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Abstract

Risks of rare economic disasters can have large impact on asset prices. At the same
time, difficulty in inference regarding both the likelihood and severity of disasters as well
as agency problems can effectively lead to significant disagreements among investors
about disaster risk. We show that such disagreements generate strong risk sharing
motives, such that just a small amount of optimists in the economy can significantly
reduce the disaster risk premium. Our model highlights the “latent” nature of disaster
risk: the disaster risk premium will likely be low and smooth during normal times, but
can increase dramatically when the risk sharing capacity of the optimists is reduced,
for example, following a disaster. The model also helps reconcile the difference in the
amount of disaster risk implied by financial markets and international macro data, and
provides caution to the approach of extracting disaster probabilities from asset prices,
which can disproportionately reflect the beliefs of a small group of optimists. Finally,
our model predicts an inverse U-shaped relation between the equity premium and the
size of the disaster insurance market.
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1 Introduction

Recent research by Barro (2006), Gabaix (2011) and others have shown that a model of rare

disasters calibrated to international macroeconomic data can explain the equity premium and

a wide range of other macro and asset pricing puzzles.1 At the same time, almost by defi-

nition, it is difficult to accurately estimate the likelihood of disasters or their impact, which

naturally leads to disagreements among investors about disaster risk. In this paper, we show

that the relation between the disaster risk premium and the amount of disagreements about

disaster risk is highly nonlinear. In particular, just a small amount of optimistic investors

can greatly attenuate the impact of disaster risk on asset prices. Our paper highlights the

“latent” nature of disaster risk in financial markets. It helps reconcile the differences in the

estimates of disaster risk from financial and macro data, and also predicts a novel relation

between the equity premium and the size of the disaster insurance market.

We study an exchange economy with two types of agents who disagree about disaster

risk. A technical contribution of our model is that it can capture very general forms of

disagreements in a tractable way. For example, the agents can disagree about the intensity

of disasters as well as the distribution of disaster size, and both the perceived disaster

intensities and the amount of disagreements are allowed to fluctuate over time. We assume

markets are complete, so that the agents can trade contingent claims and achieve optimal

risk sharing.

Heterogeneous beliefs about disaster risk arise naturally due to the difficulty in estimat-

ing the frequency and size of disasters with limited data. For example, a frequentist would

not reject the hypothesis of a disaster intensity of 3% per year at the 5% significance level

even after observing a 100 year sample without a single disaster. Another source of heteroge-

neous beliefs is agency problems for fund managers and large financial institutions. Limited

liability, lack of transparency, compensation contracts that reward short term performance,

1Earlier contributions on disaster risk include Rietz (1988), Longstaff and Piazzesi (2004), and Liu, Pan,
and Wang (2005). Among the more recent work are Weitzman (2007), Barro (2009), Wachter (2011), Farhi
and Gabaix (2009), Gourio (2010), and many others.
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and government guarantees can all motivate excessive tail-risk taking, often referred to as

“picking up nickels in front of a steamroller.”2 These agents will effectively act as optimists

in our model.

We show that having a new group of agents with different beliefs about disasters can

cause the equity premium to drop substantially, even when the new agents only have a

small amount of wealth. This result holds whether the disagreement is about the intensity

or impact of disasters. We analytically characterize the sensitivity of risk premiums to the

wealth distribution and derive its limit as the amount of disagreement increases. When we

calibrate the beliefs of one agent using international macro data (from Barro (2006)) and the

other using only consumption data from the US (where disasters have been relatively mild),

raising the fraction of total wealth for the second agent from 0 to 10% lowers the equity

premium from 4.4% to 2.0%. The decline in the equity premium becomes faster when the

disagreement is larger, or when the new agents also have lower risk aversion.

Why is the disaster risk premium so sensitive to heterogeneous beliefs? First, the equity

premium grows exponentially in the size of individual consumption losses during a disaster.

Thus, removing just the “tail of the tail” from consumption losses can dramatically bring

down the premium. For example, in a representative agent economy (with relative risk

aversion γ = 4), if the consumption loss in a disaster is reduced from 40% to 35%, the equity

premium will fall by 40%. This non-linearity is an intrinsic property of disaster risk models,

which generate high premium from rare events by making marginal utility in the disaster

states rise substantially with the size of the consumption losses.

Second, in our economy, as is typical in models with moderate risk aversion and low

volatility of consumption growth, the equity premium derives primarily from disaster risk,

and the compensation for bearing disaster risk must be high. For example, if the equity

premium due to disaster risk is 4% per year, and the market falls by 40% in a disaster, then

2It is well-documented that shorting out-of-the-money S&P put options can generate superior returns
in short samples. See, e.g., Lo (2001). Malliaris and Yan (2010) show that reputation concerns can cause
fund managers to favor strategies with negative skewness. Makarov and Plantin (2011) show that convex
compensation contracts can lead to risk shifting in the form of selling deep out-of-the-money puts.
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a disaster insurance contract that pays $1 when a disaster strikes within a year must cost

at least 10 cents, regardless of the actual chance of payoff. Such a high premium provides

strong incentive for investors with optimistic beliefs about disasters to provide the insurance.

In a benchmark example of our model, the pessimists are willing to pay up to 13 cents per

$1 of disaster insurance, even though the payoff probability is only 1.7% under their own

beliefs. The optimists, who believe the payoff probability is just 0.1%, underwrite insurance

contracts with notional value up to 40% of their total wealth, despite the risk of losing 70%

of their consumption if a disaster strikes.

Our model provides new insights on how disaster risk affects the dynamics of asset prices.

The disaster risk premium crucially depends on the wealth distribution among investors with

different beliefs. During normal times (when the wealth distribution among heterogeneous

investors is relatively disperse), the disaster risk premium will remain low and smooth despite

the fluctuations in the average belief of disaster risk in the market. This makes disaster risk

“latent” and hard to detect in financial markets. When the wealth share of the pessimists

rises (e.g., following a disaster), the disaster risk premium will increase dramatically and

become more sensitive to fluctuations in disaster risk going forward. Such changes in the

wealth distribution can also occur for other reasons. For example, the optimists’ beliefs

about big disasters can converge to those of the pessimists after observing a relatively small

market crash. Fund managers and financial institutions that are acting as optimists can also

lose their risk sharing capacity when they face tighter capital constraints.

The model also helps reconcile the tension between the amount of diaster risk indicated

by macroeconomic data and asset prices. For example, Backus, Chernov, and Martin (2010)

and Collin-Dufresne, Goldstein, and Yang (2010) find that the prices of index options and

credit derivatives imply significantly smaller probabilities of extreme outcomes than those

estimated from macroeconomic data. Mehra and Prescott (1988) also make the observation

that financial markets appear to have little reaction to events such as the Cuban Missile

Crisis, when the risk of a disaster should have risen significantly. We show that, in the

presence of heterogeneous beliefs about disasters, asset prices tend to disproportionately
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reflect the beliefs of those optimistic agents in the economy, which could make the assets

appear little affected by the disaster risks in the macroeconomy.

The above results also provide caution for extracting disaster probabilities from asset

prices. The link between the risk neutral and actual probabilities of disasters is simple and

stable in a model with homogeneous agents, which makes it straightforward to estimate

the actual disaster probabilities from option prices. However, our model shows that, if

we ignore the potential effects of risk sharing and directly extracting disaster probabilities

from financial data, we could substantially underestimate disaster probabilities. Moreover,

changes in the wealth distribution among heterogeneous investors can lead to substantial

changes in the risk neutral probabilities of disasters in the absence of any variation in the

actual diaster probabilities, which could cause us to overestimate the variations in the actual

disaster probabilities over time.

Finally, our model predicts a novel relation between the equity premium and the size of

the disaster insurance market. There are two distinct scenarios under which there will be

little trading of the disaster insurance contracts: (i) when the market perceived disaster risk

is low, or (ii) when investors all agree that disaster risk is high, so that no one is willing to

provide the insurance. The disaster risk premium will be low in the first case, but high in the

second case. Large amount of trading in disaster insurance markets not only indicates strong

demand for diaster insurance, but also significant heterogeneity across investors, which will

keep the disaster risk premium at low levels. It is when the risk-sharing capacity in the

economy dries up (when the optimists have little wealth) that the disaster risk premium

becomes the highest.

Our paper builds on the literature of heterogeneous beliefs and preferences.3 The two pa-

pers closest to ours are Bates (2008) and Dieckmann (2010). Bates (2008) studies investors

3See Basak (2005) for a survey on heterogeneous beliefs and asset pricing. Recent developments include
Kogan, Ross, Wang, and Westerfield (2006), Buraschi and Jiltsov (2006), Yan (2008), David (2008), Dumas,
Kurshev, and Uppal (2009), Xiong and Yan (2009), Dieckmann and Gallmeyer (2009), among others. Among
the works on heterogeneous preferences are Dumas (1989), Wang (1996), Chan and Kogan (2002), Dieckmann
and Gallmeyer (2005), and more recently Longstaff and Wang (2008).
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with heterogenous attitudes towards crash risk, which is isomorphic to heterogeneous beliefs

of disaster risk. He focuses on small but frequent crashes and does not model intermediate

consumption, and he shows that investor heterogeneity helps explain various option pric-

ing anomalies. Dieckmann considers only log utility. In such a setting, risk sharing has

limited effects on the equity premium and indeed many of the asset pricing puzzles that

disasters are able to solve remain. Our model considers power utility and captures more

general disagreements about disasters, time-varying disaster intensities, and time-varying

disagreement.

The rest of the paper is organized as follows. Section 2 presents the model. Section

3 analyzes the effect of risk sharing in a setting with disagreement about disaster inten-

sity. Section 4 compares our results to other forms heterogeneity. Section 5 discusses the

robustness of the model, and Section 6 concludes.

2 Model Setup

We consider a continuous-time, pure exchange economy. There are two agents (A, B), each

being the representative of her own class. Agent A believes that the aggregate endowment is

Ct = ec
c
t+c

d
t , where cct is the diffusion component of log aggregate endowment, which follows

dcct = ḡAdt+ σcdW
c
t , cc0 = 0 (1)

where ḡA and σc are the expected growth rate and volatility of consumption without jumps,

and W c
t is a standard Brownian motion under agent A’s beliefs. The term cdt (with cd0 = 0)

is a pure jump process whose jumps arrive with stochastic intensity λt under A’s beliefs,

dλt = κ(λ̄A − λt)dt+ σλ
√
λtdW

λ
t , (2)
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where λ̄A is the long-run average jump intensity under A’s beliefs, and W λ
t is a standard

Brownian motion independent of W c
t . The jumps ∆cdt have time-invariant distribution νA.

We summarize agent A’s beliefs with the probability measure PA.

Agent B believes that the probability measure is PB, which we shall suppose is equivalent

to PA.4 Intuitively, the probability measures are equivalent when the two agents agree on

the set of events that cannot occur; this rules out, for example, the scenario where one agent

believes there is a small probability of a disaster while the other agent believes such disasters

will never occur. Agent B may disagree about the growth rate of consumption without

jumps, the likelihood of disasters, or the severity of disasters (when they occur). We assume

that the two agents are aware of each others’ beliefs but “agree to disagree.”5

Chen, Joslin, and Tran (2010) show that the differences in beliefs can be characterized

by the Radon-Nikodym derivative (or likelihood ratio) ηt ≡ (dPB/dPA)t. To develop some

intuition for ηt, let’s consider the case where disasters have a constant size and the only

disagreement between the two agents is on the (constant) disaster intensity: λ̄A vs. λ̄B.

Since the number of disasters is Poisson distributed, the relative likelihood of exactly n

disasters occurring between time 0 and t for the two agents is

fB(Nt = n)

fA(Nt = n)
=
e−λ̄

Bt(λ̄B)n

e−λ̄At(λ̄A)n
. (3)

Thus, whenever a disaster strikes, the likelihood ratio will jump by a factor of λ̄B/λ̄A. If

λ̄B < λ̄A, i.e., agent B feels disasters are less likely, the likelihood ratio jumps down. In

contrast, when time goes by and disasters do not occur, the likelihood ratio drifts up at the

rate λ̄A− λ̄B. This is because the fact that no disasters occurring over a time period is more

consistent with agent B’s beliefs.

For the general case of disagreement about growth rates, stochastic disaster probabilities

4More precisely, PA and PB are equivalent when restricted to any σ-field FT = σ({cct , cdt , λt}0≤t≤T ).
5We do not explicitly model learning about disasters. Given the nature of disasters, Bayesian updating of

beliefs about disaster risk using realized consumption growth will likely be very slow, and the disagreements
in the priors will persist for a long time. See also Section 5.
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and disaster size distributions, the Radon-Nikodym derivative ηt is given by

ηt = exp

(
at −

∫ t

0

λs

(
λ̄B

λ̄A
− 1)

)
ds+ bcct −

(
bḡA +

1

2
b2σ2

c

)
t

)
(4)

for some constant b and λ̄B > 0, and at is a pure jump process (with a0 = 0) whose jumps

are coincident with the jumps in cdt and have size

∆at = log

(
λ̄B

λ̄A
dνB

dνA

)
, (5)

where dνB

dνA
is the relative likelihood of the agents’ beliefs for a disaster of a particular size,

conditional on a disaster having occurred. It will be large (small) for the type of disasters

that agent B thinks are relatively more (less) likely than agent A.

The interpretation for the term e
at−

∫ t
0 λs

(
λ̄B

λ̄A
−1)

)
ds

in ηt is similar to the likelihood ratio in

(3), except that now jumps in at not only reflect disagreement about the disaster intensity

(λ̄B/λ̄A), but also disagreement about the distribution of disaster size (dν
B

dνA
). The above

specification implies that under B’s beliefs, a disaster occurs with intensity λt × λ̄B

λ̄A
(with

long run average intensity λ̄B), and the disaster size distribution is νB (which is equivalent

to νA).

The term ebc
c
t−(bḡA+ 1

2
b2σ2

c)t captures agent B’s potential disagreement about the growth

rate of consumption. It implies that agent B believes that the expected growth rate of

consumption without jumps is ḡB ≡ ḡA+bσ2
c . When b > 0, agent B is more optimistic about

the growth rate of consumption than A. Then, large realizations of cct (when cct exceeds the

average of the two agents’ beliefs, 1
2

(ḡA + ḡB) t) will be more consistent with B’s belief, and

in such cases the likelihood ratio will be larger than 1.

We assume that the agents are infinitely lived and have constant relative-risk aversion

(CRRA) utility over life time consumption:

U i(Ci) = Ei
0

[∫ ∞

0

e−ρit
(Ci

t)
1−γi

1− γi
dt

]
, i = A,B, (6)
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where Ei denotes the expectation under agent i’s beliefs Pi. We also assume that markets are

complete and agents are endowed with some fixed share of aggregate consumption (θA, θB =

1− θA).

The equilibrium allocations can be characterized as the solution of the following planner’s

problem, specified under the probability measure PA,

max
CAt , C

B
t

EA
0

[∫ ∞

0

e−ρAt
(CA

t )1−γA

1− γA
+ ζ̃te

−ρBt (C
B
t )1−γB

1− γB
dt

]
, (7)

subject to the resource constraint CA
t + CB

t = Ct. Here, ζ̃t ≡ ζηt is the belief-adjusted

Pareto weight for agent B. From the first order condition and the resource constraint we

obtain the equilibrium consumption allocations: CA
t = fA(ζ̂t)Ct and CB

t = (1 − fA(ζ̂t))Ct,

where ζ̂t = e(ρA−ρB)tCγA−γB
t ζ̃t, and fA is in general an implicit function.

The stochastic discount factor under A’s beliefs, MA
t , is given by

MA
t = e−ρAt(CA

t )−γA = e−ρAtfA(ζ̂t)
−γAC−γAt . (8)

Finally, we solve for the Pareto weight ζ through the life-time budget constraint for one of

the agents (Cox and Huang (1989)), which is linked to the initial allocation of endowment.

Since our emphasis is on heterogeneous beliefs about disasters, for the remainder of

this section we focus on the case where there is no disagreement about the distribution

of Brownian shocks, and the two agents have the same preferences. In this case, b = 0,

γA = γB = γ, ρA = ρB = ρ. The equilibrium consumption share then simplifies to

fA(ζ̃t) =
1

1 + ζ̃
1
γ

t

. (9)

When a disaster of size d occurs, ζ̃t is multiplied by the likelihood ratio λ̄B

λ̄A
dνB

dνA
(d) (see (5)).

Thus, if agent B is more pessimistic about a particular type of disaster, she will have a higher

weight in the planner’s problem when such a disaster occurs, so that her consumption share
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increases.

The equilibrium allocations can be implemented through competitive trading in a sequential-

trade economy. Extending the analysis of Bates (2008), we can consider three types of traded

securities: (i) a risk-free money market account, (ii) a claim to aggregate consumption, and

(iii) a series (or continuum) of disaster insurance contracts with 1 year maturity, which pay

$1 on the maturity date if a disaster of size d occurs within a year.

The instantaneous risk-free rate can be derived from the stochastic discount factor,

rt = −D
AMA

t

MA
t

= ρ+ γḡA −
1

2
γ2σ2

c − λt
(
ED,A
t [

(
CA
t

)−γ
]

(CA
t )
−γ − 1

)
, (10)

where DA denotes the infinitesimal generator under agent A’s beliefs of the state variables

Xt = (cct , c
d
t , λt, ηt), and we use the short-hand notation ED,i

t to denote agent i’s expectation

conditional on a disaster occurring. That is, for any function f(Xt),

ED,i
t [f(Xt)] ≡

∫
f

(
cct , c

d
t + d, λt, ηt ×

λ̄B

λ̄A
dνB

dνA
(d)

)
dνi(d).

The price of the aggregate endowment claim is

Pt =

∫ ∞

0

EA
t

[
MA

t+τ

MA
t

Ct+τ

]
dτ = Cth(λt, ζ̃t) , (11)

where the price/consumption ratio only depends on the disaster intensity λt and the stochas-

tic weight ζ̃t. In the case where λt is constant, the price of the consumption claim is obtained

in closed form. Similarly, we can compute the wealth of the individual agents as well as the

prices of disaster insurance contracts using the stochastic discount factor.

In order for prices of the aggregate endowment claim to be finite in the heterogeneous-

agent economy, it is necessary and sufficient that prices are finite under each agent’s beliefs

in a single-agent economy (see the online appendix for a proof). As we show in the appendix,
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finite prices require that the following two inequalities hold:

0 < κ2 − 2σ2
λ(φ

i(1− γ)− 1), (12a)

0 > κλ̄i
κ−

√
κ2 + 2σ2

λ(1− φi(1− γ))

σ2
λ

− ρ+ (1− γ)ḡA +
1

2
(1− γ)2σ2

c , (12b)

where φi is the moment generating function for the distribution of jumps in endowment

νi under measure Pi. The first inequality reflects the fact that the volatility of the disaster

intensity cannot be too large relative to the rate of mean reversion. It prevents the convexity

effect induced by the potentially large intensity from dominating the discounting. The second

inequality reflects the need for enough discounting to counteract the growth.

Additionally, the stochastic discount factor characterizes the unique risk neutral prob-

ability measure Q (see, for example, Duffie (2001)), which facilitates the computation and

interpretation of excess returns. The risk-neutral disaster intensity λQt ≡ ED,i
t [M i

t ]/M
i
tλ

i
t is

determined by the expected jump size of the stochastic discount factor at the time of a disas-

ter. When the riskfree rate and disaster intensity are close to zero, the risk-neutral disaster

intensity λQt has the nice interpretation of (approximately) the value of a one-year disaster

insurance contract that pays $1 at t + 1 when a disaster occurs between t and t + 1. The

risk-neutral distribution of the disaster size is given by dνQ

dνi
(d) = MD,i

t (d)/ED,i
t [M i

t ], where

MD,i
t (d) denotes the pricing kernel when the state is (cct , c

d
t +d, λt, ηt× λ̄B

λ̄A
dνB

dνA
(d)). These risk

adjustments are quite intuitive. The more the stochastic discount factor for agent i jumps

up during a disaster, the larger is λQt relative to λit, i.e. disasters occur more frequently under

the risk-neutral measure. Thus, the ratio λQt /λ
i
t is often referred to as the jump risk pre-

mium. Moreover, the risk-adjusted distribution of jump size conditional on a disaster slants

the probabilities towards the types of disasters that lead to a bigger jump in the stochastic

discount factor, which generally makes severe disasters more likely under Q.

Finally, the risk premium for any security under agent i’s beliefs is the difference between

the expected return under Pi and under the risk-neutral measure Q. In the case of the

aggregate endowment claim, the conditional equity premium, under agent i’s beliefs, which

10



we denote by Ei
t [R

e], is

Ei
t [R

e] = γσ2
c + λitE

D,i
t [R]− λQt ED,Q

t [R], i = A,B (13)

where ED,m
t [R] ≡ ED,m

t [Pt]/Pt − 1 is the expected return of the endowment claim under

measure m conditional on a disaster.6 The difference between the last two terms in (13)

is the premium for bearing disaster risk. This premium is large if the jump risk premium

is large, and/or the expected loss in return in a disaster is large (especially under the risk-

neutral measure).

It follows that the difference in equity premium under the two agents’ beliefs is

EA
t [Re]− EB

t [Re] = λAt E
D,A
t [R]− λBt ED,B

t [R] . (14)

This difference will be small relative to the size of the equity premium when the disaster

intensity and expected loss under the risk-neutral measure are large relative to their values

under actual beliefs. In the remainder of the paper, unless stated otherwise, we will report

the equity premium relative to agent A’s beliefs, PA. One interpretation for picking PA as

the reference measure is that A has the correct beliefs, and we are studying the impact of

the incorrect beliefs of agent B on asset prices.

3 Heterogeneous Beliefs and Risk Sharing

We start with a special case of the model where agents only disagree about the frequency

of disasters. First, we analyze the impact of heterogeneous beliefs on asset prices and their

implications for survival when the risk of disasters is constant, i.e., λt = λ̄A (denoted as λA

for simplicity). We then extend the analysis to the case of time-varying disaster risk.

6To be concrete, we define the risk premium under measure i for any price process P (Xt, t) which pays
dividends D(Xt, t) to be DiPt/Pt +Dt/Pt − rt.
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Figure 1: Disagreement about the frequency of disasters. Panel A plots the equity

premium under both agents’ beliefs as a function of the wealth share of the optimist. Panel B plots

the jump risk premium λQt /λ
A for the pessimist.

3.1 Disagreement about the Frequency of Disasters

In the benchmark case of our model, the disaster size is deterministic, ∆cdt = d̄, and the two

agents only disagree about the frequency of disasters (λ). We set d̄ = −0.51 so that the

moment generating function (MGF) φA(−γ) in this model matches the calibration of Barro

(2006) for γ = 4. It implies that aggregate consumption falls by 40% when a disaster occurs.

Agent A (pessimist) believes that disasters occur with intensity λA = 1.7% (once every 60

years), which is also taken from Barro (2006). Agent B (optimist) believes that disasters

are much less likely, λB = 0.1% (once every 1000 years), but she agrees with A on the size

of disasters as well as the Brownian risk in consumption. She also has the same preferences

as agent A. The remaining parameters are the expected consumption growth ḡ = 2.5%,

diffusive consumption volatility σc = 2%, and the subjective discount rate ρ = 3%.

Figure 1 Panel A shows the conditional equity premium under the beliefs of both the

pessimist and the optimist. From (14), we obtain the difference in equity premium under
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the two agents’ beliefs in the case of constant disaster risk:

EA
t [Re]− EB

t [Re] = (λA − λB)ED
t [R],

where we have suppressed the index for agent type in the expected return conditional on a

disaster occurring, ED
t [R], because there is a single type of disaster. Intuitively, disasters and

the resulting losses of value in the stock are less likely under the optimist’s beliefs, hence the

optimist’s perceived equity premium will be higher than that of the pessimist. Compared to

(13), we see that the difference in equity premium under the two agents’ beliefs will be small

relative to the size of the equity premium when the disaster intensity is significantly higher

under the risk neutral measure than under the agents’ beliefs, that is, when the disaster risk

premium is large. For this reason, we obtain similar results for the equity premium under

either beliefs.

If all the wealth is owned by the pessimist, the equity premium under her belief is 4.7% (or

5.3% under the optimist’s beliefs), and the riskfree rate is also at a reasonable value (1.3%).

If the optimist has all the wealth, the equity premium is only −0.21% under the pessimist’s

beliefs7 (or 0.43% under the optimist’s beliefs), which reflects the low compensation the

optimist requires for bearing disaster risk. Thus, it is not surprising to see the premium

falling when the optimist owns more wealth. However, the speed at which the premium

declines in Panel A is impressive. When the optimistic agent owns 10% of the total wealth,

the equity premium under the pessimist’s beliefs falls from 4.7% to 2.7%. When the wealth

of the optimist reaches 20%, the equity premium falls to just 1.7%.

We can derive the conditional equity premium as a special case of (13) using the assump-

tion of constant disaster size,

EA
t [Re] = γσ2

c − λA
(
λQt
λA
− 1

)(
h(ζ̃t

λB

λA
)ed̄

h(ζ̃t)
− 1

)
, (15)

7This negative premium is due to the pessimist acquiring a large amount of insurance against disasters.
We discuss this feature in detail later in this section.
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where h is the price-consumption ratio from (11), with λt being constant. The first term γσ2
c

is the standard compensation for bearing Brownian risk. Heterogeneity has no effect on this

term since the two agents agree about the Brownian risk. Given the value of risk aversion

and consumption volatility, this term has negligible effect on the premium. The second term

reflects the compensation for disaster risk. It can be further decomposed into three factors:

(i) the disaster intensity λA, (ii) the jump risk premium λQt /λ
A, and (iii) the return of the

consumption claim in a disaster.

How does the wealth distribution affect the jump risk premium? From the definition of

the stochastic discount factor MA
t and the risk-neutral intensity λQt , it is easy to show

λQt /λ
A = e−γ∆cAt , (16)

where ∆cAt is the jump size of the equilibrium log consumption for agent A in a disaster.

Without trading, the individual loss of consumption in a disaster will be equal to that of

the endowment, ∆cAt = d̄, which under our parameterization generates a jump risk premium

of λQt /λ
A = 7.7. Since λQt is approximately the premium of a one-year disaster insurance,

before any trading the pessimist will be willing to pay an annual premium of about 13 cents

for $1 of protection against a disaster event that occurs with probability 1.7%.

The optimist views disasters as very unlikely events and is willing to trade away her

claims in the future disaster states in exchange for higher consumption in normal times.

Such trades help reduce the pessimist’s consumption loss in a disaster ∆cAt , which in turn

lowers the jump risk premium. However, the optimist’s capacity for underwriting disaster

insurance is limited by her wealth, as she needs to ensure that her wealth is positive in all

future states, including when a disaster occurs (no matter how unlikely such an event is).

Thus, the more wealth the optimist has, the more disaster insurance she is able to sell.

The above mechanism can substantially reduce the disaster risk exposure of the pessimist

in equilibrium. Panel B of Figure 1 shows that when the optimist owns 20% of total wealth,

the jump risk premium drops from 7.7 to 4.2. According to equation (15), such a drop in

14



the jump risk premium alone will cause the equity premium to fall by about half to 2.2%,

which accounts for the majority of the change in the premium (from 4.7% to 1.7%).

Besides the jump risk premium, the equity premium also depends on the return of the

consumption claim in a disaster, which in turn is determined by the consumption loss and

changes in the price-consumption ratio. Following a disaster, the riskfree rate drops as the

wealth share of the pessimist rises. With CRRA utility, the lower interest rate effect can

dominate that of the rise in the risk premium, leading to a higher price-consumption ratio.8

Since a higher price-consumption ratio partially offsets the drop in aggregate consumption,

it makes the return less sensitive to disasters, which will contribute to the drop in equity

premium. However, our decomposition above shows that the reduction of the jump risk pre-

mium (due to reduced disaster risk exposure) is the main reason behind the fall in premium.

Can we “counteract” the effect of the optimistic agent and restore the high equity pre-

mium by making the pessimist even more pessimistic about disasters? We also examine the

case when agent A believes that the disaster intensity is 2.5% (λA = 2.5%) and everything

else remain the same. While the equity premium under the pessimist’s beliefs becomes sig-

nificantly higher (6.8%) when she owns all the wealth, it falls to 4.1% with just 2% of total

wealth allocated to the optimist, and is below 1% when the optimist’s wealth share exceeds

8.5%. Again, the decline in the jump risk premium is the main reason behind the decline

in equity premium. Thus, as the pessimist becomes more pessimistic, she seeks risk sharing

more aggressively, which can quickly reverse the effect of her heightened fear of disasters on

the equity premium.

To illustrate the risk sharing mechanism, we compute the agents’ portfolio positions

in the aggregate consumption claim, disaster insurance, and the money market account.

Calculating these portfolio positions amounts to finding a replicating portfolio that matches

the exposure to Brownian shocks and jumps in the individual agents’ wealth processes. The

online appendix provides the details. The first thing to notice is that each agent will hold a

8Wachter (2011) also finds a positive relation between the price-consumption ratio and the equity premium
in a representative agent rare disaster model with time-varying disaster probabilities and CRRA utility.
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Figure 2: Risk sharing. Panel A and B plot the total notional value of disaster insurance rela-

tive to the wealth of the optimist and total wealth in the economy. Panel C plots the consumption

share for the optimist in equilibrium. Panel D compares the two agents’ consumption drops in a

disaster with that of the aggregate endowment. These results are for the case λA = 1.7%.

constant proportion of the consumption claim. This is because they agree on the Brownian

risk and share it proportionally. Disagreement over disaster risk is resolved through trading

in the disaster insurance market, which is financed by the money market account.9

We first plot the notional value of the disaster insurance sold by the optimist as a fraction

of her total wealth in Panel A of Figure 2. The dashed line is the maximum amount of disaster

insurance the optimist can sell (as a fraction of her wealth) subject to her budget constraint.

When the optimist has very little wealth, the notional value of the disaster insurance she

sells is about 35% of her wealth. This value is initially high and then falls as the optimist

9The implementation of the equilibrium is not unique. For example, instead of disaster insurance, we can
use another contract that has exposure to both Brownian and jump risks, in which case the agents will also
trade the consumption claim.
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gains more wealth. This is because when the optimist has little wealth, the pessimist has

great demand for risk sharing and is willing to pay a higher premium, which induces the

optimist to sell more insurance relative to her wealth. As the optimist gets more wealth, the

premium on the disaster insurance falls, and so does the relative amount of insurance sold.

We can judge how extreme the risk sharing in equilibrium is by comparing the actual

amount of trading to the maximum amount imposed by the budget constraint. At its peak,

the amount of disaster insurance sold by the optimist is about half of the maximum amount

that she can underwrite, which might appear reasonable. The caveat is that, in reality,

underwriters of disaster insurance will likely be required to collateralize their promises to

pay in the disaster states, which raises the costs of risk sharing. We will further investigate

the feasibility of risk sharing and discuss an alternative implementation that do not require

disaster insurance in Section 5.

Panel B plots the size of the disaster insurance market (the total notional value normalized

by total wealth). Naturally, the size of this market is zero when either agent has all the

wealth, and the market is bigger when wealth is more evenly distributed. Notice that the

model generates a non-monotonic relation between the size of the disaster insurance market

and the equity premium. The premium is high when there is a lot of demand for disaster

insurance but little supply, and is low when the opposite is true. In either case, the size of

the disaster insurance market will be small.

Panel C plots the equilibrium consumption share for the optimist. The 45-degree line

corresponds to the case of no trading. The optimist’s consumption share is above the 45-

degree line, more so when her wealth share is low. This is because the optimist is giving up

consumption in future disaster states in exchange for higher consumption now.10 Panel D

shows that indeed the optimist does bear much greater losses in the event of a disaster. As

for the pessimist, the less wealth she possesses, the more disaster insurance she is able to buy

relative to her wealth, which lowers her disaster risk exposure and can eventually turn the

10This result is also due to the low elasticity of intertemporal substitution implied by the CRRA utility,
which makes the optimists consume now instead of saving the insurance premium for the future.
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disaster insurance into a speculative position — her consumption can jump up in a disaster.

3.2 The Limiting Case for Risk Sharing

In the previous section we have numerically demonstrated the effects of risk sharing on asset

prices. To highlight the key ingredients of the risk sharing mechanism, we now analytically

characterize the equilibrium when a small fraction of wealth is controlled by an optimist who

believes disasters are extremely unlikely.11

The intuition is as follows. Suppose the pessimist (agent A) consumes fraction fAt− of

the aggregate endowment Ct− before a disaster at time t. Since the optimist (agent B)

feels disasters are quite unlikely, she is willing to sell her entire share of endowment in the

disaster state to the pessimist. Thus, when the disaster strikes, aggregate endowment drops

to Ct = ed̄Ct−, but agent A now consumes essentially all the endowment (fAt ≈ 1). This

argument implies that the jump in the marginal utility of agent A following a disaster, which

is also the jump risk premium she demands, is equal to

λQt−

λA
≈

(
1× ed̄Ct−

)−γ

(fAt−Ct−)
−γ =

(
fAt−
)γ
e−γd̄. (17)

For example, when the optimist has just 1% of the endowment before a disaster, the jump

risk premium will be (.99)γe−γd̄, or approximately a 4% drop from the jump risk premium

in the case with only pessimists when γ = 4.

Formally, we show in the online appendix that the speed at which the jump risk premium

changes with the optimist’s consumption share is given by

lim
λB→0+

∂

∂fBt

λQt
λA

∣∣∣∣∣
fBt =0

= −γe−γd̄. (18)

We see that the effect of risk sharing (in terms of consumption share) becomes stronger with

11We thank Xavier Gabaix for suggesting this analysis.
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bigger disasters (|d̄|) and higher risk aversion (γ).12

The above result only partially reflects the steep slope in the risk premium near wBt = 0

we see in Figure 1. If the optimist consumes a fraction fBt of the endowment at time t, his

fraction of the aggregate wealth, wBt , will be less than fBt . This is because the optimist has

sold his share of endowment in the disaster state in exchange and consumes more in normal

times (see Figure 2, Panel C). This effect implies that risk premium will decline even faster

as a function of the wealth share of the optimist than the consumption share.

To summarize, the limiting differential effect of optimist on the jump risk premium is

given by the following multiplier:

lim
λB→0+

∂

∂wBt

λQt
λA

∣∣∣∣∣
fBt =0

=
∂

∂fBt

λQt
λA

∣∣∣∣∣
fBt =0

× ∂fBt
∂wBt

∣∣∣∣
fBt =0

. (19)

The second term reflects the relative wealth-consumption ratios of the two agents, which is

determined by their endogenous investment-consumption decisions. In the online appendix,

we derive the expression for
∂fBt
∂wBt

∣∣∣
fBt =0

. We show there under very general conditions that a

large equity premium due to disasters implies that this ratio will be large since the claim to

consumption after disasters occur is very valuable. In the calibrated example, the multiplier

(with λB = 0) equals −0.581. Hence, due to the decline in the jump risk premium alone,

allocating only 1% of the endowment to the extreme optimist results in a 58.1 basis points

decline in the equity premium. In comparison, the benchmark case with λB = 0.1% generates

a multiplier of -0.19. When λA = 2.5% and λB = 0, the multiplier is −2.94, which translates

into a 2.94% drop in the equity premium when we introduce only 1% of extreme optimist

into the economy.

Figure 3 compares the jump risk premium for several cases. First, the dotted line denotes

the benchmark case from Section 3.1. We also plot the jump risk premium with the same

parameters but for the limiting case where λB approaches zero. Additionally, we plot the

12We take limits since with λB = 0, the beliefs are not equivalent and there is no complete markets
equilibrium.

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Agent B (optimist) wealth share: wB
t

λQ t
/λ

A

 

 

λB = 0.1%
λB → 0
λB → 0, γ = 6

Figure 3: Limiting Jump Risk Premia. This figure plots the jump risk premium λQt /λ
A for

the pessimist, where λA = 1.7%. In the benchmark case, γ = 4, and λB = 0.1%.

case where we decrease the disaster size and increase the risk aversion to maintain the same

jump risk premium for the single agent economy (γ = 6, d̄ = −0.34). The graph shows

that the marginal effect of a small amount of optimist with λB = 0.1% on the jump risk

premium is visibly smaller than in the limiting case of extreme optimism. Moreover, when

we decrease the disaster size but increase risk aversion, the effects become more severe. This

is because the larger risk sharing effect on the jump risk premium in (18) dominates the

smaller consumption-wealth share effect.

3.3 Survival

In models with heterogeneous agents, one type of agents often dominates in the long-run (a

notable exception is Chan and Kogan (2002); see also Borovička (2010)). Our model also has

the property that the agent with correct beliefs will dominate in the long run. For example,

let’s assume that agent A has the correct beliefs. The strong law of large numbers implies

that log ζ̃t → −∞ almost surely. Since wealth is monotonic in the relative planner weight,

ζ̃t, this implies that agent A will take over the economy with probability one. We now show
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Table 1: Survival of Agents who Disagree about the Frequency of Disasters. This

table shows the redistribution of wealth over a 50 year horizon in the model of Section 3.1. Future

relative wealth only depends on the initial wealth, the time horizon, and the number of disasters

that occur. The top panel provides the possible wealth redistributions throughout time. The

bottom panel provides the probabilities of various number of disasters (under each agent’s beliefs).

Final Wealth of B after Nd Disasters

Initial Wealth of B Nd = 0 Nd = 1 Nd = 2 Nd = 3

1.0% 1.2% 0.6% 0.3% 0.1%
5.0% 6.1% 3.0% 1.5% 0.7%
10.0% 12.2% 6.0% 2.9% 1.4%
50.0% 55.7% 35.5% 19.3% 9.6%
99.0% 99.2% 98.3% 96.7% 93.5%

Probability under PA 42.7% 36.3% 15.4% 4.4%
Probability under PB 95.1% 4.8% 0.1% 0.0%

that although agents with incorrect beliefs about disasters may not have permanent effects

on asset prices, their effects may be long-lived in the sense that these agents can retain, and

even build, wealth over long horizons.

With disaster intensity, λt, being constant, we need only consider the distribution of the

stochastic Pareto weight, ζ̃t, to analyze the wealth distribution over time. From (4), we

see that ζ̃t has a stochastic component, whereby the Pareto weight (and thus wealth) of

the pessimistic agent will jump up when a disaster occurs. This is because the pessimist

receives insurance payments from the optimist in a disaster. However, regardless of the

occurrence of disasters, there is also a deterministic component in ζ̃t, whereby the optimist

has a deterministic weight increase (and thus her relative wealth increases) which comes

from collecting the disaster insurance premium. Thus, even when the pessimist has correct

beliefs, her relative wealth will decrease outside of disasters. Since disasters are rare, it will

be common to have extended periods without disasters, during which time an optimistic

agent will gain relative wealth.
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Table 1 presents a summary of the conditional distribution of wealth after 50 years for

various initial wealth distributions. We report the results under the assumption that either

the pessimist or the optimist has correct beliefs. If the number of disasters is either 0 or 1,

the wealth of the agents remain relatively close to the original distribution. We see that the

optimist is likely to retain wealth for long periods of time and will only be wiped out with

the occurrence of several disasters, which is unlikely regardless of whose beliefs are correct.

The evolution of the wealth distribution over time also has important implications for

the equity premium and other dynamic properties of asset prices. For example, when the

initial wealth of agent B is 5% (10%), the equity premium will drop from 3.5%(2.7%) to

3.3% (2.4%) over 50 years if no disasters occurs. If after 120 years there are still no disasters,

the equity premium would further drop to 2.9% (2.0%).

There are interesting differences in the survival results between the case of disagreement

over disaster risk and the case of disagreement over Brownian risk in consumption growth.

As shown by Yan (2008), an agent who has wrong beliefs about the growth rate of aggregate

consumption can survive for long periods of time. However, in this case those agents with

wrong beliefs very rarely gain wealth over long horizons. For example, when consumption

volatility is 2% per year, the probability that an agent who believes the consumption growth

is 1% higher (or lower) than its true value will have a higher wealth share after 50 years

is only 4 × 10−36. In contrast, in the case of disagreement about disaster risk, even if the

optimist has incorrect beliefs, there is a 42.7% chance that his wealth share increases relative

to the agent with correct beliefs after 50 years.

To understand why the wealth dynamics are so different for the two forms of disagree-

ments, consider first the case of disagreement about the growth rate of consumption. As we

discussed in equation (4), if agent B believes in a higher growth rate of consumption, he will

gain wealth after t years provided the likelihood ratio is above 1, which occurs when realized

log consumption growth exceeds the average of the two agents’ beliefs, 1
2
(ḡA + ḡB)t. The
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probability of this event is

PA
(
ḡAt+ σcW

c
t >

ḡA + ḡB
2

t

)
= PA

(
σcW

c
t >

ḡB − ḡA
2

t

)

which drops very rapidly (super exponentially) to zero as t increase. In the case of disagree-

ment about disasters, when agent B believes disasters are less likely (λB < λA), he will gain

wealth as long as disasters do not occur. Since disasters are rare (even under A’s beliefs),

the probability that no disasters occur can be small even for relatively long period of time.13

3.4 Time-varying Disaster Risk

Having analyzed in depth the case of heterogeneous beliefs when disaster intensity is constant,

now we extend the analysis to allow the risk of disasters to vary over time, which not only

makes the model more realistic, but also has important implications for the dynamics of

asset prices. As in Gabaix (2011) and Wachter (2011), time-varying disaster intensity serves

to drive both asset prices and expected excess returns. We now demonstrate that within

our framework, the conditional risk premium could either be very sensitive or insensitive to

time variation in disaster risk depending on the wealth distribution among heterogeneous

agents. Moreover, when estimating disaster probabilities from asset prices, failing to take into

account the effects of risk sharing can lead to significant downward biases in our estimates.

Our calibration of the intensity process λt in equation (2) is as follows. First, the long-

run mean intensity of disasters under the two agents’ beliefs are λ̄A = 1.7% and λ̄B = 0.1%.

Next, we set the speed of mean reversion κ = 0.142 (with a half life of 4.9 years), which is

consistent with the value in Gabaix (2011), who calibrates this parameter to the speed of

mean reversion of historical price-dividend ratio. The volatility parameter is σλ = 0.05, so

that the Feller condition is satisfied.14 For simplicity, we assume that the size of disasters

is constant, d̄ = −0.51, as in Section 3.1. The remaining preference parameters are also the

13More precisely, agent B will gain wealth whenever the number of disasters is less than (λB−λA)t/ log(λ
B

λA ).
14The Feller condition, 2κλ̄A > σ2

λ, ensures that λt will remain strictly positive under agent A’s beliefs.
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Figure 4: Time-varying Disaster Risk. Panel A plots the equity premium under agent A’s

beliefs as a function of agent B’s wealth share (wBt ) and the disaster intensity under A’s beliefs

(λt). Panel B plots the jump risk premium λQt /λt for agent A.

same as in the constant disaster risk case.

Figure 4 plots the conditional equity premium and the jump risk premium under agent

A’s beliefs as functions of agent B’s wealth share wBt and the disaster intensity λt. First,

in Panel A, holding λt fixed, the equity premium drops quickly as the wealth share of the

optimistic agent rises from zero, which is consistent with the results from the case with

constant disaster risk. Moreover, this decline is particularly fast when λt is large, suggesting

that the agents engage in more risk sharing when disaster risk is high. Indeed, the jump

risk premium in Panel B also declines faster when λt is large, which is the result of agent A

reducing her consumption loss in a disaster more aggressively at such times.

Next, we see that the sensitivity of the equity premium to disaster intensity can be very

different depending on the wealth distribution. The sensitivity is largest when the pessimist

has all the wealth, but it becomes smaller as the wealth of the optimist increases. When the

optimist’s wealth share becomes sufficiently high, the equity premium becomes essentially

flat as λt varies. This result has important implications for the time series properties of
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the equity premium. It suggests that when λt fluctuates over time, the equity premium can

either be volatile or smooth, depending on the wealth distribution. For example, Mehra

and Prescott (1988) make the observation that there was little response in the financial

markets during the Cuban Missile Crisis, when presumably the risk of a severe crisis has

risen considerably. Our model provides a potential explanation for this phenomenon.

We can understand the above results through the equity premium formula (13). Vari-

ations in the wealth distribution drive λQt /λt and ED
t [R]. Due to increased risk sharing,

the jump risk premium declines with greater fraction of wealth controlled by the optimistic

agent. As a result, the premium becomes less sensitive to variations in λt. Moreover, we

see in Panel B of Figure 4 that the effect of wealth on the jump risk premium depends

on the disaster intensity. When the disaster intensity is high, the risk sharing motives are

very strong, resulting in faster decline of the jump risk premium when the optimistic agent

controls just a small amount of wealth. Finally, the returns in disasters also vary somewhat

with the wealth distribution as the price-consumption ratio changes after a disaster.

As Figure 4 indicates, a given risk neutral probability of disasters could be associated with

a wide range of beliefs depending on the wealth distribution. This result can help reconcile

the differences in disaster risk estimated from macro and financial data. For example, Backus,

Chernov, and Martin (2010) find that option prices imply smaller probabilities of disasters

than those estimated from international macroeconomic data. Collin-Dufresne, Goldstein,

and Yang (2010) extract risk neutral probabilities of extreme events from the prices of CDX

tranches. They find that the risk neutral probabilities of large losses are less than 1% per

year. According to our model, these empirical findings might not necessarily imply that

the true probability of disasters is low. Rather, they can be explained by our result that

a small group of agents with optimistic beliefs about disasters can dramatically reduce the

impact of disaster risk on asset prices. At the same time, these results also suggest that

when extracting investors’ perception of the likelihood of disaster from asset prices, we need

to take into account the effects of heterogeneous beliefs and risk sharing.

25



0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

λ t
A. Disaster intensity

 

 

Simulation I

Simulation II

0 10 20 30 40 50
0.85

0.9

0.95

1

w
A t

B. Agent A wealth share

years

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

E
A t
[R

e
]

C. Equity premium

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

λ̂ t
/λ

t

D. Biases in extracted disaster intensities

years

Figure 5: Simulation with Time-varying Disaster Risk. The results are from two sim-

ulations of the model with time-varying disaster risk under agent A’s beliefs. Panel A plots the

simulated paths of disaster intensity. Panel B and C plot the corresponding wealth share of agent

A and the conditional equity premium she demands. Panel D plots the time series of disaster

intensity extracted from asset prices as a fraction of the true intensities. The shaded areas denote

the timing of disasters in Simulation II. There are no disasters in Simulation I.

To further investigate the time series properties of the model, we simulate the disaster in-

tensity λt and the jump component of aggregate endowment cdt under agent A’s beliefs, which

jointly determine the evolution of the stochastic Pareto weight ζ̃t. Then, along the simu-

lated paths, we compute the equilibrium wealth fraction of agent A, wAt , and the conditional

equity premium under A’s beliefs, EA
t [Re]. In each simulation we start with λ0 = 1.7% and

set the initial wealth share of agent A to wA0 = 90%. The results from two of the simulations

are reported in Figure 5.

Panel A plots the paths of λt from the simulations. The disaster intensities from both
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simulations are fairly persistent, and show similar amount of variation over time. In Simu-

lation I, there are no disasters. In Simulation II, disasters occur three times within the first

50 years, around year 13, 18, and 46, indicated by grey bars in the figure.

What determines the evolution of the wealth distribution? When there are no disasters,

holding λt fixed, agent A is losing wealth share to B as she pays B the premium for disaster

insurance. This effect is captured by the negative drift in the Radon-Nikodym derivative ηt

(see equation (4)), and is stronger when λAt is larger. In addition, as λt falls (rises), the value

of the disaster insurance that agent A owns falls (rises), causing her wealth to fall (rise)

relative to agent B, who is short the disaster insurance. As Panel B shows, the second effect

appears to be the main force driving the wealth distribution in Simulation I.

When a disaster strikes, the wealth distribution can change dramatically. In Simulation

II, the wealth share of agent A jumps up each time a disaster strikes. This is because the

disaster insurance that A (pessimist) purchases from B (optimist) pays off at such times,

causing the wealth of A to increase relative to B. The size of the jump in wAt is bigger in the

first two disasters, which is mainly because agent B has relatively more wealth going into

the first two disasters, so that he is able to provide more disaster insurance. As a result, he

also loses more wealth in these two disasters.

Panel C shows the joint effect of the disaster intensity and wealth distribution on the

equity premium. In Simulation I (no disasters), despite the fact that the optimistic agent

never owns more than 15% of total wealth and that disaster intensity λt shows considerable

variation over the period, the equity premium is below 2% nearly 90% of the time. This result

confirms our finding in Figure 4 that risk sharing between the agents keeps the premium low

and smooth when the wealth share of agent B is not too small.

In contrast, the equity premium in Simulation II shows large variation, ranging from

0.5% to 9.2%. Following the first disaster in year 13, the premium jumps from 2.4% to 7.0%,

and becomes significantly more sensitive to fluctuations in λt and the wealth distribution

afterwards. Since the wealth share of agent B drops in a disaster, her risk sharing capacity
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is reduced, which drives up both the level and volatility of the equity premium. As shown

in Figure 4, this effect is stronger when λt is high, which is why the jump in premium is the

most visible after the first disaster.

Finally, Panel D of Figure 5 highlights the potentially large biases when extracting in-

vestors’ beliefs about disaster risk from asset prices. Without considering heterogeneous

beliefs, our estimates of disaster probabilities from asset prices can be substantially lower

than those of agent A, and also substantially lower than the wealth-weighted average belief

of the two agents. Consider the procedure where one takes the disaster size and relative

risk aversion to be known (d̄ = −0.51 and γ = 4 here) and then infers the likelihood of

disasters based on asset prices assuming (incorrectly) that all agents believe the likelihood

of disasters is λ̂t. Under Simulation I, the extracted disaster intensities are only 20%-40%

of the true intensity λt. As Simulation II shows, even when the wealth distribution becomes

highly concentrated, the downward bias in the price-based estimates of disaster risk is still

quite sizable. The downward biases are due to the fact that asset prices disproportionately

reflect the beliefs of a small group of optimists in the economy. Moreover, there can also

be “excessive” variation in these extracted beliefs caused by redistribution of wealth (e.g.,

following a disaster) rather than actual changes in disaster risk.

In practice, one asset that has often been used to extract information about tail risk is

deep out-of-the-money (OTM) index put options. As an example, we compute the disaster

probabilities implied by 30-day S&P 500 index put options (from OptionMetrics) conditional

on the optimist owning 1%, 5%, and 10% of total wealth, and compare these extracted disas-

ter probabilities to the case where we ignore belief heterogeneity. Breeden and Litzenberger

(1978) show that the derivative of OTM put prices with respect to strike price gives the

(discounted) risk neutral probability of a loss in equity price exceeding a certain level. This

method allows us to construct a time series of OTM digital put options on the S&P 500

index, which is robust to the specification of the distribution of disaster size.15

15Full details of our methodology are in Section F of the online appendix.
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Figure 6: Disaster intensities implied by option prices and biases due to ignoring
belief heterogeneity. Panel A plots the implied disaster intensity of the single-agent stochastic

intensity model where the intensity (λ̂t) is extracted to match the risk-neutral cumulative probabil-

ity of a 30% drop in the S&P 500 index in one month. Panel B plots the ratio of the intensities in

the single-agent economy to the corresponding intensities (λt) when 1%, 5%, or 10% of the wealth

is controlled by optimists.

Figure 6 Panel A shows the inferred probabilities of disasters from the prices of 30%

OTM digital index puts when all agents believe in the same stochastic disaster intensity.

The implied disaster intensities are low during calm periods (especially during the 5 years

before the financial crisis), but spikes up during the Russian Default in 1998, in 2002, and

especially in the recent financial crisis, when it reached 12.14% in November 2008.

Panel B shows the biases in the disaster probability estimates of Panel A relative to the

cases when belief heterogeneity is taken into account. Depending on the amount of total

wealth owned by the optimist (we consider wBt = 1, 5, or 10%), ignoring belief heterogeneity

can lead one to understate the true intensity by 5% to 70%, with the bias becoming more

significant when the optimists own more wealth and particularly when the true disaster

intensity is high (e.g., during the financial crisis in 2008). These results confirm the results

of Panel D of Figure 5 that indeed large biases can exist when one infers disaster probabilities
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from asset prices while ignoring the presence of belief heterogeneity. An important difference

between Panel D of Figure 5 and Figure 6 is that in the former case the wealth fraction of

optimist evolves endogenously, while in the second case we fix the wealth of the optimists.

To avoid such biases in our estimates of disaster probabilities, we need to explicitly

account for the impact of investor heterogeneity and risk sharing on asset prices. One can

potentially measure the amount of heterogeneity using information on the amount of trading

on disaster risk in various disaster insurance markets (cf. Figure 2, Panel B).

4 Comparison with Other Forms of Heterogeneity

Many studies on heterogeneous beliefs focus on disagreement about Brownian risks as op-

posed to jump risks. In this section, we compare these two forms of disagreements to highlight

their different impacts on asset prices, in particular, the prices of Brownian and jump risk.

In addition, we also compare our results to a model of heterogeneous risk aversion.

4.1 Disagreement about mean growth rate versus jump risk

As a special case of the model presented in Section 2, we can remove the jump component

in endowment, cdt , and assume that agents A and B only disagree about the growth rate of

endowment. We assume that agent A thinks the growth rate of endowment is ḡA = 2.5%,

while agent B thinks the growth rate is ḡ+ bσ2
c = 0.5%. From the stochastic discount factor

MA
t , one can show (see Appendix G for details) that the price of Brownian risk (which is

also the Sharpe ratio of the market portfolio) under A’s beliefs is a linear function of her

consumption share:

SRA
t = γσc −

(
1− fAt

)
bσc. (20)
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Figure 7: Disagreement about Brownian risk versus jump risk. Panel A plots the price

of Brownian risk (market Sharpe ratio) under the beliefs of agent A (with perceived consumption

growth 2.5%) as a function of her consumption share when agent B believes consumption growth

is only 0.5%. Panel B plots the price of jump risk (λQt /λ
A) for agent A (λA = 1.7%) as a function

of the consumption share of B (λB = 0.1%).

Thus, if A has all the wealth in the economy, the price of Brownian risk will be γσc, which is

small for moderate risk aversion γ and low consumption volatility σc. As we allocate more

wealth and hence higher consumption share to a pessimistic agent B, the price of equity will

fall and the expected return under agent A’s beliefs will rise, which leads to a higher Sharpe

ratio under the correct beliefs.

In the case of disagreement about jump risk, the price of jump risk under agent A’s beliefs

can also be expressed explicitly as function of her consumption share,

λQt
λA

=
1

λA

(
fAt (λA)

1
γ + (1− fAt )(λB)

1
γ

)γ
e−γd̄, (21)

which converges to e−γd̄ when A’s consumption share goes to 1. However, unlike the price of

Brownian risk, the price of jump risk changes nonlinearly with the consumption share. This

difference is clearly illustrated in Figure 7, where the price of jump risk initially declines

quickly when agent B consumes a small share of aggregate endowment, but the decline slows
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down later on.

Another difference between disagreement about growth rates and disaster risks is the non-

linearity with respect to the amount of disagreement. In the case of growth rate disagreement,

the average belief (weighted by consumption share) determines the price of Brownian risk.

This is shown in Equation (20), where the average optimism (assuming agent A is exactly

correct so their optimism is zero) is (1 − fAt )b, which is exactly reflected in the Sharpe

ratio. In contrast, Equation (21) shows that the jump risk premium is not a function of

the consumption weighted average of the beliefs about the disaster intensity. Instead, in

determining the jump-risk premium, more weights are given to the beliefs of the optimist

due to risk aversion. One implication of the above difference is that fixing the average belief

and increasing the amount of disagreement will have little effect on the risk premium in the

case of growth rate disagreement, but will tend to lower the equity premium in the case of

disagreement about disaster risks.

The fact that more disagreement (fixing the consumption-weighted average belief) tends

to lower the average belief also holds in a dynamic setting. To this end, consider the following

simple extension of our basic model. Suppose that there are two states, L and H, and

each agent has fixed beliefs about the probability of disasters in a given state. Under the

simplifying assumption that transition probabilities between the two states are constant, we

show in Appendix A that our main solution method can be extended to such a model. This

regime switching model then allows us to study the case where the amount of disagreement

is time-varying.

As an example, consider the case where in state L, the two agents agree about the

frequency of disasters, λAL = λBL = 1.7%. There is disagreement in state H. In order to

isolate the effect of disagreement, we consider different combinations of beliefs in state H

(λAH > λBH) such that the wealth-weighted average belief for a given wealth distribution is the

same as in state L, i.e., (1−wB)λAH +wBλBH = 1.7%, where wB is the wealth share of agent

B. We measure the amount of disagreement using the wealth-weighted standard deviation
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Figure 8: Time-varying Disagreement. Panel A plots the equity premium in the case where

beliefs converge in the state with higher disaster risk. Panel B plots the premium as a function of

the amount of disagreement for given wealth distribution.

in beliefs,

Disagreement Measure =
√

(1− wB)(λAH − 1.7%)2 + wB(λBH − 1.7%)2.

Finally, we set the transition probabilities of the Markov chain to be δL = 0.1 and δH = 0.5.

As Figure 8 shows, holding the average belief constant, the premium can fall substantially

as the amount of disagreement increases. As a benchmark, the dash-dotted line gives the

equity premium (under agent A’s beliefs) in state L. Since the agents have the same beliefs

in that state, the premium remains at 4.7% as the amount of disagreement increases in state

H. The solid line plots the equity premium in state H when the two agents have equal share

of total wealth. The premium falls from 4.7% to 0.9% when λBH drops from 1.7% to 0.1%

(where the disagreement measure is 1.6%). When agent B has just 20% of total wealth, the

premium falls by a smaller amount to 2.9% (when the disagreement measure reaches 0.8%).

An interesting implication of this graph is that the premium can actually be decreasing while
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Figure 9: The effects of heterogeneous risk aversion. This graph plots the equity premium

when the two agents have different risk aversion: γA = 4, γB = 2. Their beliefs about disasters are

specified in the legend. Disaster size is constant.

the average belief of disaster risk increases, provided that there is enough increase in the

amount of disagreement at the same time.

4.2 Heterogeneous risk aversion

Intuitively, besides heterogeneous beliefs, heterogeneity in risk aversion should also be able

to induce risk sharing among agents and reduce the equity premium in equilibrium. Recall

that the jump risk premium is λQt /λ
i
t = e−γi∆c

i
t , which is not only sensitive to changes

in individual consumption loss ∆cit, but also to the relative risk aversion γi. Thus, we

expect that heterogeneous risk aversion can have similar effects on the equity premium as

heterogeneous beliefs about disasters.

To check this intuition, we consider the following special case of the model. Agent A is

the same as in the example of Section 3.1: λA = 1.7%, γA = 4. Agent B has identical beliefs

about disasters but is less risk averse: λB = 1.7%, γB < γA. We then solve the model using

the technique in Chen and Joslin (2010). Figure 9 plots the equity premium as a function

34



of agent B’s wealth share for γB = 2. The equity premium does decline as agent B’s wealth

share rises. However, the decline is slow and closer to being linear. In order for the equity

premium to fall below 2%, the wealth share of the less risk-averse agent needs to rise to 60%.

The decline in the equity premium becomes faster as we further reduce the risk aversion of

agent B (not reported here), but the non-linearity is still less pronounced than in the cases

with heterogeneous beliefs.

Combining heterogeneous beliefs about disasters and different risk aversion can amplify

risk sharing and accelerate the decline in the equity premium. As shown in the figure, if

agent B believes disasters are less likely than does agent A, and she happens to be less risk

averse, the equity premium falls faster. Consider the case where agent B believes disasters

only occur once every hundred years (λB = 1.0%). With 20% of total wealth, she drives

the equity premium down by almost a half to 2.5%. If λB = 0.1%, the decline in the equity

premium will be even more dramatic.

5 Robustness

We have made a number of simplifying assumptions in this paper, including complete markets

and dogmatic beliefs. In this section, we discuss the potential impact of relaxing these

assumptions for our model.

5.1 The assumption of complete markets

In our main analysis, we consider completing the market with a disaster insurance contract

which pays off with certainty exactly when a disaster occurred. The assumption of complete

markets greatly simplifies our analysis. However, it also raises some important concerns.

One concern is that a disaster insurance contract might be difficult to implement since

the timing of payment can lead to substantial counterparty risk. Within the model, because

the marginal utility of the optimist is unbounded as consumption drops to 0, she will never
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“over-promise” on the amount of disaster insurance she can provide. Hence, there is no

counterparty risk in the model. In fact, we can impose the requirement that disaster insur-

ance be fully collateralized (either by stocks or other real assets), in which case the optimist

will have more than enough wealth to post collateral, and the equilibrium outcome will not

change.

Still, there could be other practical reasons for why disaster insurances might be difficult

to implement. Our model suggests that any two securities with differential exposure to the

Brownian and jump risks would complete the market. For example, high grade corporate

bonds, senior CDX tranches, and put options on the market index can all used to trade

disaster risk. Even if none of these contracts exist, investors will still be able to effectively

share disaster risks by trading the stock. This is because in our model, the risk of holding

the stock is primarily the exposure to disaster risk (which is bundled with a small amount

of Brownian risk that has little effect on the premium). Following this intuition, we consider

a variation of the benchmark model by turning off Brownian risk. Then markets will be

dynamically complete via the trading of the aggregate stock and riskless bonds.

Figure 10 plots the equity premium and portfolio positions for both agents. In Panel A,

the equity premium in the model with only disaster risk is nearly identical to the benchmark

case with Brownian risk. The difference between the two equity premiums is tiny (roughly

equal to γσ2
c = 16 basis points). Panel B shows that the agents now trade disaster risk using

the stock market. The pessimist sells part of the stock she owns to the optimist and invests

the proceeds in riskless bonds. From the perspective of the optimist, the stock offers a high

premium due to disaster risk, which he believes rarely occur. His capacity to share risk with

the pessimist is limited by his wealth, which serves as collateral for taking levered positions

in the stock. Because of the budget constraint and the Inada condition, his leverage is in

fact fairly modest.

It would be interesting to see whether the intuition we get from the above example holds

in an incomplete markets setting with both Brownian and disaster risks but only one risky
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Figure 10: The relative impact of disaster and Brownian risks. Panel A plots the equity

premium under the pessimist’s beliefs as a function of the wealth share of the optimist assuming

either that the conditional volatility of consumption is σc = 2%. Panel B plots the fraction of

wealth of the two agents invest in the equity claim when there is only disaster risk.

asset (the stock). Provided that disaster risk is the main force behind the equity premium

relative to the diffusive risk, we conjecture that the optimist would moderately lever up in

equity, in a similar way as in Figure 10 (bearing the cost of taking on additional diffusive

risk), and the equity premium will be close to the complete markets case.16

Another important concern is that a big part of total wealth is human capital, which

may not be tradable. In that case, the amount of insurance that the optimist can provide

will be reduced, and so will the effect of heterogeneous beliefs on the disaster risk premium.

For example, in Panel D of Figure 2, the optimist loses up to 70% of his consumption in

a disaster when his wealth share is low. Such an allocation might no longer be feasible if

a big part of his wealth is non-tradable and only tradable wealth can serve as collateral

against disaster insurance contracts. In practice, those investors that are selling index put

options and buying senior CDX tranches tend to be institutional investors or high wealth

individuals, whose wealth are mostly tradable. Still, it is important to study how much the

16In the case of log utility, Dieckmann (2010) finds that introducing incomplete markets actually raises
the risk premium, which would imply a steeper slope on the left side of Panel A of Figure 10.
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effects of risk sharing can be weakened by non-tradable wealth. We leave this question to

future research.

5.2 Sources of optimistic beliefs

In the simple version of our model (Section 3.1), the optimist believes that the disaster

intensity is only 0.1% per year. How reasonable is this belief? Based on a century of U.S.

data, aggregate consumption has never fallen more than 15% in a given year. The maximum

cumulative consumption drop over any consecutive number of years is 23%, which occurred

during the Great Depression. Thus, it is possible that some agents might (suboptimally) form

their beliefs based only on the US experience, even though arguably it is more reasonable to

estimate disaster risk using international data.

In Appendix B, we calibrate the beliefs of the optimist to the U.S. aggregate consumption

data in the last 120 years, and calibrate the beliefs of the pessimist based on international

macroeconomic data in Barro (2006). The U.S. data suggest that smaller jumps in aggregate

consumption are relatively more likely, but these jumps have rather limited effect on the

equity premium. Under this calibration, we find very similar effects of risk sharing on the

equity premium as in the benchmark case. For example, raising the fraction of total wealth

for the second agent from 0 to 10% lowers the equity premium from 4.4% to 2.0%.

Another source of optimistic beliefs is individual experience. Malmendier and Nagel

(2010) argue that individual experiences of macroeconomic outcomes can have long-term

effects on their preferences and beliefs. For example, an investor born in the U.S. who did

not experience the Great Depression could assign close to zero probability to a 40% drop of

aggregate consumption.

Finally, agency problems could also be an important source of optimistic beliefs in our

model. Reputation concerns (see Malliaris and Yan (2010)), convex compensation contracts

(see Makarov and Plantin (2011)), and government guarantees can all motivate fund man-

agers and large financial institutions to underwrite insurance against economic disasters.
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For example, writing deep out-of-money index options has long been a popular strategy

among hedge funds to manufacture seemingly superior returns in short samples. The recent

financial crisis also provides examples of “too-big-to-fail” financial institutions aggressively

underwriting so-called “super senior” credit default swaps, which are essentially disaster in-

surances. Thus, our model provides a link between shocks to the capital supply of these

“institutional optimists” and the disaster risk premium.

5.3 Effects of learning

In this paper, we assume investors have dogmatic beliefs about disaster risk. In reality,

investors will update their beliefs about disasters over time, and the beliefs of those who

are overly optimistic or pessimistic about disasters might eventually converge to the correct

one in the long run. However, due to the nature of disaster risk, learning about either the

intensity or size of disasters using realized macro data will be very slow. As we show in this

section, the key driver of the conditional equity premium prior to a disaster is risk sharing

for the first disaster to come. Even if we assume the belief of the optimist converges fully to

that of the pessimist following the first disaster, the risk premium prior to the first disaster

will change very little. Thus, learning based on macro data is unlikely to change our results

significantly.

To capture the main effects of learning, we consider the following extension of our model.

Suppose that agent A correctly believes that the likelihood of a disaster is λA = 1.7% and

never changes her belief, while agent B is more optimistic. Rather than fully specifying agent

B’s prior belief distribution and modeling the Bayesian updating process, we assume that his

belief remains constant at λB = 0.1% until the first disaster arrives, at which point he will

fully update his belief to the correct one.17 Thus, the belief of agent B about the disaster

intensity follows

λBt = λB1{Nt=0} + λA1{Nt≥1}.

17Such belief dynamics ignore the fact that the optimist’s belief will be reinforced by each year passed
without a disaster, which could further reduce the equity premium.

39



0 0.2 0.4 0.6 0.8 1
−0.01

0

0.01

0.02

0.03

0.04

0.05

Agent B (optimist) wealth share: wB
t

E
A t
[R

e
]

A. Equity premium

 

 

λB = 0.1% → 1.7%
λB = 0.1% (fixed)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Agent B (optimist) wealth share: wB
t

λ
Q t
/λ

A

B. Jump-risk premium

 

 

λB = 0.1% → 1.7%
λB = 0.1% (fixed)

Figure 11: Learning through disasters. Panel A plots the equity premium under the pes-

simist’s beliefs as a function of the wealth share of the optimist assuming that either the optimist

holds his beliefs fixed or that the optimist updates his beliefs to agree with the pessimist after a

disaster occurs. Panel B plots the jump-risk premium λQt /λ
A for the pessimist.

We assume that both agents fully anticipate this updating of beliefs for agent B.

Figure 11 plots the conditional equity premium and jump risk premium before the first

disaster arrives. Both the equity premium and jump risk premium are slightly higher in the

case where beliefs converge after the first disaster, which is consistent with the intuition that

learning can reduce risk sharing in the long run. However, the quantitative effect of learning

on pricing is very small. As these results show, the majority of the effect of heterogeneous

beliefs on asset pricing is due to risk sharing for the first disaster. Thus, any updating of

beliefs following the first disaster will only have second order effects on asset prices.

6 Concluding Remarks

We demonstrate the equilibrium effects of heterogeneous beliefs about disasters on risk pre-

mia and trading activities. When agents disagree about disaster risk, they will insure each

other against the types of disasters they fear most. Because of the highly nonlinear effect
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of disaster size on risk premia, the risk sharing provided by a small amount of agents with

heterogeneous beliefs can significantly attenuate the effect of disasters on the equity pre-

mium. The model has important implications for how disaster risks affect the dynamics of

asset prices, the potential bias of estimating disaster probabilities from prices, and the link

between the size of disaster insurance market and equity premium.

Our results also suggest a few directions for future research on disaster risk. The effec-

tiveness of the risk sharing mechanism has significant impact on how disaster risk affects

asset prices in the equilibrium. It would be useful to study what happens to asset prices

when we limit the risk sharing among investors with heterogeneous beliefs about disasters,

perhaps by imposing transaction costs, borrowing constraints, and short-sales constraints as

in Heaton and Lucas (1996). Another interesting consideration is ambiguity aversion. As

Hansen (2007) and Hansen and Sargent (2010) show, if investors are ambiguity averse, they

deal with model/parameter uncertainty by slanting their beliefs pessimistically. In the case

with disaster risk, ambiguity averse investors will behave as if they believe the disaster prob-

abilities are high, even though their actual priors might suggest otherwise. This mechanism

could also limit the effects of risk sharing. We leave these questions to future research.
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Appendix

A Time-varying Disagreement

Section 4.1 presents a model with time-varying disagreement through Markov switching.
The model solution is generally analogous to the case without Markov regime-switching, so
we sketch out the major differences between the models.

The Radon-Nikodym derivative ηt now reflects the change of state st,

ηt = e
∑
i∈{L,H}(∆aiN

i
t−λAi T it (eai−1)), (A.1)

where

∆ai = log

(
λBi
λAi

)
, (A.2)

T it =

∫ t

0

1{sτ=i}dτ, (A.3)

and N i
t is the number of disasters that have occurred up to time t while the state is st = i.

The key expectations to compute are of the form

EA
0 [eaN

L
t +bNH

t +cTLt +dTHt ], (A.4)

where N i
t is the number of disasters that occur in state i and T it is the occupation time in

state i defined in (A.3). These expectations can be computed by first conditioning on the
path of the Markov state and using the conditional independence of the Poisson process in
each state:

EA
0 [eaLN

L
t +bHN

H
t +cTLt +dTHt ] = EA

0

[
EA

0 [eaLN
L
t +bHN

H
t +cTLt +dTHt |{Sτ}tτ=0]

]
(A.5)

= EA
0

[
e(λAL(ea−1)+c)TL+(λAH(eb−1)+d)TH

]
(A.6)

This reduces the problem to computing the joint moment-generating function of the occu-
pation times (TLt , T

H
t ). Darroch and Morris (1968) show that this reduces to

EA
0 [eαT

L
t +βTHt ] = π′0 exp (At)~1, where A = Λ +

[
α 0
0 β

]
, (A.7)

andπ0 is either (1, 0)′ or (0, 1)′, as the initial state is L or H.

The price of consumption claims involve sums of integrals of such expectations. These
integral can be computed in closed form by diagonalizing A.
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B Calibrating Disagreement: Is the US Special?

In this section, we calibrate the beliefs of the two types of agents to the data. We assume
that agent A believes the US is no different from the rest of the world in its disaster risk
exposure. Hence her beliefs are calibrated using cross-country consumption data. Agent B,
on the other hand, believes that the US is special. She forms her beliefs on disaster risk
using only the US consumption data.

Using maximum likelihood (MLE), we estimate a truncated Gamma distribution for the
log disaster size from the Barro (2006) data of major consumption declines cross 35 countries
in the twentieth century. Our estimation is based on the assumption that all the disasters in
the sample were independent, and that the consumption declines occurred instantly.18 We
also bound the jump size between −5% and −75%. The disaster intensity under A’s beliefs
is still λA = 1.7%. The remaining parameters are: the mean growth rate and volatility of
consumption without a disaster, ḡA = 2.5% and σc = 2%, which are consistent with the US
consumption data post WWII.

As for agent B, we assume that she agrees with the values of ḡA and σc, but we estimate
the truncated Gamma distribution of disaster size using annual per-capita consumption
data in the US 1890-2008.19 Over the sample of 119 years, there are three years where
consumption falls by over 5%. Thus, we set λB = 3/119 = 2.5%. Alternatively, we can also
jointly estimate λB and the jump size distribution.

Panel A of Figure 12 plots the probability density functions of the log jump size dis-
tributions for the two agents, which are very different from each other. The solid line is
the distribution fitted to the international data on disasters. The average log drop is 0.36,
which is equivalent to 30% drop in the level of consumption. In the US data, the average
drop in log consumption is only 0.075, or 7.3% in level. In addition, agent A’s distribution
has a much fatter left tail than B. Thus, while A assigns significantly higher probabilities
than B to large disasters, agent B assigns more probabilities to small disasters, especially
those ranging from 5 to 12%. Agent B’s beliefs are close to the calibration by Longstaff and
Piazzesi (2004), who assume the jump in aggregate consumption during a disaster is 10%.

The differences in beliefs lead the two agents to insure each other against the types of
disasters they fear more, and the trading can be implemented using a continuum of disaster
insurance contracts with coverage specific to the various disaster sizes. Panel B plots drops in
the equilibrium consumption (level) for the two agents when disasters of different sizes occur,
assuming that agent B owns 10% of total wealth. The graph shows that through disaster
insurances, agent A is able to reduce her consumption loss in large disasters (comparing the
solid line to the dotted line). For example, her own consumption will only fall by 24% in a
disaster where aggregate consumption falls by 40%, a sizable reduction especially considering
the small amount of wealth that agent B has. At the same time, she also provides insurances

18See Barro and Ursúa (2008), Donaldson and Mehra (2008), and Constantinides (2008) for more discus-
sions on the measurement of historical disasters.

19The data is taken from Robert Shiller’s web site http://www.econ.yale.edu/∼shiller/data.htm
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Figure 12: Calibrated Disagreements: International vs US Experiences. Panel A

plots the truncated Gamma distribution of disaster size for the two agents. Panel B plots the

equilibrium consumption drops for the two agents for given disaster size when agent B has 10% of

total wealth. Panel C and D plot the equity premium and jump risk premium under A’s beliefs.

to B on smaller disasters, which increases her consumption losses when such disasters strike.
Agent B’s consumption changes are close to a mirror image of agent A’s. However, the
changes are magnified both for large and small disasters due to her small wealth share.

Panel C shows the by-now familiar exponential drop in the equity premium as the wealth
share of agent B increases. The equity premium is 4.4% when all the wealth is owned by the
agents who form their beliefs about disasters based on international data, but drops to 2.0%
when just 10% of total wealth is allocated to the agents who form their beliefs using only the
US data. The main reason for the lower equity premium is again due to the decrease of the
jump risk premium (Panel D), which falls from 6.5 to 4.0 when agent B’s wealth share rises
to 10%. This effect alone drives the equity premium down to 2.4%. Notice that the jump
risk premium is no longer monotonic in the wealth share of agent B. This is because when
agent A has little wealth, she would be betting against small disasters so aggressively that
the big losses for her during small disasters can cause the jump risk premium to rise again.
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