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Abstract— This paper presents detailed numerical calculations of
the dielectrophoretic force in octupolar traps designed for single-
cell trapping. A trap with eight planar electrodes is studied
for spherical and ellipsoidal particles using an indirect imple-
mentation of the boundary element method (BEM). Multipolar
approximations of orders one to three are compared with the
full Maxwell stress tensor (MST) calculation of the electrical
force on spherical particles. Ellipsoidal particles are also studied,
but in their case only the dipolar approximation is available for
comparison with the MST solution. The results show that the full
MST calculation is only required in the study of non-spherical
particles.
Keywords:Dielectrophoresis, microelectrodes, boundary ele-
ment, dieletrophoretic trap.

I. I NTRODUCTION

When a dielectric particle is suspended in a medium of
different electrical properties, and is subjected to a spatially
non-uniform electric field, a force actuates on the particle.
This force is called the dielectrophoretic (DEP) force [1],and
depending on whether the particle is forced to move towards
the minimum or the maximum of the external field, it is
denominated negative or positive dielectrophoresis. A recent
review of the theory behind DEP can be found in [2].

The DEP force is of great interest because biological cells
and macromolecules behave as dielectric particles in external
AC fields, and thus their movement can be controlled by using
an appropriately designed electric field. Applications of DEP
today include sorting [3], separation [4], and characteriza-
tion [5] of biological particles. Manipulation of viruses [6]
and DNA molecules [7] has already been demonstrated using
this technique.

The conventional theory of dielectrophoresis uses a dipolar
approximation to calculate the DEP force [1]. In this approx-
imation, it is assumed that only a dipole is induced on the
particle and that the particle is small enough compared to
the characteristic variation length of the external electric field,
that this can be considered constant in the region surrounding
the particle. In the case of single-cell traps the field changes

rapidly, and it is of interest to find out precisely what levelof
accuracy can be expected from this approximation. Also if the
particle is situated near a field null, higher order moments will
be of importance in comparison with the first order (dipole)
moment, and the approximation will fail to predict correctly
the behavior of the particle.

The predictions made by the dipole model can be signifi-
cantly improved by the application of a more complete model
that includes higher order moments. The general expresions
for the multipolar approximation for a homogeneous sphere
in an arbitraty electric field was developed in the works by
Washizu [8], and Jones and Washizu [9], [10]. Schnelleet
al [11] were the first to study the influence of higher order
moments on particle behavior in dielectrophoretic traps.

Although the multipolar approximation has been fully devel-
oped for the case of a spherical particle, there are no available
expressions for the higher order multipolar contributionsto the
force for ellipsoidal particles —that could be used to approx-
imate many biological particles. Furthermore, the multipolar
method can not be used with irregularly shaped particles, such
as the biconcave shape adopted by erythrocytes. This leaves
open the question of how good the dipolar approximation is
when applied to realistic systems where the particle is of a size
comparable to the trap size and has a non-spherical shape.

A precise calculation of the force can be obtained numer-
ically without resorting to the multipolar approximation,by
considering the particle’s presence in the external field calcu-
lation and then using the Maxwell stress tensor method [12]
to obtain the force. Initial comparative studies by Benselama
et al [13] show that even higher order multipolar calculations
fail to predict accurately the electrical forces on a spherical
particle when it is positioned close to the electrodes.

Because a full MST calculation is more involved and takes
a much longer computational time —a complete multidomain
numerical calculation must be done for each position of the
particle in the trap—, it is of interest to compare it with the
multipolar approximation for particles of different shapes and



sizes to find out if the increment in complexity is justified by
the difference in the results. It is our objective to clarifythe
issue of whether the dipolar approximation or the equivalent
multipole approach used by most authors can predict accu-
rately the electrical force in dielectrophoretic single-cell traps.

In the following sections the theory of the dipolar and
multipolar approximations is briefly introduced, followedby
the complete MST solution, and then results from each of
these approaches are shown and analysed.

II. EQUIVALENT MULTIPOLE MODEL OF THE DEP FORCE

In this approach the particle under consideration is sub-
stituted by a series of multipoles that account for the local
changes of the electric field in the region surrounding the
particle. This approximation is strictly valid only when the
external field is not changing rapidly in the region containing
the particle.

A. Spherical particles

In the simplest possible approximation, the time-averaged
DEP force for a spherical particle is given by the expression:

〈

~FDEP

〉

= 2πR3εfRe [K (ω)]∇(E2) (1)

whereR is the particle radius,εf is the permittivity of the
fluid suspending medium,E is the rms magnitude of the local
electric field, andRe[K(ω)] is the real part of the Clausius-
Mossotti factor, given by:

K(ω) =
ε̃p − ε̃f

ε̃p + 2ε̃f
(2)

where ω is the angular frequency of the external applied
field andε̃f and ε̃p are the complex dielectric permittivities of
the fluid and the particle respectively. The complex permittiv-
ities are given bỹεi = εi − jσi/ω, whereεi is the dielectric
permittivity of medium i, σi is the electric conductivity of
medium i, andj is

√
−1.

This is the dipolar approximation for the DEP force on a
sphere, and it is used extensively in the literature to predict
the characteristics of DEP cell traps.

The general expression of the DEP force in terms of its mul-
tipolar components was obtained by Washizu and Jones [9],
[10], and the expression of the time averagednth force order
contribution is:

〈

~F
(n)
DEP

〉

=
1

2

p(n)[·]n (∇)
n ~E

n!
(3)

where[·]n and(∇)
n representn dot products and gradient

operations, andp(n) is the multipolar induced tensor of order
n:

p(n) =
4πεfR

2n+1n

(2n + 1)!!
K(n)(ω) (∇)

n−1 ~E (4)

with K(n) thenth order Clausius-Mossotti factor given by:

K(n)(ω) =
ε̃p − ε̃f

nε̃p + (n + 1)ε̃f
(5)

Note that a factor1/2 is included in (3) in order to account
for the time average, under the assumption that the external
field oscillates harmonically.

A BEM calculation is used to find the external field pro-
duced by the electrode arrangement, and its derivatives, in
order to find the force using this approximation. Once the field
and its derivatives are calculated on the centre of the sphere, a
simple application of the formulas above gives the total DEP
force on the particle.

B. Ellipsoidal particles

The induced effective moment for an ellipsoidal particle
with principal radii a, b, and c, can be found by examining
the limit of the electrostatic potential at a point far from
the ellipsoid, where ellipsoidal coordinates degenerate into
spherical coordinates. Following Jones [14] the x component
of the effective dipole moment due to a dielectric ellipsoidis
given by:

px =
4πabc

3
εf

[

εp − εf

εf + (εp − εf)Lx

]

Ex (6)

The other two components of the effective moment,py and
py, are of similar form. The time-averaged dielectrophoretic
force produced by a harmonically oscillating external fieldon
the ellipsoid is then given by the following expression:

〈

~F ellipsoid
DEP

〉

=
2πabc

3
εf [px∂x + py∂y + pz∂z] ~E (7)

Where the depolarization factorsLx, Ly, and Lz, are all
positive and interrelated as follows:

0 ≤ Li ≤ 1, i = x, y, z (8)

Lx + Ly + Lz = 1 (9)

The value ofLx is given by an elliptic integral:

Lx =
abc

2

∫

∞

0

ds

(s + a2)
√

(s + a2)(s + b2)(s + c2)
(10)

Similar expressions apply for y and z by simply changing
the (s + a2) outside the square root by(s + b2) or (s + c2).

Note that this is only a first order approximation and
therefore it will predict zero force for any particle position
such that the ellipsoid’s centre corresponds to a field null.

III. M AXWELL STRESS TENSOR DERIVATION OF THEDEP
FORCE

A different approach to the calculation of the DEP force is
to use the Maxwell stress tensor formulation and integrate the
stress tensorT over the surface of the particle:

~F (t)MST
DEP =

∮

(T · ~n) dA (11)

where~n is the unit vector normal to the surface andt is
time. This is regarded as the most rigurous approach to derive
field-induced forces [15].



The general expression for the DEP force obtained by
Wang et al [12] is used in order to find out how precise
the multipolar approximation is when compared to this more
rigurous calculation.

The time-averaged net DEP force on a particle using MST
is given by:

〈

~FMST
DEP

〉

=
εf

4

∮

{[(

~Ef
~E∗

f + ~E∗

f
~Ef

)

− | ~Ef |2I
]

· ~n
}

dA

(12)
Note that in this case the presence of the particle is included

directly in the calculations, and that no assumptions are made
regarding the external field homogeneity. This means that even
when strong field inhomogeneities are present, the values of
the DEP force obtained using this method will be correct.
It is expected that the results obtained using the multipolar
approximation described in the previous section will worsen
as the field gradient increases, and will depart from the values
predicted by the MST method. It is of interest to find out
how significant is the difference between the two methods for
different particle sizes and positions inside a dielectrophoretic
trap.

IV. N UMERICAL CALCULATION OF THE ELECTRIC FIELD

In order to calculate the electric field created by the elec-
trode setup shown in figures 1 and 2, Laplace’s equation,
∇2φ = 0, must be solved in a system with conductors -
the electrodes- and piecewise homogeneous dielectrics -the
fluid and the particle. The potential is given on the electrodes,
and the conditions of continuity of the potential and the
normal component of the electric displacement across differ-
ent dielectrics provide the boundary conditions at dielectric
interfaces.

In order to calculate the electric field the indirect formu-
lation of the boundary element method (IBEM) with only
sources is used [15], [16]. In this formulation the surfaces
separating different dielectrics are replaced by equivalent
polarization surface charge densities, and the surfaces between
a dielectric and a conductor are replaced by a total surface
charge corresponding to the sum of the free surface charge
of the conductor and the polarization charge of the dielectric.
Using the collocation method a system of linear equations is
obtained. The surfaces are discretized with six-noded, higher
order, isoparametric triangular elements. For a node on a
conductor the equation to solve is:

φi(~r) =
1

4πε0

∑

j

∫

Aj

k=6
∑

k=1

qjk(~r′)Njk(~r′)

|~r − ~r′| dA (13)

For a node in a dielectric interface the equation to solve is:

qi(~r) =
εf − εp

2π(εf + εp)

∑

j

∫

Aj

k=6
∑

k=1

qjk(~r′)Njk(~r′)
(~r − ~r′) · ~n
|~r − ~r′|3 dA

(14)
where Njk and qjk are the basis function and the total

surface charge density of thekth node in thejth element

respectively. The system of equations is solved using the
GMRES iterative solver [17] with a Jacobi preconditioner [18]
to improve convergence.

Once the charge densitiesqi have been obtained the electric
field can be calculated exactly anywhere by applying~E =
−∇φ to equation (13):

Ei(~r) =
1

4πε0

∑

j

∫

Aj

k=6
∑

k=1

qjk(~r′)Njk(~r′)
(~r − ~r′) · î
|~r − ~r′|3 dA

(15)
where î is the unitary vector in thei direction. Higher

order derivatives can also be calculated in an exact manner
by applying directly the derivative to the above equation.

V. NUMERICAL RESULTS

The numerical code was validated by both comparison with
simple analytical problems in 2D and 3D and direct compari-
son with available experimental values of the dielectrophoretic
force on micron-sized polystyrene beads.

Once the code had been validated, several numerical tests
were caried out with two spheres of radius 5µm and 10µm,
as well as with an oblate ellipsoid of axesa = b = 10 µm
andc = 2.5 µm.

In each case the calculation of the potential with an empty
trap was performed first and then the solution was used as
initial guess for the calculations that included the particle.
This produced converged results to an accuracy of10−6 in the
GMRES solver in a very small number of iterations. Typically
the solution is obtained after 14 to 18 iterations dependingon
the position of the particle within the trap.

It was observed that when the particle surface was close to
the electrode surface a fine mesh was necessary in order to
obtain converged results. This was expected due to the near-
singular behavior of some of the integrals in that case, but
it is something to consider when doing comparisons of the
accuracy of different methods when the particle is close to the
electrodes.

A. Influence of the relative particle/trap size

In this section the results for two spherical latex beads
of radius 5 and 10µm in the eight electrode trap shown
in Fig. 1 are presented. The trap used has an interelectrode
distance of 50µm, as shown in Fig. 2, and therefore the
particle to trap size ratios are 0.2 for the 5µm sphere and
0.4 for the 10µm sphere. It will be shown that for spherical
particles with a particle to trap size ratio equal or less than
0.2 the quadrupolar term is the highest order multipole witha
significant influence in the force, and that the octupolar term
has only a significant importance in the determination of the
force for particles with higher particle to trap size ratios. It will
also be shown that using a high multipolar order the predicted
force values are very close to the force values calculated using
the MST method.
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Fig. 1. Top view of the geometry used for the dielectrophoretic trap.
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Fig. 2. Frontal view of the geometry used for the dielectrophoretic trap.

1) Sphere of radius 5µm: In this case a series of calcula-
tions for positions along axesx, z, andx = y have been made
with the particle moving away from the centre of the trap.
Also the force with respect to the distance from the electrodes
has been investigated at a point in the middle of one of the
quadrants of the trap,x = y = 12.5 µm.

The comparison between the results obtained using the
multipolar model and the Maxwell stress tensor calculation
are shown in Fig. 3.

It is clear that for the symmetry axesx andz, where the field
intensity is zero, the dipolar model fails to predict the force
on the particle —Fig. 3(A) and 3(B). Although the dipolar
approximation fails completely in these cases, the higher order
multipolar approximations show the correct trends and values
in the evolution of the force with the distance from the centre
of the trap. Note that the contribution from the octupolar term
is of small importance.

When the comparison is made away from axesx and z,
the agreement between the dipolar approximation and the
MST calculation is much better. Still, as shown in Fig. 3(C)
and 3(D), the dipolar approximation incurs significant error,
but using a quadrupolar order of approximation improves the
solution so much that it never differs from the MST solution
by more than 5%. This is a remarkable accuracy for a very
simple method of calculating the force.

Notice that in all cases the changes introduced by adding
increasingly higher order multipolar terms is limited, andthat
including multipolar terms of order higher than the quadrupole
produces no significant improvement in the solution. This
can be explained by recalling that the different multipolar

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

 0  5  10  15  20

F
z 

(p
N

)

z (µm)

(A) Sphere of r = 5 µm at (0,0,z) µm

MST 
n = 1
n = 2
n = 3

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

 0  5  10  15  20  25

F
x 

(p
N

)

x (µm)

(B) Sphere of r = 5 µm at (x,0,0) µm

MST 
n = 1
n = 2
n = 3

-80

-70

-60

-50

-40

-30

-20

-10

0

 0  5  10  15  20

F
z 

(p
N

)

z (µm)

(C) Sphere of r = 5 µm at (12.5,12.5,z) µm

MST 
n = 1
n = 2
n = 3

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

 0  5  10  15  20  25

F
xy

 (
pN

)

r (µm)

(D) Sphere of r = 5 µm at (x,x,0) µm

MST 
n = 1
n = 2
n = 3

Fig. 3. Force on a sphere of radius 5µm moving away from the center of
the trap.
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Fig. 4. Surface density plot of| ~E| for a sphere of radius 5µm in the
planez = 17.5 µm. Notice the significant disturbance of the field around the
particle.

terms represent with increasingly accuracy the deformation
of the electric field produced by the presence of the particle.
Although the change in the field intensity in the region
surrounding the particle is significant for positions closeto
the trap electrodes, as shown in Fig. 4, the simple geometry
of the particle and its relatively small size make the inclusion
of multipolar terms of order higher than 2 unnecessary.

2) Sphere of radius 10µm: The same cases were investi-
gated for a larger sphere, in order to compare results directly.
Again, the comparison between the results obtained using the
multipolar model and the Maxwell stress tensor calculation
are shown in Fig. 5.

As expected the force predicted by the dipolar approxima-
tion when the particle is in positions along axes of symmetry
in the trap is zero —Figs. 5(A) and 5(B). In the same
manner as in the previous case, the dipolar approximation fails
completely in these regions, but the higher order terms show
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the trap.
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the correct behavior of the force.
In this case the particle has a considerable size in com-

parison with the trap, and produces a higher deformation of
the field in its surroundings. Compare figures 4 and 6 to see
how the deformation of the field adopts a more complicated
shape in this case. This creates the need for higher order
multipolar terms to be included in the calculations. Notice
how the octupolar term (n=3) produces significant changes in
the force values both in figures 5(A) and 5(B).

When positions away from the regions of zero electric field
are studied —Fig. 5(C) and 5(D), the agreement between
the MST calculation and the dipolar prediction is better. The
dipolar approximation shows the correct trends in the force
in these positions but, as in the previous case, the values
predicted depart significantly from the ones predicted by the
MST approach. The inclusion of the quadrupolar and octupolar
terms corrects most of the error, and produces very good
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Fig. 7. Oblate ellipsoid witha = b.
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away from the center of the trap.

agreement with the full Maxwell stress tensor calculationsat
a fraction of the computational cost.

B. Influence of the particle shape: Oblate ellipsoid

While a spherical shape can be used to approximate some
biological cells, ellipsoidal shapes are far more flexible and
allow a much closer representation of cells with irregular
shapes. For the present calculations an oblate ellipsoid isused,
as shown in Fig. 7. Oblate shapes can be used to approximate
lenticular particles and cells such as the biconcave human
erythrocytes.

Unfortunately, only a dipolar approximation is available for
ellipsoids in the literature [18]. This makes the calculation
fail in axis of symmetry of the trap when using the dipolar
approximation, since the prediction is of zero force. For
positions outside the axis of symmetry the quality of the
solution is mediocre on average, and it worsens with proximity
to the electrodes, as shown in Fig. 8.

Only for positions very close to the electrodes the error is
significant at the chosen positionx = y = 12.5 µm in Fig.
8(B). However, the average quality of the dipolar approxima-



tion is not very good, as the results of the comparison along
thex = y axis show in Fig. 8(A). Errors of up to 40% happen
in the positions close to the centre of the trap, and even far
away from this symmetry point the error stays between 10%
and 20% for most of the positions. Good agreement with the
MST calculation of the force is only found in a very small
region, where the dipolar solution goes from overestimating
the force to underestimating it.

Since the axisx = y is where the best possible results can
be obtained when using the dipolar approach —the prediction
worsens as the positions close in any symmetry axis of the
trap—, a better model than the dipolar one is needed in the
case of irregularly shaped particles in single-cell traps.

In view of these results a detailed calculation of the forces
on non-spherical particles requires the use of the Maxwell
stress tensor method for the calculation of the force.

VI. CONCLUSIONS

After careful comparison of the DEP forces in an eight
electrode trap it is clear that very precise calculations ofthe
forces can be done for spherical particles using the equivalent
multipole method when higher order terms are included. The
dipolar approximation should only be used for rough estimates
of the force, and attention should be paid to the fact that it
produces zero force predictions at points where the field is
zero.

In the case of spherical particles, a multipolar approximation
of order 2 or 3, depending on the particle to trap size ratio,
produces results of very good quality to be of use in the
optimization of the trap design. Since all the trends in the
forces are correctly represented by this approximation, a fast
design optimization can be done by changing trap parameters
and studying the increase or decrease of the holding forces
with each change. This will also be of some help to gauge the
behavior of non-spherical particles in the trap, although the
designer should be aware of the limitations in this later case.

The calculations show that the multipolar approximation
currently being used in the literature provides a good approx-
imation for the DEP force on spherical particles. The use of
the dipolar approximation for ellipsoids should be done with
care, however, since the lack of higher order expressions for
this case severely limits its accuracy.
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