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Abstract— This paper presents detailed numerical calculations of rapidly, and it is of interest to find out precisely what leoél
the dielectrophoretic force in octupolar traps designed fosingle-  accuracy can be expected from this approximation. Alsodf th
cell trapping. A trap with eight planar electrodes is studied 5 yicle s situated near a field null, higher order momeritis w

for spherical and ellipsoidal particles using an indirect mple- - . . . . .
mentation of the boundary element method (BEM). Multipolar be of importance in comparison with the first order (dipole)

approximations of orders one to three are compared with the Mmoment, and the approximation will fail to predict corrgctl
full Maxwell stress tensor (MST) calculation of the electrcal the behavior of the particle.

force on spherical particles. Ellipsoidal particles are aso studied, The predictions made by the dipole model can be signifi-
but in their case only the dipolar approximation is available for cantly improved by the application of a more complete model

comparison with the MST solution. The results show that the il that includes hiah d ts. Th | .
MST calculation is only required in the study of non-spherial al Includes higher order moments. € general expresions

particles. for the multipolar approximation for a homogeneous sphere
Keywords: Dielectrophoresis, microelectrodes, boundary elé an arbitraty electric field was developed in the works by
ment, dieletrophoretic trap. Washizu [8], and Jones and Washizu [9], [10]. Schnelle
al [11] were the first to study the influence of higher order
. INTRODUCTION moments on particle behavior in dielectrophoretic traps.

When a dielectric particle is suspended in a medium of Although the multipolar approximation has been fully devel
different electrical properties, and is subjected to aisfiat oped for the case of a spherical particle, there are no éaila
non-uniform electric field, a force actuates on the particlexpressions for the higher order multipolar contributitmtghe
This force is called the dielectrophoretic (DEP) force did force for ellipsoidal particles —that could be used to appro
depending on whether the particle is forced to move towaritsate many biological particles. Furthermore, the multpo
the minimum or the maximum of the external field, it ignethod can not be used with irregularly shaped particled) su
denominated negative or positive dielectrophoresis. Aemec as the biconcave shape adopted by erythrocytes. This leaves
review of the theory behind DEP can be found in [2]. open the question of how good the dipolar approximation is

The DEP force is of great interest because biological celighen applied to realistic systems where the particle is ida s
and macromolecules behave as dielectric particles in matercomparable to the trap size and has a non-spherical shape.
AC fields, and thus their movement can be controlled by usingA precise calculation of the force can be obtained numer-
an appropriately designed electric field. Applications &M ically without resorting to the multipolar approximatioby
today include sorting [3], separation [4], and characterizconsidering the particle’s presence in the external fielduea
tion [5] of biological particles. Manipulation of viruse$][ lation and then using the Maxwell stress tensor method [12]
and DNA molecules [7] has already been demonstrated usiiagobtain the force. Initial comparative studies by Bensela
this technique. et al [13] show that even higher order multipolar calculations

The conventional theory of dielectrophoresis uses a dipofail to predict accurately the electrical forces on a sptadri
approximation to calculate the DEP force [1]. In this approxparticle when it is positioned close to the electrodes.
imation, it is assumed that only a dipole is induced on the Because a full MST calculation is more involved and takes
particle and that the particle is small enough compared aomuch longer computational time —a complete multidomain
the characteristic variation length of the external eledteld, numerical calculation must be done for each position of the
that this can be considered constant in the region surragndparticle in the trap—, it is of interest to compare it with the
the particle. In the case of single-cell traps the field cleangmultipolar approximation for particles of different shapend



sizes to find out if the increment in complexity is justified by Note that a factot /2 is included in (3) in order to account
the difference in the results. It is our objective to clarihe for the time average, under the assumption that the external
issue of whether the dipolar approximation or the equivialefield oscillates harmonically.
multipole approach used by most authors can predict accuA BEM calculation is used to find the external field pro-
rately the electrical force in dielectrophoretic singkdi¢raps. duced by the electrode arrangement, and its derivatives, in
In the following sections the theory of the dipolar anarder to find the force using this approximation. Once thelfiel
multipolar approximations is briefly introduced, followéy and its derivatives are calculated on the centre of the splaer
the complete MST solution, and then results from each simple application of the formulas above gives the total DEP
these approaches are shown and analysed. force on the particle.

Il. EQUIVALENT MULTIPOLE MODEL OF THE DEPFORCE  B. Ellipsoidal particles

In this approach the particle under consideration is sub-The induced effective moment for an ellipsoidal particle
stituted by a series of multipoles that account for the localith principal radii a, b, and ¢, can be found by examining
changes of the electric field in the region surrounding ththe limit of the electrostatic potential at a point far from
particle. This approximation is strictly valid only wheneth the ellipsoid, where ellipsoidal coordinates degenerate i
external field is not changing rapidly in the region containi spherical coordinates. Following Jones [14] the x compbnen
the particle. of the effective dipole moment due to a dielectric ellipsisd

A. Spherical particles given by:

In the simplest possible approximation, the time-averaged B 47rabc€' Ep — Ef
DEP force for a spherical particle is given by the expression P = e er + (ep — )Ly

7 9 R3eiRe K o 1 The other two components of the effective momentand
< DEP> = 2rRecRe [K (w)] V(E) @ py, are of similar form. The time-averaged dielectrophoretic
whereR is the particle radiuss; is the permittivity of the force produced by a harmonically oscillating external fiefd

fluid suspending mediung is the rms magnitude of the localthe ellipsoid is then given by the following expression:
electric field, andRe[K (w)] is the real part of the Clausius-
Mossotti factor, given by: e llipsoi 2mabc -,
J Y <FD%§ d> T~ T3 et [PxOx + pyOy + D0, B (T)
€p — Ef L
K(w)= =" (2) Where the depolarization factods,, L, and L,, are all

o+ 25 positive and interrelated as follows:
wherew is the angular frequency of the external applied

field andé; andé, are the complex dielectric permittivities of _
the fluid and the particle respectively. The complex peiwnitt O0<Li<l, =Yz (8)
ities are given byg; = & — joi/w, whereg; is the dielectric Ly+Ly+L,=1 9)
permittivity of medium i, o; is the electric conductivity of
medium i, andj is v/—1.

This is the dipolar approximation for the DEP force on a

Ex (6)

The value ofL, is given by an elliptic integral:

sphere, and it is used extensively in the literature to jotedi 7, — abe

e ds
the characteristics of DEP cell traps. 2 /0 (s +a2)\/(s +a?)(s +b?)(s + ¢2) 4o
The general expression of the DEP force in terms of its mul- Similar expressions apply for y and z by simply changing
tipolar components was obtained by Washizu and Jones [§e (s + a2) outside the square root Ky + b2) or (s + c2).
[10], and the expression of the time averageld force order  Note that this is only a first order approximation and
contribution is: therefore it will predict zero force for any particle positi

n = such that the eIIipSOid’S centre COIIeSpondS to a field null.

DEP/ = 9 n! ®) I1l. M AXWELL STRESS TENSOR DERIVATION OF THEDEP

where[-]" and (V)" represent: dot products and gradient _ FORCE _ _
operations, anqb(”) is the multipolar induced tensor of order A different approach to the calculation of the DEP force is
n: to use the Maxwell stress tensor formulation and integtage t

stress tensom over the surface of the particle:

(n) 47TEfR2n+1n (n) n—1 =
= K (W) (V)" F (4) .,
(2n+ 1N F)MST — 7§ (T - /) dA (11)
with K (") the nth order Clausius-Mossotti factor given by:

p

where i is the unit vector normal to the surface ahds
time. This is regarded as the most rigurous approach toeleriv
field-induced forces [15].

K™ ()= 2~ 5
) nép + (n + 1) ©)



The general expression for the DEP force obtained bgspectively. The system of equations is solved using the
Wang et al [12] is used in order to find out how precis&MRES iterative solver [17] with a Jacobi preconditione8][1
the multipolar approximation is when compared to this mote improve convergence.
rigurous calculation. Once the charge densitigshave been obtained the electric

The time-averaged net DEP force on a particle using MSield can be calculated exactly anywhere by applyiig=
is given by: —V¢ to equation (13):

— Ef = o = = — .
() (e s e o e e
12 B = > A @k (7 )N (7 )W‘M
Note that in this case the presence of the particle is indude J I h=1 (15)
directly in the calculations, and that no assumptions ardema - : : o _
. ! . . where 7 is the unitary vector in the direction. Higher
regarding the external field homogeneity. This means ther ev L .
A o order derivatives can also be calculated in an exact manner
when strong field inhomogeneities are present, the values 0 . . . .
the DEP force obtained using this method will be Correc?.y applying directly the derivative to the above equation.
It is expected that the results obtained using the multipola

approximation described in the previous section will warse

as the field gradient increases, and will depart from theeglu  The numerical code was validated by both comparison with
predicted by the MST method. It is of interest to find oWimpje analytical problems in 2D and 3D and direct compari-

how significant is the difference between the two methods fgpy, with available experimental values of the dielectraptio
different particle sizes and positions inside a dielediwptic 5,ce on micron-sized polystyrene beads.

trap.

V. NUMERICAL RESULTS

Once the code had been validated, several numerical tests
IV. NUMERICAL CALCULATION OF THE ELECTRIC FIELD  were caried out with two spheres of radiug:& and 10um,

In order to calculate the electric field created by the ele@S Well as with an oblate ellipsoid of axes= b = 10 um
trode setup shown in figures 1 and 2, Laplace’s equatid!d¢ = 25 um. _ o
V24 = 0, must be solved in a system with conductors - In each case the calculation of the potential with an empty
the electrodes- and piecewise homogeneous dielectries -figP was performed first and then the solution was used as
fluid and the particle. The potential is given on the eleatmd |n|t.|al guess for the calculations that included thg péetic
and the conditions of continuity of the potential and th&his produced converged results to an accuracyoof’ in the
normal component of the electric displacement acrossrdifféMRES solver in a very small number of iterations. Typically

ent dielectrics provide the boundary conditions at dieiect the solution is obtained after 14 to 18 iterations dependimg
interfaces. the position of the particle within the trap.

In order to calculate the electric field the indirect formu- It was observed that when the particle surface was close to
lation of the boundary element method (IBEM) with onlyjhe electrode surface a fine mesh was necessary in order to
sources is used [15], [16]. In this formulation the surface¥ptain converged results. This was expected due to the near-
Separating different dielectrics are rep]aced by equma|eSingU|ar behavior of some of the integrals in that case, but
polarization surface charge densities, and the surfadesba it is something to consider when doing comparisons of the
a dielectric and a conductor are replaced by a total surfadecuracy of different methods when the particle is closéio t
charge corresponding to the sum of the free surface chaRjgctrodes.
of the conductor and the polarization charge of the didlectr
Using the collocation method a system of linear equationsAs Influence of the relative particle/trap size
obtained. The surfaces are discretized with six-nodedérig
order, isoparametric triangular elements. For a node on

conductor the equation to solve is:
! S 4 (M) N3k () - ize rat
i (7) = Z/ Z %d/l (13) particle to trap size ratios are 0.2 for thesn sphere and
dmeo G YA =1 7= 7| 0.4 for the 10um sphere. It will be shown that for spherical
For a node in a dielectric interface the equation to solve ig&rticles with a particle to trap size ratio equal or lessitha
0.2 the quadrupolar term is the highest order multipole &ith
o h—6 ()i Eignific?nt influefnce in the force, and r;[ha('; the octupolarnfteL
() — f—¢cp (YN (Y T as only a significant importance in the determination of the
%) 2 (et +€p) XJ: /Aj kz::l 4k (7 )N (7) |7 — 7|3 a4 force for particles with higher particle to trap size ratitiswill
(14) also be shown that using a high multipolar order the predicte
where N;;, and g;;, are the basis function and the totaforce values are very close to the force values calculat@djus
surface charge density of thieth node in thejth element the MST method.

In this section the results for two spherical latex beads
of radius 5 and 10um in the eight electrode trap shown
in Fig. 1 are presented. The trap used has an interelectrode
distance of 50um, as shown in Fig. 2, and therefore the




(A) Sphere of r =5 pm at (0,0,z) um (B) Sphere of r =5 pm at (x,0,0) um
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Fig. 2. Frontal view of the geometry used for the dielectanetic trap.
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1) Sphere of radius xm: In this case a series of calcula- ' Wll
. . 7
tions for positions along axes z, andx = y have been made "A"/"&";"//"‘;/ﬁﬁ”

with the particle moving away from the centre of the trap.
Also the force with respect to the distance from the eleesod
has been investigated at a point in the middle of one of the
guadrants of the trap; = y = 12.5 um.

The comparison between the results obtained using the
multipolar model and the Maxwell stress tensor calculation
are shown in Fig. 3. Fig. 4. Surface density plot ofZ| for a sphere of radius mm in the

It is clear that for the symmetry axesandz, where the field planez = 17.5 um. Notice the significant disturbance of the field around the
intensity is zero, the dipolar model fails to predict theckor Particle.
on the particle —Fig. 3(A) and 3(B). Although the dipolar
approximation fails completely in these cases, the highdero
multipolar approximations show the correct trends andasluterms represent with increasingly accuracy the deformatio
in the evolution of the force with the distance from the centiof the electric field produced by the presence of the particle
of the trap. Note that the contribution from the octupolante Although the change in the field intensity in the region
is of small importance. surrounding the particle is significant for positions cldee

When the comparison is made away from axesnd z, the trap electrodes, as shown in Fig. 4, the simple geometry
the agreement between the dip0|ar approximation and mbthe partiCIe and its relatively small size make the inidos
MST calculation is much better. Still, as shown in Fig. 3(C9f multipolar terms of order higher than 2 unnecessary.
and 3(D), the dipolar approximation incurs significant grro  2) Sphere of radius 1@m: The same cases were investi-
but using a quadrupolar order of approximation improves tigated for a larger sphere, in order to compare results #irect
solution so much that it never differs from the MST solutio/\gain, the comparison between the results obtained usiag th
by more than 5%. This is a remarkable accuracy for a vemultipolar model and the Maxwell stress tensor calculation
simple method of calculating the force. are shown in Fig. 5.

Notice that in all cases the changes introduced by addingAs expected the force predicted by the dipolar approxima-
increasingly higher order multipolar terms is limited, ahdt tion when the particle is in positions along axes of symmetry
including multipolar terms of order higher than the quadidep in the trap is zero —Figs. 5(A) and 5(B). In the same
produces no significant improvement in the solution. Thimanner as in the previous case, the dipolar approximatitn fa
can be explained by recalling that the different multipolazompletely in these regions, but the higher order terms show
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Fig. 6. Surface density plot QE| for a sphere of radius 10m in the plane
z = 10 pm. The significant disturbance of the field around the particds a
more complicated shape than in the case of the smaller sphere

agreement with the full Maxwell stress tensor calculatiahs
a fraction of the computational cost.

B. Influence of the particle shape: Oblate ellipsoid

the correct behavior of the force. While a spherical shape can be used to approximate some
In this case the particle has a considerable size in comielogical cells, ellipsoidal shapes are far more flexibihal a

parison with the trap, and produces a higher deformation afow a much closer representation of cells with irregular

the field in its surroundings. Compare figures 4 and 6 to sehapes. For the present calculations an oblate ellipsaised,

how the deformation of the field adopts a more complicated shown in Fig. 7. Oblate shapes can be used to approximate

shape in this case. This creates the need for higher orélerticular particles and cells such as the biconcave human

multipolar terms to be included in the calculations. Noticerythrocytes.

how the octupolar term (n=3) produces significant changes inUnfortunately, only a dipolar approximation is availabte f

the force values both in figures 5(A) and 5(B). ellipsoids in the literature [18]. This makes the calcuati
When positions away from the regions of zero electric fielil in axis of symmetry of the trap when using the dipolar

are studied —Fig. 5(C) and 5(D), the agreement betweapproximation, since the prediction is of zero force. For

the MST calculation and the dipolar prediction is bettere Thpositions outside the axis of symmetry the quality of the

dipolar approximation shows the correct trends in the foremlution is mediocre on average, and it worsens with prayimi

in these positions but, as in the previous case, the valueshe electrodes, as shown in Fig. 8.

predicted depart significantly from the ones predicted k& th Only for positions very close to the electrodes the error is

MST approach. The inclusion of the quadrupolar and octupokignificant at the chosen position= y = 12.5 um in Fig.

terms corrects most of the error, and produces very go8(B). However, the average quality of the dipolar approxima



tion is not very good, as the results of the comparison along]
thex = y axis show in Fig. 8(A). Errors of up to 40% happen
in the positions close to the centre of the trap, and even far
away from this symmetry point the error stays between 10%g]
and 20% for most of the positions. Good agreement with the
MST calculation of the force is only found in a very small 7]
region, where the dipolar solution goes from overestingatin
the force to underestimating it. (8]

Since the axist = y is where the best possible results cang
be obtained when using the dipolar approach —the prediction
worsens as the positions close in any symmetry axis of tH8l
trap—, a better model than the dipolar one is needed in thg]
case of irregularly shaped particles in single-cell traps.

In view of these results a detailed calculation of the forces
on non-spherical particles requires the use of the Maxwi]"z]
stress tensor method for the calculation of the force.

VI. CONCLUSIONS [13]

After careful comparison of the DEP forces in an eight
electrode trap it is clear that very precise calculationshef
forces can be done for spherical particles using the ecgrival
multipole method when higher order terms are included. Tl
dipolar approximation should only be used for rough esu’ﬂsat[15]
of the force, and attention should be paid to the fact that it
produces zero force predictions at points where the field is
zero. 16

In the case of spherical particles, a multipolar approxiomat
of order 2 or 3, depending on the particle to trap size ratif,’]
produces results of very good quality to be of use in the
optimization of the trap design. Since all the trends in the
forces are correctly represented by this approximatiomsa f[18]
design optimization can be done by changing trap parameters
and studying the increase or decrease of the holding forces
with each change. This will also be of some help to gauge the
behavior of non-spherical particles in the trap, althoulgé t
designer should be aware of the limitations in this lateecas

The calculations show that the multipolar approximation
currently being used in the literature provides a good appro
imation for the DEP force on spherical particles. The use of
the dipolar approximation for ellipsoids should be donehwit
care, however, since the lack of higher order expressions fo
this case severely limits its accuracy.
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