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ABSTRACT 
 As environmental footprint considerations for companies gain greater importance, 
the need for quantitative impact assessment tools such as life cycle assessment (LCA) has 
become a higher priority. Currently, the cost and time burden associated with LCA has 
prevented it from becoming more prevalent. While several streamlining approaches have 
been suggested, questions regarding the effectiveness and efficiency of the streamlined 
results are still of concern. The streamlining method of probabilistic underspecification has 
shown initial success in its ability to reduce LCA efforts while simultaneously increasing 
certainty in the final impact assessment. Probabilistic underspecification streamlines LCA 
by prioritizing targets of more refined data collection and by implementing the use of 
underspecified surrogate data within LCI analysis. This thesis concentrates on further 
developing and improving the streamlining methodology of probabilistic 
underspecification through refinement of the materials classification systems for polymers 
and minerals and through additional case study analysis. The classification system allows 
for a better understanding of the relationship between the degree of materials specificity 
and the uncertainty in the resulting impact values. Additionally, the resulting polymer and 
mineral classifications were combined with existing materials classifications to conduct an 
alkaline battery case study in order to test the effectiveness of the streamlining method. 
The material classifications created through this research provide a logical and practical 
approach to underspecification while maintaining consistent and reasonable levels of 
uncertainty. Furthermore, the case study analysis showed that the streamlining 
methodology significantly lowered LCA burden by systematically reducing the number of 
product components requiring full specification. This research provides further evidence 
that probabilistic underspecification may provide a promising LCA streamlining method 
among a set of such strategies that can significantly reduce LCA efforts while maintaining 
the accuracy of the overall impact assessment.  

 

Thesis Co-Advisor: Randolph E. Kirchain 

Title: Principal Research Scientist, Engineering Systems Division 

Thesis Co-Advisor: Joel P. Clark 

Title: Professor of Materials Science and Engineering 



Page | 4  
 

ACKNOWLEDGEMENTS 
 

 I would like to first thank Dr. Randolph Kirchain and Prof. Joel Clark, my thesis 

supervisors, for the opportunity to perform my undergraduate thesis research under them, 

and for providing me with the ability to pursue a thesis topic that both engaged me and 

closely aligned with my interests.  Admittedly, this thesis would not have become a reality 

without the help of Elsa Olivetti. She has continually supported me throughout this project 

with her knowledge, patience and guidance, and I am extremely appreciative of all she has 

done. Finally, I would like to sincerely thank my parents, my brother, my friends and 

everyone else who have influenced and supported me over the years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 5  
 

TABLE OF CONTENTS 
  

ABSTRACT .................................................................................................................................................................................. 3 

ACKNOWLEDGEMENTS ........................................................................................................................................................ 4 

LIST OF TABLES ....................................................................................................................................................................... 6 

LIST OF FIGURES ..................................................................................................................................................................... 7 

1  INTRODUCTION .................................................................................................................................................................. 8 

1.1  LCA Streamlining ........................................................................................................................................................ 9 

1.2  Patanavanich Research .......................................................................................................................................... 13 

1.3  Materials Classification Motivation .................................................................................................................. 16 

2  METHODOLOGY ................................................................................................................................................................ 21 

2.1  Systematic Materials Classification .................................................................................................................. 22 

2.2  Refinement of Materials Classifications .......................................................................................................... 24 

2.3  Case Study Analysis ................................................................................................................................................. 27 

2.3.1  Selection of the Set of Interest .................................................................................................................... 28 

2.3.2  Triaged Hybrid Comparison ........................................................................................................................ 29 

3  RESULTS & ANALYSIS ..................................................................................................................................................... 31 

3.1  Systematic Classification of Polymers ............................................................................................................. 31 

3.2  Systematic Classification of Minerals ............................................................................................................... 34 

3.3  Case Study Results ................................................................................................................................................... 38 

3.3.1  Case Study Effort Reduction ........................................................................................................................ 40 

3.3.2  Triaged Hybrid Results .................................................................................................................................. 42 

3.3.3  Case Study Uncertainty Analysis ............................................................................................................... 44 

4  CONCLUSIONS .................................................................................................................................................................... 47 

4.1  Future Work ............................................................................................................................................................... 48 

5  REFERENCES ...................................................................................................................................................................... 49 

6  APPENDIX ............................................................................................................................................................................ 51 

6.1  Full Polymer Classification ................................................................................................................................... 51 

6.2  Full Ore/Concentrate Minerals Classification .............................................................................................. 55 

6.3  Full Semi-Finished Minerals Classification .................................................................................................... 56 

 

 



Page | 6  
 

LIST OF TABLES 
 

Table 1: LCA streamlining methods reproduced from SETAC’s 1999 North America 

Streamlined LCA Workgroup (Todd & Curran, 1999) ......................................................................... 12 

Table 2: A sample set of LCA case studies that were cataloged and analyzed to determine 

the life cycle activity that most commonly acts as the primary driver of environmental 

impact. .................................................................................................................................................................... 18 

Table 3: Polymer classification breakdown by level ............................................................................ 32 

Table 4: Polymer level 2 classification breakdown .............................................................................. 32 

Table 5: Mineral classification breakdown by level ............................................................................. 35 

Table 6: Ore/Concentrate Minerals level 2 classification breakdown .......................................... 35 

Table 7: Semi-Finished Minerals level 2 classification breakdown................................................ 36 

Table 8: MAD-COV of CED values for alkaline battery case study with streamlined L1/L5 

hybrid results. Alkaline battery results incorporated with other case study results from 

(Patanavanich, 2011) ....................................................................................................................................... 46 

 

 

 

 

 

 

 

 

 

 



Page | 7  
 

LIST OF FIGURES 
 

Figure 1: Prior LCA case studies were cataloged and analyzed in order to determine the life 

cycle activity that was most commonly the driver of the product’s overall environmental 

impact. Results indicate that materials are the driving factor the majority of the time ........ 19 

Figure 2: Schematic example of the database information hierarchy for structuring 

underspecification. Reproduced from (Patanavanich, 2011) ........................................................... 23 

Figure 3: Median Absolute Deviation – COV plot of the polymer classification scheme shown 

by level of specificity ......................................................................................................................................... 33 

Figure 4: Median Absolute Deviation – COV plot of the ore/concentrate mineral 

classification by level of specificity ............................................................................................................. 37 

Figure 5: Median Absolute Deviation – COV plot of the semi-finished mineral classification 

by level of specificity ......................................................................................................................................... 38 

Figure 6: Box and Whisker plot showing the CED distribution by level of specificity for the 

alkaline battery case study. Trend shows decreasing uncertainty with increasing specificity

 ................................................................................................................................................................................... 40 

Figure 7: Breakdown of BOCs for various product case studies, showing the SOI percentage 

of the BOC, ranked by decreasing BOC size. Alkaline Battery case study results incorporated 

with results from Patanavanich’s case studies (Patanavanich, 2011) .......................................... 42 

Figure 8: Box and Whisker plot comparing the streamlined CEDs for L1-L5 and L1/L5 

hybrid BOCs. Hybrid BOC produces an impact assessment of close proximity to the fully 

defined L5 BOC .................................................................................................................................................... 43 

Figure 9: MAD-COV of CED results for Alkaline Battery case study with streamlined L1/L5 

hybrid results. Alkaline battery results incorporated with other case study results from 

(Patanavanich, 2011) ....................................................................................................................................... 44 

 

 

 

 



Page | 8  
 

1  INTRODUCTION 
 

 Over the past few decades, with the rise of oil prices and the pressure for alternative 

energy sources, there has been a transition in the manner in which the world views energy 

consumption and its effects on the environment. As a result, environmental assessment of 

products and services considerations has become increasingly important for companies 

across all industries and practices. Furthermore, as consumers become more aware and 

conscientious of the importance of environmentally friendly materials and manufacturing 

processes for products they purchase, companies are facing an increased market pressure 

to make environmental footprint information about their products accessible to the public 

(Borland & Wallace, 1999; Finster & Eagen et al, 2001; Gaustad & Olivetti et al, 2010). As a 

result, firms are increasing efforts around quantitative environmental evaluations of 

products in order to reduce environmental impact, cut supply chain costs, and improve 

their overall image and brand. One such evaluation method, life cycle assessment (LCA), is 

a technique to calculate and quantify the environmental impact associated with a product’s 

(or service’s) entire lifespan ranging from materials extraction and processing all the way 

through to disposal and recycling. According to the ISO standards for life-cycle 

assessments, LCAs are performed in four phases which include: Goal and Scope Definition, 

Inventory Analysis, Impact Assessment, and Interpretation. By completing these steps for 

each product, companies are able to make more informed decisions regarding the design 

and manufacturing of their products.   

One large hurdle that has prevented LCAs from becoming more widespread is the 

large expense and time that is required to collect the necessary data and perform the 
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analysis. The reason for this is because complex products such as automobiles and 

computers not only involve thousands of individual components, but oftentimes the parts 

are bought from 3rd party manufacturers where the exact materials or specifications may 

not be readily available (Todd & Curran, 1999). Due to the fact that LCA takes into 

consideration every input and output of a product’s entire life cycle, even LCAs of less 

complex products can require extensive resources that may not always be readily available. 

In conjunction with this problem, another common hurdle that companies face is that even 

after spending a large amount of time and money on these analyses, the results are not 

always completely reliable and in some cases can be too precise and irreproducible. As a 

result of these difficulties associated with gathering the necessary information to complete 

a LCA, researchers have examined ways to streamline the LCA process in order to reduce 

the effort and cost needed to collect the life cycle inventory (LCI) data, while maintaining 

credibility and precision of the LCA results. This thesis builds upon the work of previous 

research within the Materials Systems Lab at MIT to investigate the viability of streamlined 

LCA.  

1.1 LCA Streamlining 

In most cases, streamlining in LCA is considered to be successful if the results are of 

approximate equivalence to the results from a full, non-streamlined LCA, and if the 

streamlining lowered the time and cost of collecting the necessary data for the assessment. 

Most current LCA streamlining work that is done aims to reduce the effort needed to 

characterize the data associated with the life cycle inventory for life cycle assessment, but 

even characterizing the bill of materials (BOM) for a complex product can be a challenge.  
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 Since full life cycle assessments require precise and quantitative environmental 

impact values, streamlining work in LCA has focused on taking a qualitative or semi-

quantitative approach (Graedel, Streamlined Life-Cycle Assessment, 1998). Qualitative LCA 

techniques such as matrix-type LCAs are effective streamlining methods because they can 

provide a rough and rapid evaluation of a product’s impact since they require much less 

comprehensiveness in the amount and precision of the data that is collected for the 

assessment (Graedel, Allenby, & et al., 1995). Qualitative methods of LCA often streamline 

the data collection process by using qualitative scoring questionnaires (such as yes or no 

questions) to estimate LCI data that allows for approximations of the overall impact. 

Alternatively, semi-quantitative streamlining methods have also been developed which 

combine aspects from both qualitative and quantitative techniques in order meet the 

increasing demand for quantitative environmental impact values. Semi-quantitative 

methods will often take into consideration previously conducted LCAs in order to narrow 

the BOA to those activities that are most likely to have the largest effect on the product’s 

overall impact.  

The problem, however, with qualitative and semi-quantitative streamlining methods 

is that they are not always sufficient in situations that require quantitative results (Hunt, 

Boguski, & et al, 1998). As a consequence, the most common approach that has been taken 

to streamline quantitative LCA has been to substitute primary data (which is often 

prohibitively expensive and time-consuming to collect) with surrogate or proxy data (Todd 

& Curran, 1999; Weckenmann & Schwan, 2001; Hochschorner & Finnveden, 2003). This 

surrogate data is most often obtained from comprehensive life cycle inventories such as the 

ecoinvent 2.2 database or the United States Life Cycle Inventory (USLCI) database. While 



Page | 11  
 

the use of surrogate data is a valid technique for streamlining quantitative LCA, like all 

other streamlining methods, it adds uncertainty and inaccuracies to the results which can 

negatively affect the validity of the study (Heijungs & Huijbregts, 2004). 

 In 1999, The Society of Environmental Toxicology and Chemistry (SETAC) released 

a report summarizing the various different streamlining LCA methods that were in use at 

the time, along with an analysis of the benefits and drawbacks of each method (Todd & 

Curran, 1999).  Table 1 below from the report shows that, broadly speaking, the two main 

streamlining methods used for LCA were a) to more closely define the goal and scope of the 

assessment and b) to use surrogate data to reduce the burden of LCI data collection.  

  Streamlining Approach                       Application Procedure 
 

Removing upstream components  

 

All processes prior to final material 

manufacture are excluded. Includes 

fabrication into finished product, 

consumer use, and post-consumer 

waste management.  

 
Partially removing upstream 

components  

All processes prior to final material 

manufacture are excluded, with the 

exception of the step just preceding 

final material manufacture. Includes 

raw materials extraction and 

precombustion processes for fuels used 

to extract raw materials. 

  

Removing downstream components  All processes after final material 

manufacture are excluded. 

  

Removing up- and downstream 

components  

Only primary material manufacture is 

included, as well as any  

precombustion processes for fuels used 

in manufacturing. Sometimes referred 
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to as a “gate-to-gate” analysis.  

 

Using "showstoppers" or "knockout 

criteria"  

Criteria are established that, if 

encountered during the study, can 

result in an immediate decision.  

 

 

Limiting raw materials  

 

Raw materials comprising less than 

10% by mass of the LCI totals are 

excluded. This approach was repeated 

using a 30% limit.  

 

Using surrogate process 

data  

 Selected processes are replaced with 

apparently similar processes based on 

physical, chemical, or functional 

similarity to the datasets being 

replaced.  

 

Using qualitative or less accurate data  Only dominant values within each of 6 

process groups (raw materials 

acquisition, intermediate material 

manufacture, primary material and 

product manufacture, consumer use, 

waste management, and ancillary 

materials) are used; other values are 

excluded, as are areas where data can 

be qualitative, or otherwise of high 

uncertainty.  

 

Using specific entries to represent 

impact  

Selected entries are used to 

approximate results in each of 24 

impact categories, based on mass and 

subjective decisions; other entries 

within each category are excluded.  
 

 

Table 1: LCA streamlining methods reproduced from SETAC’s 1999 North America 

Streamlined LCA Workgroup (Todd & Curran, 1999) 
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 The LCA streamlining methods described in Table 1, that, for the most part, fall into 

the categories of either limiting the scope of the LCA or using surrogate inventory data, still 

come with their own set of obstacles. When comparing results of studies that make use of 

these methods to a full LCA, limiting the scope becomes problematic especially when 

considering the fact that a full and complete LCA accounts for every single possible life 

cycle impact activity – a feature that is not possible for a scope-limited assessment (Weitz 

& Sharma, 1998). The best way to avoid this problem with scope-limiting streamlining is to 

screen and prioritize the bill of activities (BOA, which includes thing like the bill of 

materials as well as energy, transportation, use parameters, etc.) based on an activity’s 

contribution to total in order to determine which activities require detailed analysis and 

which activities are of little importance. This screening process can be difficult to 

accomplish because it is based on the assumption that the total environmental impact of 

the product is already known, making the need for screening the BOA redundant and 

unnecessary. For the case of surrogate data streamlining, as mentioned earlier, the major 

problem with the method is the high level of uncertainty that exists in the results of the 

LCA (Heijungs & Huijbregts, 2004).  

 Last year, in order to address these concerns with scope-limiting and surrogate data 

LCA streamlining methods, Siamrut Patanavanich at MIT investigated the method of triage-

based streamlining in order to determine its feasibility as a reliable LCA streamlining 

technique (Patanavanich, 2011).  

1.2  Patanavanich Research 

  In order to determine the feasibility of triage-based LCA streamlining, Patanavanich 

studied a streamlining approach that coupled probabilistic triage as a way of identifying the 
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high impact set of life cycle activities with low-fidelity characterization of the BOA through 

underspecification of the surrogate data during LCI analysis. To accomplish the task of 

probabilistic triage, Patanavanich proposed a method of qualitatively and/or quantitatively 

identifying a set of interest (SOI) that includes those life cycle activities that are targets of 

detailed data collection. SOI activities are selected using a statistical ranking system that 

determines the ranking based on the probability that a certain life cycle activity contributes 

at least a pre-defined minimum to the total environmental impact of the product. Since the 

SOI includes only those activities which most contribute to the total impact, only the 

activities within the SOI must be fully specified, as opposed to every activity within the 

BOA, resulting in an overall reduction in the burden associated with the assessment.  

 Additionally, in order to achieve the low-fidelity characterization of the BOA, 

Patanavanich proposed the use of structured underspecification of surrogate data, as 

opposed to the use of proxy data. Essentially, instead of using the closest proxy for a given 

activity or material, Patanavanich suggests using the set of inventory data that could be 

classified along with the given activity or material, but at a lower level of specification. The 

analysis takes into consideration a varying range of degrees of underspecification, where 

higher degrees of underspecification correspond to higher uncertainty in the results given 

the larger range of potential impact values, and lower degrees of underspecification 

correspond to lower uncertainty in the results given the smaller range of potential impact 

values. For example, consider the situation where a certain product component is made out 

of aluminum, but the exact procurement and production process of the aluminum is 

unknown. Instead of expending considerable effort and money to collect further 

information about the component in question, the component could instead be 
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underspecified as a generic aluminum alloy (slightly underspecified), a non-ferrous metal 

(moderately underspecified), or even just as a metal (most underspecified).  While each 

varying level of underspecification obviously affects the overall uncertainty of the impact of 

the component, this method makes it possible to understand the range and distribution of 

the environmental impact values of the product. The reasoning behind this methodology is 

that using structured underspecification as a surrogate, rather than proxy data as a 

surrogate, may help to reduce the innate bias associated with human judgment and 

overconfidence (Weidema & Wesnaes, 1996).  

 With this hypothesis, Patanavanich used a case-based analysis to determine 

whether the method of probabilistic triage, coupled with structured underspecification can 

result in a more effective and efficient streamlined LCA. With the understanding that mass 

can be a key indicator of environmental impact, products of varying mass composition or 

varying degrees of mass uniformity (measured using an adaption of the Herfindahl index) 

were chosen for the case studies. The results of his research showed that the approach was 

able to drastically reduce the number of components (and the associated burden) that 

required full specification, while still maintaining a relatively high level of confidence in the 

results of the analysis.  

 As a result of Patanavanich’s research, it has become clear that using underspecified 

data as surrogate data in LCA is a promising method for both reducing the burden 

associated with LCA while simultaneously increasing the certainty and significance of the 

total environmental impact values of the assessment as a whole.  By reducing the burden 

associated with LCA, the rate at which life cycle assessment can be conducted will be 
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improved, hopefully resulting in its more widespread adoption and use. This work will 

build upon Patanavanich’s research through additional case study analysis.    

1.3  Materials Classification Motivation 
 

 The results of Patanavanich’s research are an indication that underspecification of 

data in LCA and then subsequently using this underspecification to triage a more refined 

data collection is a streamlining method worth investigating and refining even further. 

When considering the bill of activities for a given product, underspecification can be used 

for a wide variety of activities including materials, transportation, processing, use and 

disposal. Probabilistic underspecification relies on an effective classification scheme for 

each activity type that results in the lowest possible uncertainty for each level of 

specification, while still lowering the burden of data collection. This thesis aims to improve 

this LCA streamlining approach by creating more effective classifications that both 

decrease the uncertainty of the results while maintaining the ability to streamline and the 

reliability of the resulting impact values. However, given the time constraints of this thesis, 

it was not possible to create an underspecification classification scheme for every activity 

type. In order to limit the scope of the thesis, it was necessary to methodologically 

prioritize the activity types for further study.   

 In order to determine the best activity type to systematically classify for this thesis, 

past LCA case studies were cataloged and analyzed. This analysis was performed to 

understand which activity(ies) is(are) most commonly the primary driver of 

environmental impact for a wide range of products to direct the structured 

underspecification classification work. The methodology that was used to select the life 

cycle activity that would be the best candidate for underspecification classification was to 
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review and catalog a wide variety of previous LCA case studies. To find relevant LCA case 

studies, a range of scientific journals were reviewed, including the International Journal of 

Life Cycle Assessment, the journal of Environmental Science and Technology (ES&T) and 

the Journal of Cleaner Production. Case studies dating back to 2007 were included in the 

literature screen, as well as a wide variety of product types. Some of the case study sectors 

include industries such as construction, energy, electronics, toys and medical equipment. 

Overall, the sample set of LCA case studies consisted of a range of different published life 

cycle assessments from varying years, industries and journals. Table 2 below provides a 

glimpse of some of the LCA case studies that were used to determine the life cycle activity 

that most commonly acts as the driver of environmental impact.  

 

Name of Case Study Author/s Date Product Sector 
Driving Impact 
Factor 

Life cycle assessment of 
granite application in 
sidewalks 

Mendoza, 
Oliver-
Sola, 
Gabarrell, 
Josa 

Feb-
12 

Granite 
Applicati
on for 
sidewalks 

Constr
uction 

Construction 
Materials 

Life cycle assessment of 
electricity transmission 
and distribution - part 1: 
power lines and cables 

Jorge, 
Hawkins, 
Hertwich 

Jan-12 
Power 
lines and 
cables 

Energy 

Production of 
metal for masts 
and conductors, 
production of 
foundations, 
power losses 

Life cycle assessment of 
ceramic tiles. 
Environmental and 
statistical analysis 

Ibanez-
Fores, 
Bovea, 
Simo 

Nov-
11 

Ceramic 
Tiles 

Constr
uction 

Manufacturing of 
the tile, followed 
by atomising of 
the clay and 
distribution of 
the product 

Recycling in buildings: an 
LCA case study of a 
thermal insulation panel 
made of polyester fiber, 

Intini, 
Kuhtz 

Mar-
11 

Recycled 
PET Fiber 
Thermal 
Insulation 

Constr
uction 

Fiber-spinning 
phase of 
production 
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recycled from post-
consumer PET bottles 

Books from an 
environmental 
perspective - Part 1: 
environmental impacts of 
paper books sold in 
traditional and internet 
bookshops 

Borggren, 
Moberg, 
Finnveden 

Feb-
11 

Paper 
Books 

Books 

Pulp and paper 
production, 
transportation 
(depending on 
distance from 
bookstore) 

LCA study of a plasma 
television device 

Hischier, 
Baudin 

Apr-
10 

Plasma 
TVs 

Electro
nics 

Use, Production 
of wiring boards 

LCA and ecodesign in the 
toy industry: case study 
of a teddy bear 
incorporating electric and 
electronic components 

Munoz, 
Gazulla, 
Bala, Puig, 
Fullana 

Jul-08 
Teddy 
bear 

Toys Use 

 

Table 2: A sample set of LCA case studies that were cataloged and analyzed to determine the 

life cycle activity that most commonly acts as the primary driver of environmental impact. 

 

 Further analysis of the LCA case studies revealed that the materials used to create 

the given product were most commonly the largest contributor to the product’s overall 

environmental impact, particularly when the product did not consume energy in the use 

phase. While other activities such as manufacturing and use are also important drivers of 

environmental impact, materials were the dominating factor in the majority of LCA case 

studies that were included in the sample set. As summarized in Figure 1 below, of the LCA 

case studies cataloged in the sample set, life cycle activities associated with the materials 

used in the production of the given product were the primary driver of environmental 

impact in 54% of the case studies. This percentage jumps to 70% when case studies that 

consume energy in the use phase are excluded from the grouping.  
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Figure 1: Prior LCA case studies were cataloged and analyzed in order to determine the life 
cycle activity that was most commonly the driver of the product’s overall environmental 

impact. Results indicate that materials are the driving factor the majority of the time 

 

 Based on the results of this past LCA cataloging activity, the study prioritized the 

classification of materials over other types of life cycle activities.  Specifically, this thesis 

focuses on creating an underspecification classification scheme for two classes of materials: 

polymers and minerals. Polymers and minerals were chosen over other materials types 

such as metals or chemicals because a) they are both commonly used in many complex 

products for which LCA is becoming increasingly important and b) both polymers and 

minerals were quite weakly classified in Patanavanich’s original research.  

 The overall goal of this thesis is to create effective structured underspecification 

classification schemes for the polymer and mineral material types. The classifications will 

be achieved through the application of broader materials science ideology, coupled with 

statistical testing via virtual simulations to determine the degree of uncertainty in the 

results. The final classifications are then tested using a case-based approach on an actual 

54% 

15% 

15% 

15% 

Materials

Manufacturing

Use

Other
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product in order to quantify the effectiveness and efficiency of the classifications as well as 

the underspecification method as a whole.  

Ultimately, by improving the underspecification classifications for polymers and 

minerals, probabilistic underspecification will be further evaluated and improved as a 

method for conducting streamlined LCA. 
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2  METHODOLOGY 

 

 In today’s world of LCA, complete LCA is challenging due to the fact that the 

collection of primary data for every single life cycle activity is both very time consuming 

and very expensive, especially when the primary data is not readily available. Instead, LCA 

practitioners have almost ubiquitously chosen to perform LCA with the use of secondary or 

proxy data as opposed to primary data in order to reduce the burden associated with the 

assessment. A limitation, however, with the use of surrogate data in LCA is the varying 

types of uncertainty that come along with it. Instead, underspecification and probabilistic 

triage aims to define appropriate proxy data based on the impact distributions of data 

classification sets. Ultimately, through underspecification, it is possible to avoid the 

statistical bias associated with surrogate data, and instead capture and account for the 

uncertainty that comes with using proxy data as an LCA streamlining method.  

 Structured underspecification enables the categorization of materials life cycle data, 

allowing for a greater understanding of the varying degrees of uncertainty associated with 

the level of specificity. In order to test this methodology, the specific proxy data was first 

assembled in order to create a comprehensive database where the structured 

underspecification of the materials could be implemented. To build the comprehensive 

materials database, each individual materials description and corresponding cumulative 

energy demand (CED) were obtained from the following life cycle databases: the United 

States Life Cycle Inventory (USLCI), Industry Data 2.0, European Life Cycle Reference Data 

(ELCD) (Wolf & Pennington, 2008) and ecoinvent 2.2 (Frischknect, 2007). Once the 

necessary information was gathered from the various databases, the information was 



Page | 22  
 

organized into five (or four) different levels of specificity, labeled Level 1 (L1) through 

Level 4 (L4) or Level 5 (L5). With this breakdown, L1 represents the most underspecified 

level (such as the type of material), and L4 or L5 consist of the most specified data which 

are the individual materials entries that were collected from the various different LCA 

databases.  Given that the L5 (or L4 in some cases) entries are taken directly from the LCA 

databases, they can best estimate the surrogate data that act as a proxy for the primary 

data of a certain product component.  In addition, comparison of the streamlined results 

with the L5 (or L4) entries is the best way to determine the overall success or failure of the 

methodology.  

2.1  Systematic Materials Classification 

 

 The systematic classification of the materials, specifically polymers and minerals in the case 

of this thesis, was achieved by first applying the general categorization scheme outlined in 

Patanavanich’s research and then refined by using resources such as the built-in 

categorization structure provided in SimaPro (a commercially available life cycle 

assessment software tool), materials classification literature by Michael Ashby, and other 

existing materials classification schemes such as the Nickel-Strunz classification for 

minerals.  Additionally, knowledge of materials properties and processing as informed by 

the sources above is also important to consider when creating the classification scheme. 

The general categorization outline that Patanavanich presents is composed of five levels of 

specificity (L1 to L5) that are broken down into material category (L1), material property 

(L2), material type (L3), material processing (L4) and the specific database entry (L5). This 

systematic classification structure is schematically shown in Figure 2 below.  
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Figure 2: Schematic example of the database information hierarchy for structuring 
underspecification. Reproduced from (Patanavanich, 2011) 

 

 In the categorization structure shown above, the level of specificity increases with 

each additional level. While the categorization uses five different levels, it is also possible to 

use more or a fewer number of classification levels. In the case of polymers, five levels were 

used, and in the case of minerals only four levels were used in the classification scheme. In 

the case of polymers, the categorization structure outlined in Figure 2 was used. The 

material category (L1) for all materials is simply composed of the broadest categorization 

type for the material, such as “Polymer” or “Metal.”  At Level 2, the material property is 

used as a mechanism to further specify the material type, which in the case of metals could 

include classifications such as “Ferrous Metals” and “Non-Ferrous Metals.” In a similar 

manner, the Level 3 and Level 4 classifications increase specificity by further 

differentiating by material type and processing method.  

 In the case of minerals, a slightly different categorization methodology was used due 

to the fact that there are existing mineral classification schemes such as the Nickel-Strunz 
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Classification of minerals. As a result, instead of following the categorization criteria in 

Figure 2, the minerals classification levels more closely follow the classification breakdown 

outlined in the Nickel-Strunz minerals classification documentation (Ralph & Chau). A 

complete list of the final classification divisions for both polymers and minerals is located 

in the Appendix.   

 Despite the slight variances in classification methodology, both the classifications 

for polymers and minerals follow the tree structure categorization shown in Figure 2. The 

advantage of the tree structure categorization is that it makes it easier to account for the 

uncertainty that is involved with underspecification since the possible proxy database 

entries included in the impact analysis is dependent on the level of specificity. For example, 

in the hypothetical schematic shown in Figure 2, if a product component is classified using 

the Level 1 or Level 2 specificity, then it has the potential to be any of the Level 5 database 

materials. However, if the component is instead classified using Level 4-B specificity, then 

the only possible materials that could act as proxy data entries would be materials 5-D and 

5-E. As a result of this tree structure categorization, the level of uncertainty of the proxy 

data is a known value, and it can be statistically integrated into the model of the product’s 

environmental impact. 

 

2.2  Refinement of Materials Classifications 
 

 In order to test the effectiveness and accuracy of each iteration of the systematic 

materials classifications, Monte Carlo simulations were performed to determine the 

precision of the classification scheme. After creating the desired material classification 
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scheme in Excel, a random number generator (Excel’s RANDBETWEEN function) was used 

to randomly select an L5 (or L4) proxy material from the list of database entries that 

belongs within the particular classification designation – this can work due to the tree 

structure of the categorization scheme described earlier. It is important to note here, 

however, that even though the L5 material entries are pulled directly from the database, 

they still contain some level of uncertainty. This uncertainty is due to a range of different 

reasons, including discrepancies in measurement, geography, or reliability. In order to 

simplify this problem with L5 uncertainty for the purposes of this study, midrange 

uncertainty assumptions were used.  

At this point, Oracle’s Crystal Ball software is used to run a Monte Carlo simulation 

on the randomly selected L5 database material in order to generate an impact value for 

that material at every level of specificity. The simulation is run 10,000 times in order to 

account for the fact that at higher levels of underspecification, impact values are the result 

of a larger distribution of the L5 (or L4) materials. The inputs of the Crystal Ball simulation 

include the arithmetic mean, the arithmetic standard deviation and the location. The 

arithmetic mean and standard deviations are transformed from the geometric standard 

deviation. The simulation is run simultaneously for every L5 (or L4) database entry for the 

given material type (in this case, polymers or minerals). Once the simulation is complete, 

the 10,000 individual trial values are extracted for each unique entry at every level of 

specification. For example, at level 1 there is only one unique entry, so only the trial values 

from one of the L5 (or L4) entries need to be extracted. However, at level 2 there are five 

unique material classification entries, meaning that the corresponding trial values for at 

least five L5 (or L4) materials need to be extracted.  
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After extracting the individual trial values at the different levels of 

underspecification, they are used to determine how the distribution of impact values 

changes with the levels of specificity. The expectation is that higher degrees of 

underspecification will correlate with a larger variety of possible database entries and as a 

result, a larger range of possible impact values. For this reason, the distribution of impact 

values should decrease as the material is less underspecified. Instead of representing the 

impact value distribution with the mean or standard deviation, the trial values were 

instead used to calculate the median absolute deviation (MAD) of impact values for each 

level of underspecification.  The median absolute deviation is similar to the standard 

deviation since it can be used to illustrate the distribution of the data, but differs in that it 

lessens the impact of outliers in the data set. The MAD is then used to derive the median 

absolute deviation-coefficient of variation (MAD-COV), which indicates the median percent 

variation of the data from its median. The MAD and MAD-COV are defined by the following 

equations (Patanavanich, 2011): 

                                                         |  -          (  )|                                   Equation 1 

                                                                    
   

           
                                                 Equation 2 

  

Lastly, the MAD-COV values of each categorization at each level of 

underspecification are plotted in order to observe the impact value distribution trend as 

the level of underspecification changes. If for some reason the distribution (represented by 

the MAD-COV) increases at a lower level of underspecification, then changes to the 

classification scheme are considered in order to improve the its quality and associated 
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uncertainty. This increase is an indication of a potential misclassification or an error in the 

order at which things should be specified.  For example, if the classification scheme for a 

material such as metals causes the MAD-COV to increase at a lower level of 

underspecification, then it is possible that the order in which things are classified might be 

incorrect. A possible remedy to this problem could be to classify by recycling type earlier at 

level 2 as opposed to L3 or L4.   

 

2.3  Case Study Analysis 
 

 With the creation of the polymer and mineral classifications complete, the next step 

towards achieving a more effective and efficient streamlined LCA by coupling structured 

underspecification with the method of probabilistic triage is to apply the method to an 

actual product case study to test whether the LCA burden can be reduced while 

maintaining reliable LCA results. In order to test this methodology and the classification 

schemes created for polymers and minerals, an alkaline battery was chosen for the product 

case study. The alkaline battery was chosen as the product for the case study because out of 

the available products where the bill of components is known, the alkaline battery has a 

larger number of components, many of which are made out of materials such as metals, 

polymers and minerals. Given that the battery is made primarily of materials where the 

underspecification classification schemes have been well defined, it stood out as a good 

candidate to test the success of the streamlining methodology.  

 In order to test the streamlining methodology on the alkaline battery, a similar 

approach to the refining of the materials classifications is taken. The first step is to use the 
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BOC of the battery (inclusive of both product component materials and corresponding 

masses) in order to estimate the impact value of each component of the battery. Once 

again, Monte Carlo simulations using Oracle’s Crystal Ball software are performed in order 

to derive the environmental impact value of each component of the battery. Using the same 

methodology as the materials classification refinement, the random number generator is 

used to choose a proxy database entry at level 5 and the simulation is repeated 10,000 

times in order to generate 10,000 different impact profiles for the product. The impact 

profiles at each level of specificity are then plotted to observe that the uncertainty in the 

LCA results decreases as the level of specificity increases. The final step in understanding 

the effectiveness of the structured underspecification is to combine it with the probabilistic 

triage method as a way of fully streamlining LCA.  

 

2.3.1  Selection of the Set of Interest 

 

 In order to reduce the burden associated with LCA, the method of 

probabilistic triage suggests that by limiting the number of product components that need 

to be comprehensively defined in LCA, the time and expense involved with the assessment 

can be significantly reduced. In order to accomplish this task, a set of interest (SOI) must be 

defined, which consists of the subset of product components that most contribute to the 

product’s overall impact. Given that the Monte Carlo simulations produce a distribution of 

possible impact values for the product, the SOI that results from each iteration of the 

simulation may contain a different set of components. In order to resolve this issue of 

uncertainty due to underspecification, the SOI is composed of the set of components that 
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probabilistically fulfill a pre-defined fraction of the product’s total impact value. More 

simply, the SOI consists of the smallest number of product components for which the 

cumulative impact value of the SOI components represents a minimum threshold fraction 

of the total impact of the product (Patanavanich, 2011).  

To systematically determine which components to include in the SOI, the product 

components are ranked in descending order by the median of their level 1 impact values.  

In order to determine the cutoff for the SOI, the ranked impact medians are then 

cumulatively summed so that the minimum threshold can be found. For the purposes of 

this case study, the minimum impact cutoff was defined as 75% of the total impact of the 

product at a confidence level of 90%. For example, if the total impact of a given product is 

10kJ, then the SOI will consist of the smallest number of components whose individual 

impact contributions add up to at least 7.5kJ at a confidence level of 90%. By identifying the 

components that contribute to the majority of the impact, the burden associated with data 

collection can be drastically reduced since fewer components need to be fully defined.  

 

2.3.2  Triaged Hybrid Comparison 
 

 With the constituents of the SOI at level 1 known, the components of the SOI can 

then by fully specified at level 5, while the remaining components of the BOC remain at 

their level 1 specification, resulting in an L1/L5 triaged hybrid BOC. The resulting impact 

from this hybrid BOC is a good indication of how effective this streamlined LCA can be 

when the majority of the burden is involved with fully specifying the SOI while the 

remainder of the BOC remains underspecified at L1. This method can be further evaluated 
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by comparing the uncertainty of the triaged hybrid situation with the benchmark of the 

fully specified (at L5) BOC.  This comparison provides insight into the effectiveness and 

efficiency of the triaged hybrid model depending on its uncertainty similarity to the fully 

specified L5 situation and the relative size of the BOC.   
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3  RESULTS & ANALYSIS 

 

 The following section presents the results of the process of creating a systematic 

classification scheme for two types of materials – polymers and minerals. It also goes on to 

show the results of applying these new materials classifications in tandem with the 

streamlining method of underspecification on the LCA product case study. The results of 

the case study are integral in determining the effectiveness and efficiency of not only the 

classifications themselves, but also of the methodology as a whole.  

3.1  Systematic Classification of Polymers 
 

 Systematic classification of polymers was achieved using a five level format, where 

level 1 is the most underspecified classification and level 5 is the most specified 

classification. The classification was successfully achieved using the same level 

breakdowns as the classification schematic shown in Figure 2.  At L1, the category is at its 

highest level of underspecification, where all entries are singularly classified as a Polymer. 

At level 2, material property differentiations are made, resulting in the following five 

categories: Thermoplastics, Resins, Elastomers, High-Temperature Thermoplastics and 

Thermosets. As shown in Table 4 below, of the 111 polymers included in the data set, 67% 

of them fall into the thermoplastic category. Additionally, separate L2 categories were 

created for resins and high temperature thermoplastics to account for the sheer difference 

in processing method and energy demand. At level 3, polymer types are further 

differentiated, resulting in 20 categories including polymer types such as polystyrene and 

nylon. At level 4, polymer processing techniques are considered, which differentiates 
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polymers made of the same material, but processed into different final forms. For example, 

the differentiation between polypropylene granulates and polypropylene fibers is made at 

level 4. Level 4 contains 45 distinct categories, each of which is differentiated at the 

material processing level. Lastly the level 5 categories consist of the individual polymer 

material entries obtained from the LCA databases, representing the lowest level of 

underspecification. A full listing of the classification can be found in the Appendix.   

Level 
# of  Polymer 
Categories 

1 1 

2 5 

3 20 

4 45 

5 111 
 

Table 3: Polymer classification breakdown by level 

 

Level 2 Category # of L5 Entries Contained 

Thermoplastic 74 

Resin 19 

Elastomer 10 
High Temp 
Thermoplastic 4 

Thermoset 4 

Total 111 
 

Table 4: Polymer level 2 classification breakdown 

  

 In order to determine the validity and effectiveness of this classification scheme, the 

impact value distribution for each level of underspecification was plotted using the MAD-

COV metric. The MAD-COV plot of the polymer classification scheme is shown in Figure 3 

below. At level 1, there is a MAD-COV of approximately 20%, which continues to decline 
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with each level of specificity until level 5, where the MAD-COV of the entries are all close to 

approximately 8%. The results of the graph indicate that the final classification scheme 

successfully underspecifies the polymer material class. Given that the impact value 

distribution continually decreases with each level of specificity, this classification can now 

be applied in a streamlined LCA using probabilistic underspecification.  

      

 

Figure 3: Median Absolute Deviation – COV plot of the polymer classification scheme shown 
by level of specificity 

 

 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6

M
A

D
-C

O
V

 

Level of Specificity 

Polymers 

L1

L2

L3

L4

L5



Page | 34  
 

3.2  Systematic Classification of Minerals 
 

 Unlike the systematic classification of polymers, the classification of minerals was 

not achieved using the same five-level format. Instead, the systematic classification of 

minerals consists of four levels, each of which is differentiated using the Nickel-Strunz 

mineral classification methodology. The Nickel-Strunz classification scheme categorizes 

minerals based on their chemical compositions. One main difference, however, is that for 

the mineral category of materials, two separate L1 categories were made in order to 

account for the drastic difference in energy impact between semi-finished minerals and 

minerals from an ore or concentrate. As a result, the two categories are completely 

separate, in the same manner that the polymer and metal L1 categories are separate. It is 

important to note, however, that this classification decision and corresponding results 

were influenced in part by the particular CED database values that were available, and 

different database values may influence the classification differently.   

 For the two mineral categories, a four-level Nickel-Strunz classification was applied, 

where level 1 is the most underspecified category and level 4 is the most specified 

classification. At level 1, the category is at its highest level of underspecification, where all 

entries are singularly classified as either a Semifinished Mineral or as an Ore/Concentrate 

Mineral. At level 2, Nickel-Strunz chemical composition distinctions are made, resulting in 

the following six categories for Ore/Concentrate minerals: Volcanic, Rock, Silicate, Sulfate, 

Oxide and Element. And the following ten categories for the Semi-Finished Minerals: 

Carbonate, Sulfate, Rock, Element, Silicate, Sulfide, Oxide, Halide, Volcanic and Rare Earth. 

For the Ore/Concentrate minerals, the Rock level 2 category includes the majority of the 23 
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minerals included in the data set. However, for the semi-finished minerals, there is no 

single category that includes the majority of the 51 semi-finished minerals included in the 

dataset. Table 5 below shows the breakdown of the level 2 categories for both mineral 

types. At level 3, the mineral types are further differentiated, resulting in 18 different 

categories for the ore/concentrate minerals, and 36 different level 3 categories for the 

semi-finished minerals. Lastly, the level 4 categories for both mineral types consist of the 

individual mineral material entries obtained from the LCA databases, representing the 

lowest level of underspecification. A full listing of the mineral classifications can be found in 

the Appendix. 

 

Level 

# of 
Ore/Concentrate 
Categories 

# of Semi-
Finished 
Categories 

1 1 1 

2 6 10 

3 18 36 

4 23 51 
 

Table 5: Mineral classification breakdown by level 

 

Level 2 Category # of L4 Entries Contained 
Volcanic 2 
Rock 13 
Silicate 3 

Sulfate 2 
Oxide 2 
Element 1 

Total 23 
 

Table 6: Ore/Concentrate Minerals level 2 classification breakdown 
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Level 2 Category # of L4 Entries Contained 

Carbonate 8 
Sulfate 11 
Rock 3 
Element 4 
Silicate 8 
Sulfide 3 
Oxide 10 
Halide 2 
Volcanic 1 
Rare Earth 1 

Total 51 
 

Table 7: Semi-Finished Minerals level 2 classification breakdown 

 

 Similar to the method used for the polymer classification scheme, in order to 

determine the effectiveness of the mineral classification schemes, MAD-COV calculations 

were used to plot the impact value distribution for each level of underspecification. The 

MAD-COV plot for the Ore/Concentrate minerals is shown in Figure 4 and the MAD-COV 

plot for the Semi-Finished minerals is shown in Figure 5 below. In the plot of the 

Ore/Concentrate minerals, at level 1, there is a MAD-COV of approximately 68% which 

variably declines in levels 2 and 3 until reaching a low MAD-COV of approximately 8% at 

level 4. The MAD-COV plot of the Semi-Finished minerals follows a similar trajectory, 

except for the fact that the level 1 variance is higher at approximately 91%. In the 

ores/concentrates MAD-COV plot, the L3 category with a MAD-COV that is larger than the 

highest L2 category is the result of two different values for the mineral bauxite, that come 

from two different LCA databases. This type of discrepancy cannot be avoided by the 

classification scheme, if all database entries are to be included in the analysis. Similarly, in 

the semi-finished minerals MAD-COV plot, the L2 category with a MAD-COV that is larger 
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than the MAD-COV of the L1 category is the result of the inclusion of both limestone and 

lime in the carbonate L2 category.   

  

 

Figure 4: Median Absolute Deviation – COV plot of the ore/concentrate mineral 
classification by level of specificity 
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Figure 5: Median Absolute Deviation – COV plot of the semi-finished mineral 
classification by level of specificity 

 

 

3.3  Case Study Results 
 

 The following section summarizes the results of the product case study analysis that 

was performed in order to determine the effectiveness and efficiency of the probabilistic 
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methodology effectiveness is measured for the case study product, which in this case is an 
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 The total cumulative energy demand (CED) was calculated for the materials 

contained within an alkaline battery at each level of specificity using the structured 

underspecification methodology. Only the materials phase of the alkaline battery was 

examined as previous LCA results indicated that materials were the primary driver of life 

cycle burden (Olivetti, Gregory, & Kirchain, 2011). The data is shown through box and 

whisker plots in Figure 6 which incorporates the standard deviation, mean, median, 

ninetieth percentile and tenth percentile for the 10,000 iterations of the simulation at each 

specificity level. The median impact is represented by the line in the middle of the box, 

while the average is indicated by the blue point; additionally, the lower and upper whiskers 

represent the tenth and ninetieth percentiles of the CED. As expected, the CED distribution 

decreases as the level of specificity increases along the x-axis.  
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Figure 6: Box and Whisker plot showing the CED distribution by level of specificity for the 
alkaline battery case study. Trend shows decreasing uncertainty with increasing specificity  

  

3.3.1  Case Study Effort Reduction 
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associated with performing the LCA for the given product. For the case of the alkaline 

battery, the BOC consisted of 37 unique components, and the SOI represented only 7 

components, or 19% of the BOC. Figure 7 below shows the BOC breakdown for the alkaline 

battery, in comparison with the results of other product case studies from Patanavanich’s 

thesis research. The alkaline battery falls in the middle in terms of total number of BOC 

components, and has the smallest SOI percentage of all of the product case studies. Another 

trend that is shown in Figure 7 is the fact that the SOI percent of BOC and the number of 

components in the BOC are inversely related – that is, the products with larger BOCs tend 

to have a SOI that comprises a smaller percentage of the product’s overall BOC.  
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Figure 7: Breakdown of BOCs for various product case studies, showing the SOI percentage of 
the BOC, ranked by decreasing BOC size. Alkaline Battery case study results incorporated 

with results from Patanavanich’s case studies (Patanavanich, 2011) 
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L1/L5 hybrid BOC. As shown in the graph, with each additional level of specification, the 

accuracy of the impact assessment improves while the associated level of uncertainty 

decreases. Additionally, the L1/L5 hybrid BOC produces an impact assessment and 

distribution that is extremely similar to the results produced by the L5 BOC (both in terms 

of accuracy and uncertainty). Based on these results, it is clear that the use of the level 1 

specificity level and associated uncertainty is a successful mechanism for determining the 

SOI, given that the triage hybrid BOC significantly reduced the burden associated with the 

LCA while still producing an accurate estimate of the total environmental impact.    

 

Figure 8: Box and Whisker plot comparing the streamlined CEDs for L1-L5 and L1/L5 hybrid 
BOCs. Hybrid BOC produces an impact assessment of close proximity to the fully defined L5 
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3.3.3  Case Study Uncertainty Analysis 
 

 While the impact assessment values of the product case study are a good indication 

of the precision of the streamlining method, the best way to measure the uncertainty 

associated with the method of probabilistic streamlining is to measure the Median Absolute 

Deviation-Coefficient of Variation (MAD-COV) of the CED. Figure 9 below shows the results 

of the MAD-COV analysis for the alkaline battery case study, in comparison with seven 

other case studies analyzed in Patanavanich’s thesis research (Patanavanich, 2011).  

 

Figure 9: MAD-COV of CED results for Alkaline Battery case study with streamlined L1/L5 
hybrid results. Alkaline battery results incorporated with other case study results from 

(Patanavanich, 2011) 
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 As seen in the figure above, the results of the MAD-COV analysis suggest that the 

probabilistic streamlining method was successfully able to reduce the uncertainty in the 

CED values for the alkaline battery case study. The L1/L5 hybrid BOC produces a CED with 

a MAD-COV that comparable to the L5 MAD-COV values, while remaining lower than the L4 

MAD-COV values. These results show that the use of the SOI as a means of reducing the 

burden involved with LCA can produce impact results to a predictably high level of 

certainty. Additionally, the dotted line in the figure above indicates the trend for the 

average MAD-COV of all eight of the case studies. One important discrepancy to note is the 

fact that for several of the case studies, including the alkaline battery study, the L2 MAD-

COV is higher than the L1 MAD-COV. For the alkaline battery case, this upward trend at L2 

is most likely due to the fact that 43% of the BOC is chemical materials – a material type 

that still requires though classification. Lastly, Table 8 below provides a view of the specific 

MAD-COV values for all of the case studies, at each level of specificity. Overall, the average 

MAD-COV for the L1/L5 hybrid BOC was only 2.2% higher than the average MAD-COV of 

the fully specified L5 BOC. This slight increase in uncertainty for the hybrid BOC seems 

reasonable, given that the hybrid model significantly reduced LCA burden by only requiring 

32.8% (on average) of the BOC to be fully specified.  
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MAD-COV L1 L2 L3 L4 L5 L1/L5 

Alkaline Battery 35.5% 48.0% 37.7% 25.0% 4.7% 7.0% 

CP1 41.4% 44.1% 16.0% 5.2% 5.1% 6.5% 

GREET Car 38.6% 38.7% 31.5% 9.4% 1.9% 6.4% 

CP2 40.2% 38.9% 38.8% 29.3% 4.3% 5.7% 

CP2SP 35.4% 34.2% 34.7% 26.0% 3.8% 5.9% 

CP3 22.4% 14.5% 13.9% 7.9% 3.5% 5.4% 

CP3SP 21.3% 13.0% 14.0% 7.2% 3.3% 5.8% 

Computer 38.9% 24.4% 14.5% 3.9% 3.9% 5.1% 

Average MAD-COV 34.2% 32.0% 25.1% 14.2% 3.8% 6.0% 
 

Table 8: MAD-COV of CED values for alkaline battery case study with streamlined 
L1/L5 hybrid results. Alkaline battery results incorporated with other case study 

results from (Patanavanich, 2011) 
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4  CONCLUSIONS 
 

 This thesis attempts to improve the viability of LCA streamlining through 

probabilistic underspecification by improving the classification schemes for the polymer 

and mineral material types.  Through the process of creating, refining and testing the 

classification schemes for the two types of materials, the results suggest that the 

underspecification streamlining approach can produce effective and efficient LCA results. 

Further analysis of the resulting underspecification databases for polymers and minerals 

shows that the variability of results decreases, on average, as a product becomes less 

underspecified, as displayed in the MAD-COV plots for the material classifications. The 

methodology used to create these classifications is confirmed to be a valid approach that 

can be applied to better classify other material types such as chemicals.  

 The classification schemes, which are a component of the probabilistic 

underspecification streamlining methodology, are then applied to an alkaline battery case 

study to determine the effectiveness and efficiency of the methodology at reducing the 

burden associated with LCA. A set of interest, composed of select components from the 

BOC, is selected based on a 50th percentile ranking of the components at L1 impact values, a 

75% cumulative threshold of total product impact and a 90% confidence level in the 

uncertainty of the results. The resulting SOI only composes 19% of the 37 components in 

the BOC and the L1/L5 triaged hybrid model outputs a suitable total impact assessment 

with a variation that is only 2.3% higher than the fully defined L5 estimate. Additionally, 

the uncertainty in the triaged hybrid impact results for the alkaline battery is lower than 

that of the L1, L2, L3 and L4 values at only 7%, as indicated by the MAD-COV values. 
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Ultimately, the results suggest the viability of probabilistic underspecification as an 

acceptable streamlining method for LCA.  

4.1  Future Work 
 

 The scope of this thesis limited the underspecification classification research to the 

materials of polymers and minerals. Future work should look at creating more refined 

classification schemes for other material categories such as chemicals, construction 

materials, glass materials, textiles, etc. Additionally, the focus on materials classification 

was chosen for this work due to its predominance as a primary driver of total product 

impact for many different product types. However, other LCA activities such as 

transportation, use and disposal can also be significant drivers of total environmental 

impact. Future work should explore creating similar underspecification classification 

schemes for these LCA activities as well.  

 With regards to probabilistic underspecification, this work has continued on prior 

research to show its ability to successfully reduce LCA burden while increasing certainty in 

the results, through additional case study analysis. However, future work should continue 

to analyze many more case studies using this streamlining approach to better understand 

the flaws in the methodology. Lastly, future work should explore the viability of 

probabilistic underspecification when used with environmental impact categories other 

than the cumulative energy demand.  
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6  APPENDIX  
 

6.1  Full Polymer Classification 
 

Level 1 Level 2 Level 3 Level 4 Level 5 

Polymers Elastomer ABS ABS Copolymer 
Acrylonitrile-butadiene-styrene copolymer, 

ABS, at plant/RER U 

Polymers Elastomer ABS 
ABS Copolymer 

granulate 
Acrylonitrile-butadiene-styrene granulate 

(ABS), production mix, at plant RER 

Polymers Elastomer Bitumen Bitumen4 Bitumen sealing, at plant/RER U 

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene E 

Polymers Elastomer Polybutadiene 
Polybutadiene 

granulate 
Polybutadiene granulate (PB), production mix, 

at plant RER 

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plant/RER U 

Polymers Elastomer Polybutadiene Polybutadiene4 Polybutadiene, at plant/RNA 

Polymers Elastomer SAN SAN copolymer4 Styrene-acrylonitrile copolymer (SAN) E 

Polymers Elastomer SAN SAN copolymer4 
Styrene-acrylonitrile copolymer, SAN, at 

plant/RER U 

Polymers Elastomer 
Synthetic 

rubber 
Synthetic 
rubber4 

Synthetic rubber, at plant/RER U 

Polymers 
High Temp 

Thermoplastic 
Polyamide Polyamide glass 

Glass fibre reinforced plastic, polyamide, 
injection moulding, at plant/RER U 

Polymers 
High Temp 

Thermoplastic 
Polyamide Polyamide4 

Polyamide 6.6 fibres (PA 6.6), from adipic acid 
and hexamethylene diamine (HMDA), prod. 

mix, EU-27 S 

Polymers 
High Temp 

Thermoplastic 
TFE TFE Film Tetrafluoroethylene film, on glass/RER U 

Polymers 
High Temp 

Thermoplastic 
TFE TFE4 Tetrafluoroethylene, at plant/RER U 

Polymers Resin ABS 
ABS Copolymer 

resin 
Acrylonitrile-butadiene-styrene copolymer 

resin, at plant/RNA 

Polymers Resin Polyethylene Polyester resin 
Alkyd resin, long oil, 70% in white spirit, at 

plant/RER U 

Polymers Resin Polyethylene Polyester glass 
Glass fibre reinforced plastic, polyester resin, 

hand lay-up, at plant/RER U 

Polymers Resin Polyethylene HDPE HDPE resin E 

Polymers Resin Polyethylene HDPE High density polyethylene resin, at plant/RNA 

Polymers Resin Polystyrene HIPS High impact polystyrene resin, at plant/RNA 

Polymers Resin Polyethylene LDPE LDPE resin E 

Polymers Resin Polyethylene LLDPE 
Linear low density polyethylene resin, at 

plant/RNA 

Polymers Resin Polyethylene LLDPE LLDPE resin E 

Polymers Resin Polyethylene LDPE Low density polyethylene resin, at plant/RNA 

Polymers Resin Polymer resin Phenolic resin Phenolic resin, at plant/RER U     
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Polymers Resin Polyethylene Polyester resin Polyester resin, unsaturated, at plant/RER U 

Polymers Resin Polypropylene 
Polypropylene 

resin 
Polypropylene resin E 

Polymers Resin Polypropylene 
Polypropylene 

resin 
Polypropylene resin, at plant/RNA 

Polymers Resin PVC PVC resin Polyvinyl chloride resin, at plant/RNA 

Polymers Resin PVC PVC resin 
Polyvinylchloride resin (B-PVC), bulk 

polymerisation, production mix, at plant RER 

Polymers Resin PVC PVC resin 
Polyvinylchloride resin (E-PVC), emulsion 

polymerisation, production mix, at plant RER 

Polymers Resin PVC PVC resin 
Polyvinylchloride resin (S-PVC), suspension 

polymerisation, production mix, at plant RER 

Polymers Resin 
Formaldehyde 

resin 

Urea 
formaldehyde 

resin 
Urea formaldehyde resin, at plant/RER U 

Polymers Thermoplastic Polyacrylonitrile AN Acrylonitrile E 

Polymers Thermoplastic Polyacrylonitrile AN 
Acrylonitrile from Sohio process, at plant/RER 

U 

Polymers Thermoplastic EVA EVA4 
Ethylene vinyl acetate copolymer, at 

plant/RER U 

Polymers Thermoplastic EVA EVA foil Ethylvinylacetate, foil, at plant/RER U 

Polymers Thermoplastic Polystyrene EPS Expandable polystyrene (EPS) E 

Polymers Thermoplastic Polyethylene PET Fleece, polyethylene, at plant/RER U 

Polymers Thermoplastic Polystyrene GPPS General purpose polystyrene, at plant/RNA 

Polymers Thermoplastic Polyethylene HDPE HDPE bottles E 

Polymers Thermoplastic Polyethylene HDPE HDPE pipes E 

Polymers Thermoplastic Polystyrene HIPS High impact polystyrene (HIPS) E 

Polymers Thermoplastic Polystyrene HIPS 
High impact polystyrene granulate (HIPS), 

production mix, at plant RER 

Polymers Thermoplastic Polyethylene LDPE LDPE bottles E 

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 + 30% glass fibre E 

Polymers Thermoplastic Nylon Nylon 6 Nylon 6 E 

Polymers Thermoplastic Nylon Nylon 6 
Nylon 6 glas filled (PA 6 GF), production mix, 

at plant RER 

Polymers Thermoplastic Nylon Nylon 6 
Nylon 6 granulate (PA 6), production mix, at 

plant RER 

Polymers Thermoplastic Nylon Nylon 6 Nylon 6, at plant/RER U 

Polymers Thermoplastic Nylon Nylon 6 Nylon 6, glass-filled, at plant/RER U 

Polymers Thermoplastic Nylon Nylon 66 Nylon 66 E 

Polymers Thermoplastic Nylon Nylon 66 
Nylon 66 GF 30 compound (PA 66 GF 30), 

production mix, at plant RER 

Polymers Thermoplastic Nylon Nylon 66 
Nylon 66 granulate (PA 66), production mix, at 

plant RER 

Polymers Thermoplastic Nylon Nylon 66 Nylon 66, at plant/RER U 

Polymers Thermoplastic Nylon Nylon 66 Nylon 66, glass-filled, at plant/RER U 

Polymers Thermoplastic Nylon Nylon 66 Nylon 66/glass fibre composite E 
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Polymers Thermoplastic Polypropylene 
Polypropylene 

film 
Oriented polypropylene film E 

Polymers Thermoplastic Polyethylene LDPE Packaging film, LDPE, at plant/RER U 

Polymers Thermoplastic Polyethylene PET PET (amorphous) E 

Polymers Thermoplastic Polyethylene PET PET (bottle grade) E 

Polymers Thermoplastic Polyethylene PET PET bottles E 

Polymers Thermoplastic Polyethylene PET PET film (production only) E 

Polymers Thermoplastic PMMA PMMA beads PMMA beads E 

Polymers Thermoplastic PMMA PMMA sheet PMMA sheet E 

Polymers Thermoplastic Polyacrylonitrile PAN 
Polyacrylonitrile fibres (PAN), from 

acrylonitrile and methacrylate, prod. mix, PAN 
w/o additives EU-27 S 

Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate E 

Polymers Thermoplastic Polycarbonate 
Polycarbonate 

granulate 
Polycarbonate granulate (PC), production mix, 

at plant RER 

Polymers Thermoplastic Polycarbonate Polycarbonate4 Polycarbonate, at plant/RER U 

Polymers Thermoplastic Polyethylene HDPE 
Polyethylene high density granulate (PE-HD), 

production mix, at plant RER 

Polymers Thermoplastic Polyethylene LDPE 
Polyethylene low density granulate (PE-LD), 

production mix, at plant RER 

Polymers Thermoplastic Polyethylene LLDPE 
Polyethylene low linear density granulate (PE-

LLD), production mix, at plant RER 

Polymers Thermoplastic Polyethylene PET 
Polyethylene terephthalate (PET) granulate, 

production mix, at plant, amorphous RER 

Polymers Thermoplastic Polyethylene PET 
Polyethylene terephthalate (PET) granulate, 
production mix, at plant, bottle grade RER 

Polymers Thermoplastic Polyethylene PET 
Polyethylene terephthalate fibres (PET), via 

dimethyl terephthalate (DMT), prod. mix, EU-
27 S 

Polymers Thermoplastic Polyethylene PET 
Polyethylene terephthalate, granulate, 

amorphous, at plant/RER U 

Polymers Thermoplastic Polyethylene PET 
Polyethylene terephthalate, granulate, bottle 

grade, at plant/RER U 

Polymers Thermoplastic Polyethylene HDPE Polyethylene, HDPE, granulate, at plant/RER U 

Polymers Thermoplastic Polyethylene LDPE Polyethylene, LDPE, granulate, at plant/RER U 

Polymers Thermoplastic Polyethylene LLDPE 
Polyethylene, LLDPE, granulate, at plant/RER 

U 

Polymers Thermoplastic PMMA PMMA beads 
Polymethyl methacrylate (PMMA) beads, 

production mix, at plant RER 

Polymers Thermoplastic PMMA PMMA beads 
Polymethyl methacrylate, beads, at plant/RER 

U 

Polymers Thermoplastic PMMA PMMA sheet 
Polymethyl methacrylate, sheet, at plant/RER 

U 

Polymers Thermoplastic 
Polyphenylene 

sulfide 
Polyphenylene 

sulfide4 
Polyphenylene sulfide, at plant/GLO U 
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Polymers Thermoplastic Polypropylene 
Polypropylene 

fibers 

Polypropylene fibres (PP), crude oil based, 
production mix, at plant, PP granulate without 

additives EU-27 S 

Polymers Thermoplastic Polypropylene 
Polypropylene 

granulate 
Polypropylene granulate (PP), production mix, 

at plant RER 

Polymers Thermoplastic Polypropylene 
Polypropylene 

molded 
Polypropylene injection moulding E 

Polymers Thermoplastic Polypropylene 
Polypropylene 

granulate 
Polypropylene, granulate, at plant/RER U 

Polymers Thermoplastic Polystyrene GPPS 
Polystyrene (general purpose) granulate 

(GPPS), prod. mix, RER 

Polymers Thermoplastic Polystyrene EPS 
Polystyrene expandable granulate (EPS), 

production mix, at plant RER 

Polymers Thermoplastic Polystyrene 
Polystyrene 

thermoforming 
Polystyrene thermoforming E 

Polymers Thermoplastic Polystyrene EPS Polystyrene, expandable, at plant/RER U 

Polymers Thermoplastic Polystyrene GPPS 
Polystyrene, general purpose, GPPS, at 

plant/RER U 

Polymers Thermoplastic Polystyrene HIPS Polystyrene, high impact, HIPS, at plant/RER U 

Polymers Thermoplastic PVC PVC4 Polyvinylchloride, at regional storage/RER U 

Polymers Thermoplastic PVC PVC4 
Polyvinylchloride, bulk polymerised, at 

plant/RER U 

Polymers Thermoplastic PVC PVC4 
Polyvinylchloride, emulsion polymerised, at 

plant/RER U 

Polymers Thermoplastic PVC PVC4 
Polyvinylchloride, suspension polymerised, at 

plant/RER U 

Polymers Thermoplastic PVC PVDC 
Polyvinylidenchloride, granulate, at plant/RER 

U 

Polymers Thermoplastic PVC PVDC Polyvinylidene chloride (PVDC) E 

Polymers Thermoplastic PVC PVC4 PVC (bulk polymerisation) E 

Polymers Thermoplastic PVC PVC4 PVC (emulsion polyerisation) E 

Polymers Thermoplastic PVC PVC4 PVC (suspension polymerisation) E 

Polymers Thermoplastic PVC PVC shaped PVC calendered sheet E 

Polymers Thermoplastic PVC PVC shaped PVC film E 

Polymers Thermoplastic PVC PVC shaped PVC injection moulding E 

Polymers Thermoplastic PVC PVC shaped PVC pipe E 

Polymers Thermoset Polyurethane 
Polyurethane 
flexible foam 

Polyurethane flexible foam E 

Polymers Thermoset Polyurethane 
Polyurethane 

rigid foam 
Polyurethane rigid foam E 

Polymers Thermoset Polyurethane 
Polyurethane 
flexible foam 

Polyurethane, flexible foam, at plant/RER U 

Polymers Thermoset Polyurethane 
Polyurethane 

rigid foam 
Polyurethane, rigid foam, at plant/RER U 
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6.2  Full Ore/Concentrate Minerals Classification     

     

Level 1 Level 2 Level 3 Level 4 

Ores/Concentrates Element Sulphur 
Sulphur, from crude oil, consumption mix, at refinery, 

elemental sulphur EU-15 S 

Ores/Concentrates Oxide Sand Sand, at mine/CH U 

Ores/Concentrates Oxide Chromite Chromite, ore concentrate, at beneficiation/GLO U 

Ores/Concentrates Rock Limestone Limestone, at mine/CH U 

Ores/Concentrates Rock Anhydrite Anhydrite rock, at mine/CH U 

Ores/Concentrates Rock Gravel Gravel, round, at mine/CH U 

Ores/Concentrates Rock Iron Ore Iron ore, 46% Fe, at mine/GLO U 

Ores/Concentrates Rock Gravel Gravel, unspecified, at mine/CH U 

Ores/Concentrates Rock Limestone Limestone, at mine/US 

Ores/Concentrates Rock Bauxite Bauxite, at mine/GLO U 

Ores/Concentrates Rock Basalt Basalt, at mine/RER U 

Ores/Concentrates Rock Gravel Gravel, crushed, at mine/CH U 

Ores/Concentrates Rock Iron Ore Iron ore, 65% Fe, at beneficiation/GLO U 

Ores/Concentrates Rock Bauxite Bauxite, at mine/GLO 

Ores/Concentrates Rock 
Phosphate 

rock 
Phosphate rock, as P2O5, beneficiated, dry, at plant/MA U 

Ores/Concentrates Rock 
Rare Earth 

Concentrate 
Rare earth concentrate, 70% REO, from bastnasite, at 

beneficiation/CN U 

Ores/Concentrates Silicate Vermiculite Vermiculite, at mine/ZA U 

Ores/Concentrates Silicate Clay Clay, at mine/CH U 

Ores/Concentrates Silicate Bentonite Bentonite, at mine/DE U 

Ores/Concentrates Sulfate Gypsum Gypsum, mineral, at mine/CH U 

Ores/Concentrates Sulfate Stibnite Stibnite ore, 70% stibnite, at mine/CN U 

Ores/Concentrates Volcanic Pumice Pumice, at mine/DE U 

Ores/Concentrates Volcanic Perlite Perlite, at mine/DE U 
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6.3  Full Semi-Finished Minerals Classification 
 

Level 1 Level 2 Level 3 Level 4 

Semifinished 
Minerals 

Carbonate Limestone Limestone, crushed, for mill/CH U 

Semifinished 
Minerals 

Carbonate Limestone Limestone, crushed, washed/CH U 

Semifinished 
Minerals 

Sulfate Gypsum Gypsum stone (CaSO4-dihydrate) DE S 

Semifinished 
Minerals 

Rock Gravel 
Gravel 2/32, wet and dry quarry, production mix, at 

plant, undried RER S 

Semifinished 
Minerals 

Rock Crushed Stone 
Crushed stone 16/32, open pit mining, production 

mix, at plant, undried RER S 

Semifinished 
Minerals 

Carbonate Limestone Limestone, milled, loose, at plant/CH U 

Semifinished 
Minerals 

Sulfate Anhydrite Anhydrite, at plant/CH U 

Semifinished 
Minerals 

Sulfate Asbestos Asbestos, crysotile type, at plant/GLO U 

Semifinished 
Minerals 

Carbonate Dolomite Dolomite, at plant/RER U 

Semifinished 
Minerals 

Element Graphite Graphite, at plant/RER U 

Semifinished 
Minerals 

Silicate Spodumene Spodumene, at plant/RER U 

Semifinished 
Minerals 

Sulfide Pyrite Intral, at plant/RER U 

Semifinished 
Minerals 

Silicate Feldspar Feldspar, at plant/RER S 

Semifinished 
Minerals 

Carbonate Limestone Limestone, milled, packed, at plant/CH U 

Semifinished 
Minerals 

Oxide Chromite Portachrom, at plant/RER U 

Semifinished 
Minerals 

Silicate 
Calcium 
Silicate 

Calcium silicate, blocks and elements, production 
mix, at plant, density 1400 to 2000 kg/m3 RER S 

Semifinished 
Minerals 

Sulfate Anhydrite Anhydrite, burned, at plant/CH U 

Semifinished 
Minerals 

Sulfate Anhydrite 
Anhydrite (CaSO4), technology mix of natural, 

thermal and synthetic produced anhydrite DE S 

Semifinished 
Minerals 

Halide Fluorite Fluorspar, 97%, at plant/GLO U 

Semifinished 
Minerals 

Sulfate Thenardite 
Sodium sulphate, from natural sources, at plant/RER 

U 

Semifinished 
Minerals 

Oxide 
Magnesium 

oxide 
Magnesium oxide, at plant/RER U 

Semifinished 
Minerals 

Oxide Limenite Ilmenite, 54% titanium dioxide, at plant/AU U     
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Semifinished 
Minerals 

Silicate Kaolin Kaolin, at plant/RER U 

Semifinished 
Minerals 

Carbonate Lime Lime, hydrated, loose, at plant/CH U 

Semifinished 
Minerals 

Carbonate Lime Lime, hydrated, packed, at plant/CH U 

Semifinished 
Minerals 

Carbonate Lime Lime, hydraulic, at plant/CH U 

Semifinished 
Minerals 

Silicate Clay Expanded clay, at plant/DE U 

Semifinished 
Minerals 

Rock 
Phosphate 

rock 
Phosphate rock, as P2O5, beneficiated, wet, at 

plant/US U 

Semifinished 
Minerals 

Sulfate 
Magnesium 

sulphate 
Magnesium sulphate, at plant/RER U 

Semifinished 
Minerals 

Silicate Vermiculite Expanded vermiculite, at plant/CH U 

Semifinished 
Minerals 

Sulfate Thenardite 
Sodium sulphat from viscose production, at 

plant/GLO U 

Semifinished 
Minerals 

Sulfate Thenardite 
Sodium sulphate, from Mannheim process, at 

plant/RER U 

Semifinished 
Minerals 

Sulfate Thenardite 
Sodium sulphate, powder, production mix, at 

plant/RER U 

Semifinished 
Minerals 

Silicate Bentonite Bentonite, at processing/DE U 

Semifinished 
Minerals 

Sulfate Thenardite 
Sodium sulphate from sulfuric acid digestion of 

spodumene/GLO U 

Semifinished 
Minerals 

Oxide Magnetite Magnetite, at plant/GLO U 

Semifinished 
Minerals 

Volcanic Perlite Expanded perlite, at plant/CH U 

Semifinished 
Minerals 

Silicate Zircon Zircon, 50% zirconium, at plant/AU U 

Semifinished 
Minerals 

Oxide Rutile Rutile, 95% titanium dioxide, at plant/AU U 

Semifinished 
Minerals 

Element Selenium Selenium, at plant/RER U 

Semifinished 
Minerals 

Oxide Zincite Zinc oxide, at plant/RER U 

Semifinished 
Minerals 

Halide Cryolite Cryolite, at plant/RER U 

Semifinished 
Minerals 

Sulfide Molybdenite Molybdenite, at plant/GLO U 

Semifinished 
Minerals 

Element Graphite Graphite, battery grade, at plant/CN U 

Semifinished 
Minerals 

Oxide Baddeleyite Zirconium oxide, at plant/AU U 

Semifinished 
Minerals 

Sulfide Sphalerite Zinc sulphide, ZnS, at plant/RER U 
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Semifinished 
Minerals 

Oxide Rutile 
Titanium dioxide at plant, sulphate process, at 

plant/RER S 

Semifinished 
Minerals 

Oxide Rutile Titanium dioxide, production mix, at plant/RER U 

Semifinished 
Minerals 

Oxide Rutile Titanium dioxide, chloride process, at plant/RER S 

Semifinished 
Minerals 

Element Moissanite Silicon carbide, at plant/RER U 

Semifinished 
Minerals 

Rare Earth Samarium 
Samarium europium gadolinium concentrate, 94% 

rare earth oxide, at plant/CN U 
 

     

     
 


