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Abstract

We study games in which the decision to exercise an option is a signal of private information

to outsiders, whose beliefs a¤ect the utility of the decision maker. Signaling incentives dis-

tort the timing of exercise, and the direction of distortion depends on whether the decision�

maker�s utility increases or decreases in outsiders�belief about the payo¤ from exercise. In

the former case, signaling incentives erode the value of the option to wait and speed up

option exercise, while in the latter case option exercise is delayed. We demonstrate the

model�s implications through four corporate �nance settings: investment under managerial

myopia, venture capital grandstanding, investment under cash �ow diversion, and product

market competition.
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The real options approach to investment and other corporate �nance decisions has be-

come an increasingly important area of research in �nancial economics. The main under-

lying concept is that an investment opportunity is valuable not only because of associated

cash �ows but also because the decision to invest can be postponed. As a result, when mak-

ing the investment decision, one must take into account both the direct costs of investment

and the indirect costs of foregoing the option to invest in the future. The applications of

the real options framework have become quite broad.1

One aspect that is typically ignored in standard models is that most real option exercise

decisions are made under asymmetric information: the decision maker is better informed

about the value of the option than outsiders. Given the importance of asymmetric infor-

mation in corporate �nance, it is useful to understand how it a¤ects real option exercise

decisions.2 In this paper, we explore this issue by incorporating information asymmetry into

real options modeling. We consider a setting that is �exible enough to handle a variety of

real world examples, characterize the e¤ects of asymmetric information, and then illustrate

the model using four speci�c applications: investment under managerial myopia, venture

capital grandstanding, investment under cash �ow diversion by the manager, and product

market entry decisions by two asymmetrically informed �rms.

In the presence of asymmetric information, the exercise strategy of a real option is an

important information transmission mechanism. Outsiders learn information about the

decision maker from observing the exercise (or lack of exercise) of the option, and thereby

change their assessment of the decision maker. In turn, because the decision maker is
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aware of this information transmission e¤ect, the option exercise strategy is shaped to

take advantage of it. To provide further motivation for the study, consider two examples

of option exercise decisions, where asymmetric information and signaling are likely to be

especially important.

Example 1. Delegated investment decisions in corporations. In most modern

corporations, the owners of the �rm delegate investment decisions to the manager. There is

substantial asymmetric information: the manager is typically much better informed about

the underlying cash �ows of the investment project than the shareholders. In this context,

the manager�s decision when to invest transmits information about the project�s net present

value (NPV). While in some agency settings the manager may want to signal higher project

values to boost her future compensation, in other agency settings the manager may want to

signal a lower project NPV to divert more value for her own private consumption. In either

setting, however, the manager will take this information transmission e¤ect into account

when deciding when to invest.

Example 2. Exit decisions in the venture capital industry. In the venture

capital (VC) industry, there is substantial asymmetric information about the value of the

fund�s portfolio companies, since the VC �rm that manages the fund has a much better

information about the fund�s portfolio companies than the fund�s outside investors. In this

context, the �rm�s decision when to sell a portfolio company transmits information about

its value, and hence impacts outsiders� inferences of the �rm�s investment skill. Because

investor inferences of the �rm�s investment skill impact the �rm�s future fund-raising ability,
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the �rm will take this information transmission e¤ect into account when deciding when to

sell a portfolio company.

We call such interactions real options signaling games, and study them in detail in this

paper. We begin our study with a general model of option exercise under asymmetric

information. Speci�cally, we consider a decision maker whose payo¤ from option exer-

cise is comprised of two components. The �rst component is simply some fraction of the

project�s payo¤. The second component, which we call the belief component, depends on

outsiders�assessment of the decision�maker�s type. The decision�maker�s type determines

the project�s NPV and is the private information of the decision maker. Our central in-

terest is in separating equilibria �equilibria in which the decision maker reveals her type

through the option exercise strategy.3 We characterize a separating equilibrium of the gen-

eral model, and prove that under standard regularity conditions it exists and is unique. The

equilibrium is determined by a di¤erential equation given by local incentive compatibility.

We show that the implied option exercise behavior di¤ers signi�cantly from traditional

real options models. The �rst-best (symmetric information) exercise threshold is never

an equilibrium outcome, except for the most extreme type: because the decision�maker�s

utility depends on outsiders�belief about the decision�maker�s type, there is an incentive

to deviate from the symmetric information threshold to mimic a di¤erent type and thereby

take advantage of outsiders� incorrect belief. While information asymmetry distorts the

timing of option exercise, the direction of the e¤ect is ambiguous and depends on the

nature of the interactions between the decision maker and outsiders.
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The �rst contribution of our paper is the characterization of the direction of distortion.

We show that the direction of distortion depends on a simple and intuitive characteristic:

the derivative of the decision�maker�s payo¤ with respect to the belief of outsiders about

the decision�maker�s type. If the decision maker bene�ts from outsiders believing that

the project�s value is higher than in reality, then signaling incentives lead to earlier option

exercise than in the case of symmetric information. In contrast, if the decision maker

bene�ts from outsiders believing that the project�s value is lower than in reality, then

the option is exercised later than in the case of symmetric information. The intuition

underlying this result comes from the fact that earlier exercise is a signal of the better

quality of the project. For example, other things equal, an oil-producing �rm decides to

drill an oil well at a lower oil price threshold when it believes that the quality of the oil

well is higher. Because of this, if the decision maker bene�ts from outsiders believing

that the project�s quality is higher (lower) than in reality, she has incentives to deviate

from the �rst-best exercise threshold by exercising the option marginally earlier (later) and

attempting to fool the market into believing that the project�s quality is higher (lower)

than in reality. In equilibrium, the exercise threshold will be lowered (raised) to the point

at which the decision�maker�s marginal costs of ine¢ ciently early (late) exercise exactly

o¤set her marginal bene�ts from fooling outsiders. Importantly, outsiders are rational.

They are aware that the decision maker shapes the exercise strategy to a¤ect their belief.

As a result, in equilibrium outsiders always correctly infer the private information of the

agent. However, even though the private information is always revealed in equilibrium,
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signal-jamming occurs: the exercise thresholds of all types, except for the most extreme

type, are di¤erent from the �rst-best case and are such that no type has an incentive to

fool outsiders.

The second contribution of our paper is illustrating the general model with four cor-

porate �nance applications that put additional structure on the belief component of the

decision�maker�s payo¤: investment under managerial myopia, venture capital grandstand-

ing, investment under cash �ow diversion by the manager, and product market entry deci-

sions by two asymmetrically informed �rms. The �rst application we consider is a timing

analog to the myopia model of Stein (1989). We consider a public corporation, in which

the investment decision is delegated to a manager, who has superior information about

the project�s NPV. As in Stein (1989), the manager is myopic in that she cares not only

about the long-term performance of the company but also about the short-term stock price.

The timing of investment reveals the manager�s private information about the project and

thereby a¤ects the stock price. As a result, the manager invests ine¢ ciently by exercising

her investment option too early in an attempt to fool the market into overestimating the

project�s NPV and thereby in�ating the current stock price.

The second application deals with the VC industry. As discussed in Gompers (1996),

younger VC �rms often take companies public earlier than older VC �rms to establish a

reputation and successfully raise capital for new funds. Gompers terms this phenomenon

�grandstanding�and suggests that inexperienced VC �rms employ early timing of initial

public o¤erings (IPOs) as a signal of their ability to form higher-quality portfolios. We
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formalize this idea in a two-stage model of VC investment. An inexperienced VC �rm

invests limited partners�money in the �rst round and then decides when to take its portfolio

company public. Limited partners update their estimate of the general partner�s investment-

picking ability by observing when the decision to take the portfolio company public is made

and use this estimate when deciding how much to invest in the second round. Because the

amount of second round �nancing is positively related to the limited partners�estimate of

the general partner�s ability, the general partner has an incentive to fool the limited partners

into believing that her ability is higher. Since an earlier IPO is a signal of better quality

of the inexperienced general partner, signaling incentives lead to earlier than optimal exit

timing of inexperienced general partners, consistent with the grandstanding phenomenon

of Gompers (1996).

The other two applications belong to the case of the decision maker bene�ting more

when outsiders believe that the project�s NPV is lower than in reality, and thus imply an

ine¢ ciently delayed option exercise. Similar to the �rst application, the third application

studies a delegated investment decision in a corporation. However, unlike the second appli-

cation, the nature of the agency con�ict is di¤erent. Speci�cally, we consider a setting in

which a manager can divert a portion of the project�s cash �ows for private consumption,

which makes the problem a timing analogue of the literature on agency, asymmetric infor-

mation, and capital budgeting (e.g., Harris, Kriebel, and Raviv 1982; Stulz 1990; Bernardo,

Cai, and Luo 2001). In this application, private information gives the manager an incentive

to delay investment so that outside investors underestimate the true NPV of the project,
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which allows the manager to divert more without being caught. This creates incentives to

fool outside investors by investing as if the project was worse than in reality and thereby

leads to later investment than in the case of symmetric information. In equilibrium outside

investors correctly infer the NPV of the project, but still signal-jamming occurs: investment

is ine¢ ciently delayed to prevent the manager from fooling outside investors.

Finally, the fourth application we consider is sequential entry into a product market

in the duopoly framework outlined in Chapter 9 of Dixit and Pindyck (1994). The major

distinction of our application is that we relax the assumption that both �rms observe the

potential NPV from launching the new product. Instead, we assume that the two �rms are

asymmetrically informed: one �rm knows the project�s NPV, while the other learns it from

observing the investment (or lack of investment) of the better informed �rm. As a result,

the better informed �rm has an incentive to delay investment to signal that the quality of

the project is worse than in reality and thereby delay the entry of its competitor and enjoy

monopoly power for a longer period of time. Thus, the timing of investment is ine¢ ciently

delayed. However, the under-informed �rm rationally anticipates the delay of investment

by the better informed �rm, so in equilibrium the timing of investment reveals the NPV of

the product truthfully.

Our �ndings have a number of implications. First, the e¤ect of information asymmetry

on investment timing is far from straightforward. In fact, information asymmetry can both

speed up and delay investment, thus leading to overinvestment and underinvestment, re-

spectively. The direction of distortion depends on the nature of the agency con�ict between
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the manager and shareholders. For example, both the �rst and the third applications deal

with corporate investment under asymmetric information and agency, but have di¤erent

implications for the e¤ect of information asymmetry on investment. If the agency problem

is in managerial short-termism, then asymmetric information leads to earlier investment. In

contrast, if the agency problem is in the manager�s ability to divert cash �ows for personal

consumption, then asymmetric information leads to later investment.

Second, because the degree of distortion depends on a simple and intuitive measure, one

can evaluate the qualitative e¤ect of asymmetric information on the timing of investment

even in complicated settings with multiple agency con�icts of di¤ering natures. Clearly,

in the real world, there are many potential agency con�icts, including managerial short-

termism and the ability to divert cash �ows among others. One can obtain the resulting

e¤ect of asymmetric information by looking at the e¤ect on the manager�s payo¤ of a

marginal change in the belief of outsiders. This characterization can be important for

empirical research as it implies a clear-cut relation between investment, on the one hand,

and the complicated structure of managerial incentives, on the other hand.

Finally, regarding the last application, our �ndings demonstrate that competitive ef-

fects on investment can be signi�cantly weakened if the competitors are asymmetrically

informed about the value of the investment opportunity. A substantial literature on real

options (e.g., Williams 1993; and Grenadier 2002) argues that the fear of being preempted

by a rival erodes the value of the option to wait and, as a consequence, speeds up invest-

ment. However, when the competitors are asymmetrically informed about the investment
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opportunity, better informed �rms have incentives to fool the uninformed �rms into under-

estimating the investment opportunity and delaying their investment. The better informed

�rms achieve this by investing later than in the symmetric information case. Thus, signaling

incentives imply an additional value of waiting, and therefore greater delay in the �rms�

investment decisions.

Our paper combines the traditional literature on real options with the extensive litera-

ture on signaling. It is most closely related to real options models with imperfect informa-

tion. Grenadier (1999), Lambrecht and Perraudin (2003), and Hsu and Lambrecht (2007)

study option exercise games with information imperfections, however, with very di¤erent

equilibrium structures from that in this paper. In Grenadier (1999), each �rm has an im-

perfect private signal about the true project value. In Lambrecht and Perraudin (2003)

each �rm knows its own investment cost but not the investment cost of the competitor.

And in Hsu and Lambrecht (2003), an incumbent is uninformed about the challenger�s in-

vestment cost. While these papers study option exercise with information imperfections of

various forms, the belief of outsiders do not enter the payo¤ function of agents. Therefore,

the models in these papers are not examples of real options signaling games: the informed

decision maker has no incentives to manipulate investment timing so as to alter the belief

of outsiders.4

Notably, Morellec and Schürho¤ (2011) and Bustamante (2011) develop models that are

examples of real options signaling games, and thus can be thought of in the context of our

general model. Speci�cally, in Morellec and Schürho¤ (2011), an informed �rm, seeking
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external resources to �nance an investment project, can choose both the timing of invest-

ment and the means of �nancing (debt or equity) of the project. In Bustamante (2011),

an informed �rm can decide on both the timing of investment and whether to �nance its

investment project through an IPO or through more costly private capital. Bustamante

(2011) and Morellec and Schürho¤ (2011) �nd that asymmetric information speeds up in-

vestment as the �rm attempts to signal better quality and thereby secure cheaper �nancing.

Our contribution relative to these papers is the characterization of the distortion of invest-

ment in a general setting of real options signaling games, which allows for a wide range

of environments where real options are common, such as public corporations, VC industry,

or entrepreneurial �rms. First, we show that whether asymmetric information speeds up

or delays investment depends critically on the nature of the interactions between the deci-

sion maker and outsiders. In fact, as we show in the applications, signaling incentives can

often delay investment, unlike in Bustamante (2011) and Morellec and Schürho¤ (2011)

where signaling incentives always speed up investment because of the speci�c nature of the

interactions between the manager and outsiders. Second, we characterize the exact con-

ditions when each of the two distortions is in place. This implies speci�c predictions for

each particular institutional setting and shows when a distortion induced by one type of

agency con�ict (e.g., possibility of cash �ow diversion) can be overturned by the presence

of another agency con�ict (e.g., managerial short-termism). Finally, Benmelech, Kandel,

and Veronesi (2010) consider a dynamic model of investment with asymmetric information

between the manager and outsiders and show that in the presence of stock-based compensa-
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tion, asymmetric information creates incentives to conceal bad news about growth options.

Unlike our paper, they focus on a speci�c setting and do not model investment as a real

option.

The remainder of the paper is organized as follows. In Section 1, we formulate the

general model of option exercise in a signaling equilibrium and consider the special case

of symmetric information. In Section 2, we solve for the separating equilibrium of the

model, prove its existence and uniqueness, and determine when asymmetric information

leads to earlier or later option exercise. In Section 3, we consider two examples of real

options signaling games in which signaling incentives speed up option exercise: investment

in the presence of managerial myopia and VC grandstanding. In Section 4, we consider two

examples of real options signaling games in which signaling incentives delay option exercise:

investment under the opportunity to divert cash �ows and strategic entry to the product

market. Finally, we conclude in Section 5.

1 Model Setup

In this section we present a general model of a real options signaling game. Then, as a

useful benchmark, we provide the solution to the �rst-best case of symmetric information.

For the ease of exposition, we discuss the model as if the real option is an option to invest.

However, this is without loss of generality. For example, the real option can also be an

option to penetrate a new market, make an acquisition, or sell a business.
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1.1 The real option

The �rm possesses a real option of the standard form: at any time t, the �rm can spend a

cost � > 0 to install an investment project. The project has a present value P (t), repre-

senting the discounted expected cash �ows. Following the standard real options framework

(e.g., McDonald and Siegel 1986; Dixit and Pindyck 1994), we assume that P (t) evolves as

a geometric Brownian motion:

dP (t) = �P (t) dt+ �P (t) dB (t) ; (1)

where � > 0 and dB (t) is the increment of a standard Brownian motion. All agents in the

economy are risk-neutral, with the risk-free rate of interest denoted by r. To ensure �nite

values, we assume � < r.5 If the �rm invests at time t, it gets the value of:

P (t)� � + "; (2)

where " is a zero-mean noise term, re�ecting the di¤erence between the realized value of

the project and its expected value upon investment. It re�ects uncertainty over the value

of the project at the time of investment, which can stem from random realized cash �ows

or random installation costs.

The investment decision is made by the agent, who has superior information about the

NPV of the project. Speci�cally, P (t) is publicly observable and known to both the agent

and outsiders. In contrast, � is the private information of the agent, which we refer to as
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the agent�s (or project�s) type. Because the payo¤ of the project depends on � negatively,

higher types correspond to worse projects. Outsiders do not have any information about �

except for its ex-ante distribution, which is given by the cumulative distribution function

� (�) with positive density function � (�) de�ned on
�
�; ��
�
, where �� > � > 0.6

Thus, the payo¤ from investment is comprised of three components: the publicly ob-

servable component P (t), the privately observable component �, and the noise term ".

Outsiders will update their belief about the type of the agent by observing the timing of in-

vestment and its proceeds. The noise term " ensures that proceeds from investment provide

only an imperfect signal of the agent�s private information.7

1.2 The agent�s utility from exercise

Having characterized the project payo¤, we move on to the utility that the agent receives

from exercise. We assume that the agent�s utility from exercise is the sum of two com-

ponents. The �rst component is the direct e¤ect of the proceeds from the project on the

agent�s compensation. This e¤ect can be explicit, such as through the agent�s stock owner-

ship in the �rm, or implicit, such as through future changes in the agent�s compensation.

For tractability reasons, we abstain from solving the optimal contracting problem, and in-

stead simply assume that the agent receives a positive share � of the total payo¤ from

the investment project.8 The second component is the indirect e¤ect of investment on the

agent�s utility due to its e¤ect on outsiders�belief about the agent�s type. Intuitively, the

timing of investment can reveal information about the agent, such as an ability to generate
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pro�table investment projects. Letting ~� denote outsiders�inference about the type of the

agent after the investment, the agent�s utility from the option exercise is:

Agent�s utility from exercise = share of project + belief component (3)

= � (P (�)� � + ") +W
�
~�; �
�
:

While standard real options models typically assume that the agent�s utility is solely a

function of the option payo¤, in this case the agent also cares about the belief of outsiders,

in that ~� explicitly enters into the agent�s payo¤ function. The form of the utility function

is general enough to accommodate a variety of settings in which a real option is exercised

by a better informed party who cares about the belief of less informed outsiders.9

Following Mailath (1987), we impose the following regularity conditions on W
�
~�; �
�
:

Assumption 1. W
�
~�; �
�
is C2 on

�
�; ��
�2
;

Assumption 2. W (�; �) < ��;

Assumption 3. W~�

�
~�; �
�
never equals zero on

�
�; ��
�2
, and so is either positive or

negative;

Assumption 4. W
�
~�; �
�
is such that W�

�
~�; �
�
< � 8

�
~�; �
�
2
�
�; ��
�2
and W~� (�; �) +

W� (�; �) < � 8� 2
�
�; ��
�
;

Assumption 5. Agent�s utility from exercise satis�es the single-crossing condition,

de�ned in Appendix A.
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These conditions allow us to establish the existence and uniqueness of the separating

equilibrium derived in the following section. Assumption 1 is a standard smoothness restric-

tion. Assumption 2 states that under perfect information the e¤ect of the belief component

does not exceed the direct e¤ect of �. This ensures that the exercise decision is non-trivial,

because otherwise the optimal exercise decision would be to invest immediately for any

project�s present value P (t). Assumption 3 is the belief monotonicity condition, which

requires the agent�s payo¤ to be monotone in outsiders�belief about the agent�s type. This

de�nes two cases to be analyzed. IfW~� < 0, then the agent bene�ts if outsiders believe that

the project has a lower investment cost. Conversely, if W~� > 0, then the agent gains from

belief of outsiders that the project has a higher investment cost. Assumption 4 means that

the agent is better o¤ from having a better project: W�

�
~�; �
�
< � implies that the agent�s

utility from exercise is decreasing in � for any �xed level of the outsiders�belief; similarly,

W~� (�; �) +W� (�; �) < � implies that the agent�s utility from exercise is decreasing in � if

both the agent and outsiders know �. Finally, Assumption 5 ensures that if the agent does

not make extra gains by misrepresenting � slightly, then she cannot make extra gains from

a large misrepresentation. It allows us to �nd the separating equilibrium by considering

only the �rst-order condition.

1.3 Symmetric information benchmark

As a benchmark, we consider the case in which information is symmetric. Speci�cally,

assume that both the agent and outsiders observe �.10 Let V � (P; �) denote the value of
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the investment option to the agent, if the type of the agent is � and the current level of

P (t) is P . Using standard arguments (e.g., Dixit and Pindyck 1994), in the range prior to

investment, V � (P; �) must solve the di¤erential equation:

0 =
1

2
�2P 2V �

PP + �PV �
P � rV �: (4)

Suppose that the agent of type � invests the �rst time when P (t) crosses threshold

P � (�) from below. Upon investment, the payo¤ of the agent is speci�ed in (3), implying

the boundary condition for the agent�s expected payo¤ from exercise:

V � (P � (�) ; �) = � (P � (�)� �) +W (�; �) : (5)

Solving (4) subject to boundary condition (5) yields the following option value to the

agent:11

V � (P; �) =

8>><>>:
�

P
P �(�)

��
(� (P � (�)� �) +W (�; �)) ; if P � P � (�) ;

� (P � �) +W (�; �) ; if P > P � (�) ;

(6)

where � is the positive root of the fundamental quadratic equation 1
2
�2� (� � 1)+���r = 0:

� =
1

�2

24���� �2

2

�
+

s�
�� �2

2

�2
+ 2r�2

35 > 1: (7)
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The investment trigger P � (�) is chosen by the agent so as to maximize her value:

P � (�) = arg max
P̂2R+

�
1

P̂ �

�
�
�
P̂ � �

�
+W (�; �)

��
: (8)

Taking the �rst-order condition, we conclude that P � (�) is given by:

P � (�) =
�

� � 1

�
� � W (�; �)

�

�
: (9)

In particular, if W (�; �) = 0, we get the standard solution (e.g., Dixit and Pindyck 1994):

P � (�) = ��= (� � 1). Because the agent�s utility from exercise is decreasing in � by As-

sumption 4, the investment threshold P � (�) is increasing in �, which means that the �rm

invests earlier if the project is better.

The results of the benchmark case can be summarized in Proposition 1:

Proposition 1 Suppose that � is known both to the agent and to outsiders. Then, the

investment threshold of type �, P � (�), is given by (9) and is increasing in �.

2 Analysis

In this section we provide the solution to the general real options signaling game under

asymmetric information between the agent and outsiders. First, we solve for the agent�s

optimal exercise strategy for a given inference function of outsiders. Then, we apply the
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rational expectations condition that the inference function must be consistent with the

agent�s exercise strategy. This gives us the equilibrium investment threshold. We present

a heuristic analysis in this section and prove that it indeed yields the unique separating

equilibrium in Proposition 2. Finally, we analyze properties of the equilibrium.

2.1 Optimal exercise

To solve for the separating equilibrium, consider the agent�s optimal exercise strategy for

a given outsiders�inference function. Speci�cally, suppose that outsiders believe that the

agent of type � exercises the option at trigger �P (�), where �P (�) is a monotonic and dif-

ferentiable function of �. Thus, if the agent exercises the option at trigger P̂ 2 �P
��
�; ��
��
,

then upon exercise outsiders infer that the agent�s type is �P�1
�
P̂
�
.12

Let V
�
P; ~�; �

�
denote the value of the option to the agent, where P is the current value

of P (t), ~� is a �xed outsiders�belief about the agent�s type, and � is the agent�s true type.

By the standard valuation arguments (e.g., Dixit and Pindyck 1994), in the region prior to

exercise, V (P; ~�; �) must satisfy the di¤erential equation:

0 =
1

2
�2P 2VPP + �PVP � rV: (10)

Suppose that the agent decides to invest at trigger P̂ . Upon investment, the payo¤ to

the agent is equal to (3), implying the boundary condition:

V (P̂ ; ~�; �) = �
�
P̂ � �

�
+W (~�; �): (11)
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Solving di¤erential equation (10) subject to boundary condition (11) yields the value of

the option to the agent for a given investment threshold and the belief of outsiders:13

V (P; ~�; �; P̂ ) = P �U
�
~�; �; P̂

�
; (12)

where:

U
�
~�; �; P̂

�
=

1

P̂ �

h
�
�
P̂ � �

�
+W (~�; �)

i
: (13)

Given solution (12) and the hypothesized outsiders�inference function �P , the optimal

choice of exercise threshold P̂ 2 �P
��
�; ��
��
solves:

P̂
�
�; �P

�
2 arg max

Y 2 �P([�;��])

�
1

Y �

�
� (Y � �) +W

�
�P�1 (Y ) ; �

���
: (14)

Taking the �rst-order condition, we arrive at the optimality condition:

�
�
�
�
P̂ � �

�
+W

�
�P�1

�
P̂
�
; �
��
= �P̂ + P̂W~�

�
�P�1

�
P̂
�
; �
�
d �P�1(P̂)

dP̂
: (15)

Equation (15) illustrates the fundamental trade-o¤between the costs and bene�ts of waiting

in the model with asymmetric information between the agent and outsiders. On the one

hand, a higher threshold leads to a longer waiting period and, hence, greater discounting

of cash �ows from the option exercise. This e¤ect is captured by the expression on the

left-hand side of (15). On the other hand, a higher threshold leads to a greater NPV at the

exercise time and higher belief of outsiders. These e¤ects are captured by the �rst and the
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second terms on the right-hand side of (15), respectively.

2.2 Equilibrium

In a separating equilibrium under rational expectations, the inference function �P (�) must

be a monotonic function that is perfectly revealing. Thus, �P�1(P̂ ) = �. Intuitively, this

means that when the agent takes the inference function �P (�) as given, her exercise behavior

fully reveals the true type.

Conjecturing that a separating equilibrium exists, we can set �P�1(P̂ ) = � in equation

(15) and simplify to derive the equilibrium di¤erential equation:

d �P (�)

d�
=

W~� (�; �)
�P (�)

�
�
(� � 1) �P (�)� ��

�
+ �W (�; �)

: (16)

The equilibrium di¤erential equation (16) is solved subject to the appropriate initial

value condition. By Assumption 3, there are two cases to consider.

Case 1: W~� < 0

For this case, the appropriate initial value condition is that the highest type invests

e¢ ciently:

�P
�
��
�
= P �

�
��
�
: (17)

The intuition is as follows. Suppose you are the worst possible type, which is �� for the case

W~� < 0. Then any exercise strategy in which (17) did not hold would not be incentive-
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compatible. This is because type �� could always deviate and choose the full-information

trigger P �(��). Not only would this deviation improve the direct payo¤ from exercise, but

the agent could do no worse in terms of reputation since the current belief is already as

bad as possible.14 Therefore, only when (17) holds does the worst possible type have no

incentive to deviate.

Case 2: W~� > 0

For this case, the appropriate initial value condition is that the lowest type invests

e¢ ciently:

�P (�) = P � (�) : (18)

The intuition for (18) is the same as for (17). However, with W~� > 0, � is now the worst

type.

Proposition 2 shows that under regularity conditions, there exists a unique (up to the

out-of-equilibrium beliefs) separating equilibrium, and it is given as a solution to equation

(16) subject to boundary condition (17) or (18). The proof appears in Appendix B.

Proposition 2 Let �P (�) be the increasing function that solves di¤erential equation (16),

subject to the initial value condition (17) if W~� < 0, or (18) if W~� > 0, where Assumptions

1-5 are satis�ed. Then, �P (�) is the investment trigger of type � in the unique (up to the

out-of-equilibrium beliefs) separating equilibrium.
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2.3 Properties of the equilibrium

To examine how asymmetric information a¤ects the equilibrium timing of investment, we

compare the separating equilibrium derived above with the symmetric information solution

established in Section 1.3.

Proposition 3 shows that asymmetric information between the decision maker and out-

siders has an important e¤ect on the timing of investment. Its direction depends on the

sign of W~�. The proof appears in Appendix B.

Proposition 3 Asymmetric information between the decision maker and outsiders a¤ects

the timing of investment. The direction of the e¤ect depends on the sign of W~�:

(i) If W~� < 0, then the �rm invests earlier than in the case of symmetric information:

�P (�) < P � (�) for all � < ��:

(ii) If W~� > 0, then the �rm invests later than in the case of symmetric information:

�P (�) > P � (�) for all � > �:

As we can see, information asymmetry has powerful consequences for the timing of

investment. It can both increase and decrease the waiting period, and the direction of the

e¤ect depends on the sign of W~�. The intuition comes from traditional signal-jamming
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models (e.g., Fudenberg and Tirole 1986; Stein 1989; and Holmstrom 1999). When � is

the agent�s private information, outsiders try to infer it from observing when the �rm

invests. Knowing this, the agent has incentives to manipulate the timing of investment

to confuse outsiders. For example, if W~� > 0, the agent has an interest in mimicking the

investment strategy of the agent with a higher investment cost. Since higher types invest

at higher investment thresholds, the agent will try to mimic that by investing later than in

the case of symmetric information. In equilibrium, outsiders correctly infer the type of the

agent from observing the timing of investment. However, signal-jamming occurs: outsiders

correctly conjecture that investment occurs at a higher threshold. The opposite happens

when W~� < 0.

For concreteness, let us consider a particular parameterization ofW
�
~�; �
�
that permits a

simple analytical solution. Speci�cally, we setW
�
~�; �
�
= w

�
~� � �

�
, for some functionw (�)

with w(0) being normalized to zero.15 In this case, the agent�s utility from misspeci�cation

of outsiders�belief about the agent�s private information depends only on the degree of

misspeci�cation, ~� � �. For this special case, equation (16) takes the following form:

d �P (�)

d�
=

�P (�)w0 (0)

�
�
(� � 1) �P (�)� ��

� : (19)

The general solution to this equation is given implicitly by:

�P (�) + C �P (�)
� ��
w0(0) =

� + w0(0)=�

� � 1 �; (20)
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where the constant C is determined by the appropriate boundary condition.

For the case in which w0 < 0, we apply boundary condition (17) to show that the

equilibrium solution �P (�) satis�es:

�P (�)

0@1 + w0(0)

��

 
�P (�)

P �
�
��
�!� ��

w0(0)�1
1A =

� + w0(0)=�

� � 1 �: (21)

In the limit, if the highest type has an unboundedly large cost (�� ! 1), then �P (�)

approaches the simple linear solution:16

�P (�) � � + w0(0)=�

� � 1 �: (22)

For the case in which w0 > 0, we apply boundary condition (18) to show that the

equilibrium solution �P (�) satis�es:

�P (�)

 
1 +

w0(0)

��

� �P (�)

P � (�)

�� ��
w0(0)�1

!
=
� + w0(0)=�

� � 1 �: (23)

If the lowest type can reach an in�nitesimal cost (� ! 0), then �P (�) again approaches the

simple linear solution (22).

2.4 Other equilibria

While our paper focuses on the separating equilibrium, various forms of pooling equilibria

are also possible. Here, we present a simple example of an equilibrium in which there is a
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range of types that pool, and a range of types that separate. Notably, the construction of

this equilibrium with pooling requires much of the analysis presented for the construction

of the separating equilibrium.

In this simple example, � is distributed uniformly over
�
�; ��
�
. We also assume a simple

functional form for the belief component: cw
�
~� � �

�
, with cw < 0, where ~� now refers to

the expected type of the agent according to the belief of outsiders.17 Finally, in this simple

example, we assume that proceeds from the project are not informative about the agent�s

type. Consider type �̂ 2
�
�; ��
�
. We will show that there exists a Ppool, with Ppool � �P

�
�̂
�
<

P �
�
�̂
�
, such that all types � in the range

h
�; �̂
i
pool and exercise together at Ppool, while

all types � in the range (�̂; ��] separate and exercise at the trigger �P (�).

Suppose that P (t) = Ppool and consider the decision of the agent whether to exercise the

option immediately and pool or wait and exercise the option in the future. For types that

exercise immediately and pool, ~� =
�
� + �̂

�
=2. Thus, the immediate payo¤ from pooling

is:

� (Ppool � �) + cw

 
� + �̂

2
� �

!
: (24)

Types that wait and separate obtain:

�
Ppool
�P (�)

��
�
�
�P (�)� �

�
; (25)

where �P (�) is the threshold of type � in the fully separating equilibrium, given by (16) -
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(17).18 Type �̂ is the one that is indi¤erent between pooling and separating:

�
�
Ppool � �̂

�
+ cw

 
� � �̂

2

!
=

 
Ppool
�P (�̂)

!�

�
�
�P (�̂)� �̂

�
: (26)

As shown in Appendix B, for any �̂, (26) determines the unique value of Ppool
�
�̂
�
. All types

� < �̂ �nd it optimal to exercise at Ppool
�
�̂
�
, while all types � > �̂ �nd it optimal to separate

and exercise at �P (�). By varying �̂, one can obtain a continuum of these equilibria. In

addition, there may exist equilibria with higher types pooling and lower types separating,

as well as equilibria with multiple pooling groups. In general, it is di¢ cult to say whether

the agent�s utility in the separating equilibrium is higher or lower than in other equilibria.

As shown in Appendix B, in this particular example the agent�s utility in the semi-pooling

equilibrium is the same as in the separating equilibria if � � �̂ and higher than the utility

in the separating equilibrium if � < �̂.

Given multiplicity of equilibria, it is important to select the most reasonable one. A

standard approach in signaling games to select between equilibria is to impose additional

restrictions on out-of-equilibrium beliefs. One standard restriction is the D1 re�nement,

which has been applied to a wide range of signaling environments such as security design

(e.g., Nachman and Noe 1994; DeMarzo, Kremer, and Skrzypacz 2005) and intercorporate

asset sales (Hege et al. 2009). Intuitively, according to the D1 re�nement, following an

�unexpected�action of the informed party, the uninformed party is restricted to place zero

posterior belief on type � whenever there is another type �0 that has a stronger incentive to

deviate.19 As Cho and Sobel (1990) and Ramey (1996) show, only separating equilibria can
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satisfy the D1 re�nement. A slight modi�cation of Ramey�s (1996) proof can be applied here

to establish the same result in our model.20 Thus, the separating equilibrium is in fact the

unique equilibrium under the assumption that out-of-equilibrium beliefs must satisfy the

restriction speci�ed by the D1 re�nement. In this regard, focusing on separating equilibria

is without loss of generality.

3 Applications with Acceleration of Option Exercise

3.1 Managerial myopia

In this section we present an application of the timing signaling equilibrium that is similar

in spirit to Stein�s (1989) article on managerial myopia. In Stein (1989), the manager

cares about both the current stock price and long-run earnings. The manager invests

ine¢ ciently through earnings manipulation (by boosting current earnings at the expense of

future earnings) to attempt to fool the stock market into overestimating future earnings in

the stock valuation. Even though the equilibrium ensures that the market is not fooled, the

manager behaves myopically and ine¢ ciently sacri�ce future earnings for short-term pro�ts.

Our version is an analog of Stein (1989) that focuses on investment timing, rather than

earnings manipulation. Here, the manager invests ine¢ ciently by exercising the investment

option too early to attempt to fool the market into overestimating the project�s NPV.
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3.1.1 Manager utility

As in Stein (1989), the manager�s utility comes from a combination of current stock value

and long-run earnings value. Speci�cally, the manager�s utility comes from holding �1 > 0

shares of stock that may be freely sold, plus �2 > 0 times the present value of future

earnings. This can be viewed as a reduced form utility coming out of a more complicated

model of incentive compensation.21 Thus, the manager makes two decisions: when to invest

in the project and when to sell holdings that may be freely sold.22

Let S(t) denote the stock price and P (t) the present value of the project�s cash �ows. At

a chosen time of exercise � , if the manager still holds �1 shares of stock, her stock holdings

will be worth �1S(�).23 Similarly, her utility from her interest in the present value of all

future earnings is �2 (P (�)� �). In summary, the manager�s utility from exercise at any

time � is:

manager�s utility from exercise = �1S(�) + �2 (P (�)� �) : (27)

3.1.2 The stock price process

Let us now consider the valuation of the stock. The market will infer the value of � by

observing whether or not the manager has yet invested. We begin by valuing the stock for

all moments prior to the investment in the project. During this time period, the market

updates its belief every time the project value rises to a new historical maximum. Let �P (�)

denote the equilibrium investment threshold for type �, a function increasing in � to be

determined below. Let PM (t) denote the historical maximum of P (t) up to time t. Then,
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at any time t prior to investment, the stock price S(t) = S (P (t) ; PM (t)) is given by:

S (P (t) ; PM (t)) = E�

"�
P (t)
�P (�)

�� �
�P (�)� �

�
j� > �P�1 (PM (t))

#
: (28)

Next, consider the value of the stock when the �rm invests at threshold P̂ . At this

moment, the market observes the investment trigger, and the stock price immediately is

set using the imputed ~� = �P�1
�
P̂
�
. Thus, the stock price immediately jumps to the value

P̂ � �P�1
�
P̂
�
. Finally, after the net proceeds from investment are realized, the stock price

moves to P̂ � �+ ". Recall, however, that the market is unable to disentangle the true cost

from � � ", and its expectation of � remains ~�.

3.1.3 The equilibrium investment decision

Consider the manager�s investment timing decision, conditional on holding �1 shares of

tradable stock. Suppose that the manager has not sold the tradable shares prior to the

investment date. If the market�s belief about the type of the manager, ~�, is below �, the

manager is better o¤ selling shares immediately upon the investment date and gaining from

the market�s optimistic belief: she receives P̂ � ~� from selling versus (an expected) P̂ � �

from holding. Alternatively, if ~� � �, the manager is better o¤ holding the stock. Thus,

given the equilibrium threshold function �P (�), the problem of the manager who does not
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sell the stock before the investment date is:

max
P̂

�
1~�<�

�
�1

1

P̂ �

�
P̂ � ~�

�
+ �2

1

P̂ �

�
P̂ � �

��
+ 1~��� (�1 + �2)

1

P̂ �

�
P̂ � �

��
(29)

= max
P̂

�
(�1 + �2)

1

P̂ �

�
P̂ � �

�
� 1

P̂ �
�1min

�
~� � �; 0

��
:

We can thus see that this problem is a special case of the general model with:

W
�
~�; �
�
= ��1min

�
~� � �; 0

�
and � = �1 + �2. (30)

Moreover, becauseW
�
~�; �
�
is a function of ~���, the separating equilibrium function �P (�)

is given by (20):24

�P (�) + C �P (�)
�(�1+�2)

�1 =
� � �1

�1+�2

� � 1 �: (31)

The boundary condition for equation (31) is determined by noting that the manager

may choose to sell shares prior to investment. In the separating equilibrium with all �1

shares held, information is fully revealed, and thus the manager does not gain from selling

overvalued stock at the time of investment. Therefore, the manager sells shares before

investment if and only if they are overvalued by the market. As is apparent from the

valuation function in (28), the overvaluation is decreasing over time, and thus the manager

will either sell shares at the initial point, or never. Thus, the appropriate boundary condition

is that for the range of � for which the stock is initially overvalued, the manager will choose

to sell all of liquid shares. This implies that for this range of �, �1 = 0 in equation (31),
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which means that �P (�) equals the �rst-best trigger: �P (�) = �
��1�.

All that remains is to determine the range of � at which immediate sale of stock is war-

ranted. If the stock is sold immediately, the stock will be priced based on the market�s prior

on �, or
R ��
�

�
P (0)
�P (�)

�� �
�P (�)� �

�
� (�) d�.25 If the stock is held, it is worth

�
P (0)
�P (�)

�� �
�P (�)� �

�
.

Therefore, the manager will sell stock immediately if and only if � is above a �xed threshold

�̂, determined by: Z ��

�

�P (�)� �

�P (�)�
� (�) d� =

�P
�
�̂
�
� �̂

�P
�
�̂
�� : (32)

We have now fully characterized the solution. For � 2
h
�; �̂
i
, the investment threshold

�P (�) is given by (31), where C is given by:

C = �
�

�

� � 1 �̂
���(�1+�2)

�1 �1
(�1 + �2) (� � 1)

�̂: (33)

For � 2 (�̂; ��], �P (�) = �
��1�.

3.1.4 Discussion

The equilibrium investment strategy is to invest according to strategy �P (�) in (31), which

implies earlier investment than in the case of symmetric information for all types below �̂.

For types above �̂, however, investment occurs at the full�information threshold. Intuitively,

if the private information of the manager is such that the stock is overvalued, then the

manager sells the �exible part of her holdings before investment reveals the type of the

project. Once the manager sells her tradable stock, the manager no longer has any short-
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term incentives, so she chooses the investment threshold to maximize the long-term �rm

value. On the contrary, if the project is su¢ ciently good, then the stock of the company

is undervalued relative to the private information of the manager, so she does not sell the

�exible part of her holdings. As a result, when deciding on the optimal time to invest, the

manager cares not only about the long-term �rm value but also about the short-term stock

price. In an attempt to manipulate the stock price, the manager invests earlier than in

the symmetric information case. In equilibrium, the market correctly predicts this myopic

behavior and infers the private information correctly.

The left graph of Figure 1 shows the equilibrium investment threshold �P (�) as a func-

tion of the investment cost � for three di¤erent values of �1= (�1 + �2). The equilibrium

investment threshold �P (�) has two interesting properties. First, it moves further away

from the �rst-best investment threshold P � (�) as �1= (�1 + �2) goes up. Intuitively, if

the manager can freely sell a higher portion of her shares, she has a greater incentive to

invest earlier to fool the market into overestimating the NPV of the project and thereby

boost the current stock price. Even though the market correctly infers � in equilibrium,

the equilibrium investment threshold goes down so that the manager has no incentives to

deviate. Second, for each of the curves, the impact of asymmetric information is lower for

projects with greater costs (lower types). Intuitively, incentive compatibility requires that

the investment threshold of type � be su¢ ciently below that of type �+" for an in�nitesimal

positive ", so that type � + " has no incentives to mimic type �. However, this lowers not

only the investment threshold of type �, but also investment thresholds of all types below
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�, as they must have no incentives to mimic �. In this way, the distortion accumulates, so

the investment threshold of a lower type is closer to the zero NPV rule.

Another implication is that the investment option value can be signi�cantly eroded

through information asymmetry.26 Analogously to Grenadier (2002), let the option pre-

mium de�ne the NPV of investment at the moment of exercise divided by the investment

cost:

OP

�
�;

�1
�1 + �2

�
=
�P (�)� �

�
: (34)

The right graph of Figure 1 quanti�es the e¤ect of asymmetric information on the option

premium. In the case of symmetric information, equilibrium investment occurs only when

the NPV of the project is more than 2:41 times its investment cost. Asymmetric information

reduces the option premium, and the e¤ect is greater for projects with lower investment

costs and managers with greater incentives to boost the short-run stock price. For example,

if the manager can freely sell 50% of her shares, the option premium of type � = 1 is 1:41, a

greater than 40% decrease from the symmetric information case. Asymmetric information

typically a¤ects the option premium of the best projects the most and does not a¤ect the

option premium of su¢ ciently bad projects at all.

3.2 Venture capital grandstanding

In this section we consider an application of our real options signaling model to VC �rms.

As shown in Gompers (1996), younger VC �rms often take companies public earlier to

establish a reputation and successfully raise capital for new funds. Gompers terms this
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phenomenon �grandstanding�and suggests that younger VC �rms employ early timing of

IPOs as a signal of their ability to form higher-quality portfolios.

We characterize experienced VC �rms (the general partners) as those having a perfor-

mance track record, and inexperienced VC �rms as having no performance track record.

For simplicity, we consider a two-stage model. An inexperienced VC �rm invests outsiders�

(limited partners) money in the �rst round. The �rm then chooses when to allow its �rst

round portfolio companies to go public. When such an IPO takes place, the �rm becomes

experienced and raises money for the second round. Notably, its ability to attract outsiders�

funds in the second round will depend on the belief of outsiders of its skill, as inferred from

the results of the �rst round.

We shall work backwards and initially consider the second round (an experienced VC

�rm), to be followed by the �rst round (an inexperienced VC �rm).

3.2.1 The experienced VC �rm

In the second round of �nancing, I2 dollars are invested, where I2 is endogenized below.

The value of the fund, should it choose to go public at time t, is:

(P2(t)� � + "2)H(I2); (35)

where P2 (t) is the publicly observable component of value, � is the privately observed value

of the VC �rm�s skill, and "2 is a zero-mean shock, which corresponds to the contribution of

luck. Only the VC �rm knows the value of its skill � (lower � means higher skill); the outside
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investors must use an inferred value of ~�.27 While outside investors cannot disentangle the

mix of skill and luck, the VC �rm learns the realization of luck, "2, upon investment. Finally,

H(:) describes the nature of the returns to scale on investment. To account for declining

returns to scale (that is, at some point the �rm runs out of good project opportunities), we

impose the Inada conditions: H(0) = 0, H 0 > 0, H 00 < 0, H 0 (0) =1, and H 0 (1) = 0. In

addition, we assume that H 000 is continuous.

We assume that the VC �rm receives as compensation a fraction � of the proceeds from

an IPO (or a similar liquidity event).28 The VC �rm decides if and when to allow the

portfolio to go public. Thus, the timing of the IPO is a standard option exercise problem

where the expected payo¤ to the VC �rm upon exercise is:

� (P2 (t)� �)H(I2): (36)

The optimal second round IPO exercise trigger is thus the �rst-best solution:

�P2 (�) =
�

� � 1�: (37)

We now endogenize the second round level of investment. At the beginning of the

second round, the limited partners decide how much capital to contribute to the fund. We

normalize the value of the publicly observable component upon the initiation of the second

round, P2 (0), to one, so that P2(t) represents the value growth over the initial cost.29 The

limited partners choose the level of investment I2 so as to maximize the expected value of
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their net investment. Because the limited partners do not observe the VC �rm�s skill �,

they use inference ~� based on the IPO signal from the �rst round. For a given ~�, the limited

partners choose I2 by solving the following optimization problem:

max
I2

8><>:(1� �)

�P2

�
~�
�
� ~�

�P2

�
~�
�� H (I2)� I2

9>=>; : (38)

The Inada conditions guarantee that the optimal level of investment, I2
�
~�
�
, is given by

the �rst-order condition:

I2

�
~�
�
= H 0�1

"�
�

� � 1

��
� � 1
1� �

~�
��1
#
: (39)

I2

�
~�
�
is strictly decreasing in ~�, meaning that the limited partners invest more if they

believe that the general partner is more skilled.

Thus, for given ~� and �, the value of the second round �nancing to the VC �rm is:

�
�P2 (�)� �

�P2 (�)
�
H
�
I2

�
~�
��

: (40)

Importantly, this value is a decreasing function of the inferred type ~�. Hence, the VC �rm

bene�ts from higher inferred skill.
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3.2.2 The inexperienced VC �rm

Now, let us consider the �rst round.30 The fund has I1 invested, and the VC �rm must

choose if and when to allow its portfolio to go public. The payo¤ to the VC �rm is the sum

of their share of the proceeds from going public and the expected utility of the second round

�nancing. The proceeds from going public at time t are (P1 (t)� � + "1)H (I1), where "1

is a zero-mean shock, while the value of the second round �nancing is given by (40). Thus,

for an IPO trigger of P̂1, the expected payo¤ to the VC �rm is:

�
�
P̂1 � �

�
H(I1) + �

�P2 (�)� �

�P2 (�)
�
H
�
I2

�
~�
��

; (41)

where I2
�
~�
�
is given by (39). For simplicity, we normalize H (I1) to 1. We can thus see

that this problem corresponds to the general model with:31

W
�
~�; �
�
= �

�P2 (�)� �

�P2 (�)
�
H
�
I2

�
~�
��

; (42)

where W~� < 0. Assuming that the lowest possible type is not too low:

� >
� � 1
�

 
�� �

W
�
��; ��
�

�

!
; (43)
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the single-crossing condition is satis�ed.32 Thus, the separating equilibrium the investment

trigger �P1 (�) is given by:

d �P1 (�)

d�
=

�P1 (�) I
0
2 (�) = (1� �)

(� � 1) �P1 (�)� �� + �
�P2(�)��
�P2(�)

� H (I2 (�))
; (44)

solved subject to the boundary condition that type �� invests at the full-information thresh-

old:33

�P1
�
��
�
=

�

� � 1

 
�� �

�P2
�
��
�
� ��

�P2
�
��
�� H

�
I2
�
��
��!

: (45)

3.2.3 Discussion

The timing of the IPO of the inexperienced �rm characterized by (44)-(45) has several

intuitive properties. First, the inexperienced �rm takes the portfolio public earlier than

optimal. Because the inexperienced �rm is better informed about its talent than the limited

partners, the inexperienced �rm has an incentive to manipulate the timing of the IPO to

make the limited partners believe that its quality is higher. Because an earlier IPO is a

signal of higher quality, it will go public earlier than in the case of symmetric information.

In equilibrium signal-jamming occurs: the limited partners correctly conjecture that the VC

�rm goes public earlier than optimal, so the type of the general partner is revealed. The

degree of ine¢ cient timing is illustrated in Figure 2. The left graph plots the equilibrium

exercise threshold of the inexperienced �rm, �P1 (�), and the e¢ cient exercise threshold,

P �1 (�), which would be the equilibrium if the limited partners were fully informed about
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the general partner�s talent.

Ine¢ cient investment timing depends not only on the experience of the general partner,

but also on the �rm�s talent. Speci�cally, (45) implies that the least talented �rm takes the

portfolio public at the e¢ cient time even if it is inexperienced. At the same time, all other

types take the portfolio public earlier than e¢ cient. The right graph of Figure 2 illustrates

the dependence of earlier than optimal IPO on the general partner�s talent. The degree of

ine¢ cient investment increases in the general partner�s talent from 0% for the least talented

general partner (�� = 2) to 19% for the most talented general partner (� = 1).

While the inexperienced �rm takes the company public earlier than optimal, the expe-

rienced �rm does so at the e¢ cient threshold. Because the limited partners learn the true

talent of the �rm from observing its track record, the experienced �rm does not have any

incentive to manipulate the belief of the limited partners.

4 Applications with Delay of Option Exercise

4.1 Cash �ow diversion

We consider a cash �ow diversion model where a manager (with a partial ownership in-

terest) derives utility from diverting the owners� cash �ow from investment for personal

consumption.34 Thus, in this case the manager would like shareholders to believe that the

investment cost is higher than in reality. We begin by providing a costly state veri�cation

model to endogenize the manager�s cash �ow diversion utility. Then, conditional on the
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manager�s diversion incentives, we move on to modeling the manager�s optimal investment

strategy.

The assumption that a portion of project value is observed only by the manager and not

veri�able by the owners is common in the capital budgeting literature. This information

asymmetry invites a host of agency issues. Harris, Kriebel, and Raviv (1982) posit that

managers have incentives to understate project payo¤s and to divert the free cash �ow to

themselves. In their model, such value diversion takes the form of the manager reducing

her level of e¤ort. Stulz (1990), Harris and Raviv (1996), Bernardo, Cai, and Luo (2001),

and Malenko (2011) model the manager as having preferences for perquisite consumption

or empire�building. In these models, the manager has incentives to divert free cash �ows

to ine¢ cient investments or to excessive perquisites. Grenadier and Wang (2005) apply an

optimal contracting approach to ensure against diversion and to provide an incentive for

the manager to exercise optimally.

4.1.1 Costly state veri�cation model

Suppose that the manager can divert any amount d from the project value before the noise

" is realized.35 As is standard in the literature (e.g., DeMarzo and Sannikov 2006), diversion

is potentially wasteful, so that the manager receives only a fraction � 2 [0; 1] of the diverted

value. After the project cash �ow of P � �� d+ " is realized, the shareholders either verify

whether the manager diverted or not. Veri�cation costs c > 0. If the shareholders verify

that the manager diverted funds d from the �rm, the manager is required to return them to
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the �rm.36 Thus, the timing of the interactions is the following. First, the manager decides

when to exercise the investment option. Then, after the investment has been made but

before the cash �ow is realized, the shareholders decide on the veri�cation strategy.37 As

in traditional costly state veri�cation models (Townsend 1979; Gale and Hellwig 1985), the

investors (shareholders in our case) can commit to the deterministic veri�cation strategy.

After that but before observing the noise ", the manager decides how much to divert.

Finally, the project�s cash �ow of P � � � d + " is realized, and the shareholders either

verify the manager or not, according to the pre-speci�ed veri�cation strategy. Let 	 and  

denote the cumulative distribution and density functions of ", respectively. Assume that  

is C2.

In Appendix B, we demonstrate that any optimal veri�cation strategy takes the form

of verifying the manager if and only if the di¤erence between the expected and the realized

cash �ows is greater than a particular threshold. In other words, for some v, veri�cation

occurs if and only if P � � � d + " �
�
P � ~�

�
< v, or, equivalently, " < v � ~� + � + d.

Let us initially choose any veri�cation parameter v and determine the manager�s optimal

diversion strategy in response. Then, conditional on this managerial response, we determine

the shareholders�optimal choice of v.

Consider a manager of type � that is inferred by the market as type ~�. If the manager

diverts d, she expects to be veri�ed with probability 	
�
v � ~� + � + d

�
, in which case there

is no impact on her payo¤, as the diverted cash �ow is returned to the �rm. However, she

is not veri�ed with probability 1 � 	
�
v � ~� + � + d

�
, in which case she gains fraction �
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of the diverted cash �ow for her private bene�t and loses fraction � due to her ownership

position. Hence, the manager�s problem is:

max
d�0

n
(�� �) d

�
1�	

�
v � ~� + � + d

��o
: (46)

Clearly, if � � �, then the manager does not divert anything: d = 0.38 Now, con-

sider the case � < �. Assuming that the hazard rate of the distribution of ", h (z) �

 (z) = (1�	(z)), is increasing, (46) has a unique solution d� that satis�es:

d�h 

�
v � ~� + � + d�

�
= 1: (47)

The solution d� is a decreasing function of v�~�+�. Let us denote this functional dependence

by D
�
v � ~� + �

�
.

Given the manager�s response to veri�cation rule v, we now solve for the shareholders�

optimal choice of v. Under the shareholders�information set, they expect the manager to

divert D (v) and estimate the probability of veri�cation at 	(v +D (v)). For any choice of

v, the shareholders lose 1 � � of the diverted cash �ow when veri�cation does not occur,

and pay cost c when veri�cation occurs. Thus, the optimal veri�cation parameter v� is:

v� = argmin
v
f(1� �) (1�	(v +D (v)))D (v) + 	 (v +D (v)) cg : (48)

In summary, we have determined the manager�s diversion and shareholders�veri�cation

strategies. If � � �, then the manager does not divert cash �ow and the shareholders do
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not verify the manager: d = 0; v = �1. If � < �, the manager diverts D
�
v� � ~� + �

�
,

and the shareholders verify the manager if and only if the project�s realized cash �ow falls

below v� + P � ~�.

4.1.2 Equilibrium investment timing

Given the manager�s diversion rule derived above, her payo¤ from exercising the option at

threshold P̂ , when her type is � and the shareholders�belief is ~�, equals:

�
�
P̂ � �

�
+max (�� �; 0)D

�
v� � ~� + �

��
1�	

�
v� � ~� + � +D

�
v� � ~� + �

���
: (49)

Thus, this problem is a special case of the general model with:

W
�
~�; �
�
= max (�� �; 0)D

�
v� � ~� + �

��
1�	

�
v� � ~� + � +D

�
v� � ~� + �

���
: (50)

Notice that for � > �, W~�

�
~�; �
�
> 0, meaning that the application corresponds to Case 2

of the general model. Intuitively, as the shareholders become more pessimistic about the

project�s value, the manager diverts more and gets veri�ed less frequently.

Using the solution analogous to (23), we can express �P (�) implicitly as the solution to

the following equation:39

1 +
max (�� �; 0) (1�	(v� +D (v�)))

��

� �P (�)

P � (�)

�� ��
max(���;0)(1�	(v�+D(v�)))�1

(51)

=
� +max

�
�
�
� 1; 0

�
(1�	(v� +D (v�)))

� � 1
� �max

�
�
�
� 1; 0

�
D (v�) (1�	(v� +D (v�)))
�P (�)

;
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where P � (�) is the symmetric-information threshold of type �:

P � (�) =
�

� � 1

�
� �max

�
�

�
� 1; 0

�
D (v�) (1�	(v� +D (v�)))

�
: (52)

Note that for the case of � � �, �P (�) = P � (�) = �
��1�.

4.1.3 Discussion

The e¤ect of potential cash �ow diversion on the timing of investment is illustrated in

Figure 3. If diversion is su¢ ciently costly (� � �), or, equivalently, managerial ownership

is su¢ ciently high, then the interests of the manager and those of the outside shareholders

are aligned. Because diversion is never optimal in this case, information asymmetry does not

a¤ect the investment strategy. If diversion is not costly enough (� > �), then information

asymmetry leads to a delay in investment compared to the case of symmetric information.

Interestingly, diversion also a¤ects investment threshold under symmetric information about

�. When the manager expects to divert value from the project, she exercises the option at a

lower threshold. Because the manager diverts the same amount for any exercise threshold,

higher diversion is equivalent to a decrease in the investment cost from the manager�s point

of view. Consequently, the symmetric information threshold for the case � = 0:5 is lower

than that for the case � = 0.

In Figure 3, distortion in the investment threshold due to information asymmetry is

greater for projects of lower quality. This result contrasts with the results in the previous

two applications. There the exercise trigger is altered in a way that the manager has no
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incentives to mimic a lower type. As a result, distortion in the exercise timing does not

exist for the highest types (worst projects) and exists for lower types. In contrast, now the

exercise trigger is altered in a way that the manager has no incentives to mimic a higher

type. As a result, distortion in exercise timing does not exist for the lowest types (best

projects) and exists for higher types.

4.2 Strategic product market competition

Another example of a real options signaling game in which asymmetric information delays

option exercise is the strategic entry into a product market. Speci�cally, consider the entry

decisions of two �rms that are asymmetrically informed about the value of a new product.

Firm 1 knows the investment cost �, while �rm 2 does not. For example, �rm 1 may have

greater experience in similar product introductions or may be the industry�s technology

leader. When there is only one �rm in the industry, it receives a monopoly pro�t �ow of P (t).

When there are two �rms in the industry, each receives a duopoly pro�t �ow of �P (t), where

� 2
�
1� 1

�
; 1
�
.40 We derive the Bayes-Nash separating equilibrium in two di¤erent versions

of the game: when �rm 1 is the designated leader (the �Stackelberg equilibrium�) and when

the roles of the two �rms are determined endogenously (the �Cournot equilibrium�). We

focus on the limiting case � ! 0 to obtain the closed-form solutions.

Product market competition in a real options framework has been frequently analyzed

in the literature. Leahy (1993), Williams (1993), and Grenadier (2002) study simultaneous

investment by symmetric �rms in a competitive equilibrium. Novy-Marx (2007) looks at a
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similar problem with heterogeneous �rms. Grenadier (1996), Weeds (2002), and Lambrecht

and Perraudin (2003) study sequential investment in leader-follower games. We follow

the simple duopoly framework outlined in Chapter 9 of Dixit and Pindyck (1994). The

key distinction with the perfect information framework in Dixit and Pindyck (1994) is

that one �rm knows the investment cost, while the other attempts to infer it through the

informed �rm�s investment decision. The main insight is that the informed �rm will delay

its investment to signal to the uniformed �rm that the cost is higher than in reality, thereby

attempting to delay the uniformed �rm�s entrance and enjoy monopoly pro�ts for a longer

period. In equilibrium this e¤ort to deceive will fail, but the informed �rm�s entry will still

be delayed relative to the full-information entry time.41

The investment decision of �rm 1 depends on the degree of pressure it feels due to

�rm 2�s potential preemption. We will begin with the assumption of a Stackelberg equilib-

rium (where there is no potential preemption) and then show the extension to a Cournot

equilibrium (where preemption by �rm 2 is possible).

4.2.1 The Stackelberg equilibrium

Let us work backwards and begin by considering the situation when �rm 1 has already

invested. Firm 2 has used �rm 1�s entry time to make an inference about �, denoted by

~�. Given its inferred signal, �rm 2 holds a standard real option whose expected payo¤ at

exercise is �P
r�� � ~�. Firm 2 will thus enter at the �rst instant when P (t) equals or exceeds
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�PF

�
~�
�
, given by:

�PF

�
~�
�
=

�

� � 1
r � �

�
~�: (53)

Now, consider the entry of �rm 1. Upon payment of � at exercise, �rm 1 begins receiving

the monopoly pro�t �ow of P (t), which is then reduced to �P (t) once �rm 2 enters. Thus,

for a given type �, �rm 2�s belief ~�, and the entry trigger P̂L, the payo¤ to �rm 1 at the

moment of entry is:

P̂L
r�� � � �

�
P̂L
�PF (~�)

��
�PF (~�)(1��)

r�� ; for P̂L � �PF

�
~�
�
;

�P̂L
r�� � �; for P̂L > �PF

�
~�
�
:

(54)

Let �PL (�) denote the equilibrium entry threshold of �rm 1 in the Stackelberg case. Con-

jecture that �PL (�) � �PF (�), which is veri�ed in Appendix B. Then, from (54) we can see

that the payo¤ from exercise can be written as:

�
�
P̂L � �

�
+W (P̂L; ~�; �); (55)

where � = 1
r�� , and:

W (P̂L; ~�; �) = �P̂ �
L� (1� �) �PF

�
~�
�1��

� (1� �) �: (56)

Note that the belief component of this payo¤ is not a special case of the model outlined

in Section 1, given that P̂L is included as an argument. In Appendix B, we show that this
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slight di¤erence in the functions can be easily handled, and that the separating equilibrium

investment trigger satis�es di¤erential equation (B15). The resulting leader�s Stackelberg

strategy thus satis�es:

d �PL (�)

d�
=
1� �

�

� �PL (�)
��1
r��

�PL (�)� ��

 
�PL (�)
�
��1

r��
�
�

!�

: (57)

Since the leader�s payo¤ is decreasing in ~�, it is solved subject to the boundary condition

that type � invests at the symmetric information threshold. In the limiting case � ! 0, this

boundary condition approaches:

�PL (0) = 0: (58)

In Appendix B we show that the solution is:

�PL (�) =
�

� � 1
r � �

�
� = �PF (�): (59)

Thus, �rm 1�s Stackelberg strategy is to delay investment up to the point that �rm 2�s

response will be to invest immediately thereafter.

It is instructive to compare the equilibrium investment threshold of the leader (59)

with the full�information case studied in Chapter 9 in Dixit and Pindyck (1994), in which

both the leader and the follower know �. In that case, the full-information Stackelberg

equilibrium investment threshold for �rm 1 is equal to:42

P �L (�) =
�

� � 1 (r � �) �: (60)
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Since � < 1, �rm 1�s investment occurs later than in the full-information setting. Intuitively,

�rm 1 has an incentive to invest later than in the case of symmetric information to fool �rm

2 and thereby postpone its entry. As in the other applications, in equilibrium the informed

player is unsuccessful in fooling the uninformed player: �rm 2 learns the true type of the

leader, and invests at the same investment threshold as in the case of perfect information.

Information asymmetry not only leads to later entry of �rm 1 but also shortens the period

of time when �rm 1 is a monopolist.

4.2.2 The Cournot equilibrium

Now, consider how the Stackelberg equilibrium of the previous section is a¤ected by the

potential preemption of �rm 2. Let ~PL be the threshold at which �rm 2 preempts �rm 1 by

entering �rst. In the event of being preempted, the optimal best response for �rm 1 is to

invest at the �rst time when P (t) equals or exceeds the optimal follower�s threshold �PF (�).

Given any preemption threshold, ~PL, we can compute the conditional expected value

of �rm 2 before either �rm invests. Let PM (t) denote the historical maximum of P (t)

as of time t. If �rm 1 has not invested before time t, �rm 2 learns that � is such that

�PL (�) > PM (t), i.e., � >
��1
�

�
r��PM (t). There are two ranges of �: in the upper range �rm

2 enters �rst, and in the lower range both �rms enter simultaneously. For the case in which

� > ��1
�

�
r��

~PL, ~PL < �PL (�) and thus �rm 2 preempts �rm 1 by investing at ~PL. For the

case in which � � ��1
�

�
r��

~PL, ~PL � �PL (�) and thus �rm 1 enters at the Stackelberg trigger

�PL (�), where �rm 2 will then infer � and immediately enter. Combining these cases, �rm
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2�s value, conditional on P and PM , is equal to:

R ��1
�

�
r��

~PL
��1
�

�
r��PM

�
P

PF (�)

�� �
�PF (�)
r�� � �

�
�(�)

1��(��1�
�

r��PM)
d�

+
R ��
��1
�

�
r��

~PL

�
P
~PL

�� � ~PL
r�� �

�
~PL

PF (�)

��
(1��)PF (�)

r�� � �

�
�(�)

1��(��1�
�

r��PM)
d�:

(61)

The optimal preemption strategy is to invest at the ~PL that maximizes (61). The corre-

sponding �rst-order condition is:43

~PL =
�

� � 1
E
h
�j� � ��1

�
�
r��

~PL

i
r � �

: (62)

In other words, the equilibrium preemption trigger equals the expected full-information

Stackelberg trigger, conditional on preemption. In Appendix B we show that the optimal

preemption threshold, ~PL, is always between 0 and �PF
�
��
�
. In particular, assuming that

�� (�) = (1� � (�)) is increasing in �, equation (62) has a unique solution, which determines

~PL.44

We can now fully characterize the Cournot equilibrium outcome. Firm 2 attempts to

preempt �rm 1 by investing at trigger ~PL, which is implicitly given by (62). If � is such

that ~PL < �PL(�), then �rm 2 invests �rst at ~PL, and �rm 1 invests later at �PF (�) = �PL(�).

Alternatively, if � is such that ~PL � �PL(�), then both �rms invest simultaneously at trigger

�PL(�). Thus, in all cases the informed �rm invests later than it would in the case of full

information. This delay is due to its strategic incentive to arti�cially in�ate �rm 1�s inferred

estimate of �.

52



The Cournot equilibrium is illustrated in Figure 4, for the case in which � is distrib-

uted uniformly over [0; 2]. The preemption threshold, ~PL, is equal to 0:085. At the point

designated A where � = 0:5, the Stackelberg trigger �PF (�) is equal to ~PL. Thus for all

� > 0:5, the equilibrium outcome is for �rm 2 to invest �rst at trigger ~PL and for �rm 1

to invest later at the Stackelberg trigger �PF (�). Conversely, for all � � 0:5, there will be

simultaneous entry at the Stackelberg trigger �PF (�).

5 Conclusion

This paper studies real options signaling games. These are games in which the decision to

exercise an option is a signal of private information to outsiders, whose beliefs a¤ect the

payo¤ of the decision maker. The decision maker attempts to fool outsiders by altering the

timing of option exercise. In equilibrium, signal-jamming occurs: outsiders infer private

information of the decision maker correctly, but the timing of the option exercise is signif-

icantly distorted. The distortion can go in both directions. If the decision�maker�s payo¤

increases in outsiders�belief about the value of the asset, then signaling incentives speed

up option exercise. Conversely, if the decision�maker�s payo¤ decreases in outsiders�belief

about the value of the asset, then signaling incentives delay option exercise.

We illustrate the �ndings of the general model using four corporate �nance applications:

investment under managerial myopia, venture capital grandstanding, investment under cash

�ow diversion by the manager, and product market entry decisions by two asymmetrically

informed �rms. The �rst two applications provide examples in which signaling erodes
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the value of the option to wait and speeds up investment. In the �rst application, the

manager cares not only about the long-term performance of the company but also about

the short-term stock price. In attempt to boost the short-term stock price, the manager

invests too early attempting to fool the market into overestimating the project�s NPV. In

the second application, we consider the decision when to take the company public by a

venture capitalist, who is better informed about its value than are outside investors. Here,

a venture capitalist with a short track record takes their portfolio companies public earlier

in an attempt to establish a reputation and raise more capital for new funds. The last

two applications provide examples in which signaling incentives delay investment. First,

signaling can signi�cantly delay investment if the agent can divert cash �ows from the

project for her own private bene�t. In this case investment is delayed as the agent tries to

signal that the NPV of the project is lower than in reality, thereby diverting more for her

personal consumption. Second, we illustrate how signaling delays investment in a duopoly,

where the �rms are asymmetrically informed about the value of a new product. In this case,

the informed �rm�s decision when to launch the new product reveals information about its

value to the uninformed �rm and thereby potentially impacting future competition. The

informed �rm delays the decision to launch the product in attempt to fool the rival into

underestimating the value of the product.

Irrespective of the application, the main message of the paper is the same: signaling

incentives have an important role in distorting major timing decisions of �rms such as

investment in large projects, IPOs, and developing new products. This gives rise to several
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interesting questions that are left outside of this paper. For example, to what extent do the

existing contracts provide incentives to make the timing decisions optimally? As another

example, in what applications do signaling incentives work for or against social welfare?

While signaling incentives reduce the decision�maker�s utility due to an ine¢ cient timing

of option exercise, their e¤ect on the social welfare is unclear.

Appendix

Appendix A. Single-Crossing Condition

We list the single-crossing condition, which is used to obtain existence and uniqueness of

the separating equilibrium.

Assumption 5 (Single-crossing condition). Function W
�
~�; �
�
satis�es:

W~�

�
~�; �
�
�
@

�
UP̂ (~�;�;P̂)
U~�(~�;�;P̂)

�
@�

> 0 (A1)

for
�
~�; P̂

�
in the graph of �P , where U

�
~�; �; P̂

�
is given by (13), � is given by (7), and �P (�)

is the unique increasing solution of the di¤erential equation (16), subject to the boundary

condition (17), if W~�

�
~�; �
�
< 0, or (18), if W~�

�
~�; �
�
> 0.

The single-crossing condition ensures that if the agent does not make extra gains by
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misrepresenting � slightly, then extra gains cannot be made from a large misrepresentation.

It is standard for games of asymmetric information, both signaling and screening. Impor-

tantly, it is enough that the single-crossing condition is satis�ed for
�
~�; P̂

�
in the graph of

�P .

The single-crossing condition holds in all applications that we consider. As an example,

below we verify the single-crossing condition for the venture capital grandstanding example

of Section 3.2. For this application, we have from (42):

W
�
~�; �
�
= �

�P2 (�)� �

�P2 (�)
�
H
�
I2

�
~�
��

; (A2)

where H 0 > 0; I 02 < 0, and �P2 (�) is the full-information trigger in (37). Simplifying, we

have:

W
�
~�; �
�
= k�1��H

�
I2

�
~�
��

; (A3)

where k = �
��1

�
�
��1

���
> 0. Taking derivatives, we obtain that Assumption 5 requires

that:
(� � 1) P̂ ���1 � ��� +

�
��1
�

���1
H
�
I2

�
~�
��

P̂~�
��1 1

1��I
0
2

�
~�
� (A4)

is a strictly decreasing function of � for
�
~�; P̂

�
in the graph of �P1. Taking the derivative

with respect to �, we get the following requirement:

(� � 1)2 P̂ � �2� < 0 for P̂ in the graph of �P1. (A5)
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In the graph of �P1, the highest value of P̂ is �P1
�
��
�
, which is given by (45). Therefore, a

su¢ cient condition for (A5) is:

(� � 1)2 �P1
�
��
�
� �2� < 0: (A6)

This is equivalent to (43) in Section 3.2. Hence, the single-crossing condition is veri�ed.

Appendix B. Proofs

Proof of Proposition 2. We apply Theorems 1-3 from Mailath (1987) to prove the

proposition. We need to show that function U
�
~�; �; P̂

�
satis�es Mailath�s (1987) regularity

conditions:

� Smoothness: U
�
~�; �; P̂

�
is C2 on

�
�; ��
�2 � R+;

� Belief monotonicity: U~� never equals zero, and so is either positive or negative;

� Type monotonicity: U�P̂ never equals zero, and so is either positive or negative;

� �Strict�quasiconcavity: UP̂
�
�; �; P̂

�
= 0 has a unique solution in P̂ , which maximizes

U
�
�; �; P̂

�
, and UP̂ P̂

�
�; �; P̂

�
< 0 at this solution;

� Boundedness: There exists � > 0 such that for all
�
�; P̂

�
2
�
�; ��
�
�R+ UP̂ P̂

�
�; �; P̂

�
�

0 )
���UP̂ ��; �; P̂���� > �.

Let us check that these conditions are satis�ed for our problem. The smoothness con-

dition is satis�ed, because W
�
~�; �
�
is C2 on

�
�; ��
�2
. The belief monotonicity condition is
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satis�ed, because W~� is either always positive or always negative. The type monotonicity

condition is satis�ed, because:

U�P̂

�
~�; �; P̂

�
=
�
�
��W�

�
~�; �
��

P̂ �+1
> 0; (B1)

as � > W�

�
~�; �
�
by Assumption 4. As we show in Section 1.3, UP̂

�
�; �; P̂

�
= 0 has a

unique solution in P̂ , denoted by P � (�), that maximizes U
�
�; �; P̂

�
. Also:

UP̂ P̂ (�; �; P
� (�)) =

�

P � (�)�+2
[� (� � 1)P � (�)� (� + 1) (�� �W (�; �))] (B2)

= �� (�� �W (�; �))

P � (�)�+2
< 0:

Hence, the �strict�quasiconcavity condition is satis�ed. Finally, to ensure that the bound-

edness condition is satis�ed, we restrict the set of potential investment thresholds to be

bounded by k from above, where k can be arbitrarily large. We will later show that

extending the set of actions to P̂ 2 (0;1) neither destroys the separating equilibrium

nor creates additional separating equilibria. Notice that UP̂ P̂
�
�; �; P̂

�
� 0 implies that

�� � W (�; �) � P̂� (� � 1) = (� + 1). Hence, for any
�
�; P̂

�
2
�
�; ��
�
� [0; k] such that

UP̂ P̂

�
�; �; P̂

�
� 0:

���UP̂ ��; �; P̂���� = �(��1)P̂��(���W (�;�))

P̂�+1
� �(��1)P̂���(��1)

�+1
P̂

P̂�+1
= �(��1)

(�+1)P̂�
� �(��1)

(�+1)k�
> 0 (B3)

for any arbitrarily large k. Then, the boundedness condition is satis�ed.
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By Mailath�s (1987) Theorems 1 and 2, any separating equilibrium �P (�) is continuous,

di¤erentiable, satis�es equation (16), and d �P=d� has the same sign as U�P̂ . Because U�P̂ > 0,

�P (�) is an increasing function of �. Let ~P denote the solution to the following restricted

initial value problem: equation (16), subject to (17), if W~� < 0, or (18), if W~� > 0.

Because jW~� (�; �)j is bounded above by max�2[�;��] jW~� (�; �)j, ~P is unique by Mailath�s

(1987) Proposition 5. Hence, if a separating equilibrium exists, it is unique and is given by

~P . By Mailath�s (1987) Theorem 3, the single-crossing condition guarantees existence of

the separating equilibrium.

This argument suggests that ~P is the unique separating equilibrium in a problem where

the set of investment thresholds is P̂ 2 (0; k) for any su¢ ciently large �nite k. Finally, it

remains to show that considering the space of investment thresholds bounded by k is not

restrictive. First, we argue that ~P is a separating equilibrium in a problem where P̂ 2

(0;+1). To show this, note that the single-crossing condition holds for all P̂ 2 (0;+1).

Therefore, local incentive compatibility guarantees global incentive compatibility for all

P̂ 2 (0;+1), not only for P̂ 2 (0; k). Hence, ~P is a separating equilibrium in a problem

where P̂ 2 (0;+1). Second, we argue that there are no other separating equilibria in

a problem where P̂ 2 (0;+1). By contradiction, suppose that there is an additional

separating equilibrium ~P2, other than ~P . It must be the case that for some �, ~P2 (�) is

in�nite. Otherwise, it would be a separating equilibrium in the restricted problem for a

su¢ ciently large k. However, if ~P2 (�) is in�nite for some �, then the equilibrium expected

payo¤ of type � is zero. Hence, it would be optimal for this type to deviate to any �nite
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P̂ > � � max~�W
�
~�; �
�
=�. Thus, there are no other separating equilibria in a problem

where P̂ 2 (0;+1).

Proof of Proposition 3. We can rewrite equation (16) in the following form:

� (� � 1) �P (�)� � (�� �W (�; �)) =
�P (�)W~� (�; �)

�P 0 (�)
: (B4)

From the proof of Proposition 2, we know that �P 0 (�) > 0. Hence, if W~� < 0, then the

right-hand side of (B4) is negative. Thus, (B4) implies that �P (�) < P � (�) except the point

� = �� in which the initial value condition holds. Analogously, ifW~� > 0, then the right-hand

side of (B4) is positive, so (B4) implies that �P (�) > P � (�) except the point � = � in which

the initial value condition holds.

Derivation of the semi-pooling equilibrium. First, we show that for any �̂ 2
�
�; ��
�
,

equation (26) has the unique solution denoted Ppool
�
�̂
�
. Consider function:

f
�
P ; �̂

�
=

 
P

�P (�̂)

!�

�
�
�P (�̂)� �̂

�
� �

�
P � �̂

�
+ cw

�̂ � �

2
; (B5)

de�ned over P 2
h
0; �P

�
�̂
�i
, �̂ 2

�
�; ��
�
. Note that:

f
�
�P
�
�̂
�
; �̂
�
= cw

�̂ � �

2
< 0; (B6)

f
�
0; �̂
�
= ��̂ + cw

�̂ � �

2
> 0; (B7)
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where the �rst inequality holds by cw < 0 and the second inequality holds by Assumption

2. Consider the derivative of f
�
P ; �̂

�
with respect to P :

f P

�
P ; �̂

�
= �

0@ P

�P
�
�̂
�
1A�

�
�P (�̂)� �̂

P
� �

� ��
�P (�̂)� �̂

�P
�
�̂
� � � (B8)

< � (� � 1)� ��
�̂

P �
�
�̂
� = 0:

The �rst inequality follows from P � �P
�
�̂
�
and fPP

�
P ; �̂

�
> 0. The second inequality

follows from �P
�
�̂
�
< P �

�
�̂
�
. By continuity of f

�
P ; �̂

�
, for any �̂ there exists a unique

point in Ppool
�
�̂
�
at which f

�
Ppool

�
�̂
�
; �̂
�
= 0.

Second, we demonstrate that each type � 2
h
�; �̂
i
indeed �nds it optimal to exercise

at Ppool
�
�̂
�
and each type � 2

h
�̂; ��
i
�nds it optimal to exercise at �P (�). Consider type

� 2
h
�̂; ��
i
. The di¤erence of the utilities from separating at �P (�) and pooling is equal to:

�
Ppool
�P (�)

��
�
�
�P (�)� �

�
� � (Ppool � �) + cw

�̂ � �

2
(B9)

= P �
pool max

Y 2R+

�
1

Y �

�
� (Y � �) +W

�
�P�1 (Y ) ; �

���
� � (Ppool � �) + cw

�̂ � �

2
:

By the envelope theorem, the derivative with respect to � is:

�
Ppool
�P (�)

��
(��� cw) + � � 0; (B10)

61



because cw < 0 and Ppool � �P (�). Because type �̂ is indi¤erent between separating and

pooling, any type � above �̂ does not have an incentive to deviate to Ppool. By the single-

crossing condition, any deviation to a threshold that is di¤erent from Ppool is also not

optimal for any type � 2
h
�̂; ��
i
. Consider type � 2

h
�; �̂
i
. From (B9), the payo¤ of

type � from pooling and investing at Ppool is higher than P
�
poolU

�
~�; �; P̂

�
. By the single-

crossing condition, U
�
�; �; �P (�)

�
� U

�
~�; �; �P

�
~�
��
. Therefore, under the worst-possible

out-of-equilibrium beliefs, no type � 2
h
�; �̂
i
�nds it optimal to deviate from Ppool.

Proof that the form of the optimal veri�cation threshold, v
�
P; ~�
�
, is P � ~� � v

for some constant v. Suppose that the manager�s type is �, and the shareholders�

belief is ~�. Let v
�
P; ~�
�
denote the more general veri�cation threshold of the sharehold-

ers such that shareholders verify the manager if and only if the realized value is below

v
�
P; ~�
�
. Then, if the manager of type � diverts d, she expects to be veri�ed with proba-

bility 	
�
v
�
P; ~�
�
� P + � + d

�
. Hence, the manager�s problem is:

max
d�0

n
(�� �) d

�
1�	

�
v
�
P; ~�
�
� P + � + d

��o
: (B11)

The solution is a function of P � � � v
�
P; ~�
�
, denoted by D

�
P � � � v

�
P; ~�
��
.

Given the manager�s response to a veri�cation rule v
�
P; ~�
�
, we now derive the optimal

v
�
P; ~�
�
. The shareholders expect the manager to divert D

�
P � ~� � v

�
, so they estimate

the probability of veri�cation at 	
�
v � P + ~� +D

�
P � ~� � v

��
. Hence, for each P and
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~�, v
�
P; ~�
�
must minimize:

(1� �)D
�
P � ~� � v

��
1�	

�
v � P + ~� +D

�
P � ~� � v

���
+c	

�
v � P + ~� +D

�
P � ~� � v

��
: (B12)

Since the value function depends on v, P , and ~� only through v � P + ~�, any optimal

veri�cation threshold is of the form v
�
P; ~�
�
= P � ~� � v for some constant v.

Veri�cation of �PL (�) � �PF (�). By contradiction, suppose that in equilibrium �PL (�) >

�PF (�) for some �. If �rm 1 invests at P̂L � �PF

�
~�
�
, �rm 2 will invest immediately after

�rm 1. Hence, in the range P̂L � �PF

�
~�
�
, P < P̂L, VL

�
P; �; ~�; P̂L

�
is equal to:

VL

�
P; �; ~�; P̂L

�
=

�
P

P̂L

��  
�P̂L
r � �

� �

!
: (B13)

Irrespective of ~�, this value function is maximized at P̂L = �PF (�). Hence, any �PL (�) >

�PF (�) is inconsistent with equilibrium.

Generalizing the payo¤ function to W (P; ~�; �). The equilibrium di¤erential equation

in (16) can be generalized to the case in which the belief function also includes P as an

argument. Provided that the payo¤ function satis�es the regularity condition in Mailath

(1987), as does the particular function in (55) - (56), the equilibrium derivation can proceed

as follows. Analogous to (15), the agent�s �rst-order condition for the optimal selection of
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the trigger P̂ is:

�
�
�
�
P̂ � �

�
+W

�
P̂ ; �P�1

�
P̂
�
; �
��

P̂

= �+WP

�
P̂ ; �P�1

�
P̂
�
; �
�
+W~�

�
P̂ ; �P�1

�
P̂
�
; �
� d �P�1 �P̂�

dP̂
: (B14)

In the separating equilibrium, we can set �P�1
�
P̂
�
= � and obtain the equilibrium di¤er-

ential equation:

d �P (�)

d�
=

�P (�)W~�

�
�P (�) ; �; �

�
�
�
(� � 1) �P (�)� ��

�
+ �W

�
�P (�) ; �; �

�
� �P (�)WP

�
�P (�) ; �; �

� : (B15)

Solution to di¤erential equation (57) subject to boundary condition (58). Let

us look for a solution in the form �PL (�) = A�. Notice that this solution will satisfy the

boundary condition (58) since �PL (0) = 0. Equation (57) becomes:

A
� � 1

�(r � �)
�
�
A (� � 1)�
� (r � �)

��
1� �

�
= 1: (B16)

Letting v � A (��1)�
�(r��) , we get:

v � v� � �
�
1� v�

�
= 0: (B17)

Let �(v) = v � v� � �
�
1� v�

�
. It is clear that v = 1 is a root of �(v). Since �00(v) =
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� (� � 1) (�� 1) v��2 < 0 and �(0) = �� < 0, �(v) has at most one other root. We have

lim
v!1

�(v) = �1, and since � > 1 � 1
�
, �0(1) > 0. Thus, there exists the second root, and

it exceeds 1. The upper root cannot yield the separating equilibrium since it implies the

investment threshold above �PF (�), which is inconsistent with the separating equilibrium,

as shown above. Hence, (57) - (58) is solved by:

�PL (�) =
�

� � 1
r � �

�
�: (B18)

Proof of properties of ~PL. The �rst derivative of (61) with respect to ~PL equals:

�E�

"�
P
~PL

��
1
~PL

 
(� � 1) ~PL
r � �

� ��

!
j� � � ~PL

#

=

�
P
~PL

��
1
~PL

 
�E�

h
�j� � � ~PL

i
� (� � 1)

~PL
r � �

!
; (B19)

where � = ��1
�

�
r�� . It is strictly positive for all ~PL su¢ ciently close to 0 and strictly

negative for all ~PL su¢ ciently close to �PF
�
��
�
. Hence, (61) is maximized at ~PL 2

�
0; �PF

�
��
��
.

Therefore, the sets
n
� : PF (�) > ~PL

o
and

n
� : PF (�) < ~PL

o
are nonempty.

Consider the case when �� (�) = (1� � (�)) is increasing in �. First, we show that e (��) �

E�
�
�
�� j� � ��

�
is strictly decreasing in ��. Taking the derivative:

��e0 (��) = e (��)

�
� (��) ��

1� � (��) � 1
�
� � (��) ��

1� � (��) : (B20)
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Clearly, e (��) is strictly decreasing in �� for all points below the point at which ���(��)
1��(��) = 1.

Consider the range above this point. If e0 (��) > 0 for some ��, then it must be the case

that e0 (��) > 0 for all �� above. This implies 1 = e
�
��
�
> e (��), which is a contradiction

with e (��) for all �� < ��. Hence, e (��) is strictly decreasing in ��. Now, consider (62). We

can rewrite it as:

E�
�
�

� ~PL
j� � � ~PL

�
=
1

�
; (B21)

where � � ��1
�

�
r�� . Notice that the left-hand side approaches in�nity when

~PL approaches

zero and equals 1 < 1
�
when ~PL = ��=� = �PF

�
��
�
. Because E�

h
�

� ~PL
j� � � ~PL

i
is decreasing

in ~PL, there exists the unique ~PL 2
�
0; �PF

�
��
��
at which (62) is satis�ed.
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Notes

1The early literature, started by Brennan and Schwartz (1985) and McDonald and Siegel

(1986), is well summarized in Dixit and Pindyck (1994). Recently the real options frame-

work has been extended to incorporate competition among several option holders (e.g.,

Grenadier 2002; Lambrecht and Perraudin 2003; Novy-Marx 2007) and agency con�icts

(Grenadier and Wang 2005). Real options models have been applied to study speci�c in-

dustries such as real estate (Titman 1985; Williams 1991) and natural resources (Brennan

and Schwartz 1985) and other corporate decisions such as defaults (e.g., Leland 1994) and

mergers (Lambrecht 2004; Morellec and Zhdanov 2005; Hackbarth and Morellec 2008; Hack-

barth and Miao 2011). See Leslie and Michaels (1997) for a discussion of how practitioners

use real options ideas.

2See Tirole (2006), Chapter 6, for a discussion of asymmetric information in corporate

�nance.

3In fact, as we discuss in Section 2.4, any non-separating equilibrium can be ruled out

using the D1 restriction on the out-of-equilibrium beliefs of outsiders.

4Our application on cash �ow diversion is also related to Grenadier and Wang (2005) and

Bouvard (2010), who study investment timing under asymmetric information between the

manager and investors, where the timing of investment can be part of the contract between

the parties. The major di¤erence between their models and our diversion application is

that theirs are screening models, while ours is a signaling model.

5See McDonald and Siegel (1986) and Chapter 5 of Dixit and Pindyck (1994) for a
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discussion of this restriction. Instead of risk neutrality, we could assume that P (t) evolves

as (1) under the risk-neutral measure.

6The assumption that the privately observable component of the project is the invest-

ment cost is without loss of generality. The model can also be formulated when the privately

observable component � corresponds to part of the project�s present value rather than the

investment cost [as in Grenadier and Wang (2005)] or when it a¤ects the present value of

the project multiplicatively [as in Bustamante (2011) and Morellec and Schürho¤ (2011)].

7We introduce the noise term to make the timing of exercise a meaningful signal of the

agent�s private information. If " were always equal to zero, then outsiders would be able to

learn the exact value of � from observing the realized value of the project. As a consequence,

the timing of exercise would have no information role. Because of risk neutrality, as long as

there is some noise, its distribution is not important for our results with the exception of the

model in Section 4.1, where its distribution impacts the underlying costly state veri�cation

model.

8See Grenadier and Wang (2005) and Philippon and Sannikov (2007) for optimal con-

tracting problems in the real options context.

9The form of the utility function from exercise in (3) is chosen to both keep the model

tractable and su¢ ciently general. We have also solved the model for an even more general

utility function, � (F (P (�))� � + ") +W
�
P (�) ; ~�; �

�
. The results are very similar, as

long as the utility function satis�es the regularity conditions in Mailath (1987).

10If neither the agent nor outsiders observe �, then the model is analogous to the one in

68



this section.

11Since P = 0 is an absorbing barrier, V � (P; �) must also satisfy the condition V � (0; �) =

0.

12Note that outsiders also learn from observing that the agent has not yet exercised the

option. Speci�cally, whenever P (t) hits a new maximum, outsiders update their belief of

the agent�s type. If PM (t) = maxs�t P (s), outsiders�posterior belief is the prior belief

truncated at �P�1 (PM (t)) from below (above), if �P (�) is increasing (decreasing) in �. Once

the agent exercises the option at P̂ , outsiders�posterior belief jumps to �P�1
�
P̂
�
. Because

only outsiders�belief upon option exercise enters the payo¤ function of the agent, we can

disregard the pre-exercise dynamics of outsiders�belief.

13As in the symmetric information case, the option value must satisfy the absorbing

barrier condition V (0; ~�; �) = 0.

14Our model assumes that outsiders�actions impact the agent�s payo¤ only through the

belief component, ~�. As discussed in Mailath (1987), this is the reduced-form speci�cation

that incorporates optimal (with respect to the given belief) actions of outsiders, which are

taken after the agent exercises the option. Thus, the harshest punishment that can be

in�icted on the agent is the belief that she is the worst possible type.

15An example of such function that satis�es Assumptions 1 - 5 is w
�
~� � �

�
= cw ��

~� � �
�
, where cw is any non-zero constant above ��.

16To see this, note that Assumption 4 and w0 (0) < 0 imply that� ��
w0(0)�1 > 0. Therefore,

as �� !1, the left-hand side converges to �P (�).
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17More generally, the belief component can be any function of the distribution of out-

siders�posterior belief about the agent�s type.

18This result holds because for any �̂, the boundary condition is the same and is deter-

mined by type ��. Note that in the case of W~� > 0, this result does not hold, because the

boundary conditions are di¤erent: in this semi-separating equilibrium it is determined by

type �̂, while in the separating equilibrium it is determined by type �.

19See Cho and Kreps (1987), Cho and Sobel (1990), or Ramey (1996) for a formal de�n-

ition.

20Speci�cally, unlike in Ramey (1996), the space of actions in our model is bounded from

below and the agent�s payo¤ converges to zero as the action converges to in�nity.

21One can motivate this split between the current and long-term stock price as dealing

with option vesting schedules, limits on stock sales of executives (either contractual, or

determined by the informational costs of trading), or the expected tenure of the manager�s

a¢ liation with the �rm.

22We assume that outsiders do not observe whether the manager sells the stock or not.

We make this assumption to make the application simple and tractable. One can get similar

results in a more realistic setting, in which outsiders observe the manager�s sale decision,

as long as it does not reveal the manager�s private information perfectly: for example, if

the manager sells stock with positive probability for an exogenous reason.

23As we shall see below, managers with su¢ ciently high � choose to sell all shares prior

to investment, in which case the stock component of utility disappears.
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24Note that ��1min
�
~� � �; 0

�
has a kink at ~� = �. However, this does not create

problems, because only the region � > ~� is important for the incentives: clearly, no

type wants to mimic a type above. Hence, the problem is equivalent to a problem with

W
�
~�; �
�
= ��1

�
~� � �

�
. Note that this function W

�
~�; �
�
satis�es Assumptions 1 - 5, as

argued in footnote 15.

25To ensure that none of the types invest immediately, we assume that P (0) < �P (�):

26Previous research (Williams 1993; Grenadier 2002) has demonstrated that the value

of the option to invest can be signi�cantly eroded because of competitive pressure in the

industry. This application shows that if a portion of the manager�s utility comes from

the short-term stock price, then the value of the option to invest can be eroded even in

monopolistic industries, as long as the manager is better informed about the investment

project than the market.

27The model can be extended to a more realistic, albeit less tractable, setting in which

the �rm has imperfect knowledge of its ability. This extended model has similar results and

intuition, as long as the �rm is better informed about its ability than investors.

28For purposes of this application, we take the compensation structure of the general

partner as given. This structure is quite similar to the observed industry practice (e.g.,

Metrick and Yasuda 2010).

29Because of this normalization, we assume that the parameters of the model are such

that �P (�) > 1.

30For simplicity, we assume that the skill parameter � of the VC �rm is the same in both

71



rounds. The model can be extended to the case of di¤erent, but correlated skill levels across

rounds. In such a case, in equilibrium the timing of investment is an imperfect rather than

perfect signal about the general partner�s talent.

31Note that if the limited partners observe the proceeds from the �rst round, then they

may also use this information to infer �. However, this does not a¤ect the model, because

the proceeds are a noisier signal of the �rm�s private information than the timing. Indeed,

the proceeds reveal the value of �� "1, while the timing in a separating equilibrium reveals

�.

32It can be easily checked that function W
�
~�; �
�
in this application also satis�es As-

sumptions 1 - 4, provided that the optimal IPO threshold in the �rst round in the case of

symmetric information is �nite.

33To ensure that none of the types does an IPO immediately, we make an assumption that

the initial value P (0) is below �P1 (�). Then, the unique separating equilibrium investment

threshold is de�ned as an increasing function, which solves (44) subject to (45).

34We take the structure of the manager�s compensation contract as given. In a more

general model, the manager�s ownership stake could itself be endogenous.

35We make an assumption that the manager is not allowed to inject their own funds into

the �rm. This assumption simpli�es the solution but is not critical, as long as injection is

not too pro�table.

36The model can be extended by allowing the shareholders to impose a non-pecuniary

cost on the manager if diversion is veri�ed.
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37While we assume that the proceeds from the project realize an instant after the invest-

ment has been made, the model can be extended to include the time to build feature (e.g.,

as in Majd and Pindyck 1987).

38Technically, the manager is indi¤erent in her choice of d when � = �. However, if there

is any in�nitesimal but positive �xed cost of diversion, a zero level will be chosen.

39For �P (�) to correspond to the separating equilibrium, we need to ensure that the para-

meters of the application satisfy Assumption 5. A su¢ cient condition is � >
h
maxz2[����;����]

w00(z)
w0(z)

i
��

��1
�
� �P
�
��
�
� �� + w

�
�� � �

��
� w0

�
� � ��

�
. Analogously to (43), this condition is always

satis�ed if the interval
�
�; ��
�
is not too wide. Assumptions 1 - 4 are always satis�ed by

W
�
~�; �
�
in this application, as long as P � (�) > 0, as given below.

40Essentially, the assumption that � > 1 � 1
�
rules out any overwhelming in�uence of

monopoly power.

41Lambrecht and Perraudin (2003) and Hsu and Lambrecht (2007) are also related to

the model in this section. They study competition between two �rms for an investment

opportunity when the information structure is imperfect. In Lambrecht and Perraudin

(2003), each �rm knows its own investment cost but not the cost of its competitor. In Hsu

and Lambrecht (2007), the investment cost of one �rm (the incumbent) is public knowledge,

while the investment cost of the other �rm is known only to itself.

42The intuition for this result is as follows. The leader never enters after �PF (�), since

in this region there is always simultaneous entry, and �PF (�) is the optimal trigger for

simultaneous entry. Since the leader knows that the follower enters at �PF (�) and that at
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that point it will lose the di¤erence between the monopoly value and the duopoly value, its

entry time choice will be the one that maximizes its monopoly value: P �L(�).

43Note that if � is such that �PL (�) > ~PL, it is not optimal for �rm 1 to preempt �rm

2 by investing at a threshold below ~PL. Indeed, if �rm 1 invested at P̂ < ~PL, �rm 2

would respond by investing immediately after �rm 1 as it would perceive that � is such that

�PL (�) = �PF (�) = P̂ . As a result, �rm 1 does not gain any monopoly power from investing

below ~PL, so its best response to the preemptive strategy of �rm 2 is to invest at �PF (�).

44Intuitively, this assumption means that the density of distribution does not have abrupt

kinks. It is satis�ed for most standard distributions.
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Figure 1. Equilibrium investment threshold of a myopic manager. The left graph

shows the equilibrium investment trigger as a function of the investment cost � for three

di¤erent values of �1= (�1 + �2), as well as the benchmark case. The top curve corresponds

to the investment threshold P � (�) when there is no incentives for signaling. The other

curves correspond (from top to bottom) to the cases when the manager can freely sell 25%,

50%, and 75% of her shares, respectively. The right graph shows the corresponding option

premium as a function of the investment cost �. The parameter values of the project value

process are r = 0:04, � = 0:02, � = 0:2. The investment costs are distributed uniformly

over [1; 2].
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Figure 2. Exit strategies of the inexperienced general partner. The left graph

shows the equilibrium trigger, �P1 (�), and the symmetric information trigger, P �1 (�), as

functions of � (higher � corresponds to lower talent). The right graph shows the ratio of the

two triggers, �P1 (�) = �P �1 (�). The production function is the power function: H (I) = AI2=3.

The parameter values of the price process are r = 0:04, � = 0:02, � = 0:2. The interval

of possible types is
�
�; ��
�
= [1; 2]. The share of the IPO proceeds that goes to the general

partner is � = 0:2. The value of A is calibrated at A = 3:015 so that for the middle type

� = 1:5 the equilibrium investment into the second project equals the investment into the

�rst project, i.e., F (I2 (�)) = 1.
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Figure 3. Investment threshold when the manager can divert cash �ows from

the project. The �gure shows the equilibrium investment thresholds as a function of the

investment cost � for two di¤erent levels of the diversion parameter �: 0 and 0.75. The

bottom curve for this case corresponds to the investment threshold P � (�) when there is

symmetric information between the manager and the market. The top curve for this case

corresponds to the investment threshold �P (�) in the unique separating equilibrium when

there is asymmetric information between the manager and the market. The parameter

values of the project value process are r = 0:04, � = 0:02, � = 0:2. The managerial

ownership is � = 0:2. The interval of possible investment costs is [1; 2]. The distribution of

noise " is N (0; 1). The cost of veri�cation is c = 1.
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Figure 4. Equilibrium investment thresholds in the Stackelberg and Cournot

equilibria. The �gure shows the equilibrium investment triggers of �rm 1 and �rm 2 in the

Stackelberg and Cournot equilibria. The lower line corresponds to the investment threshold

of the leader (�rm 1) in the Stackelberg equilibrium when both the leader and the follower

know �. The upper line corresponds to the investment thresholds of both �rm 1 and �rm

2 in the Stackelberg equilibrium when only the leader knows �. Point A corresponds to

the preemption threshold in the Cournot equilibrium. If � � 0:5, then the outcome in the

Cournot equilibrium is the same as in the Stackelberg equilibrium. If � > 0:5, then in the

Cournot equilibrium �rm 2 invests �rst. The parameter values of the project value process

are r = 0:04, � = 0:02, � = 0:2. The competition parameter is � = 0:4. The investment

costs, �, are distributed uniformly over [0; 2].
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