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ABSTRACT

This paper presents the full waveform acoustic log inversion problem for a
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muitisource - multireceiver tool logging a cyiindrical fluid-filled borehole. The probiem

is formulated in the frequency-depth domain. A priort knowledge about the source
array spectra and the borehole formation parameters (velocity, attenuation, density)
iz taken into account. It is shown that the inversion problem can be formulated as a
Separable Nonlinear Least Squares (SNLS) problem with separable nonlinear equality
constraints. The case where the source is known and parameterized is studied with
synthetic data and an inversion for IG,,VS, Vf, and p, is implemented and studied.

INTRODUCTION

Full waveform acoustic logging has become a widely used tool in formation
evaluation. However, up tc now the techniques for determination of formation
compressional and shear wave velocities and formation attenuation have been done
separately, in "slow" formations shear wave velocities cannot be determined directly
and have to be inverted from Stoneley wave velocities. In some toals, the source-
receiver characteristics prevent one from identifying the Stoneley wave in 'slow"”
farmations. Measurements of formation attenuation are complicated by the effects
of modal dispersion. The cbvious answer to all these problems is the simultaneous
determination of the formation velocity, attenuation, and density from inversion of the
full waveform data using a model of elastic wave propagation in a borehoie. [n this
paper, we address the full waveform inversion problem from a theoretical point of
view of a constrained least squares inversion. We introduce the concept of
separable least squares to decouple the effects of the source from the responses of
the formation. We then present some results from the inversion of synthetic full
waveform acoutic logging data and study the sensitivity of the waveform to the
variations in each individual parameter.

INVERSION THEORY

Statisticians usually distinguish two'broad kinds of data analysis problems
{Parzen, 1878):

{1) 'Statistical Inference-type 1" or model analysis:
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Problem: What is the answer to a mathematically weil-posed question?

Approach: Theorems on the properties of algorithms derived from estimation and
optimization theory.

{2) "Statistical inference-type 2" or mode! synthesis:
Problem: What is the question, or equivalently what is the model?

Approach: Data analysis procedures to be learned by doing (cbservations,
experimentation, modeiling...)

This paper daals with a "'statistical inference-type 1" problem, the full waveform
acoustic inversion in a cylindrical borehole gecmetry. This is a parametric inversion
method as opposed to non-parametric inversion methods such as semblanca or
correlation.

Previous work in parametric and non-parametric inversion

Parametric modelling is common practice in many applications, the very general
Autoregressive Moving Average (ARMA) formulation for time series being one of the
better known examples. [h ARMA modelling, the spectrum of the process is
parameterized by a rational fraction in the frequency domain.

For the cylindrical fuil waveform inversion problem, one considers a parametric
form of the frequency-wavenumber spectrum with a finite number of parameters.
Much is lost in the inference process if the parametric form is ignored, because when
the number of parameters is small compared with the total number of obsearvations,
the results of the inference will be much stronger than when using a non-paramettic
approach. Parametric methods involve statements about the probability distribution
of the observed data. Parametric inference presupposes a known form of the
statistical distribution of the data being inverted for. Because of the finite amount of
data, the class of probabiiity distribution is relatively restricted, usually to the
exponential family including Poisson, Gaussian, Binomial, etc., via the probability
distribution. The model is above all a mathematical formulation of the knowledge
about the tool-borehole~formation system under study. Equation {1), for exampie,
reflects an hypothetical link between the observed signal and the unknown signal. In
other words, thera exists an expected value of the borehole wavefieid signai in the
form of a model-hypothesis built from physical faws (the wave equation in cylindricai
geometry).

By comparison, the non-parametric approaches, such as semblance or correlation
methods, do not make any assumption about the statistical distribution of the data.
For the determination of P- and S-wave velocities for instance, most of the work has
concentrated so far on non-parametric inversion methods (Willis, 1883; Willis and
Tokstz, 1982). Non-parametric methods are usually more expedient and robust (i.e.,
resuits are practicaily independent of any statistical distribution of the data) than
their parametric counterpart. Recent asymptotic optimality results, however, show
that these methods cannot be substantiailly improved without the more stringent
modelling assumptions (Yakowitz, 1985). They are used in situations where cther
estimators are difficult to implement because of mathematical manipulative
difficulties. They often rely, however, on heuristic techniques such as windowing,
threshold detection, etc.
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Moreover, in slow formations, where the shear wave velocity is lower than the
borehole fluid velocity, non-parametric semblance/correlation methods cannot
extract the shear wave information -- although present -- directly from the data. In
these cases, one is justified in trying the more "fragile” and compute-intensive
parametric inversion methods by using models of the tcol-borehole system with
additional a prioti knowledge in the form of constraints.

In this paper, the forward model structure assumed is set forth and the method
of Maximum Likelihood (ML), one of the most versatile and powerful tools of
estimation, will be used for inference on the parameters and the associated
estimation error covariance.

When there is a prior] knowledge on the parameters {for example, data from a
density tool, a Caliper Log, or an initial inverse from a non-parametric method), the
Maximum A Posteriori (MAP} method will provide (via the Bayes thecrem) a way to
systematically incorporate these a priori in the inversion.

Since the source function is inh general not known, this will then lead to the
Constrained Separable inversion method which eliminates the scurce function
inversion from the formation parameters inversion proper and allows a priori about the
source and the formation parameters to be taken into account,

THE CYLINDRICAL FORWARD MODEL ASSUMPTIONS

The assumptions are illustrated in Figure 1. The pressure frequency respanse
P{r,z,w) in a fluid filed borehole at an axial distance z and radial distance r from a
point isotropic source is well known (Tsang and Rader, 1979; Cheng et al, 1982). it
is given by

I

—i V2442 .
+ [A(@)o(fr) e™ 3 dk| X(w)

I
\/7"2+zi

(1)

P(e,z,8) = ne

where X(w) is the complex Fourier spectrum of the source. The first.term within the
brackets represents the direct source term. A(®,), the modal coefficient, is given

by

9‘(@‘,)}(1 (fR) "'Ko(fR)

A(8,) = gOIL TR + Iy R) (2)
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where @, is the parameter vector:
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w is the angular frequency; ¢ is the phase velocity; & = w/c is the axial wave
number; ¥, ,V; and V; are the P and 5 wave velocity of the formation and the

borehole fp fuid veioc:*y, respectively; & is the borehole radius; o, and p, are the
formation and fluid density; and [, and X; are the modified Bessel functions of the ith
order., The term A(@a)fo( Fr) represents the respanse of the borehole.

Formation and fluid attenuations appear as the |magmary parts in the complex
velocities V, ,¥; Vy (Cheng et al, 1982)

THE DISCRETE FORWARD CYLINDRICAI, MODEL

The cne source, one receiver (18=1R) tooi

For one source and one receiver separated by a distance 2z, equation (1) above
can be written:

Plw,2,8) = Glw,2,8) X(w) (5)
The observed waveform W at frequency o is modelled as:
W(w) = Glaw,z) X(w) + N (@) (6)

where W(w) is the Fourier transform of the observed output field, FP{w,z,8) is the
modeiied output pressure field, X(w) is the input source and N, () is the corrupting

observation noise.

G(w, 2, @) is the complex frequency response of the tool-borehole formation
system at frequency «. It represents the term within brackets in Equation (1). G is
a parameter vector, a subset of ®; shown in Equation (4). One or more of the
parameters in 8, may be fixed or known a priori with some uncertainty. The source
function may also be parameterized by a vector §

X{e) = X&)
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and £ may be included in the inversion.

The Fourier spectrum of the pressure can be discretized at N, frequencies
fe;1,1=1,N,, as follows: (This is a valid approximation by the Stone-Weirstrass
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theorem if the power spectral density matrix of the modelied process is positive

definite and continuous)
Ple;,z,0) = Glw;,2,0) X(w,) fi=1,..,N,)

In matrix form the N, equations above become:

P(2,8) = G(z,8) X (7.a)
where: _ ,
P(z,8) = {P(e;,2,8), =1, - NJ (7.b)
G(z,8) = Diag {(G(w;,2,8)), i=1, - N_] (7.c)
X(8) = (X(ey,8), i=1,...,N,} (7.d)

Note that P(z,8), X(¢) are complex valued vectars and that G(z,8) is the complex
transmittance matrix from the source to the receiver at position z.

Muiti-source /multi-receiver discrete model

In a similar fashion one can derive (see Appendix) the mulii-receiver/multi-
source discrete model. The equation has the same form as above. For & tool with N,
receivers, N, sources and N, sampling points in frequency domain, Equaticn (7a) can
be generalized into the form

P(@) =G(@) - X (8)

where P is an (¥ x1) complex vector, with N =N, N,'N,; @ is a vector of
borehole/formation parameters; G is a N x} matrix where M = NN, with the
structure shown in Figure 4; and X is a # X1 source array vector. The details are
given in the Appendix.

NUMERICAL EXAMPLES

The case where the source characteristics are perfectly known will now be
studied on synthetic data. The purpose of this exercise is to find out if the prob-
lem as defined above is properly formulated and study its conditioning. 1n addi-
tion it brings information about the sensitivity of the functional being minimized
with respect to the parameter being inverted in a controllable manner.

The synthetic waveforms have been generated with the following formationv
parameters: ¥, = 4 km/s, V; = 2 km/s, Ve =15 km/s, p, (bulk density) = 2.3
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gm/cm®, p, = 1.2 gm/cm®, @, = 60, g, = 60, @, = 20, and the radius is 0.10 m. We
used a Kelly source (Toks@z et al., 1983) with a center frequency wy = 10 kHz.

Figures 6 to 12 show the shape of the residual energy as a function of various
formation and borehole parameters. In each of the figures, we have kept all but one
parameter constant. We vary that parameter about the actual model and compute
the square of the difference in the pressure function (in the frequency domain)
between the varied and actual modeis.

Figures 6 and 7 point out the fact that the determination of V_ is not as well
conditioned as the determination of V. The shape of the residual energy function
(the "incoherence”) is much flatter for ¥V, than for V. This is due in part to the small
P-wave energy in the signal. Furthermore, as pointed out by Cheng et al. (1982),
there is very little P-wave energy in the guided wave packet, which is usually the
dominant arrival in a microseismogram. The P-wave velocity is nevertheless
determined by the whole waveform, rather than the mere arrival time. !t can be
shown that this increases the achievable signal-to-noise ratio compared with any
other inversion method which does not use the complete waveform. The formation
shear wave veiocity, on the other hand, is very well resolved. A small error in the
estimation of the shear wave velocity results in a large residual energy. Since a
least squares inversion minimizes the residual energy, the formation shear wave
velogity is very well constrained.

In Figure 8 cne sees that a good determination of the borehole fluid velocity is
necessary since the shape of the residual energy-function is drastically affected by
the vaiue of the fluid velocity. Note the same kind of behavior is observed for the
variation of the energy norm as a function of the borehole radius (Figure 10). It
appears therefore useful to include the caliper and independent measurements of the

horehole fluid P-wave velocity as a priori in the inversion with an appropriate error

covariance to take into account this inherent sensitivity.

Figure 11 illustrates the poor resolution of the density parameter p,. The scale
has to be magnified two orders of magnitude to see the variations as a function cf
Pp- This suggests that formation density is not well resolved in the inversion as it Is
set up at the present time. However, by using an external source of densitv
measurement as a constraint to the probiem, we may improve, the resolution of the
formation density..

In Figure 9 variations in the residual energy as a function of the P-wave quality
factor Qp are plotted. Qp influences the function in an asymmetrical manner, and the
minimum is not as sharp as for the other parameters. This suggests a
reparameterization of the inversion. !nstead of using Qp as the variable, 1/ Qp would
give the problem a better conditioning and avoid the sharp angular features in the
residual energy. Physically this makes much more sense since 1/ is a direct
measure of attenuation (amplitude decay). The variations as a function of the P-
wave attenuation are representative of the variations for all the 3 attenuation
parameters.

In Figure 12 the sensitivity to the source center frequency is plotted. One can
see that the source parameters do affect the waveform quite drastically and that it
is a potential problem since there is plenty of experimental and theoretical evidence
of the variability of the source as a function of environmental conditions. The best
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solution would be to measure the source and constrain the problem with that
measurement, or to use the Separable Inversion method to circumvent the source
inversion probiem.

Figure 13 and following illustrate the inversion of synthetic data for 4
parameters: formation P- and S-wave velocity, P-wave velocity in the borehole fluid,
and formation density. Figure 13 shows the residual energy function or incoherence
as a function of the number of iterations. We can see that the incoherence
decreases monotonically as a function of the number of iteraticns. Note that ¥ and
V. are much better behaved during the inversion than Vju and p, (Figure 14). This
|I[{15trates the fact that the introduction of the density and the P-wave velocily
creates large excursions in the parameter space. These non-physical excursions do
slow down the inversion problem and can cause divergence in the case of large
residuals. Again the behavior for the synthetic case suggests the limitations of the
tool in real situations, and the use of additional sources of informaticn to "robustify"”
the problem. One can expect therefore, without any additional a pricri knowledge,
that there will he comparatively large uncertainties on some of the ML answers. Tha
MAP criterion will have to be used in the real world to obtain more reliabie intermation
about the shear velocity and attenuation.

The evolution of the synthetic full waveform that would be generated from the
successive values of the 4-parameter vector and their spectra is shown in the last
two figures (Figures 15 and 186). One can see the significant changes in the
microseisinograms and their associated spectra as the parameters converge to the
model solution. Note that even between the last two iterations (7 and 11) thereis a
substantial change in the waveform character despite the small changes in the
parameters (Figure 14).

SUMMARY

In this paper we have formulated the full waveform inversion probiem for a simple
cylindrical borehole. The preblem is formulated in the frequency-depth domain. We
demenstrated cur algorithm using synthetic data in a simpie one source - one receiver
medel. The sensitivity and the shape of the residual energy function are studied.
The problem is well behaved. [t is shown that formation shear wave velocity has the
most influence on the residual energy function, while the formaticn comprassional
wave velocity and formation density have less influence. This information is vaiuable
for the applying of constraints in the inversion of actual field data.
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APPENDIX

The multi-receiver forward model

For a tool with N, receivers, the cbserved set of waveforms at each receiver
location z4,2,,....2) Is modelled as
r

W(e,2;) = G(w,zj,Q) X(w) + sz(w) §7=1,- -, N1, (A-1)

In matrix form the model of the pressure field for an N, receiver tool is

P(®) = G(B) X(& {(A-2)
where:
P(8) = [{P(w;,2;,8), 1=1,..N,; 7=1,..N.3]7
G(G) = [(G(Z-I,@), T G(zjse)l e :G(erse)]T
with

G(zj,@) = Diag[iG(mi,zj,@), i=1,...,.N,i]

X(n‘::) = {zx(mis’;:), =1, !NugJT

As shown in Figure 3, the matrix approximation for N, receivers is obtained by
algebraically "stacking” N, models, one for each source-receiver separation, z;. The
transfer matrix G(®) is obtained by also stacking the individual transfer matrices.
The vector P(@) has length (N, - N.) , Matrix G has dimensions (N, x ) and the
source vector has length ..

The multi-source/muiti-receiver forward model

When the tool has an array of N, diffetent sources representad by complex
vectors X, , Xy, ..X) (the Fourier spectra of each source function), a new matrix
L4

approximation is obtained by stacking N, models as follows (see also Figure 4):

For each source indexed by « the model of the pressure field for N, receivers is

PL(8) =G, (0) X, (&) fu=1, - N} (A-3)
where
P, (8) = [P (w;,2f¥),8) ,i=1, N j=1, - NJI7
G, (8 =[(--,Gz*),0), - ,G(zﬁ:),@)]T
with
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Xy (£,) = [1X(ep,8,), 1=1,.,N,31T

and z_?-(“) Is the distance between source (u) and receiver (7).

The N, models of equation {A-3) "see” the same @ and can be aggregated intc
one equation:

P(8,£) = G(®) X(£&) (A-4)

We can re-organize the equations such that at each receiver (u) the N,
waveforms are stacked. One now has the N; equations:

P(z) = G(zf*),0) X, (&) fu=1,- - N} (A-8)
with the structure shown in Figure 4. This can be written in one matrix form:
P;(8) = G;(8) X(¢) {=1, N £={(¢&)hu=1, N} (A-6)

Including all the recelvers amounts to stacking the matrix equations above M. times
into one equation:

P(®) = G(®) X(£) (A=7)

where G now has the structure shown in Figure 4. G depends on a vector parametar
@, and on the unknown source vector X.

The separabie inversion method
The function to minimize, the residual energy, is a sum of squares of functions.
The frequency domain formulaticn reveals that the problem has more structure than

the classical nonlinear least squares because the source vector X appears linearly in
the functional £:

E(B,X) = | | W-G(®) X]]? (A-8)
The approach 1o the solution of

{g% FE(8,X)

is to modify the residual energy functional F{®X) such that consideraticn of the
unknown source parameter X is deferred. The variables @ and X are separaied so
that in each [teration the solution for @ is obtained first and X is chtfained in ONE
STEP after that.

6-10
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For any fixed @ , the problem of finding the optimal source vector X
corresponding to that @ is a linear least squares probiem. The salution is found by:

X = GHB)W (A-9)

where G*(B)is the pseudo-inverse of Gat @ = 8 .

Define now a new functional £,(8) by
E,(8) = min] |W—G(8) GH@W] |2 (a-10)

One sees now that &, depends on O only and can be m:n:mlzed with respect to 8 by
means of a Gauss-Newton algorithm to give an optimal 8. So, if thera is no a priori
knowledge, the separable method is

1) min] | (1-G(©) GH@)W] |? gives B
2) X=GH® w

Golub and Pereyra (1873) had shown that this two-step method is s equivalent to
the direct inversion, provided G(®) has a constant rank around 8. By taking
advantage of this structure, one does not have to minimize the residual energy £
with respect to the source parameters X and so the size of the nonlinear problem has
heen reduced.

8-11
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Figure 1: The Cylindrical Fluid-Filled Borehole Model.
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one receiver,one source

Vector-Matrix form:

-Borehole + Formation

P'FT Data . Source

P,= Gy6)+S(§) +¢

Figure 2: The matrix approximation structure for a one source, one receiver tool.
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Multiple Receivers (N,of them)

"
B
2
LD
&

P=G({@)-S(¢) +N

N=(z.82 "

Figure 3: The multireceiver model.
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Multiple sources (N.of them)
Multiple Receivers (N, of them)

//'

Si(£) =1,

Sources
vector

LI\
oata || |\
N\

N\

P=G(6)-S(¢) +N

Figure 4: The multisource, multireceiver model.
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MEASUREMENT SPACES

THE INVERSE PROBLEM

Parameter Space

v

Measurement Space

P ‘ . -

Vs Estimation Theory v
x=Q, ™ A
e p + :

Qs Optimization o=

L p ‘ v

Figure 5: The unitary transform between the 4 measurement spaces.
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Figure 16. The spectral density evolution during inversion.
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