) Corrected GPS estimate

Fig. 11 To produce ground truth lane geometry, we created detailed
road maps from aerial imagery, and localized the vehicle within these
road maps by manually correcting the initial GPS estimates. (a) Ac-
cording to the initial GPS estimate, the vehicle is straddling a parking
spot. (b) The camera image shows the vehicle clearly in the middle of
a lane. (c) Overlaying the two images shows a clear offset in the GPS
estimate. (d) Aligning the images corrects the GPS estimate.

a bright early morning sun. The vehicle also traversed a
short 0.4 km dirt road and a 1.7 km stretch of highway. This
dataset was collected on November 3, 2007 at the DARPA
Urban Challenge in Victorville, CA. The second dataset,
collected on September 2, 2009 in Cambridge, MA, con-
sists of 13.6 km of travel in 58 minutes through a densely
populated city during afternoon rush hour. This dataset can
be characterized by roads of varying quality, large numbers
of parked and moving vehicles, and many pedestrians.

To produce ground truth, we annotated high-resolution
geo-registered ortho-rectified aerial imagery with lane ge-
ometry. GPS estimates during data collection provide an ini-
tial guess as to the vehicle’s pose; these were corrected by
manually aligning sensor data (i.e., camera and LIDAR data)
with the aerial imagery at various points in the data collec-
tion (Figure 11). The result is a dataset containing ground
truth lane geometry relative to the vehicle at every moment
of travel. We emphasize that our algorithm uses only local
sensor data – GPS and the ground truth map were used only
for evaluation purposes.
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Fig. 12 Mean lane centerline error for the (top) Urban Challenge and
(bottom) Cambridge datasets for the basis curve algorithm. Mean cen-
terline error is indicated by color – areas with no observable error are
shown in blue, and areas where the mean error reached or exceeded
100 cm shown in red.

We compare the results of our algorithm, which we refer
to as the basis curve (BasCurv) algorithm, with our previous
work in the DARPA Urban Challenge (Huang et al., 2009),
which we refer to as the evidence image (EvImg) algorithm.
The evidence image algorithm can be used as a standalone
lane estimation system by using the output of the first of its
two stages, which performs lane detection from sensor data
only. Both algorithms use the same features as input.

For computational speed, our implementation of the ba-
sis curve algorithm used diagonal covariance matrices when
estimating lane boundaries, and block-diagonal covariance
matrices (2× 2 blocks) for lane estimation. This introduces
additional approximation errors, but yielded good perfor-
mance in our experiments. After each observation update,
basis curves are re-sampled to maintain a uniform (1 m) con-
trol point spacing. Parameters such as covariances and data
association thresholds were determined experimentally. The
algorithm was implemented in Java and handles sensor data
in real time.
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Fig. 13 The 50 and 90 percentile values for centerline lateral error,
as a function of increasing distance from the vehicle. The 50% values
indicate the median centerline error, and 90% of an algorithm’s lane
centerline estimates at a given distance from the vehicle have an error
less than or equal to the 90% curve.

7.1 Centerline error

The centerline error of a lane estimate at a given point on
the estimate is defined as the shortest distance from the es-
timated lane centerline point to the true centerline of the
nearest lane. Fig. 12 shows the basis curve algorithm’s mean
centerline error as a function of vehicle position for the two
datasets. Fig. 13 shows the 50th and 90th percentile values
for the centerline error of the two algorithms as a function
of distance from the vehicle, which indicate the median error
and its 90% bounds. The basis curve algorithm has signifi-
cantly lower error at all distances, and significantly lower
variation.
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Fig. 14 Median centerline lateral error as a function of true lane width.

Fig. 14 shows the centerline error as a function of true
lane width. The evidence image algorithm assumes a fixed
lane width of 3.66 m, and its performance degrades as the
true lane width departs from this assumed value. Since the
basis curve algorithm jointly estimates lane width and cen-
terline geometry, it remains relatively invariant to changes
in lane width.



Probabilistic lane estimation for autonomous driving using basis curves 11

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
Lookahead Distance

Lookahead distance (m)

F
ra

ct
io

n 
of

 tr
av

el
 w

ith
lo

ok
ah

ea
d 

di
st

an
ce

 >
 x

 

 
BasCurv
EvImg

0 2 4 6
0

0.2

0.4

0.6

0.8

1
Lookahead Time

Lookahead time (s)

F
ra

ct
io

n 
of

 tr
av

el
 w

ith
lo

ok
ah

ea
d 

tim
e 

>
 x

 

 
BasCurv
EvImg

Fig. 15 Lane estimate lookahead distance (left) and time (right). The
plots show how frequently the system maintained a minimum looka-
head, as measured by fraction of the vehicle’s total travel distance.

Camera HFOV Pitch
W 87.4◦ 2.7◦

N 41.3◦ 3.0◦

R 87.1◦ 14.9◦

L 87.4◦ 14.7◦

Fig. 16 (left) Camera viewing volumes. (right) Horizontal field-of-
view and pitch for each camera.

7.2 Lookahead distance and time

The lookahead distance and lookahead time metrics mea-
sure how much farther the vehicle can travel before reaching
the end of its current lane estimate, assuming constant speed.
Lookahead distance is computed by measuring the distance
from the vehicle to the farthest point ahead on the current
lane estimate, and lookahead time is computed by dividing
the lookahead distance by the vehicle’s instantaneous speed.

Fig. 15 aggregates lookahead statistics over both datasets,
and shows the lookahead distance and lookahead time for
the two algorithms. In all cases, the basis curve algorithm
outperforms the evidence image algorithm. For example, the
basis curve algorithm provided some lane estimate forward
of the vehicle for 71% of distance traveled, compared to
36% for the evidence image algorithm.

7.3 Multiple cameras

The lookahead distance of a lane estimation algorithm is
limited by the range of its input features. The feature de-
tectors in turn are limited by the range and resolution of the
sensors on which they operate. Here, we consider the use of
additional cameras in a second experiment.

The road-paint feature detectors were run on four on-
board Point Grey Firefly MV cameras. Cameras varied by
focal length, position, and orientation. Two forward-facing
cameras mounted above the rear-view mirror differed by fo-
cal length. Two additional cameras were placed above the
left and right side mirrors, respectively, and were oriented
to point slightly down and away from the vehicle. Figure 16
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Fig. 17 The 50 and 90 percentile values for centerline error when using
one, two, and four cameras. Camera calibrations are given in Fig. 17.
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Fig. 18 Lookahead distance with using one, two, and four cameras.

shows the camera viewing volumes. All cameras had an im-
age resolution of 752×480 pixels, and acquired images at
22.8 Hz.

The curb detector was also run on the Velodyne HDL-
64E data, identical to the first experiment described.

Figure 17 shows the median and 90% centerline error
and when the basis curve lane estimation algorithm was run
with one, two, and four cameras as input to the road-paint
detectors and the Velodyne as input to the curb detector. Fig-
ure 18 plots the lookahead distance achieved with different
camera configurations.

The results show that using two forward-facing cameras
with different focal lengths provides a modest improvement
in centerline error over using a single wide-angle camera
alone. For example, median centerline error at 25 m from the
vehicle was reduced from 54 cm to 28 cm. As expected, the
lookahead distance shows a significant improvement, with
the vehicle maintaining some forward lane estimate for 68%
of distance traveled using the two cameras, as opposed to
63% of distance traveled using one camera. The median lane
estimate lookahead increased from 11.3 m to 15.6 m.
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a.

b.

c.

d.

e.

f.

g.

h.

Fig. 19 Lane estimation in a variety of environments. Column 1: Camera images. Column 2: Detections of road paint (magenta) and curbs (green).
Column 3: Lane centerline estimates (black) and boundary curve estimates (blue) projected into images. Column 4: Synthesized overhead views.

Two additional side-facing cameras did not substantially
improve the centerline error, and in some cases resulted in
an increased error. This can be attributed to a slight increase
in the number of falsely detected lanes on the side of the
road such as in breakdown lanes and parking spots. While
the side-facing cameras increased the fraction of travel with
lane lookahead up to 15 m forward of the vehicle, the looka-
head rate for beyond 15 m decreased slightly over using the
two forward-facing cameras alone. This can be attributed to
processing time; as the number of feature observations near
the vehicle increased as a result of the additional side-facing
cameras, the estimation algorithms were slower to incorpo-
rate updates from the forward-facing cameras.

Overall, using additional forward-facing narrow-angle
camera significantly reduced centerline error and increased
lookahead distance. Using side-facing cameras improved over-
all “near-field” awareness, but not centerline error.

7.4 Qualitative results

Fig. 19 shows the output of the basis curve lane estimation
algorithm in a variety of challenging scenarios. In (a) and
(b), tree shadows and an erroneous curb detection are de-
tected and rejected as outliers, leaving the lane estimates in-
tact. In (b), the median strip separating opposite lanes of traf-
fic is correctly excluded from the lane estimates. In (c), lane
estimates are formed from physical boundaries on a dirt road
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Fig. 20 Outlier observations, such as long shadows nearly parallel to
the road, can result in incorrect data association. This may cause lane
estimates diverge significantly from the true lane. Here, the true lane is
wider than estimated.

in the absence of painted markings. In (d) and (e), correctly
detected road paint is successfully excluded from the lane
estimates. In (f-h), the method performs well despite adverse
lighting conditions and a snow-covered environment.

8 Discussion

The evidence image algorithm performs no outlier rejection,
attempting to fit lanes to both true lane boundary detections
and false detections such as long shadows and non-boundary
road paint; nor does it estimate lane width. Overall, the ba-
sis curve algorithm provides lane estimates of equal or better
accuracy to those produced by the evidence image approach,
and does so more often and with a greater lookahead. We at-
tribute this to the data association and outlier rejection prop-
erties of the basis curve algorithm, and to its joint estimation
of lane width and centerline geometry.

8.1 Limitations and future work

We have formulated the lane estimation problem in such a
way that standard estimation and tracking algorithms based
on the Kalman filter can be used for complex lane geome-
tries. In doing so, we gain the advantages of the Kalman
filter, and also invite all of its shortcomings. As is the case
with many data association problems, the most difficult out-
liers to detect are those that are very similar to true inliers.
Cases where outliers appear very similar to inliers, such as

t = 0 t = 5

Fig. 21 Simple model tracking is not always sufficient for lane esti-
mation. (left) Strong curb detections on the right side of the road result
in a lane detection that spans both the correct lane and also the road
shoulder. (right) Even though the correct boundary is observed later,
continued persistent curb detections result in a high-confidence lane
estimate that has “locked” on to the wrong boundary curve.

long shadows nearly parallel to the road, can cause the lane
estimates to diverge (Figure 20).

Another failure mode arises when one road marking ap-
pears initially to be the correct boundary, but the true lane
boundary then comes into view (Figure 21). In this case,
our method will converge upon the first marking as the lane
boundary, since the unimodal nature of the Kalman filter
prevents it from assigning substantial weight to the true bound-
ary. While a simple heuristic to re-initialize the lane estimate
on the closest two boundary curves might address this sce-
nario, other situations may be more difficult. For example,
if the old lane markings on a recently repainted road are still
visible, then it may not be obvious even to human drivers
which markings denote true lanes. These situations illustrate
the need for an explicit procedure to reason about the most
likely set of nearby lanes, given the current observations.

It should also be possible to apply lessons learned in
other estimation domains to lane estimation with basis curves.
One approach is particle filtering, which has been success-
fully applied in many estimation and tracking problems to
model complex distributions and enable multi-hypothesis track-
ing. However, the high dimensionality of the lane estimates
would require careful treatment.

Finally, in using a Gaussian noise model, we are sim-
plifying and approximating the true system errors. This has
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proved successful in practice, although more careful study
is required to understand the extent to which our simplifica-
tions and approximations are valid, and when other models
may be more appropriate.

9 Conclusion

This paper introduced the notion of basis curves for curve
estimation, and described an application to the lane estima-
tion problem. A detailed evaluation of our method’s perfor-
mance on a real-world dataset, and a quantitative compar-
ison against ground truth and a previous approach, shows
distinct advantages of the basis curve algorithm, particularly
for estimating lanes using partial observations, for handling
noisy data with high false-positive rates, and for jointly es-
timating centerline geometry and lane width.
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