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Abstract

Two classes of drugs, antiretrovirals and antibiotics, could benefit greatly from delivery
through microneedles. Microneedles (MN) offer an increase in efficacy for these drugs by
providing delivery to the lymphatic system through the skin, thus avoiding first pass metabolism
and allowing more focused delivery to specific viral or bacterial reservoirs. Furthermore,
microneedles present other advantages in the form of the ability to be self-administered, tunable
controlled release, and painless administration. Saquinavir and Ciprofloxacin, an antiretroviral
and an antibiotic respectively, were chosen for their optimal properties, including bioavailability,
half-life, and dosage. Saquinavir was encapsulated in the organic phase of biodegradable
poly(lactide-co-glycolide) microparticles (MP) synthesized through a double emulsion.
Similarly, Ciprofloxacin was encapsulated in the aqueous phase of the microparticles. In
addition, Ciprofloxacin microcrystals were synthesized. The microparticles and microcrystals
were then loaded into molded polymer microneedles in a poly-acrylic acid (PAA) matrix.
Standard curves were created for the two drugs from known concentrations and used to show the
drug loading in the microparticles and microneedles. The Saquinavir microparticles showed a
maximum loading of 1.35% the mass of particles and the Ciprofloxacin microparticles showed a
maximum loading of 0.197%. The Saquinavir microparticle microneedles had a maximum
loading of 11.95 sg of Saquinavir per 1 cm2 array and the Ciprofloxacin microparticle
microneedles had a maximum loading of .41 pg of Ciprofloxacin per 1 cm2 array. The
Ciprofloxacin microcrystal microneedlees had a maximum loading of 165 pg per 1 cm2 array.
Analysis based on insulin delivery through microneedles showed these loadings to be too low to
create the sufficient minimum drug concentration in plasma. However, there exist multiple
strategies to increase the loading of the drugs in the microneedles. These results proved
promising for the use of microneedles for the delivery of antiretroviral and antibiotic drugs.
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I Introduction

a. Background

Drug delivery has become an increasingly important field with continued advances in

drug discovery. Just as important as how the drug acts is how it is delivered. Historically, drugs

have been delivered into the human body through two main forms: orally through pills and

directly into the bloodstream through hypodermic injections'. Controlled release transdermal

drug delivery offers numerous benefits over the aforementioned forms of drug delivery. Drug

patches and microneedles (MN) are two methods for transdermal delivery that have been

thoroughly investigated2 3 . The drug patches are limited to only a handful of drugs, while

microneedles have the capability to be much more universal in the drugs they can introduce'.

Orally delivered drugs must traverse the digestive system, which to can lead to a loss of

drug as it is absorbed across the intestinal wall as well as losses due to the first pass effect from

the liver metabolizing the drug 2. The drug must also be able to remain intact after being exposed

to the harsh environment of the digestive system, including acidity of the stomach and numerous

enzymes throughout the intestines'. The drug's charge and solubility affect the absorption the

drug's absorption and create an extra parameter in designing the drug. Finally, the drug can

cause side effects to the digestive system and is susceptible to a varied digestive environment

dependent on other foods in the digestive system2.

Hypodermic injections, including intravenous (IV), intramuscular, subcutaneous, and

intradermal injections, eliminate many of these problems because they bypass the digestive

system and the drug is delivered directly into the bloodstream. These injections, however, are

more invasive and have a number of undesired characteristics 4. Improper maintenance and use
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of needles can also lead to infections4 . The needles used for injections can become dangerous

medical waste and pose the danger of transmitting diseases through shared needle use, which is

prevalent in developing and poverty stricken nations 12 . Administering these injections usually

requires special training and expertise (e.g. finding a vein for IV injection or using correct angle

for subcutaneous injections).

Transdermal delivery is a further improvement on injections; it bypasses the digestive

system, but doesn't have the drawbacks or pose the dangers that other types of injections do.

Transdermal delivery was first developed as a patch loaded with the drug that would diffuse

across the stratum corneum into the skin over time1 . The most well known example is the

Nicoderm CQ patch, which introduces nicotine into the patient at gradually smaller amounts to

help the user quit smoking. However, due to the low permeability of the skin, only small drug

molecules (molecular masses of up to a few hundred Daltons) with specific octanol-water

partition coefficients can be used to deliver therapeutic doses with patches" 2 . These limitations

rule out many hydrophilic drugs, as well as macromolecules, such as DNA and peptide drugs.

Thus microneedles are an advantageous form of transdermal delivery since they can be used for

a larger variety of drugs and more efficiently transmit the drug; instead of relying on diffusion

for the drug to pass the outer skin layer, microneedles physically place the drug into the body. A

huge benefit of delivering drugs transderrnally is the ability to access the epidermal and top of

the dermal layer of the skin. This means that the microneedles are short enough to avoid the

nerve endings and therefore not cause pain, while also accessing certain immune cells that are

critical to the drug efficacy5. Langerhans cells, which are present in the epidermal layer, are

susceptible to human immunodeficiency virus (HIV) infection and are known to be viral
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reservoirs of dissemination. By directly targeting these viral reservoirs, anti-HIV therapies

could be more effective.

Figure 1 below gives the envisioned application of delivery of the drug using the

microneedles. The solid PAA matrix of the polyacrylic acid (PAA) microneedles encapsulate

either drug crystals or drugs suspended in poly(lactide-co-glycolide) (PLGA) microparticles.

The microneedles are inserted into the epidermal or dermal layers of the skin to release the drug.

The PAA matrix dissolves when it comes in contact with the water based skin fluids, releasing

either the drug crystals or the drug microparticles. The drug crystals become soluble in the skin

fluid due to low concentrations and potentially due to a change in pH and the PLGA matrix of

the drug microparticles similarly dissolves in the water based skin fluid, releasing the drug. The

drug is then able to diffuse to key areas of interest.

(a)

T
(b) (c) (d) (e)

50-200 um Epidermis

1500-3000 um Dermis

Hypodermis

Figure 1: Envisioned application and delivery of drug through microneedles. (a) Microneedles
are synthesized with polyacrylic acid (PAA) base with either microparticles or microcrystals
suspended in matrix of PAA (b) microneedles are inserted into the skin and access the top layer
of the dermis or bottom of epidermis depending on size of microneedles and application strength
(c) PAA matrix begins to dissolve due to hydrolysis from water in body (d) most of matrix is
dissolved and microparticles release drug or microcrystals dissolve due to pH (e) Complete
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dissolution of microneedle and microparticles or microcrystals leaving dissolved drug to diffuse
away to areas of interest, including lymphatic cells such as Langerhans cells

b. Scope of work

This paper investigates the use of microneedles as a plausible mechanism for drug

delivery. Two classes of drugs are examined because of the potential increase of efficacy with

these drugs by using microneedles. Antiretroviral and antibiotic drugs are hypothesized to

greatly benefit from delivery using microneedles due to the access of particular immune cells in

the epidermal layer as well as bypassing first pass metabolism, in addition to painless, self-

administered delivery.

This work builds upon previous work that has investigated microneedle use for vaccine

delivery. Therefore, certain protocols have already been established and certain parameters

optimized. There still exist a variety of parameters to optimize, including the form of the drug

loaded into the microneedle. This affects the amount of drug that can be loaded into a single

microneedle array as well as delivery rates of the drug. Microparticles, where the drug was

embedded in a matrix of PLGA, and microcyrstals, pure crystalline drug, were both investigated

as possible methods for drug encapsulation. Microparticles would have more controllable drug

release rates, while microcrystals allow for higher loading levels. Other encapsulation methods,

such as using reservoirs and coating the microneedle surfaces, also exist that can be investigated

in future studies.

An outline of the work achieved is shown in Figure 2, below. Two candidate drugs,

Maraviroc and Saquinavir, were used to demonstrate the ability to encapsulate antiretroviral

drugs in microneedles while Ciprofloxacin was used to demonstrate the ability to similarly

encapsulate antiobiotic drugs. A standard curve was created for each drug, followed by synthesis
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of drug microparticles and drug microcrystals. The microparticles were then tested for loading

and both the microparticles and microcrystals were encapsulated in microneedles. These

microneedles were then tested for loading to demonstrate the ability to encapsulate drugs in

microneedles.
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Figure 2: Outline of work accomplished. Shown are microparticles (MPs), microcrystals (MCs)
and microneedles (MN)
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II Microneedle Delivery of Antiretroviral Drugs

a. Introduction

In 2009, HIV infected an estimated 36 million people worldwide, with the vast

majority of those infected living in developing nations with limited access to treatment

resources9. Current antiretroviral (AR) therapies have proven to be highly effective in

controlling HIV replication and consequently increase the life expectancy of patients. These

therapies, however, require frequent and high doses and have a number of undesirable side

effects, all of which lead to patient incompliance. In addition, in order to be effective,

compliance above 95% is needed, below which, the AR effectiveness can drop as much as

50%'0'". AR therapies also do not fully eliminate the virus from the host and are unable to

remove viral reservoirs. Therefore, a drug delivery method that decreases dose amount and

frequency and improves patient incompliance as well as targets viral reservoirs would be a

drastic improvement over current methods. Microneedles are able to access these viral reservoirs

and would decrease the dosage required since they deliver drugs directly into the epidermal layer

of the skin and completely bypass the digestive tract. In addition, they can be tuned for desired

controlled release rates, allowing for a sustained critical effective level of drug, a major benefit

over the large variations in drug concentrations with pills.

A number of factors were used in determining candidate drugs. Drugs which could

benefit maximally from microneedle delivery would have low half-lives, high potency, low

bioavailibilities, and require frequent doses. Microneedles would have the most improvement in

efficacy with drugs with these characteristics because microneedles are able to replace frequent

doses with controlled release strategies and are able to effectively deliver drugs, overcoming low
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bioavailability. High potency is desirable because of the limitation of microneedles for

delivering large amounts of drug due to their size. For the 650 pm height and 250 pm width

microneedles we fabricated, this results in 1 IL per microneedle, which is approximately .012

mg of Saquinavir with a density of 1.2 g/cm 3 assuming 100% loading of pure Saquinavir12 . The

microneedle arrays have 78 microneedles, indicating a maximum of 0.94 mg of Saquinavir per

array.

Microparticles allow for tunable controlled release of the drug. They are essentially

encapsulating the drug in a biodegradable matrix with a known hydrolysis rate. Once the

microparticles enter the body, they would mostly remain localized due to their size and release

the drug to be taken up into systemic circulation. At low levels, the microparticles might be

carried to the draining lymph nodes by antigen presenting cells, releasing the drug directly to the

lymph nodes.

b. Materials and methods

i. Drug Choice

Table 1 below shows the two drugs chosen as candidate drugs based on the desired

characteristics. Bioavailability is defined as the amount of drug that reaches the systemic

circulation. Terminal half life is the amount of time to reduce plasma concentrations by half

while elimination half life is the amount of time it takes for the drug to lose half of its

pharmacological activity.
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Saquinavir .4% to 5% 3 Terminal: 2-5 17 1000-1200 " 100 '

10-12 14

Elimination:
1-3 15,16

Maraviroc 23% 21 Terminal: 2 20 1200 20 25 24

14-18 2

Elimination:
10.6 23

Table 1: Drug properties for Saquinavir and Maraviroc used to select candidate drugs

Saquinavir is a potent protease inhibitor that is available in two forms, as a soft-gel

capsule with trade name Fortovase, and in the form of a salt, Saquinavir-mesylate, with the trade

name Invirase. The latter, Saquinavir-mesylate, was obtained from Sigma-Aldrich, with

structure shown below in Figure 3.

H
N

0

CH 3
N-f-CH, 0

CHI . H3C SO

0

Figure 3: The structure of Saquinavir in the mesylate form, obtained from Sigma Aldrich 28

Maraviroc is a potent antiretroviral entry inhibitor, acting as a CCR5 chemokinereceptor

antagonist. It is sold with the trade name Selzentry and was also obtained from Sigma-Aldrich.

Its structure is shown below in Figure 4.
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NJ '' M F
H3C F

NN
NJ

H3C CH3

Figure 4: The structure of Maraviroc, obtained from Sigma Aldrich 30

ii. Standard curves

In order to determine concentrations of drugs, standard curves were created for both

Maraviroc and Saquinavir. Using a Thermo-Scientific Multiskan GO ultraviolet-visible (UV)

spectrophotometer, samples of known concentration were created and the intensity of the peak

absorption of these concentrations was used to create a standard curve.

1. Saquinavir

Saquinavir has a low aqueous solubility of 2.22 mg/mL and was dissolved in dimethyl-

sulfoxide (DMSO) at 5 mg/mL, the solubility in DMSO according to Sigma 27,28. To control for

the fact that sodium hydroxide (NaOH) would be used to hydrolyze the microparticles and

microneedles, the dilutions were made in 0.2 M NaOH. In addition, due to the UV absorbance

of the polystyrene disposable cuvettes, a Starna Cells quartz open top 10 mm cuvette was used to

eliminate any false signals from the polystyrene cuvettes. The UV spectrophotometer was set to

quick read from 200 nm to 450 nm.

2. Maraviroc
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Maraviroc also has a low aqueous solubility and was initially dissolved at 30 mg/mL, the

solubility according to Sigma 30. Similarly, the dilutions were made in 0.2 M NaOH to control

for the NaOH that would be used to hydrolyze the microparticles and microneedles. The quartz

cuvette was used in favor of the disposable polystyrene cuvette as soon as it was discovered that

the polystyrene cuvettes were giving false signals and had strong absorption in the UV range,

particularly at the wavelengths of interest. The UV spectrophotometer was set to quick read

from 200 nm to 450 nm.

iii. Microparticle synthesis

The microparticle synthesis is a double emulsion synthesis that requires multiple steps in

order to encapsulate drug in particles of micron diameter. Figure 5 below, outlines these various

steps.
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(a) Internal aqueous phase

(b) Organic phase:

I
(c) External aqueous phase

Figure 5: Microparticle synthesis outline. (a) The internal aqueous phase, drug could be loaded
here, is sonicated as it is added to an organic phase (b) The internal aqueous phase therefore
forms nanoparticles in the organic phase, which could also be loaded with drug (c) The organic
phase with nanoparticles of the internal aqueous phase is then added to an external aqueous
phase as the external aqueous phase is homogenized. (c) The organic phase-internal aqueous
phase then forms microparticles in the external aqueous phase

For reasons discussed below in results and discussion, only Saquinavir was continued as

a candidate drug due to impracticality of measuring concentrations of Maraviroc. However, a

control was also created with the exact same synthesis, but without the addition of the

18
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Saquinavir. Saquinavir was encapsulated into microparticles that would act as the controlled

release mechanism. The microparticle synthesis was a double emulsion synthesis where an

internal aqueous phase was suspended in an organic phase, which was then suspended in a

second external aqueous phase. Figure 6 shows the structure of the microparticles.

Internal aqueous phase

External aqueous phase

Organic phase

Figure 6: Microparticles with drug loaded in the organic phase

The double emulsion allows flexibility for drugs of different polarity to be loaded into the

microparticle. Due to the low solubility of Saquinavir in aqueous solutions, Saquinavir was

loaded into the organic phase. Although the additional step of the addition of the internal

aqueous phase is unnecessary, it was kept to demonstrate the flexibility of the double emulsion

synthesis as well as to be consistent with the microparticle syntheses for the aqueous soluble

drugs. Three different syntheses were performed, each with a different concentration of

Saquinavir in the organic phase.

1. Organic phase preparation
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Briefly, 50 mg of Saquinavir was dissolved in 1.5625 mL of DMSO for a concentration

of 32 mg/mL. Next 80 mg of poly(lactic acid-co-glycolic acid) (PLGA) from Lakeshore

Biomaterials 50:50 DLG 4A (inherent viscosity 0.35-0.45 dL/g) was dissolved in 5 mL of a mix

of dichloromethane (DCM) and the DMSO+Saquinavir solution in a 10 mL glass vial. Three

different loadings, defined as the ratio of Saquinavir to PLGA were used to examine the effects

of different loadings. A 20% loading solution was made by adding the 80 mg of PLGA to 0.5

mL of DMSO+Saquinavir and 4.5 mL of DCM. A 10% loading solution was made by adding

the 80 mg of PLGA to 0.25 mL of DMSO+Saquinavir and 4.75 mL of DCM. Finally, a 1%

loading solution was made by adding the 80 mg of PLGA to 25 pL of DMSO+Saquinavir to

4.975 mL of DCM. Each solution was shaken for at least 30 minutes to ensure complete

dissolution of PLGA in solution.

2. Aqueous phase preparations

The internal aqueous phase used was simply PBS. The external aqueous phase used was

a 0.5wt% poly(vinyl alcohol) (PVA) solution from MPBiomedicals catalog #151937, with a

molecular weight of 15000. 40 mL of PVA was prepared in a 50 mL Erlenmeyer flask.

3. Particle preparation and work-up

These steps to the particle preparation are outlined above in Figure 5 above. Synthesis

was performed in a fume hood due to the volatile organic solvents. A MISONIX ultrasonic

liquid processor XL-2000 Series sonicator was set to 7 Watts and cleaned alternating with DCM

and acetone for 30 seconds in a 20 mL glass vial, ending with DCM and drying with a Kimwipe.

The same was done for an IKA T25 Digital Ultra-Turrax homogenizer, which was set at 16,000

RPM. The organic phase, which was approximately 5 mL of solution in a 10 mL glass vial, was
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placed in an ice bath and sonicated for 30 seconds with 500 pL of the internal aqueous phase,

PBS, introduced with a micropipette immediately with the beginning of the sonication by

dripping down the sonicator probe tip. While sonicating, the sonicator tip was moved up and

down a number of times and left close to the bottom of the tip to fully emulsify the two solutions.

After 30 seconds, the sonicator was turned off and 10 mL glass vial of the emulsified internal

aqueous phase and organic phase was replaced with the Erlenmeyer flask containing the 40 mL

of external aqueous phase. The homogenizer was placed into the external aqueous flask on ice

and the first emulsion was added by glass pipette again down the homogenizer, but as far into the

solution as possible. The homogenization step lasted 3 minutes, including the approximately 30

seconds to introduce the first emulsion into the second emulsion. After the homogenization, the

flask was stirred overnight in the fume hood to evaporate to remove excess solvent. The first

emulsion created nanoparticles of the internal aqueous phase in the organic phase. The second

emulsion created microparticles of the first emulsion in the external aqueous phase.

After one day, the particle suspensions were then aliquotted into 15 mL conical tubes and

centrifuged at 3000 RPM for 10 minutes. The supernatant was removed and the suspensions

were washed once: -13 mL of Milli-Q (MQ) water was added to each tube, the tubes were

vortexed, centrifuged, and the supernatant was again removed. The suspensions were then

resuspended in 1 mL of MQ water. 200 mL of the suspension was aliquotted into Eppendorf

tubes, usually around 5 to 6 tubes, with the excess kept for particle characterization. These

suspensions were lyophilized to store them. The aliquots were flash frozen in liquid nitrogen and

then perforations were made in the top of the tube before they were placed in vacuum. After a

few days, the lyophilized particle suspensions were then stored in 50 mL conical tubes with

DRIER dessicant and placed in the 4 degree Celsius refrigerator.
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4. Particle Characterization

The particles were then characterized to determine size, zeta potential, concentration, and

yield. To determine concentration and yield, the total excess suspension after storing 200 mL

aliquots was measured to determine the total volume of particle suspension. PCR Eppendorf

tubes were weighed and then aliquots of 25 pL were put in each tube and lyophilized in the same

lyophilization process to store the suspensions. After a few days, these Eppendorf tubes were

weighed and the difference was used to calculate the concentration of the particle suspension.

The microparticle size and zeta potential were determined using a BIC 90+ Particle Analyzer, a

dynamic light scattering (DLS). Polystyrene disposable cuvettes were used and filled to the 10

mm mark with MQ water. 30 pL of the particle suspension was then added. The software was

used to select "uniform spheres" and "liquid" as the type of particles to detect and the base

liquid, respectively. The particle analyzer was run and determined the particle size and

polydispersity. The zeta potential, which is a surface charge measurement that can indicate

stability of colloidal dispersions, was determined in a similar manner. The same diluted solution

of microparticles was pipetted into the rinsed cuvette and the rinsed electrode was placed into the

cuvette with solution. Sufficient solution was added so that the solution covered both electrode

plates. The software was used to enter the size of the particles from the previous step, as well as

set the base liquid to water and the pH to 5.00.

iv. Microparticle loading

To determine the amount of drug that was successful loaded into the microparticles, a

lyophilized aliquot of microparticles with known mass was hydrolyzed for one day with 0.2 M

NaOH. The control microparticles were also hydrolyzed under the same conditions as the

Saquinavir microparticles and were used as the base reading. This was to eliminate any
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interference from signal from PLGA. The solutions were then diluted into the range of the linear

portion of the standard curve and the absorption was determined from the UV visible

spectrophotometer. The linear regression from the standard curve was then used to calculate the

loading.

v. Microneedle synthesis and characterization

The microneedle synthesis from beginning to end is a multi-step process that

requires the use of a number of intermediate processes to create the final drug loaded

microneedle arrays. Figure 7 below outlines the entire process.
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MN Synthesis from PDMS Mold

\/II/1111111/\/\/\/\/
(a)

(b)

(e)

(f)

(g)

(h)

(c)

(d) MAAAA '

Figure 7: Outline of the microneedle fabrication process. (a) Master molds were generated from
solid PDMS blocks through laser ablation micro machining of the surface to create the mold
cavities (b) The master molds (c) These master molds were then used to cast PLLA MN arrays
(d) These PLLA MN arrays were used to cure PDMS replicate molds (e) The PDMS replicate
molds were used to create the drug loaded MN arrays (f) The drug, in the form of microcrystals
or microparticles, was deposited onto the molds and centrifuged into the cavities (g) The solution
dried leaving just the microcrystals or microparticles (h) PAA was then deposited and
centrifuged and allowed to dry to create a solid matrix (i) The microneedles were then removed
from the mold and ready to use.
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1. PDMS microneedle mold fabrication

With the particles synthesized, microneedles were then synthesized using

polydimethylsiloxane (PDMS) molds, shown in Figure 8 below. The PDMS mold fabrication

refers to steps (a-e) in Figure 7 above. These PDMS molds were synthesized from poly-L-

lactide (PLLA) microneedles, which were created from master PLLA microneedles that were

created from PDMS master molds, created from laser ablation. The microneedles were mounted

in silicon isolators on the bottom of a culture dish and PDMS precursor and curing agent in a

10:1 ratio (3.8mg curing agent + 34.2 mg PDMS precursor) was mixed well and added. It was

cured at 65C for five hours and then the MNs were removed from the PDMS mold, which was

then sonicated in a jar filled with acetone for 60 minutes. The mold was finally incubated in a

vacuum oven overnight at 140C and finally placed in the freezer for 30 minutes before being

ready to be used.
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Figure 8: PDMS mold used to synthesize microneedles

2. Microparticle deposition

Both the control microparticles and Saquinavir microparticles were encapsulated in the

microneedles in essentially the same process. Only the highest concentration of the

microparticles was used to maximize the potential loading in the microneedles. 140 gL of MQ

water was deposited into each array well of the PDMS mold and the mold was placed in a

vacuum chamber. The microparticle deposition refers to steps (f-g) of Figure 7 above. Vacuum

was applied carefully a few times for 5-10 seconds in order to remove air bubbles. The addition

of this water is to remove air and allow for the deposition of the particles into the cavities. 70 pL

of the water was removed from each well and replaced with 70 pL of microparticle suspension
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with a concentration of .0285 mg/pL. Both the control "empty" microparticles and the 20%

loaded microparticles aliquots had extremely similar masses of approximately 10.94 mg. This

corresponded to dissolving each aliquot in 383 pL of water and adding 70 pL of solution to each

array well. The molds were centrifuged at 1850 RPM for 15 minutes. The supernatant was

removed and the molds were left to dry on the bench top for an hour.

3. Polyacrylic acid addition

This final step refers to steps (h-i) in Figure 7 above. Following the deposition of the

microparticles, PAA at 35% concentration by weight was added to help the microneedles

maintain their shape and help drive the delivery of the particles. To add the PAA, 2 mm

adhesive silicon isolators were placed on top of the mold and approximately 300 pL of PAA was

added to each well to the brim of the adhesive silicon isolator. The molds were then centrifuged

at 1850 RPM for 25 minutes. The molds were then left to dry on the bench for 48 hours before

they were placed in the dessicator for an additional 48 hours. The microneedles were removed

by placing the molds in the -20C freezer for 30 minutes and using tweezers to pull them out.

They were then stored in the dessicator until use.

4. Microneedle characterization

Microneedles were imaged using an optimal microscope to check dimensions of the

microneedles as well as viewing the separation of particles and PAA. A Leitz DMRX

opticalmicroscope with a Nikon DXM1200F Digital Camera was used.

vi. Microneedle loading

At first, each microneedle array was placed in an Eppendorf tube and 1.5 mL of 0.2 M

NaOH was added so that the microneedle array was fully submerged. After one day, the entire
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microneedle array had hydrolyzed. This method, however, proved impossible due to the

absorbance of PAA.

Instead, each microneedle array was vortexed in 1.5 mL of MQ water for 60 seconds so

only the contents of the tips would be released from the microneedles. The Eppendorf tube was

then centrifuged and the supematant was removed. The contents of the tips were then

hydrolyzed in 0.5mL of 0.2 M NaOH and after a day, the absorbance of the solution was

detected using the UV visible spectrophotometer. The intensity corresponded to the loading

concentration from the standard curve.

c. Results and discussion

i. Standard curves

Saquinavir had a peak absorption at 238 nm and showed a linear optical absorption at this

wavelength over a concentration range from 2.5 pg/mL to 10 pg/mL, as shown in Figure 9,

below. This corresponded to the upper range of the literature value, which was linear from 2.5

ng/mL to 25 ug/mL 26. The standard curve was tested on three different occasions, all plotted

below. The variation from the third could be due to a variety of factors, including contamination

from the cuvette.
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Figure 9: Saquinavir Standard Curve for with error bars from 3 series of measurements

In addition, the 238 nm peak absorption matched reported absorption values from

literature, as is apparent in Figure 10 below.
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Figure 10: From Ha et al, the UV-spectrum of Saquinavir-mesylate dissolved in .01M HCl 5

The peak for the Maraviroc dilutions was at 257 nm and was linear and detectable from

concentration 0.3125 mg/mL to 0.1 mg/mL. Figure 11, below, shows the calculated standard

curve from these readings. There was a large difference, however, between this data and

literature data. The literature values for the peaks of absorption were 197 nm and 300 nm and

linear up to 2500 ng/mL. There could be a number of explanations for this discrepancy,

including the limitations of the spectrophotometer to only measure down to 200 nm, but more

likely because the structure has a degree of conjugation that is lower than the threshold needed to

detect a signal with the spectrophotometer. Because of this discrepancy, it was decided not to

continue with Maraviroc because of the uncertainty in determining Maraviroc concentration and

therefore loading of microparticles and microneedles that were loaded with Maraviroc.

Maraviroc Standard Curve
0.45

0.4
E 0.35
C
P~f 0.3 - _ _ _ _ _ _ _ _

0.25
y= 0.357x + 0.015

- -R 2 =0.998
0.15

C 0.1
0.05

0

0 0.2 0.4 0.6 0.8 1

Concentration (mg/mL)

Figure 11: Maraviroc standard curve at 257 nm zeroed with .2M NaOH + varying levels of
DMSO to match the concentration present in Maraviroc samples. Error bars derived from
replicate measurement zeroed only in 0.2M NaOH.
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ii. Microparticles

The drug-loaded PLGA microparticles were characterized to understand their properties

and hypothesize about how they will act for their intended use and to understand the double

emulsion synthesis. The size, polydispersity, and zeta potential all give insight into how the

particles might dissolve and interact within the body and the yield of the particles indicates how

effective the double emulsion synthesis is in yielding particles. Table 2 shows the results from

the Saquinavir microparticles and the results from the control particles. Both groups of

microparticles had expected properties with no anomalies.
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Yield: Mass of
recovere particles

Microparticles Hydrody PDI d mass per 200uL
namic (polydi Zeta of lyophilize

Diamete spersit potential particles d aliquot
r (nm) S.E. y) S.E. (mV)9 S.E. (%O) (mg9)

PLGA +
Saquinavir

(20%)
(0.5% PVA) 1134.7 29.2 0.061 0.038 -38.51 0.15 75.17% 10.93

PLGA +
Saquinavir

(10%)
(0.5% PVA) 1112.2 84.7 0.073 0.042 -38.21 0.09 93.50% 13.60

PLGA +
Saquinavir

(5%)
(0.5% PVA) 1027.2 20.1 0.064 0.039 -38.08 0.12 77.00% 11.20



Yield:
M prtl recovere Mass per

icropatiles Hydrody PDI d mass 200uL
namic (polydi Zeta of lyophilize

Diamete spersit potential particles d aliquot
r (nm) S.E. y) S.E. (m) S.E. (%) (mg)

PLGA +
DMSO, DCM

(20%)
(0.5% PVA) 1205.8 91.3 0.005 0.000 -42.64 1.55 75.17% 10.93

PLGA +
Dmso, DCM

(10%)
(0.5% PVA) 1727.1 122.3 0.038 0.033 -28.67 1.43 78.83% 11.47

PLGA +
Dmso, DCM

(1%)
(0.5% PVA) 2229.3 157.9 0.141 0.067 -35.23 2.33 64.17% 9.33

Table 2: Characterization results for Saquinavir loaded particles, above, and the control particles,
below.

iii. Microparticle loading

The hydrolyzed microparticles showed higher concentrations of Saquinavir with an

increase in the Saquinavir loading. Table 3 below shows a regression between the loading of the

particles and the actual ratio as determined by the absorbance signal and Figure 12 shows the

correlation graphically with a linear fit.

Actual loading (mass
Loading of Saquinavir per
(Saquinavir:PLGA) mass ofparticles)
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10% 0.98% 1
1% 0.42%

Table 3: The correlation between loading ratio during synthesis and actual loading of
microparticles.
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Figure 12: Correlation shown graphically and approximated as linear between increase in loading
during synthesis and actual loading. No error analysis available due to absence of replication
measurements.

iv. Microneedles

Below, in Figure 13, are images that were taken of the microneedles. The tips are a

different color than the rest of the microneedle due to the microparticles. The rest of the

microneedle is PAA.
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Figure 13: On the left, the Saquinavir microparticle loaded microneedles and on the right, a
higher magnification image of a control microparticle loaded microneedle.

v. Microneedle loading

The absorbance of the microneedle contents hydrolyzed with 0.2 M NaOH overnight,

with a zero base line of the microneedle contents of the microneedles synthesized with the

control particles, showed a strong peak at 240 nm and a small peak at 219 nm, which most likely

correspond to the difference in PLGA between the Saquinavir particles and the control particles.

The microneedles with the 20% loaded Saquinavir showed a loading consistent with

expected results. The 0.899 intensity corresponds to a concentration of .0239 mg/mL. The

microneedle contents were dissolved in 0.5 mL of 0.2 M NaOH, which would correspond to

.0120 mg of Saquinavir per array. With a 20% Saquinavir microparticle loading of 1.35%

determined from the microparticle loading experiment, this would correspond to 883 sg of

particles per microneedle array. Based on the volume of approximately 1 mg per array

calculated previously, this would match the prediction.

Other studies have examined how drugs introduced with microneedles were able to reach

systemic circulation. One such study showed the plasma free insulin levels, after a microneedle
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injection of 15 units of insulin (approximate total of 682.5 pg of insulin), reached a peak of over

100 microU/mL (4.55 ng/mL)31. For 12 pg of Saquinavir per array, this would translate to 0.08

ng/mL, well below the minimum effective concentration of 100 ng/mL required for Saquinavir.

Because of this factor of 1250, an idea to use drug crystals to maximize the loading of an array

close to the 1 mg limit came about. The use of drug crystals, combined with the using multiple

arrays, could increase the amount of drug delivered to the necessary levels. Further, the

absorption kinetics of Saquinavir could be quite different than that of insulin. In addition,

Saquinavir, unlike insulin, is most effective in the lymphatic system and might have higher

concentration levels in the local lymphatic system.

d. Conclusion

It has been shown that the antiretroviral drug, Saquinavir, can be loaded effectively into

microparticles and that these microparticles can then be loaded in microneedles. It remains

unclear whether the loading is sufficient to completely replace current delivery for Saquinavir,

however these preliminary results are promising. Microneedle deliveries could supplement

current delivery in order to specifically target viral reservoirs.
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III. Microneedle Delivery of Antibiotics

a. Introduction

Antibiotics are of particular interest due to the prevalence of bacterial infections and because

of the potential for increase in efficacy of these drugs from the delivery of the antibiotics directly

to the lymphatic system. Antibiotics are currently delivered in three main forms: orally and

topically for the majority of infections that are usually localized and intravenously for more

serious, usually systemic infections. One specific application for the microneedle delivery of

antibiotics would be in battlefield situations, where open wounds and battlefield trauma lead to

high risk of infection. The lack of sterile conditions on the battlefield and the delay in being able

to evacuate the casualty both contribute to the need of effective antibiotics. The casualty is

usually treated intravenously with an antibiotic in order to immediately treat the infection.

Microneedle application could be as efficacious, while eliminating the need for trained medical

personnel to set up the IV as well as enabling the casualty to self-apply the antibiotic

immediately. Typical IV dosages are actually similar to the oral pill dosages; IV dosages are

only approximately 20% less35 . Therefore, the use of microneedle delivery of antibiotics to

replace IV introduction of drug would carry the same benefits of replacing high oral pill dosage

and frequent dosage.

This specific application was kept in mind when a candidate drug was selected to test the

feasibility of this idea. In addition, as with the antiretroviral drugs, bioavailability, half-life, and

total dosage were all factors in the drug choice.

b. Materials and Methods
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i. Drug Choice

The drug chosen was Ciprofloxacin based on its desired characteristics, shown below in

Table 4. In addition, Ciprofloxacin is a commonly administered drug on the battlefield for a

variety of injuries12 . Ciprofloxacin, which has the structure shown below in Figure 14, was

obtained from Sigma Aldrich. It is a second generation fluoroqiunolone that targets the

bacteria's ability to rewind its DNA during DNA synthesis.

Drug name Bioavailability Percent Half-life Dose Total Minimum
reach (hours) frequency Daily inhibitory
Circulation (doses/day) Dosage concentration

(mg)
Ciprofloxacin 70%, .5 to 5% ~10% 17 4 23 80032 <1Ipg/mL,

37,38 .062-
32gg/mL33

,
34

Table 4: Drug properties for Ciprofloxacin that were used to select it as a candidate drug

0 0
F

OH

N N
HN I

Figure 14: The structure of Ciprofloxacin, obtained from Sigma Aldrich.3 6

ii. Standard curves

As with Saquinavir, standard curves were created in order to determine the concentration

of Ciprofloxacin in solution. Samples were created with known concentration, diluted, and then

the absorbance was measured with a UV-visible spectrophotometer. The measurements were

recorded to create a standard curve.
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Ciprofloxacin is soluble up to 30 mg/mL in pH 3 solution3 8 . Three different

concentrations were initially made of 30 mg/mL, 10 mg/mL and 5 mg/mL. The corresponding

amount of ciprofloxacin was put in 20 mL of water and then drops of 2.4 N hydrochloric acid

(HCl) were added until the Ciprofloxacin dissolved in solution. The amount of 2.4 N HCl added

was inconsequential compared to the volume of the initial solution. The same glass cuvette used

for the Saquinavir and Maraviroc curve was used for the readings with the UV

spectrophotometer, which did a quick read from 200 nm to 450 nm. The 5 mg/mL solution was

used to initially create the standard curve and was then tested with dilutions from the other two

solutions. In addition, dilutions in 0.2M NaOH were also created at 17 pg/mL and 5 pg/mL to

ensure similar absorbance values since loadings were going to be read in 0.2 M NaOH.

iii. Microparticle synthesis

The microparticle synthesis to encapsulate the ciprofloxacin was the same double

emulsion synthesis as for the Saquinavir; however, the drug ciprofloxacin was encapsulated in

the internal aqueous phase as opposed to the organic phase. Figure 15 below shows the structure

of the microparticle.

Internal aqueous phase

Drug Dru

External aqueous phase
DDrug

Drugg

Organic phase

Figure 15: Microparticles with drug loaded in the internal aqueous phase
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Three syntheses were done for three different concentrations of Ciprofloxacin, 30

mg/mL, 10 mg/mL, and 5 mg/mL.

1. Organic phase preparation

For each synthesis, 80 mg of poly(lactic-co-glycolic) acid (PLGA) from Lakeshore

Biomaterials 5050 DLG 4A (inherent viscosity 0.35-0.45 dL/g) was dissolved in 5 mL of

dichloromethane (DCM). Each solution was shaken for at least 30 minutes for complete

dissolution of PLGA.

2. Aqueous phase preparations

The internal aqueous phase was simply the 30 mg/mL, 10 mg/mL, and 5 mg/mL

solutions of Ciprofloxacin dissolved in water and 2.4 N hydrocholoric acid to create a solution of

approximately pH 2. The external aqueous phase used was 40 mL of .5% poly(vinyl alcohol)

(PVA) solution from MPBiomedicals catalog #151937 with a molecular weight of 15000 that

was prepared in a 50 mL Erlenmeyer flask.

3. Particle preparation and work-up

Particle preparation and work-up was carried out as described in Chapter II, Section

b.iii.3., but with 500 pL of the internal aqueous phase being solutions of ciprofloxacin and the 5

mL of the organic phase being PLGA in DCM.

4. Particle characterization

Particle characterization was carried out as described in Chapter II, Section b.iii.4.

iv. Microparticle loading

Microparticle loading was carried out as described in Chapter II, Section b.iv.
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v. Microcrystals

In addition to the testing of microneedle loading of microparticles, the test of microneedle

loading of microcrystal was also of interest. Microcrystals are simply pure crystalline drug with

sizes on the micron scale. This would allow for much higher loading of microneedles with drug,

although the controlled release properties might be significantly affected. There were two main

approaches to synthesizing the microcrystals: precipitate the crystals out of dissolved solution

and sonicate the ciprofloxacin in water.

The precipitation method involved first dissolving the ciprofloxacin in pH 2 solution of

water and 2.4 N HCl and then the addition of 0.2M NaOH until the ciprofloxacin precipitated out

of solution. This was done for the 30 mg/mL solution for three different pH change rates. One

was 1 mL of 0.2M NaOH every five seconds, the second was 300 pL of NaOH every 10 seconds,

and the last was 500 pl of 0.2M NaOH every 10 seconds.

The sonication in water method involved creating concentrations of Ciprofloxacin in

water and then sonicating each concentration for one minute at 7 Watts.

The microcrystal solution from each synthesis was then characterized using DLS,

dynamic light scattering, on a Brookhaven 90Plus instrument.

vi. Microneedle synthesis and characterization

Microneedle synthesis and characterization carried out as described in Chapter II, Section

b.v.

vii. Microneedle loading

Microneedle loading carried out as described in Chapter II, Section b.iv.
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c. Results and discussion

i. Standard curve

The ciprofloxacin had a peak absorption at around 270 nm and was linear from 1.25-25

pg/mL, which matched literature values of a peak absorption at 271.4 nm and linear from 2-10

pg/mL35 . The standard curve is plotted below in Figure 16. The dilutions from all three

concentrations as well as the dilutions of ciprofloxacin in 0.2M NaOH were all well correlated,

indicating strong confidence in determining the concentration of ciprofloxacin from absorbance

spectrum.

Ciprofloxacin standard curve
3

y = 0.102x + 0.037

2.5 R2 = 0.998

C 1.5
--- 5 mg/mL solution

1 - Linear (5 mg/mL solution)

0.5

0

0 5 10 15 20 25 30

Concentration (ug/mL)

Figure 16: Ciprofloxacin standard curve, checked with multiple dilutions at different pH as well
as solution in 0.2M NaOH. Error bars derived from replicate measurements of different starting
concentrations (10 mg/mL and 30 mg/mL)

ii. Microparticles
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The same properties for the Saquinavir microparticles were determined for the

ciprofloxacin microparticles in order to fully understand the ciprofloxacin microparticles. Table

5 below shows these properties, which are all expected. Only the yield and total mass per 200

pL aliquot are lower than expected. This is most likely due to the fact that the extra step required

to encapsulate the drug in the internal aqueous phase and subsequent encapsulation in the organic

phase could lead to significant loss of both the drug in the internal aqueous phase as well as a

loss in volume of the aqueous phase which does not become encapsulated and is washed away.

Micropartic Yield: Mass per
les Hydrodyn mass of 200 g L

amic PDI Zeta particles lyophilize
Diameter (polydisper potenti receovere d aliquot

(nm) S.E. sty S.E. al (mV1) S.E. d (%1) (mg9)

PLGA +
CIPRO

(5mg/mL)
(0.5% PVA) 1610.6 71.1 0.149 0.060 -17.18 4.03 36.67% 5.33

PLGA +
CIPRO

(10mg/mL)
(0.5% PVA) 1500.8 60.2 0.022 0.017 -22.44 3.38 47.67% 6.93

PLGA +
CIPRO

(30mg/mL)
(0.5% PVA) 1681.3 127 0.036 0.031 -31.48 1.62 27.50% 4

Table 5: Characterization of ciprofloxacin loaded microparticles with different loading levels
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iii. Microparticle loading

Only the two highest concentrations of ciprofloxacin were encapsulated in the

microparticles. The higher concentration encapsulation showed a higher signal after hydrolysis

of the microparticles. There was also a significant loss during encapsulation of ciprofloxacin for

reasons cited earlier. Table 6, below, shows the different predicted loading and actual loading

for three different concentrations of ciprofloxacin used in the internal aqueous phase.

Loading Actual loading ofparticles
Concentration of internal aqueous (Ciprofloxacin:PLGA+ (mass of ciprofloxacin:
phase Ciprofloxacin) mass of particles)

30 mg/mL 0.158 0.00197

10mg/mL 0.0588 0.000513
Table 6: Different predicted and actual loadings for different concentrations of Ciprofloxacin in
the internal aqueous phase

iv. Microcrystals

The size of the microcrystals seemed highly dependent on concentration. There was a

large distribution of sizes ranging from a few hundred nanometers to tens of microns. The

majority of distribution, however, was between 1 and 10 microns. The precipitated method

seemed to cause a more uniform distribution.

The sonicated microcrystals used in the microneedles had a measured concentration of

.0077 mg/sL, which translated to a maximum of 537 pg in each microneedle array. The

precipitated microcrystals had a hypothetical maximum concentration of .03 mg/ pL, which

would translate to a promising 2.1 mg per microneedle array. In actuality, it was slightly lower

due to dilution from the HC1 and NaOH. There was not a significant affect from altering pH or

altering pH change on the size of the microcrystals.
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v. Microneedles

The images below, Figure 17, show the microneedles from two loadings of the

ciprofloxacin microparticles and the two different microcrystal syntheses. The two images of the

ciprofloxacin microparticle loaded microneedles have a difference in coloration due to the

loading of the microparticles. The microneedles loaded with the ciprofloxacin microcrystals,

however, show no difference in coloration due to the acidity of the PAA dissolving the

microcrystals. This phenomenon could have a very interesting effect when introduced into the

more basic plasma or blood solution in the human body, where it would then crystallize

depending on the concentration. Because of the low concentration, it might in fact stay dissolved

and not recrystallize. These are questions that remain to be answered.
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Figure 17: From top left to right: 30 mg/mL Cipro MP MN, 10 mg/mL Cipro MP MN; bottom
left to right: sonicated ciprofloxacin microcrystal MN, precipitated ciprofloxacin microcrystal
MN

vi. Microneedle loading

The microneedles loaded with the ciprofloxacin microparticles demonstrated a signal

corresponding to .41 pg of ciprofloxacin per array for the 30 mg/mL concentration of

ciprofloxacin in the microparticles and 0.177 pg of ciprofloxacin per array for the 10 mg/mL

concentration of ciprofloxacin in the microparticles. Based on the ciprofloxacin loading in

microparticles for these two concentrations, this would indicate 208 pg of microparticles and 345

sg of microparticles in the 30 mg/mL and 10 mg/mL ciprofloxacin microneedle arrays,

respectively. These numbers are a factor of 2 to 3 lower than the calculating loading capacity of

approximately Img for each microneedle array. One factor that could contribute to this is that

much of the microparticles are centrifuged between the microneedles as opposed to into the

microneedles.

The microneedle arrays loaded with the sonicated microcrystals led to a loading of 1.7 sg

of ciprofloxacin per array. The arrays with the precipitated microcrystals led to a loading of 165

pg of ciprofloxacin per array. The sonicated microcrystals loaded microneedles produced a
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loading much lower than expected, but the precipitated microcrystals loaded microneedles

showed promise, although they were still an order of magnitude lower than expected. Based on

the calculated concentrations, a maximum of 175 pg and 2.1 mg of microcrystals for the

precipitated and sonicated microcyrstals should have been expected, respectively. A reason for

this discrepancy could be that because of the varied size distribution for both microcrystals, but

particularly the sonicated microcrystals, the larger crystals could have blocked the other sizes

from centrifuging down into the microneedles. In addition, the smaller sizes of less than 1

micron would not centrifuge down and would be washed away. Finally, much could have been

centrifuged in between the microneedles, which would have been washed away before the PAA

addition, instead of into the microneedles.

Using the analogous insulin analysis, the 165 pg from the precipitated Ciprofloxacin

microcrystals would translate to 1.1 ng/mL. This is well below to approximately 1 pg/mL

needed for a minimum inhibitory concentration. If the entirety of the 1 mg was loaded using the

microcrystals, however, this would lead to 6.67 ng/mL, still too low to cover the highest required

concentration of antibiotics. Some strains of bacteria, however, require .062 pg/mL, meaning the

application of ten arrays would be sufficient to reach this desired concentration.

d. Conclusion

This work had demonstrated the ability to load microneedles with an antibiotic,

Ciprofloxacin, through the use of Ciprofloxacin crystals and through the loading of

Ciprofloxacin in PLGA microparticles. Further investigation is needed to determine whether or

not the loadings are sufficient as is, but regardless, there exists significant room for improvement

in the loading. The biggest area is to capture the approximately 1 mg of loading capacity of the
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microneedles. This will be best achieved through the use of microcrystals with increased

concentration and increased uniformity in size.

47



IV. Conclusion

a. Summary

The results from this work are very promising to the eventual goal of using microneedles

to deliver antiretrovirals and antibiotics. First, microparticles were synthesized and proved to be

loading Saquinavir and Ciprofloxacin. Microcrystals were also synthesized for Ciprofloxacin.

Microneedles were synthesized and showed loading of Saquinavir and Ciprofloxacin. It still

remains unclear whether the loadings are sufficient for the intended applications, requiring

further investigation.

b. Future work

Although this work was a good step forward, there is still significant work in order to

demonstrate the efficacy of using microneedles to deliver antiretrovirals and antibiotics. There

exist two main areas to further this investigation. The first area is increasing the loading of the

microneedles. Microcrystals show promise of achieving the entirety of the 1 mg loading limit of

the microneedles. To further this limit, larger needles or potentially a reservoir driven device to

deliver even more drug might be designed. The other main component left to be done is in vivo

experiments to understand the concentrations of the plasma from the microneedle application.

This can be done by applying microneedles loaded with drug and then measuring the

concentration of the drug in the plasma at different time points.

If these measurements prove the presence of the drug in reasonable concentrations, the

next step would be further investigation on the release characteristics of the drug. This would

entail the use of different materials or suspension of the drug in various matrices of

biodegradable materials. The ideal drug concentration in plasma over time would vary
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depending on the drug and its intended use. The drug concentration profile over time would

dictate the desired release of the drug. The third area of further research, after increasing the

loading of the drug and measuring sufficient concentrations in vivo, would be not only to

characterize the release characteristics of the drug, but to develop a system to allow tunable

release. Since microcrystals demonstrate more promise due to higher loading capabilities, new

mechanisms for controlled drug release need to be considered. One such idea would be to

substitute the PAA matrix for various other biodegradable matrices in order to obtain the desired

controlled release, while maintaining other characteristics, including mechanical stability.

Another idea could complement the use of a reservoir to increase drug loading by developing the

reservoir to allow for controlled release. This could include a specific release rate from the

reservoir through the use of a selective membrane and osmotic pressure drive, thus allowing for

tunable controlled release. There exist various methods of controlled release that could all be

implemented in this system.

Achieving a high loading and controlled release microneedle system with demonstrated

sufficient in vivo concentration measurements would be a huge advancement in the field of

microneedle research. The work achieved thus far has laid the foundation for the future work to

improve on the current system.
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