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Abstract

Adoption of Lab-on-Chip technology, which combines microfluidics with laboratory
processes, is steadily increasing within the global health diagnostics field. An
important element of this technology is the sensing and measurement capabilities of
associated microelectronics. This thesis presents a critical analysis of the use of
thermal transfer printing techniques for the manufacture of microscale electrical
conductors used for biochemical assays- in this instance, cell lysate spectroscopy.
This process affords advantages over traditional techniques such as chemical vapor

deposition because of its compatibility with a variety of materials and ability to
produce durable electrodes that can perform in the harsh environments that

characterize many targeted areas where adequate access to laboratory diagnostic
equipment is severely limited.

Commercialization of the process to meet global demand is contingent upon the

development of this process at its more rudimentary stages. This study attempts to
validate the exponential scaling of this process, including qualification of

manufacturing setup, optimization of operational parameters, and detailed analysis
of full production runs. The maximization of sensitivity while simultaneously
minimizing variation in electrode production presented the primary challenges of
this work. It is concluded that a careful balance of process parameters can produce
high quality, identical electrodes consistently at the thousands-level production
throughput. A variation of only 2.2% in electrode sensitivity revealed that with the
determined optimal process settings and in-line quality control, the success even
further production scaling to better meet market demand is feasible.

Thesis Supervisor: Dr. Brian W. Anthony
Title: Lecturer, Mechanical Engineering
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Chapter 1 Introduction

This research focuses on development of an electrode production manufacturing

processes for Daktari Diagnostics's CD4 counter medical device. Daktari's mission is to

create a low-cost system capable of accurately measuring CD4 levels with a portable, and

easy to use product which will benefit millions of HIV-infected patients who cannot

access expensive diagnostics. Significant innovation in microfluidic manufacturing

methods are required for the success of the Daktari CD4, specifically with regard to

controlled manipulation and measurement of bio-fluids and assembling microfluidic

systems to demanding tolerances at low cost. This paper focuses on optimization and

validation of a novel technique for manufacturing electrodes used for measurement for

this system, in an attempt to verify production capabilities at high throughput levels. To

better understand the project, a brief context and background is necessary.

[17]



1.1 Company Background

Daktari Diagnostics is a medical diagnostic device company located in Cambridge,

Massachusetts. Daktari's mission is to create simple, accurate, and affordable products

that address the pressing challenges in global health. The Daktari team of engineers,

scientists, physicians, and global health experts is uniquely dedicated to making high-

performance products specifically designed for resource-deficient markets. They are

committed to delivering critical diagnostic test results to clinicians and patients across the

globe. With the slogan, today there is no place out of reach, Daktari is developing a

point-of-care (POC) CD4 level counter specifically designed for patients with HIV in

poorly developed environments (Figure 1-1). [1]

1.2 A Global Health Need

1.2.1 HIV & AIDS

Since 1981, over 30 million people have died from AIDS. In 2010 alone, it is estimated

that 1.8 million died from AIDS and 2.7 million have been infected by HIV. Today,

there are more than 35 million people living with HIV and AIDS worldwide, and this

value is continually increasing according to the UNAID's 2011 World AIDS Day Report.

[2]
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Figure 1-1: Daktari's first product, the Daktari CD4.

Human Immunodeficiency Virus (HIV) is a virus that attacks the human body's immune

system. Specifically, HIV affects CD4+ cells, (also known as T cells or T-helper cells, a

type of white blood cell) which coordinate the immune system to fight diseases by

sending signals to activate the body's immune response once foreign bodies like viruses

and bacteria have been detected. CD4+ cells are attacked and impaired by HIV, until the

body's immune system loses its ability to combat disease, resulting in an increased risk to

opportunistic infections, a medical condition known as Acquired Immune Deficiency

Syndrome (AIDS). [3]. Healthy, HIV-negative people have CD4+ counts of 600-1200

cells/mm3 . [4] A CD4+ count of less than 200 cells/ mm3 signifies as an AIDS diagnosis.

[5] The measurement of CD4 is therefore useful to:

" Measure the immune system strength

" Accurately indicate when to start treatment to

- prevent drug resistance caused by premature medicating

- reduce the risk of patient drug-related side effects

" Monitor effectiveness of HIV treatment every 3-6 months

[19]



Flow cytometers, the modern standard equipment for performing CD4 diagnostic

cell counts, are complex machines that cost on average $30,000-$150,000 and take

up to 24 hours to provide results. While millions of people now have access to life-

saving drugs, 70% of the worldwide HIV infected population does not have access to

necessary diagnostics, preventing them from receiving proper treatment. [6]

1.2.2 Point-of-Care Development

Across the industry, there exists a tendency to relocate health care services away from

centralized hospitals and directly to the patient at the point of care. While this trend

provides patients with options in countries with mature infrastructure, point-of-care

(POC) technologies may be the most viable way to treat patients in resource-limited

settings as well. The quality of healthcare facilities varies widely in developing countries

and rural branches commonly have only basic equipment. In fact, access to electricity and

running water cannot be guaranteed. In addition to the scarcity of resources, healthcare

working may have little training to operate complex equipment, with documented

shortages seen in many African countries as poor as one qualified technician per million

people. [7] Therefore, there is a need for diagnostics that feature reproducible and

accurate results in a short time frame while still being low cost and require little user

training. The POC technologies must be rugged, portable, and consume little power in

order to be operational in a variable environment for maximum efficacy in the health of

users in resource-limited settings. [8]

1.3 LOC to POC

Lab-on-a-chip (LOC) technology has been applied to several of the four most

common centralized hospital laboratory techniques: blood chemistries,
immunoassays, nucleic-acid amplification tests, and, most relevant to CD4 counting,
flow cytometry. Promising LOC medical diagnostic systems are being developed to

obtain results from complex fluids with efficiency and speed without the need for an

[20]



expert operator, attributes that will make POC applications possible for the most

resource-limited settings. [9]

1.3.1 Microfluidics

Most LOC systems utilize emerging microfluidic technology. The term microfluidics

refers to the science and technology of systems that process or manipulate small (<

109L) amounts of fluids and use channels with proportional dimensions of tens to

hundreds of micrometers. [10] In microscale fluidic systems, surface tension, energy

dissipation, and fluidic resistance significantly contribute to flow dynamics. In

particular, the Reynolds number, which compares the effect of the fluid momentum

to the effect of its viscosity, can become very low, resulting in a highly laminar flow

systems in which fluids do not regularly mix. [11]

1.3.2 Advantages

These small scale systems are advantageous for many reasons; the low fluid

volumes required mean lower storage volume requirements, lower cost with

reduced material usage, and less waste. Also, small channels allow for more rapid

testing procedures including heating, mixing, and diffusion as necessary. Smaller

size and lower energy requirements allow for high parallel processing for increased

throughput, all while permitting the use of disposable systems, a stark contrast to

multi-million dollar laboratories in many hospitals. [12] The primary demonstrated

advantages of microfluidic devices are outlined as follows:

* Efficient use of reagents helps minimize costs

" Modular design allows flexibility

" Faster results (potential for real time analysis)

* Precise control over small fluid volumes

* Low cost of production

A wide array of microfluidic components such as micro pumps, valves, mixers, and more

have been developed. A development that is analogous to the semiconductor industry, has

[21]



led to highly integrated LOC systems now applicable to the medically beneficial POC

diagnostic devices. The core technology of Daktari is based on recent LOC microfluidic

advancements.

1.3.3 Industry Note

Despite academic and commercial interest to create microfluidic medical diagnostic

devices, few technologies have progressed beyond academic publication to become

commercially available products. Micron scale features that permit precise control

over solution manipulation conflict with the low cost mass manufacture

requirements for resource limited settings. Extremely small assemblies are more

susceptible to the physical anomalies that are otherwise ignored in macro

application. Tolerance must be scaled accordingly to the micro geometry and

practitioners are confronted with uncharacterized phenomena that present new

obstacles. Costs much be additionally balanced against by market drivers, the

people and governments that are purchasing the POC product. Daktari is at the

forefront of developing product in this space, frequently innovating to solve new

challenges.

1.4 Product Development

Daktari's first product will be Daktari CD4, a CD4 cell counting system designed to

be portable and robust enough to be used in settings ranging from a doctor's office

to the most remote settings (Figure 1-1). The product's technology overcomes two

critical barriers to realization: complex sample preparation and fragile, expensive

optical sensors that restrict flow cytometers from POC HIV testing. [1]
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1.4.1 Cell Chromatography

Daktari's sample preparation technology, known as microfluidic cell

chromatography, isolates cells and other particles in a microfluidic sensing

chamber. It does not require pipetting, labels, reagents or other complex manual

steps typical of other blood testing procedures. For Daktari CD4, this is

accomplished by the binding of whole blood, including cells with CD4, to antibody

A

T B

Y kY YYW Y Y

C

Y YTY YyY4 &1
m nAntibody Red Blood Cell CD4+ Cell

Figure 1-2: Daktari's patented microfluidic cell chromatogyaphy (A
and B) followed by electrochemical sensing (C).

manufacturing into the channels. Then, a specific shear force is applied to wash

loose cells out of the chamber, save for the cells with CD4 protein bound to antibody.

This is depicted in Figure 1-2, steps A and B. [13, 14]

1.4.2 Electrochemical Sensing

Daktari CD4 also takes advantage of a second innovation, lysate impedance

spectroscopy. The system uses simple sensors that count the captured CD4 cells by

measuring their internal contents electrically. A handheld instrument interprets the

[23]



electrical signal, and reports the CD4 count within minutes [1]. More specifically, the

CD4 cells membranes are ruptured, or lysed within a high-impedance solutions

(Figure 1-2, step C). The ionic contents of the cell are released into the solution in

the channel and the change in impedance is measured. This change in conductivity

is proportional to the CD4 count and used to directly determine a simple diagnostic

reading. The method proves to be inexpensive and robust, as it is unencumbered by

the lenses, cameras, filters or complex options of many diagnostics tests like flow

cytometry. [15]

1.4.3 Pressing Challenges

Daktari faces a number of challenges in production of their CD4 system. These

include:

* Controlling fluid flow at microscale levels

* Fabricating microscale devices on mass producible materials

* Using and storing sensitive solutions in off-the-shelf materials

* Maintaining low costs in the fabrication and integration of electrical

components

Creating micro channel pathways and fluidic delivery mechanisms to high

geometrical tolerances that allow precise control over the solution is key. Precise

parameter control is critical for accurate results for the effective treatment of the

end user, however it must be balanced against the costs incurred by the people and

governments of developing countries that are purchasing the POC product.

Therefore, there is a need for significant manufacturing optimization and/or the

development of more capable processes that meet stringent microfluidic product

functional requirements, while being amenable to both manufacturing and market

needs.

[24]



1.5 The Masters of Engineering Capstone Project

This document serves as partial fulfillment of the graduation requirements for the

Masters of Engineering in Manufacturing program at the Massachusetts Institute of

Technology, through the Laboratory for Manufacturing Productivity (LMP), co-

advised by Professor David Hardt and Lecturer Brian Anthony. Four students

actively worked at Daktari, each focusing on specific challenges in the

manufacturing of HIV diagnostic. The author of this thesis, Nikhil Jain, focused on a

reducing variability in high-throughput electrode production, with a primary

emphasis on system-critical impedance measurements. Benjamin Judge developed a

new process for the heat-sealing of microfluidic channels with sensitive geometries

[16]. Tejas Inamdar and Aabed Saber focused on characterizing the effect of bonding

process parameters on bonding strength and fluid flow response to actuation [17,

18]. Due to similarity in background of work performed at Daktari, the portions of

the introductory sections of the four theses were written collaboratively. Together,

this work represents an in-depth analysis of a few of the company's most important

manufacturing issues at the time of writing.

1.6 Problem Statement

In response to Daktari's need to adopt technology developed in laboratory settings

to mass-scale production for widespread markets, this thesis focuses on a full-scale

validation of the electrode production process. The geometric sensitivity of the

electrodes produced using this proprietary metal patterning deposition method is

extremely high due to the microscale nature of the analysis. A full characterization

of the process from machine installation and material inspection, to production

parameter effects for minimizing variability along full-length production runs is
detailed and used to refine the process for future quality controlled electrode

manufacturing at commercial scale throughputs.

[25]



1.7 Thesis Overview

This thesis first presents a company profile, product, and describes the problem

being addressed. Following is an overview of the specific product at hand and its

role and importance in the system. After, an outline of the manufacturing process is

presented along with a background of process validation according to Federal Drug

Administration (FDA) outlines. A thorough discussion of the steps taken by the

author to validate the manufacturing process including testing results of the

analysis follows. Lastly, conclusions from the work are detailed and

recommendations for specific process improvements as well as production as a

whole at Daktari are detailed.

[26]



Chapter 2 Electrode and its Function

2.1 Role of Electrodes in CD4 System

Each electrode serves as a critical and sensitive component of Daktari's system. The

system is designed to be minimally invasive and mass-producible at cost-effective

levels; these constraints have resulted in the product being focused in microfluidic

technology and complementary electrical-based measurements. It intricate design

makes it delicate to microscopic imperfections and irregular dimensions that can

significantly affect its performance. To better understand the importance of the

electrode, a summative outline of its role within the overall system follows, along

with specifications of its design.

2.1.1 The Instrument

The battery-powered instrument is designed for the simplest possible user

interaction and portability. The standalone instrument contains the actuators for

[27]



driving the reagents and operating the valves. The instrument connects to the

electrode in the cartridge to read the impedance measurements in the assay

chamber. The measurements are used to determine the CD4 cell count in the

sample, and the rest of the electronics needed to display the results and drive the

actuators are contained in the instrument Figure 2-1 shows how the disposable

cartridge will go into the unit Inserting the cartridge is similar to how a cassette

goes into a cassette player. All of the tasks are met by the subassemblies listed

below.

Daktari CD4 Instrument Actators

-LCD Display/User Valve
Interfa ce Solenoids

Fully Assembled Cartridge in
Cartridge Door Assembly

Figure 2-1: Daktari Instrument [19-21]

1. Frame - the structural element of the instrument All of the other

subassemblies are located using the frame.

2. Door Subassembly - locates the cartridge, punctures a vent hole and ensures

no deformation of the card.

3. Actuator Subassembly - holds the actuators perpendicular to the frame.

4. Solenoid Subassembly - holds the valve actuators perpendicular to the
frame.

5. Outer Casing - protects the internal components from impact and debris and
also provides an aesthetic appeal.
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2.1.2 The Cartridge

Each test cartridge is consumable for the test, to be immediately disposed of after

the assay is performed. The cartridge is a microfluidic device with reagents and the

sensing mechanism to measure the amount of CD4 cells in a sample of blood. Figure

2-2 shows a recent iteration of the design. Each cartridge contains the following 7

parts:

Figure 2-2: Daktari cartridge with primary components labeled [19-21]

1. Backbone - an injection molded PMMA (polymethylmethacrylate) card with

microfluidic channels.

2. Lid foil - a transparent PMMA sheet that is laser welded to one side of the

backbone to seal the microfluidic channels on the backbone.

3. Functionalized electrode foil - a PMMA foil that covers the 'assay chamber'

where the CD4 cell count is performed. This foil has an electrode layer on it.

It is then coated with antibody solution, which is used to trap the desired

CD4 cells.
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4. Blister pack - the three semispherical objects in Figure 2-2 contain the three

liquid reagents that perform tasks as they flow through the system.

5. Valve cover- a layer of polymer used to create a seal on the valves that are

used to direct flow through the system.

6. Housing - an injection molded PMMA element that protects the blister pack

and functionalized foil.

7. Cap - a polymer component that seals the blood entry port after the blood is

sampled and also closes vents that were necessary to allow capillary flow of

blood into the card.

2.2 Electrode Criticality

In order to make the test more accessible, the Daktari system takes a different

approach to CD4+ cell testing by using cell lysate impedance spectroscopy. Flow

cytometry is a far more established procedure for HIV diagnostic purposes but

access to laboratories with the resources required to perform this operation is

extremely limited in the company's market area. Instead, cell lysis involves the

placement of antibody along the fluidic channel in which the targeted blood will

flow. These antibodies are specifically selected to capture CD4 cells only. After

reagents are flowed through the same channel to flush out all other cells and ions,
the captured CD4 cells are lysed. More specifically, the environment around the cells

is flooded with fluid of low salt concentration which then causes osmosis to occur.

The cells ingest water in order to establish equal salt concentration inside and

outside until they burst and release their ions. During this process, electrical

impedance is measured and the change in impedance after lysing can be linearly

correlated to the CD4 cell content of the blood.
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Figure 2-3: The measured conductivity of a blood sample during a single test. The
change in conductivity is directly related to the measured cell count.

Figure 2-3 depicts the measured conductivity of a card during testing. Conductivity,

the inverse of impedance, changes has blood and reagents are flushed through the

system. For the purposes of measuring the CD4 count in a known volume of blood,

the conductance of the blood is measured at 1200 seconds, before lysing, and then

again 1300 seconds, when lysing is complete. This change is proportionally related

to the cell count, calculated with a pre-calculated system-static variable.

Cell Count = Constant * AConductivy

Because this relating constant is fixed the within system, and onboard calibration of

individual electrodes is unavailable, it is crucial to minimize the differences between

electrodes, or production variation, as well as implement an electrode design that

minimizes error reporting.

2.2.1 Measuring with Electrodes

Calibration of the electrode involves determining the relationship between known

conductive solutions and the corresponding electrical impedance measurements, as

sensed by each electrode. This relationship has been shown to be linear in expected

conductivity regions from previous unreleased studies at Daktari. Quantification of

the slope of this relationship, also referred to as the "sensitivity" of the electrode

involves testing. By measuring the impedance seen by the electrode from a set of
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solutions of known and controlled conductivity, a line can be "fit" through these

points. The slope of this line is then used as the constant in the aforementioned

equation, applied in the opposite manner- to relate known impedance measurement

to the find the conductivity of the solution.

2.2.2 Cell Equivalency and its Relationship to Sensitivity

The slope, or system-wide constant as defined above, is established based on an

average of calculated slopes of many production cards. Deviation from this slope

will therefore exist in every card, resulting in equivalent cell reading errors.

Therefore, minimization of this variation is important.

This error is commonly referred to as cell equivalent error and will henceforth be

referred to in this manner. Cell equivalent error is equal to the difference between

the calculated cell count based on the unknown particular characteristic slope of the

electrode and the corresponding constant, intersystem-wide value. This is

represented in the Figure 2-4 below; on a graph relating the 1/impedance, or

Actual line

Expected line

UO"U

Cell Count Input output

Figure 2-4: Graphical representation of cell equivalent error. [19-21]

conductivity, to cell count, the red and green lines represent the actual slope value
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of the given electrode and the calculated average, respectively. In sequence, (1) the

blood solution closes the electrical circuit, generating (2) a conductivity value

recorded by the system. Mathematically, this value is inserted into the preset linear

relating equation (3), given by the red line, which then results in a reading (4) of cell

count. The error in the measurement in this case is the difference between (1) and

(4).

It can be seen that a steeper slope, referred to as an increase in sensitivity, as shown

with line set B would reduce the error seen (Figure 2-5). Therefore, the cell

equivalent error reported by the system is reduced, and a more accurate CD4 cell

concentration reported.

B

U A

-- ------------------- -

E
Error

Cell Count

Figure 2-5: Increasing sensitivity reduces measured cell equivalent error.

2.2.2 Variation in Electrode

While it is important to increase sensitivity to reduce the effect variation has on cell

reporting, targeting a reduction in variation between electrodes is another

important need. The electrode contains mainly microscale features, designed to

specifically to achieve the former- but these same features are difficult to
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manufacture, which in turn traditionally causes difficulty in minimizing deviations

from the desired outputs. In Figure 2-6, metallic deposit lines, 150 microns in width,

on a sample electrode are imaged via interferometer, showing discrepancy in

thickness of deposit all along the surface. Therefore, a study of optimizing both

these electrode production characteristics is conducted in this study.

Figure 2-6: Image of deposit variation in electrode "fingers" using an interferometer.

2.3 Electrode Design

The assay is performed in a microchannel on the card, referred to as the cuvette. A

cuvette is typically used to house samples for spectroscopic-related experiments; in

Daktari's case, the channel is utilized for cell chromatography and electrochemical

sensing. The channel, with a depth of 50 um along its 4mm x 50mm area, is molded

into a 2mm thick PMMA card and covered with an electrode.
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Figure 2-7: A CAD model of the cuvette on which the electrode sits. [16]

2.3.1 Specifications of the Electrode

While in operation, the electrode measures the impedance between its conductive

traces in the assay chamber before and after the cells have been lysed. This

measurable drop in electrical resistivity is due to the ions released from burst cells,

which assist the movement of electrical current A measured increase in

conductivity is recorded, which can be directly correlated to the number of cells

remaining in the chamber.

Side Rail
Continuity Leads

Pads

Fingers

Leads

Figure 2-8: the features of Daktari's interdigitated electrode.

The electrode itself consists of two relatively large pads, which are touched by

contacts built into the instrument. These pads are connected to a series of fingers

[35]
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which are staggered (see figure 2-8). This design minimizes the separation between

the two sides of the electrical circuit, while allowing a large interaction area. Design

of this interaction area is the single-most crucial factor in maximizing sensitivity.

2.3.2 Key Dimensions of Electrode

The electrode design is based upon two primarily goals: minimize output variation

and maximize sensitivity as covered in section 2.2.

This sensitivity corresponds to the characteristic length, marked as the dotted red

line in Figure 2-9. This length is the ratio of its length to the gap width; this factor is

inversely proportional to the impedance reading.

L 1
-oc-
wg Z

where L represents this characteristic length, wg the gap width, and Z the measured

impedance.
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Figure 2-9: Key characteristic dimensions of the electrode design. [19]

It is critical to maintain a constant gap width between fingers in order to minimize

variability between electrodes; as the distance increases, the measured resistance

increases as well and vice versa. Done non-uniformly, error is introduced due to the

[36]
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instruments universal electrode model. The resistivity of the electrode is

determined by:

A
p= R * - (2)

where p is the resistivity, R is a characteristic constant of the solution, A represents

the cross-sectional area between adjacent fingers, a constant, and 1 is the distance

between them. Therefore, maintaining a constant geometry is vital for uniform

resistivity.

It should be noted that while the electrode is designed for maximum sensitivity

using the aforementioned geometric constraints, sensitivity is also susceptible to

manufacturing issues. The quality and consistency of the interdigitated electrodes,

both in design and actual production is critical for the Daktari System.

2.3.3 Study on Optimizing Sensitivity

A previous study by Donoghue in 2011 [19] focused on identifying design strategies

to maximize sensitivity and minimize variability in production runs. In this paper,

the aforementioned theoretical relationship between sensitivity and characteristic

length and width were verified. Donoghue concluded that increasing the length of

the sensing region over the cuvette channel was important for sensitivity purposes.

Longitudinal fingers (along the channel) proved to most effective. However, because

of the reduced finger count, the effect of lost connectivity to a single finger would

drastically change the characteristics of the electrode. In addition, increased post-

production processing reduced cost-effectiveness. [19]
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7 fingers

Figure 2-10: Electrode design with longitudinal fingers. [19]

2.3.4 Studies on Robustness and Variation

During this same period, two simultaneous studies were performed on the

robustness of the electrode. [20, 21] This work further proved that electrodes were

susceptible to finger loss, as well as susceptible to defects when bent. However,

visual scanning and testing of electrodes revealed that the production variation was

minimal and not a significant effect on electrical measurements.

2.4 Design Iteration

While the previous studies were revealing towards the repeatability of the process,

they were conducted on small production levels, on runs of 100s of electrodes.

Production verification on a more thorough level is necessary for several reasons.

As Daktari nears clinical trials and beyond, production requirements will increase as

well. An exponential increase in throughput, to runs of 1000s of electrodes requires

careful study to ensure quality product is manufactured throughout the process.

In addition, after aforementioned-studies, the card was redesigned for better flow

performance. This redesign included a shortening of the cuvette. In order to

accommodate this while maintaining high sensitivity, the interdigitated electrode
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fingers were brought closer together and made thinner. This increased risk of

production defects such as breaks and shorts in the conductive trace.

A

t I -

B

Figure 2-11: The new "B" electrode design includes a shorter cuvette length, which in
turn forced the fingers closer together to maintain equivalent sensitivity.

Lastly, materials and equipment used in the production process (detailed in Chapter

3) were altered. These actions were made necessary based on material supplier

issues. The cumulative effect of all of these process changes warranted the need for

a full scale comprehensive validation of the high volume production of electrodes,

from supplier to finished product and instrument use.

[39]
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Chapter 3 Electrode Manufacturing

As described in Section 2.2, the electrode foil consists of an interdigitated electrode

pattern on a PMMA substrate. The electrode is critical to the operation of the

Daktari CD4 system, which relies on the electrical readings from the electrode to

determine the cell count. The nature of the impedance reading makes it sensitive to

minor variations in the electrode; to ensure accurate assay results, it is critical to

understand proponents of variability in production and verify repeatability in

electrode manufacturing. In general, many microfluidic devices such as Daktari's are

highly sensitive to physical and process anomalies; therefore, the minimization of

production variability is critical. Because impedance is directly correlated to CD4

cell count, a thorough statistical analysis of electrode production operating

parameters must be performed to minimize errors in diagnostic reports.

Daktari Diagnostics has developed a new production process for constructing the

electrodes for this device. This thesis focuses on the validation of this process at
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throughput levels more reflective of full-scale production targets. A full scale

validation involves three stages: Instrument Qualification (IQ), Operational

Qualification (OQ), and Performance Qualification (PQ). A brief overview of this

specific manufacturing system and process is presented in this chapter. Following

this, a detailed validation study, including performed test procedure to fulfill the

aforementioned qualification stages, is documented and presented.

3.1 Global View of Electrode Production

The electrodes production process begins with sourced stock material and ends

only when each individual electrode is secured onto a card. The process is shown in

Figure 3-1.

A

Figure 3-1: Entire production cycle of an electrode.

This study primarily focuses on optimization of the 2nd step, or the Daktari

controlled part of the process- the production of the electrodes before being

attached to cards. However, quantification of the effects of full process is

encompassed as well.

3.2 1st Generation Manufacturing Process

A previous method of electrode production employed Chemical Vapor Deposition

(CVD) to sputter gold over the entire surface of the PMMA substrate, followed by

laser ablation to strip away unnecessary gold, leaving the electrode pattern behind.

[41]
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Gold was chosen due to its conductive properties and resistance to corrosion. Poor

adhesion between the gold and PMMA caused the electrode to be fragile and

susceptible to damage, resulting in broken electrical connections and variability in

the performance of the assay. This made the gold electrodes fragile, required

delicate handling, and created risk for the assay that relies on the exact finger

configuration and continuity to produce repeatable results. [19]

In addition to the risk of damaging the electrodes post-production, the ablation

process introduced variability. The ablation process was done by raster (a serial

process) or excimer (a parallel process) laser methods. The rastering laser textured

the surface of the substrate, while the excimer process caused fragments of ablated

gold to redeposit on the surface. Both side effects made the foil difficult to weld to

the backbone and affected the properties of the electrode. [19]

The method validated in this work directly generates the electrode pattern onto the

PMMA substrate, with no further processing to generate the desired sensor pattern.

The process, using developed thermal transfer printing technology, is faster to

produce, configurable for flexible design changes, and creates more durable parts

than the gold electrodes. Therefore, the electrodes produced by this process are

much preferred from a manufacturing and durability standpoint.

3.3 Thermal Transfer Printing

Thermal transfer printing involves the coating of a substrate with material from a

heated ribbon. Typically, these two materials are spooled under a thermal print

head, which heats and deposits the desired material in the desired pattern. First

invented in the 1940s by the SATO Corporation, the process is primarily used to

make barcode labels, price tags, and tickets. Other processes have been used to

accomplish similar tasks but are incapable of meeting the high level specifications of

Daktari's product. Photolithography, electron beam lithography and other related

methods are well-suited for microelectronics, but face considerable challenges for

plastics applications. From a financial perspective, there exist large capital and
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operating costs in this complex, and high-refined operation. The process itself can

only be used with a limited range of materials, and requires resists, solvents, and

other chemicals which can be abrasive on substrates.

Thermal transfer printing provides resolution capabilities that meet Daktari's

requirements, while allowing for significant flexibility in material selection. Like ink

jet printing used primarily for consumer paper printing, this process is a digital

technology allowing each print to be unique; this in turn allows rapid design cycles

for printed electronics..It distinguishes itself from this more prevalent technology

though in its ability to produce very well-defined sharp lines, with controlled

thickness- two important characteristics for the manufacture of electrodes. One of

the primary challenges involves the adhesion of the conductive trace to the

substrate, though well-developed solutions exist. [22]

IIIIIEI
9606539

WARRANY VOID IF REMOVED

Figure 3-2: Barcodes are typically made using thermal transfer printers due to their
high precision and speed.

3.3.1 Thermal Transfer Printer

The main component of the process is a thermal printer (Figure 3-3). It contains

built-in spooling components that move media from raw material inserts, under the

printing interface and then to a waste or product roll as appropriate. The printer

head is a sourced component that is integrated into the printer by the machine

designer. It is installed by the nip- near the left edge of the cutaway image (Figure 3-

4). The nip is the location where the material is separated after the printing

interface into waste and product. [23] Adjustable pressure pods are placed over the

printhead which is then translated to the material passing underneath. This process

as a whole is controlled via onboard controllers (not shown) which run firmware
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which control the pattern to deposit as well as the printing parameters. Settings can

be input by the user via a USB-attached computer.

Figure 3-3: The Zebra R11OXi4 thermal transfer printer.

Printhead /
(not visible)

I
Finished product

Figure 3-4: The shell of the printer depicting the spooling interfaces and roll path.

[44]
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3.3.2 Thermal Printhead

The thermal head consists of an array of heating elements, typically resistors that

are arranged as in a matrix of dots. These heatable elements are spaced typically

200 to 600 per inch. Current is passed through the desired elements, quickly heating

the surface, which then heats the thermosensitive regions of the ribbons.

Matrix of Resistors

Figure 3-5: One of many thermal printheads manufactured by Kyocera. [24]

3.3.3 Metallic Ribbon

The thermal transfer ribbon is made with a base substrate of polyester film with a

thickness of 3 to 9 microns. One side of the film is coated with a heat resistant low-

friction layer for delicate passing under the print head. Opposite this is a series of

layers designed to release and attach a consistent deposit on the desired substrate.

The ribbon can be engineered to be highly resistive or conductive, and designed for

Figure 3-6: Sourced Metallograph Conductive Ribbon. [261
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best adhesion to the desired substrate. [25] The ribbon used in this work,

Metallograph Conductive Thermal Transfer Ribbon, is produced by International

Imaging Materials, Inc. As depicted in Figure 3-7, the polyester layer has a "release

layer", an aluminum layer, and a resin. When heated, the release layer allows the

separation for the aluminum and resin. This resin then acts as an adhesive between

the aluminum and the substrate. The height of this released material is

approximately 0.8 microns, with an aluminum thickness of 2600 Angstroms. [26]

mob
heatW

PET, Spm

E
U Release Layer

Aluminum, 0.3pm

Resin, O.5pm

PMMA Substrate

Figure 3-7: The release process underwent by the ribbon due to heat applied from the
thermal head. Note: not to scale.

3.3.4 Printing Process

Spools feed two materials under the print head: one is the aforementioned ribbon,

the second is a polymer-based plastic. In this work, a Polymethyl Methacrylate

(PMMA) substrate serves as the medium upon which the metal is deposited.

The two sheets pass under the thermal head and then are pulled apart, leaving a

used ribbon and the patterned substrate. The transfer happens when the ribbon has

been melted enough such that the adhesion to the receiver or substrate is greater
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than that to the ribbon carrier film. [25] The makeup of the print is sensitive to the

both the geometric parameters involved in the material and roll path, as well as the

manner in which the transfer is performed.

Thermal
Element

Backing
Ribbon

Label Hot Melt Transferred
Sheet Ink Ink

Figure 3-8: The thermal transfer printing process. [25]

3.4 Previous Validation & Changes

As described in section 2.4, previous work studied the performance of this process

in meeting Daktari's specifications. However, after the work was finished, significant

changes were made to the process. The thermosensitive ribbon used previously was

from an aged production run. However, the vendor attempted to run additional

material, the product performed very poorly with an unchanged process. Flash, or

excess random metallic deposit, covered the printed electrodes. In response, new

ribbon was sourced. Significant changes in the ribbon have been detected between

these vendor production runs due to its extreme sensitivity to processing

parameters and environment. Therefore, a careful inspection and testing of the new

material lot is crucial for qualification.

[47]

7



Several additional changes were made to the process for improved performance

that are cannot be detailed in this work due to proprietary reasons. These involved

both the setup and use of equipment, accessories, and materials, therefore having

significant influence on outgoing product. The cumulative effect of all of these

process modifications warranted process revalidation as a whole.

3.5 Project Objective

In summary, the microfluidic industry has a need for developing methods of

assembly and additional functionality for systems with micron scale features and

tolerances. Daktari has a proprietary method for manufacturing electrodes,

producing high quality circuitry for electrochemical sensing at a very low cost. As

the company nears clinical trials and commercial production, its manufacturing

capability and throughput must increase concurrently. Previous validation efforts

were performed with minimal sample sizes and prior to significant process

modifications. This thesis documents the validation of the electrode production

process, on runs of 1000s of electrodes, with the goal of optimizing the process for

highest sensitivity and least variability in quality. Each tested electrode undergoes a

full cycle of analysis, from incoming inspected raw material, through printing, die

cutting at a partner facility, shipment to a welding facility and is then finally

returned to Daktari. The electrodes are tested at various points along the process in

order to develop a model on the effect of manufacturing production capacity

expected when full-scale commercial activity commences.
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Chapter 4 Installation & Operational
Qualification Part I

This chapter presents the first part of a validation process, involving the installation

and proper operation of equipment, as well operational qualification study. This

study analyzes the characteristics of this application of thermal transfer printing

technologies for the purposes to detailing the significance and effects of each

process parameter. From this, an optimal performance setup can be ascertained and

used for future production.

4.1 FDA Validation

Process validation involves the collection and evaluation of data, from the early

stages of process design until commercial production. Even in commercial

production, the continual quality assurance is necessary for acceptable process
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control. Validation is performed in order to ensure that all aspects of production

including installation, operational parameters, and full length cycles are performed

appropriately according to set standards. This is especially relevant to the medical

industry, regulated by the Federal Drug Administration, in which it is critical for

invasive drugs, diagnostic tests, and operational procedures to perform properly.

[27]

To perform such validation, scientific evidence must be collected to ensure the

process is consistently delivering quality products. There exist three stages of

validation according to the latest guidance protocol published by the FDA:

1. Installation Qualification (IQ): the establishment of evidence that the process

equipment is installed and adhering to manufacturer's specification.

2. Operation Qualification (OQ): the establishment of evidence that process

control limits result in product that meets established requirements.

3. Performance Qualification (PQ): the establishment of evidence that the

process consistently produces product which meets said requirements. [SOP

014 Daktari]

In advance of full-scale commercial production at Daktari Diagnostics, all three of

these important stages are covered.

4.1.1 The Role of Validation from a Daktari Perspective

Validation is performed for many reasons. Materials supplied for complex

manufacturing procedures can contain inconsistencies which will produce

inhomogeneous product. Validation offers assurance that the process is reasonably

protected against sources of variability that affect production output [28]. In

addition, the process itself must be in control throughout operational runs. To

adequately and properly understand parameter and variability effects on output, a

study must be performed to development process knowledge and quantify

relationships, including multivariate interactions between the aforementioned
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"inputs". This can help establish ranges of incoming material quality and equipment

parameters.

Most importantly, process validation is performed to determine if the process is

capable of reproducible commercial manufacturing. This includes the proper design

of a manufacturing facility including a qualification of the performance of equipment

involved. Subsequently, an OQ and PQ study combines this equipment and utilities

qualification with the process itself, and control procedures utilized.

4.2 Installation Qualification

4.2.1 Overview

In this initial qualification stage, documentation is generated on the installation of

the equipment This includes procedures such as the documentation of equipment in

service, calibration of said equipment, protocols for cleaning and cleanliness

assessment, and software documentation. The proper installation of the

manufacturing setup and safety features are encompassed through this process.

4.2.2 Application to Electrode Production Process

The electrode production process is unique due to the manner in which the

equipment is set up and materials utilized. The IQ protocol involves documentation

of proper installation, operation, and maintenance of the printer itself, accessory

rewinders, barcode design software, and modifications necessary in order to

produce acceptable conductive traces. [29]

First, while material stock is not in the machine, the maintenance can be performed.

This is largely focused on cleaning any deposits, particularly with regards to

surfaces that come into contact with the sensitive ribbon. Using isopropanol wipes,

the roller bars, print head, and platen must be thoroughly cleaned and dried with

wipes. All other areas cleaned using compressed air, focusing on crevices or areas

where contaminants typically collect. Debris can be pulled into the printing
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interface and quickly ruin batches of outgoing material so it is important to

regularly perform this cleaning.

The operation of the machine requires several steps:

e The PMMA substrate must be thread up, and protective liners removed as

shown in Figure 4-1. These liners must be fed to an external rewinder which

is tensioned to hold material taut.

Figure 4-1: A photo of the machine and accessory equipment set up according to IQ
protocol. Note the positioning and flow of equipment and materials, respectively.

e The ribbon must be thread up without wrinkling. Periodic removal of waste

is necessary.

* When the machine is turned out, any error codes displayed on the embedded

screen must be cleared.

* Embedded sensors positioned at various points in the equipment (not visible

in Figure 4-1) must be overridden using covers

e The finished product must be rewound onto a core installed upon an internal

rewinder.
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Calibration of the equipment is performed by observing printed standard patterns

using a microscope. Careful attention is focused on verifying integrity in critical

dimensions.

4.3 Operation Qualification- Part I

4.3.1 Overview

Operation qualification, also known as process performance qualification, involves

the collection of data and objective evidence to establish process parameters and

control limits that result in the product meeting specifications. [30] In this stage, the

process parameters are challenged to assess the limits and expected performance of

the product under various production scenarios. By collecting this data, a model can

be developed of the process and continual controlled adjustments can be made

while maintaining control. At this stage, the robustness of the process can be

assessed and operational ranges established. [31]

4.3.2 Application to Process

Because of its novelty, the electrode production process at Daktari has never been

fully studied and modeled at high through-puts. Preliminary studies indicated that

the process is extremely sensitive to its operating parameters and without proper

process specifications, significant variation from run to run has been exhibited. In

order to optimize the process for error and variability minimization, a full study is

performed in this work to explore the manufacturing design space and verify the

robustness of the process as a whole from incoming raw material through

production until the final card is secured.

4.3.3 Ribbon Material Selection

The first step involves the selection of optimal material, with the goal of maximizing

sensitivity and reducing variability. As specified in Section 3.3.3, the ribbon consists
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of a number of thin layers, which serve to cleanly and accurately deposit the desired

pattern. Procedure and results of this study are excluded from publication though,

due to proprietary content

From this testing, a conclusion was made to utilize ribbon with a 26000 aluminum

layer for best performance.

4.3.4 Production Process Parameters

In order to develop a model of the variability in electrode production, the

manufacturing variables need to be identified. Some of the parameters are

uncontrollable and grouped into noise factors in the statistical analysis of this study.

However, it is important to identify all sources.

Ribbon & Substrate

Optimal raw stock was selected for the purposes of this study. The lot of

material was unchanged throughout experimentation.

Print Speed

The print speed can be mandated through the on-board printer software.

This significantly affects the throughput of the manufacturing process as well

as the thermal buildup at the print head. The capable range is from 1

inch/second to 6 inches/second.

Load

The pressure applied on the printhead is performed by spring-loaded pods.

Each spring can be adjusted independently to best match the print

requirements. Therefore, production runs can be performed with varying

numbers of pressures points, 1 to 3, and pressure values, 35N to 50N.
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Figure 4-2: Location of podheads relative to printing surface.

In this study, all three pressure heads remained the same position focused

over the more delicate sections of the electrode. It was seen in preliminary

testing that increasing the area on which the load is focused leads to better

results. In this study, the 3 pressure heads were positioned over the sensitive

electrode fingers as depicted in Figure 4-2.

Energy Input

The energy input to the print head, indicative of the heat at the head-ribbon

interface, can be modified via a non-linear dimensionless parameter from 1

to 30. This is set by the firmware developed by the sourced company. The

energy is sent to the resistors that line the critical section of the printhead

and interact with the release layer of the ribbon. The head operates around

this nominal value while processing the desired pattern.
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Roll Path

The tensioning in the ribbon and angle of separation between the two

materials after printing are crucial as seen through preliminary studies.

Tension significantly affects the print quality though no comprehensive study

has been performed on the area to date. From a preliminary study, it was

hypothesized high tension can lead to early separation between substrate

and ribbon and therefore, poor layer deposit on the substrate PMMA. On the

contrary, low tension can cause undesirable flash metallic deposits, due to

the longer contact time between the two spooled materials, which can short

tight tolerance electric circuitry. However, a full study of this has yet to be

undertaken.

Electrode Design

In order to perform the most relevant qualification for Daktari purposes, the

current electrode design at time of writing was used for testing. As

mentioned in Chapter 2, numerous requirements direct electrode design.

These include channel size, sensitivity including characteristic length and gap

width between fingers, as well as robustness against continuity breaks.

4.3.5 Design of Experiment

This study focused on three parameters set by the instrument itself: the speed, the

energy, and the pressure. For pressure, each of the pod heads were set at the same

level for experimental simplification.

The goal of this study is to use these three process parameters to develop a model of

electrode production variability in order to establish control limits to be

documented in a full scale process validation. This includes a documentation of the
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fail rate as well as the impedance variation at each setting. Failure is defined as

microscopically visible shorting within the circuits, as well as continuity breaks and

categorized as appropriate. It is desired that the results of this study reveal the

capabilities of the system as well as the effects of the parameters on output and that

of post-production processing.

30

bD

C

50N

24 35N

1 in/s Speed 4 in/s

Figure 4-3: A visual representation design space.

As detailed in Section 3.1, the electrodes require significant processing outside of

the thermal transfer roll-to-roll printing before production is complete. This study

will document the effects of each step in the process. The QC positions are shown in

the dark shaded regions below in Figure 4-4.
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Figure 4-4: Quality control test points (dark shading) in full-scale electrode production.
Processing stages are denoted in blue.

4.3.6 Visual QC

After samples are produced on a large roll and separated according to each set of

production parameters, commonly referred to as "pull points", quick visual

examination reveals parameter combinations unsuitable for production at the

fundamental level. Points at which this was not obvious were approved for the next

processing step, die-cutting.

4.3.7 Die Cutting

After printing, the roll of electrodes is moved to a die cutter where each electrode is

cut from the roll to fit the recessed slot on the card. Typically, the roll is sent to a die

cutting vendor where a complex vision system using cameras to detect printed

interstitials is used for high speed throughout Instead, the roll was cut manually on-

site to minimize turnover time and because electrodes were selected at intervals for

testing, rather than an entire run.
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The die cutting process begins with the PMMA with aluminum deposit lined up on

top of a thin polyester sheet. This sheet is meant to protect the tool from contacting

the base plate, causing denting, chipping, and other detrimental wear. Prior to using,

the press is calibrated to finish its throw when just making light impact on the

polyester sheet. Therefore, when in operation, the cutting tool penetrates though

the PMMA sheet, before coming to a hard stop as it contacts the polyester. This

process was performed for 10 electrodes at each point.

Figure 4-5: The die-cutting tool being positioned over a series of electrodes.
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Figure 4-6: Series of electrodes before die cutting on left, single cut electrodes on
right.

4.3.8 Dip Testing

4.3.8.1 Cleaning

After the electrodes are cut to size, they are cleaned to remove all residues both

from alien objects and from loose ribbon deposit. Antiseptic wipes with 70%

isopropyl alcohol are lightly rubbed against the surface of the fingers. This has

process has been proven not to damage the desired electrode pattern while

removing residue or undesirable foreign objects. Kimtech Kimwipes are then used

to dry the electrode, and remove loosened material off the surface.
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Figure 4-7: A set of cut and cleaned electrodes.

4.3.8.2 Conductivity Solutions

In order to test the electrodes for electrical continuity and circuit impedance, the

electrodes are placed in conductivity standard solutions. These standards, from

Omega, are filled with trace amounts of potassium chloride to meet the conductance

level desired.

Figure 4-8: Omega conductivity solution used to prepare solution standards
for electrode calibration.
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4.3.8.3 Dip Test Setup

While the shelf life of the conductivity solutions is 1 year, when placed in test tubes

that can leach or exposed to air, the conductivity values can drift. To compensate for

this, the solution is cycled through a flow cell monitoring system which continuously

reads the solution characteristics in real-time. The flow cell is connected to a

Pharmacia Biotech Conductivity Monitor with a voltage output measured with a

Hewlett Packard 974A multimeter.

The electrode is placed in a plastic test tube with several ports: A slot at the top is

cut wide enough for the easy insertion and removal of the electrode. On the sides of

the chamber, one entrance port is cut to push the liquid from the standard solution,

through the flow cell and into a dipping tube. The other port serves as the exit in

order to maintain a consistent fill level. This tube is connected back to the system so

that the solution is recycled throughout the dipping process.

In-line conductivity
of electrolyte In-line impedance

4 of electrolyte

Figure 4-9: Graphical representation of dip test setup. [32]
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Figure 4-10: Electrode dip testing setup.

The fluid is pumped in Polytetrafluoroethylene (PTFE) tubing through the system

using a Gilson minipuls 2 peristaltic pump that can be set to dimensionless speeds

ranging from 1 to 999 on an internal vernier scale. It was proven in previous studies

that flowrate has an insignificant effect on impedance measurements. Therefore, for

this test, the speed was set to 650, calibrated to be steady at 585 ul/min volume

displacement solely to ensure adequate solution homogeneity.

4.3.8.4 Procedure

Prior to dipping electrodes, calibration of the flow cell occurred. As the ambient

temperature and humidity vary, the flow cell can be biased without obvious

indication. Therefore, calibration of the system is accomplished by running fresh

calibrated standard solution at multiple points to derive the linear relationship
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between real-time solution conductivity and microsiemen level. Solutions used to

find slope were deionized water, 4.5, 9, and 22.5 uS/cm solutions.

Table 4-1: Calibration table for flowcell and conductivity monitor

0 pS (DI Water) -0,54 mV

4.5 pS 2.98 mV

9.0 pS 8.79 mV

22.5 gS 23.26 mV

Relationship: (pS) = 0.925*(mV)+1

Once calibration is accomplished, the dipping tube is filled with 10 pS/cm solution

due to its close proximity to expected blood values. The pads of the electrodes are

then connected to a separate multimeter, in this case an Extech LCR meter model

number 380193. The electrode is then carefully dipped into the solution, making

sure to avoid touching the alligator clips from the meter to the solution. Allowing

time to reach steady state, a reading is taken and current solution conductivity is

noted. This procedure was performed on each of the 10 electrodes at each pull

point.

4.4 OQ Part I Results

The first part of the Operational Qualification revealed the significance of each

parameter during printing. The pull points were tested in random order to in order

to reduce the effect of drift over time in the testing procedure. Due to a number of

pull point failures, primarily located at parameter extremes, at which visual QC

showed obvious print quality issues, a full DOE design analysis was not possible.

However, the data still indicated clear parameter influences and interactions.

The results are as follows:
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Table 4-2: Results of Electrode Dip Testing with highlighted rows indicating failure
rates above specification limits. Sample size is 10 for each pull point.

35 2 26 9.09 2.76 5.49

35 2 28 0 1.37 5.348

35 2 30 28.57 1.75 4.799

40 1 24 37.5 2.68 6.007

40 1 26 23.08 4.69 6.81

40 2 30 37.5 1.83 4.633

40 3 28 16.67 3.34 5.933

40 3 30 2 0 1.87 5.33

45 1 24 9.09 1.88 6.785

45 1 26 9.09 2.4 6.384

45 1 28 50 1.95 5.633

45 2 24 0 2.29 6.258

45 2 26 9.09 1.64 6.154

45 2 28 9.09 2.42 5.83

45 2 30 23.08 3.07 5.735

45 3 281 9.09 2.75 7.548

45 4 30 9.09 2.63 7.371

50 1 26 0 2.27 6.322

50 1 28 23.08 3.01 5.965

50 2 24 0 1.85 6.607

50 2 26 0 2.64 5.865

50 2 28 23.08 2.95 5.427

50 3 28 16.67 3.05 6.906
50 3 30 23.08 2 6.782

50 4 30 16.67 2.88 6.935

The rows highlighted in dark shading represent pull points at which electrical

failure, most commonly shorting between fingers or breaks along the leaders and
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rails, in greater than 30% of samples. These parameter settings were noted and

immediately removed from further processing due to the obvious reduction in cost

effectiveness.

This data collection revealed the effect of pressure on performance. As seen in

Figure 4-11, showing a contour plot of the combination of speed and pressure in

relationship to performance variability, it can be seen that one or more of these

factors has a limited influence due to the homogeneity of the image. With lower

relative pressure, values below 42 N, pressure begins to have an effect; in this case

extreme speeds, both on the high and low side, can cause unwarranted effects.

However, a balance of speed with lower pressure initially appears to improve

performance. This analysis overlooks the failure rate indicated in the Table 4-2

above. At a pressure of 40 N, and a middle speed setting of 2 inches per second, the

failure rate jumps above 40%. This is unacceptable for logistical purposes.

Therefore, the primary conclusion from this chart indicates a need for pressure

greater than 42 N in order to avoid making the system more sensitive to other

50.0

variaecn

< 1
47.5 0 1 -2

0 2 - 3
0 3 - 4

45.0 E > 4

42.5

40.0

37.5

35.0
1.0 1.5 2.0 2.5 3.0 I.5 4.0

Figure 4-11: A contour map revealing the effect of pressure and speed on
impedance variation. The lighter colors reveal better performing regions,
while the darker indicate the opposite.
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parameters.

On the plot of pressure versus energy in Figure 4-12, a similar trend is apparent.

Operation with the combination of low pressure and high energy results in poor

quality. Again, most of the figure is washed at one level, signifying less of an

influence of one or more of the factors. Based on this data, it can be hypothesized

that the individual influence of the factors is minor when analyzing variation.

50.0
DOp

vriabon

47.5 M 1 2
N 2 -3
0 3 -4

45.0 > 4

42.5

40.0

37.5

35.0F
25.0 27.5 30.O

Figure 4-12: A contour map depicting the effect of energy and pressure on
impedance variation. Much like the previous figure, it shows that CV is not heavily
influenced by these two factors individually.

However, the interaction of energy and speed provides a much clearer picture.

Figure 4-13 shows a gradual drop in CV with speeds around 2 inches per second,

with energy input at levels between 26 and 28. As speed is increased, the print head

is unable to produce as accurate product, especially with lower energy.
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Counteracting an increase in speed with additional resistive heat at the interface

helps but due to equipment limitations, is not possible.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

cv
< I

01- 2
R2- 3

3 >4

25.0 27.5 30.0

Figure 4-13: A contour map showing the effect of speed and energy on the response
CV. This image shows the optimal area surrounded by continually increasing
variation.

From this information, the highest performing pull points, based failure rate and

performance can be ascertained. These have been tabulated in Table 4-3.

Table 4-3: A direct comparison of the top performing electrode production pull
points.

45 2 28 9.09 2.42 5.830
50 2 26 0 2.64 5.865
50 2 28 23.08 2.95 5.427
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This data indicates that the operating parameters of 45N, 2 in/s, and 26 in energy

produce product with optimal balance between high electrode sensitivity and low

variability, while maintaining a low failure rate. This balance of parameters

accommodates adequate thermal adjustment as the ribbon is heating and cooled

while preventing overstressing of the materials as they pass under the thermal

head. While it is tempting to simply use this analysis to justify all production in the

future, it is important to realize that the electrode production process involves

significant post-printing processing. A full validation requires full process analysis.

The electrodes require welding and testing as full manufactured cards in order to

provide a complete assessment.
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Chapter 5 Operational Qualification
Part II

As shown previously, the electrodes, after being die-cut, are welded to cards by a

Daktari contractor. This process involves transatlantic shipment and handling in

addition to the energy-intensive laser welding process. In order to understand the

effect of the electrode production process on finished product, it is necessary to

subject the samples studied in the previous part of the OQ to the further steps

required to more accurately model product as expected after commercial release.

Results and conclusions from the first part of the OQ are not meaningless; general

trends are indicated and better performing electrodes can be identified. This part of

the process is controllable as an in-house production process. However, electrodes

that performed well at this mid-point QC stage could be susceptible to damage from

further processes. An assessment of this is useful for future production planning.

Therefore, the second part of the OQ validation, involving the entire process of card

attachment, is performed and documented below. [33]
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5.1 Welding

After printing, the electrodes are packaged and shipped to a contractor for welding.

The bare cards, which are also manufactured at this facility, are fitted with an

electrode over the cuvette. The laser weld is placed in two positions; one directly

around the cuvette as indicated by the red line in Figure 5-1 and one outside of the

printed region. This second one does not come in contact with metallic deposit as is

the case with the first one, and therefore an assumption has been made that it has

little to no effect of electrode chemical analysis. After this process is complete, the

completed cards are returned to Daktari for further testing.

Figure 5-1: The weld line around the cuvette, attaching the electrode to the blank
card.
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5.2 Full Card Testing

5.2.1 Test Setup

The setup for full card testing is similar to that used during the dip testing except

the dip tank is replaced by with a welded card. This card is prepared for testing with

the insertion of Eppendorf epTIPS LoRetention 200uL tips, and secured with hot

glue which also serves the purpose of blocking fluid flow to other parts of the card

and externally.

Figure 5-2: The card is plumbed with pipette tips. Hot glue is used to secure the tips
and block the other channels

In addition, for more thorough analysis, more than one solution is flowed through

the card. Previously during dip testing one solution at 10 us/cm provided a single

data point indicating the electrode's electrical characteristics. However, to

accurately quantify the electrode's performance relating electrical resistivity to
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solution conductivity, multiple points are need. While this relationship is linear,

multiple points are necessary to calculate a "best-fit" line.

5.2.2 Making Solutions

To use multiple conductivity standards, they must be accurately diluted from a

standard. A bottle of 450 [S/cm +/- 1% was used and gravimetrically diluted to 0.9,

4.5, 8, and 22.5 pS/cm using DI water, pipettes, flasks, and a mass balance.
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Figure 5-3: In top left, the pipette, pipette tips, and glassware used to make 50mL of
solution. In bottom left, the solution is pipetted into the volumetric flask. In top right,
the flask is weighed on a calibrated balance. In bottom right, the solutions are
transferred to test tubes.

5.2.3 Procedure

This procedure is again similar to that used during dip testing. However, unlike the

dip testing which was primarily testing variability only, the cards are tested with

four different conductivity solutions in order to ascertain the slope of the electrode

on the card. As mentioned in Chapter 2 and in Section 4.3.9.1, this slope represents
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the relationship between the conductivity of the solution to the impedance reading

measured by the electrode. This is directly representative of the expected function

of the electrode in commercial operation.

First, the card is flushed with 0.9 [tS/cm solution and then allowed to stabilize as the

peristaltic pump pushes the fluid at 50 uL/min. Once a reading is taken, the solution

is allowed to clear into waste and the next is fed. This process is repeated for

solutions of 4.5, 9 and 2 2.5 pS/cm.

In-line conductivity
of electrolyte In-line impedance

of electrolyte

I

Figure 5-4: The testing process for full-card impedance runs. [32]

5.3 Gage R&R

A gage repeatability and reproducibility study was performed on this setup to

measure the consistency of the measurement system. Due to external factors such as

human and environmental interaction, variability can be introduced into the system

itself. This study was not performed on the scale of a traditional gage R&R, but

rather to obtain a quick quantified assessment of the setup. A single card was tested
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ten times each by two operators, resulting in the run chart shown in Figure 5-5.

Compilation of this data revealed an approximate 1.4% variation attributed to

uncontrolled influences.
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Figure 5-5: A gage run chart showing the effect of externally caused variation in the
test setup. A single card was tested 10 times by 2 operators, and the resulting
sensitivity was calculated.

5.4 Study on Temperature Effect

The effect of solution temperature upon impedance readings was also measured.

Temperature variation can affect the geometry of the metallic deposit in the

electrode, which can in turn affect the consistency of the test setup and reading.

Three cards were each measured as solution flowed through the setup at

temperatures from 140 C to 400 C. Results showed an approximate 3%/OC when

using 10S solution, a reflective midpoint conductivity level of the solutions used in

testing. To remove this effect, solutions were allowed to stabilize at room

temperature (22 oC) before the pump was connected.

[76]
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5.5 OQ Part II Results

After collection, the data was compiled and organized using Excel and JMP software

packages. This revealed important characteristics of electrode performance, as

measured by sensitivity and variability.

5.5.1 Sensitivity

An effect test revealed the most significant factors when determining sensitivity. As

shown in Figure 5-6, the speed (S) and energy (X) parameters have significant

effects. The P values (right most column), which measures consistency between the

results obtained in the trial, marking process anomalies as such, are within the

threshold of 0.05 which corresponds to a predetermined confidence level. [18] In

fact, energy, with a P-value ("Prob > F" column) of 0.0013, is very tightly correlated

to the response.

In addition, the interaction of the two parameters, energy and speed, has an effect

Son of
Source Npann DF Squares F Ratio Prob> F
P 1 1 0.0016525 0.0108 0.9183
S 1 1 0.7982257 5.2303 0.0345*
X 1 1 2.2078010 14.4664 0.0013*
P*S 1 1 0.0002863 0.0019 0.9659
P*X 1 1 0.0092866 0.0608 0.8079
S*X 1 1 1.3965859 9.1510 0.0073*

Figure 5-6: An effect test on Sensitivity response, indicating which parameters and
interactions have a significant effect.

on sensitivity. With increasing speed, energy input must also rise to maintain

response levels.

These trends are shown graphically in the contour plots in Figure 5-7. Each plot,

calculated at a different pressure value, reveals the average sensitivity of the

electrode with respect to speed and energy. In all three plots, the locations of

highest sensitivity were located around speed of 2 inches per second, with

increasing response with increased energy input.
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5.5.2 Variation

The effect test on variation revealed much different results. Variation was most

significantly affected by the interaction of pressure and energy. As this parameters

increased, the variation increased as well. Unlike sensitivity, have a low coefficient is

desirable though. This trend is clearly revealed in the contour plots in Figure 5-8.

4 Effect ests
Stun of

Source Nparm DF Squares F Ratio Prob > F
P 1 1 2.845271 1.2368 0.2807
S I I 1.000600 0.4349 0.5179
X 1 1 8.769876 3.8120 0.0666
P*S 1 1 3.496665 1.5199 0.2335
P*X 1 1 13.114835 5.7007 0.0281*
S*X 1 1 3.052950 1.3270 0.2644

Figure 5-8: An effect test on variation response, indicating which parameters and
interactions have a significant effect.

On top plot in Figure 5-9, a downward gradient is clear as energy is increased.

Meanwhile, on plot bottom plot an upward gradient is clear as energy is increased.

This could indicate that with low pressure, compensation with energy causes

uneven metallic deposit because aluminum released from its carrier may not be

placed directly beneath. It can be more easily displaced along the PMMA substrate.

On the other hand, high pressure with lower energy may cause the aluminum to not

settle on the substrate before being run past the head. In any case, this data

indicates that to reduce variation, it is crucial to maintain a balance between these

factors.
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5.5.3 Card Failure

Because of the handling and energy intensive processes involved in welding

electrodes to cards, previously working electrodes can become defective. Such

occurrences can be random and difficult to control; however, non-random

occurrences can be attributed to poor patterning during roll-to-roll printing. These

might pass unnoticed during dip testing QC, but after exposure to harsh situations

such as welding, acceptable electrodes may develop defects and become unusable

product. Such occurrences are typically focused where the continuity leads connect

the rail to the leads from the pad, because the weld line passes through these

features. Figure 5-10 shows one reject card.

Figure 5-10: An electrode with obvious defects after weld processing.
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5.5.4 Summary

It is clear from the results that a maximizing sensitivity and minimizing variability

do not correlate directly. A balance of parameters, as also indicated through dip

testing at an earlier stage, is necessary to achieve optimal performance.

A speed throughput of 2 in/s balances the many intricacies of roll-to-roll printing-

too slow, and heat buildup can affect print quality; too fast, and the metallic layer

may not be properly deposited on the substrate.

The post-printing dip test indicated energy level of 26 and pressure of 45N along the

pods created most desirable product. The full card test indicated more complex

relationships between these parameters. This can most likely be attributed to the

lack of control associated with the welding processing and handling involved with

the utilizing a sourced contractor. Best results were seen when the parameters were

balanced; when too much pressure or energy was placed on the printhead, one of

the two key responses, sensitivity and variation, suffered.

The goal of this operational qualification was to determine the printing capability of

the equipment by pushing the limits of designed production range, for one, and two,

to refine the process parameters at low-resolution to find the nominal values for

optimal outgoing material. While it is interesting and crucial to understand

electrode production as a whole, in processes that occur outside of Daktari, a

separate validation of these uncontrolled processes is required. Therefore, with a

focus on the controlled process in-house at Daktari, the operational parameters

proved to have best performance at an operational pull point of 45 N, 2 in/s, and 26

in energy input. These parameters yielded product that met design specifications,

while proving robust for the entirety of electrode production processes.
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Chapter 6 Performance Qualification

6.1 Overview

In this last validation phase, the primary objective to prove the consistency in

production under established operating conditions. During this lengthy run,

variation typically occurs from both an environmental standpoint including

temperature and humidity fluctuations, in addition to human and equipment effects

such as stress and fatigue. For the electrode production process, key verifications

include an assessment of thermal buildup at the interface between ribbon and

substrate under the head as well as wear and debris buildup under the printer head.

After such verification, the process can be determined as validated, and acceptable

for commercial manufacture. [30]
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6.2 Large Scale Run

Daktari's most imminent goal is to prepare for clinical trials, scheduled for the last

quarter of 2012. This study will involve 4000-5000 cards, subject to human

interaction and instrument testing. A full-length production run, as defined for the

purposes of process validation, was a production goal of 5000 electrodes. The run

involved the changeover of materials as one roll stock finished and another was

loaded during the course of production. This action brought the production in-line

with real-world commercial production which will arrive post-clinical trials.

Figure 6-1: Two rolls of electrodes post-printing, ready for further processing.
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6.3 Test Setup

Much like the dip test performed earlier, the electrodes are placed in a conductive

solution and measured resistivity is recorded. However, as production increases,

quality control must be scaled to match the throughput Instead of testing electrodes

individually and manually, a test fixture was designed to quickly process a set of 8

electrodes.

Figure 6-2: The test setup is similar to that used in the OQ, except the electrode
fixture, shown in bottom left, is designed to house 8 electrodes for each solution
cycle.

This fixture was designed with the intention of hold a volume of liquid over the

electrodes, using a gasket to position the liquid and an inlet and outlet to allow for
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constant solution mixing and refreshing. The electrodes are left exposed, allowing

for quick contact measurements with a multimeter.

Figure 6-3: The fixture for rapid testing of die-cut electrodes, with white-colored
gasket for liquid-tight sealing.

6.4 Test Procedure

First, standard solution was prepared at 9 VS/cm using the procedure outlined in

Section 4.3.7.2. Then, eight electrodes were isolated at intervals of 500 along the

production rolls. After cleaning with ISP wipes and careful drying, electrode sets

were in turn placed in the fixture and connected to the Volt-Ohm meter, and

resistances recorded.

Throughout the test, the conductivity of the solution was measured and recorded

using the flowcell and conductivity monitor, as the solution was susceptible to

drifting as it became increasingly dirty. Exposure to air and particles on the surface
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of the electrodes has been shown to have a measurable effect on solution

characteristics.

Figure 6-4: Conductive solution, contained with a surrounding gasket, flows over the
electrodes.

6.5 Validation of New System

Due to the novelty of the test setup, it is necessary to verify use of the system has

not introduced error or bias into measurements. Because this set up is a direct

redesign of the dip-testing performed previously, a set of electrodes were analyzed

using both setups.
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Table 6-1: A comparison between testing setups for die-cut electrodes.

original "uip" Test 1.17% CV's differ by -0.38%, less

New Fixture Design 1.55% than 1% error seen from
normal operation

Table 6-1 displays the results from the same set of electrodes with both setups. The

recorded difference in coefficient of variation (CV) is only 0.33%. The setups were

shown to have 1% variation solely through human and environmental interaction.

Therefore, there setups proved to differ insignificantly and the setup was validated

for whole-run testing.

6.6 Results

6.6.1 Overview

The large production run involved 5000 electrodes manufactured using two

different substrate stocks. When the first spool was removed, a second was installed

without tampering with ribbon and minimal cleaning.

Samples were then extracted at intervals of 500 along the run and tested according

the aforementioned procedure. The results revealed two significant manufacturing

characteristics.

6.6.2 Steady State Operating Conditions

First, there exists significant time required to reach a steady operating condition. As

seen in Table 6-2, the electrodes at the first test point exhibited a noticeably higher

average reading, at 18.1 reciprocal ohms. This is likely due to thermal feedback

adjustments being continually processed by the print head controller. At the

beginning of the run, the "smart" head is constantly making energy adjustments as
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the desired print pattern is repeated. These changes are specifically included in the

manufacturer's design to preserve the life of the print head. By supplying power

only when and where it is necessary, the head can reduce component degradation

through stresses cause by thermal buildup. The feedback sensory system imbedded

in the printhead can therefore "learn" the repeating pattern and pinpoint optimal

settings within the user-input energy level.

Table 6-2: Single point calibration points at intervals along production run.

Location 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sensitivity 18.06 16.93 16.12 15.31 16.14 *** 15.92 16.18 15.55 15.52

Indications from this study show that this production operation requires run-in

time in order for the intricacies of the production to smooth out and perform

consistently. From this study, it can be seen in Figure 6-5 that first 500 to 1000

electrodes fall within this varying period, after which steady state production

occurs. This corresponds to approximately eight minutes of a production run of

forty. While spending 20% of production time producing waste can seem inefficient

and wasteful, when runs become longer with higher throughputs, the run-in time

typically does not scale as well, meaning this waste becomes increasingly

insignificant Future studies of higher production run can confirm this.

[89]



- ~r~i; SSteadyState- --------

I-

0 500 1000 15 0 2000 2500 3000 3500 4000 4500 5000

Sample Point in Production Run

Figure 6-5: Graph showing average reciprocal resistivity values along production run.

6.6.3 Relationship of Coefficient of Variation and Run Position

The variation of sensitivity is the other important factor in characterizing

electrodes; in this case, eliminating samples collected in non-steady stage regions,

the coefficient of variation was 2.2% throughout the entire run.

At each individual test interval, the CV% was similar to the results obtained in the

dip testing performed during operational qualification. As shown in Table 6-3, the

variation at each point was around 1%.

Table 6-3: Variation at intervals along production run.

Location 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

CV (%) 1.11 1.48 1.55 1.51 1.48 *** 1.58 1.27 0.87 1.07
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Also important is to observe that no general trend or drift is apparent. This is critical

to ensure that the increased production, which brings long run times, does not cause

deteriorating product. This production run on a scale ten times that ever run before,

using new material and equipment setups, resulted in a small sensitivity variation

that remained within Daktari specifications.
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Figure 6-6: Graph showing coefficient of variation values along production run.

6.6.4 Production Anomalies

There were few production anomalies during the long production run. One in

particular was particularly noticeable during testing though; around 3000

electrodes into the run, near the end of production on media roll 1, the tested

electrodes had a relatively consistent jump in resistivity. Upon further examination,

it was revealed that the rail on one side was broken about half way along the rail on

dozens of electrodes. Figure 6-7 below shows the break in the electrode and notch

in corresponding finger, taken under a microscope. This minor gap caused

impedance levels to increase 50%. The cause of this issue is difficult to assess

because the break did not occur all the way across the transverse axis of the

electrode. It only appeared on one side, consistently.
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Figure 6-7: A photograph of a break in the side rail of an electrode, causing
inaccurate impedance measurements.

Examination of the waste ribbon provided more information. In Figure 6-8, the large

area at the bottom indicates the color of regions that were not printed. This color

also outlines the fingers inside the rails. As the ribbon passes under the head, it

heats the ribbon. This is indicated by the silver region just before the black. The

black is the fully printed part of the region- the part of the ribbon that was deposited

onto the substrate. At the point of the defect there appears neither gray nor black.
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Figure 6-8: The corresponding ribbon reveals heating issues at defective point.

This evidence indicates that an issue occurred within operation of the print head,

rather than stock material defects, or an unclean head. A material defect would

exhibit still exhibit evidence heating or graying of the ribbon. A dirty print head,

perhaps due to deposit on a section of resistors along the head surface, would cause

a cause a relatively continuous anomaly along the run. Instead, this defect appeared

in specific points in particular electrodes. A further study of this behavior is

necessary in order to verify it is a repeatable situation, and requiring of production

redesign.

6.6.5 Summary

The evidence from this performance qualification shows that microscale electrode

production for the purposes of performance impedance measurements in the CD4

system is controllable with specified limits at the 1000s scale. The conductive traces
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proved to be consistent with only 2.2% variation in sensitivity through the run.

While production anomalies existed, implementation of in-line conductive testing

could mitigate this problem, leaving a manufacturing production line capable of

meeting the stringent demands of required of the microscale electronic conductors

in the Daktari CD4 system.
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Chapter 7 Conclusions & Future Work

The validation of electrode manufacturing at Daktari requires an extensive amount

of studies due to the complex and novel nature of the process. Few studies have

been performed on micro-scale thermal transfer printing with the metallic ribbons.

Added to this is the erratic nature of plastic interaction. The specifications on

outgoing material are detailed enough, without even the inclusion of added

processing introduced by heat-intensive laser welding.

From initial experimentation through repeatability tests and now, full clinical trial

production runs, the process must be carefully studied, analyzed, and diagnosed in

order to have a better understanding of how controllable production parameters

can optimize performance and how to minimize effects of the unavoidable and

uncontrollable scenarios.

This study suggests that Daktari is prepared for production runs on the scale of

thousands of electrodes, for clinical trials and beyond. And as the company scales
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output to a level on a higher order of magnitude, careful testing must be performed

to ensure quality product is maintained.

The following represent a list of important conclusions that can be constructed from

this work, and improvements to be explored as Daktari nears product release and

commercial production.

7.1 Print Parameters Balance

A balance of printing parameters is necessary for optimal performance.

Overworking the head with high pressure can cause unnecessary wear. Meanwhile,

high energy deposits more metal which can actually reduce performance- over

deposit can cause shorting or even small issues such as non-uniformity in fingers-

which can cause fluctuations in impedance measurements. Lastly, speed is clearly

optimal at 2 in/s; higher speeds result in inconsistent small features, while low

speeds can cause similar issues to that of excessive energy input.

In order to further refine the process, an additional, detailed study should be

performed on the process. This study reflected a rough general outline of the

operational ranges of the equipment, as well as a reflection on the quality of the

electrodes within the acceptable range. Added firmware support for finer

adjustments in speed, energy, amongst other parameters, would allow for a proper

Design of Experiment (DOE) to be performed around the optimal nominal values

uncovered in this study.

7.2 Quality of In-Process Testing

7.2.1 Solution Dip Testing

The introduction of a test fixture makes the process of testing electrodes post-die

cut processing far more repeatable, and rapid. A statistical study showed that the

new process differed insignificantly from the manual dip tank used previously.
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Within minor equipment modifications primarily focused on pumping higher

volumes of solution, the use of the fixture provided more instantaneous settled

readings from the multimeter, thereby reducing operator error in impedance

measurement.

7.2.2 On-Card Testing

The new method for making conductance solutions, using volumetric dilution,

provided an accurate means to calibrate the system and perform electrode

characteristic measurements on full cards.

In addition, a Gage R&R performed on the process, using multiple operators

revealed repeatability and reproducibility values on the testing process as a whole.

The indicated -1% effect signified the theoretical limits on electrode production

variation.

7.2.3 Introduction of In-Line Testing

Introduction of system utilizing the electrode pads to immediately detect shorts or

clean breaks as the printing process occurs would be very useful. As exhibited

during performance qualification where repeated breaking of a rail on each

electrode occurred for a dozens of electrodes at a random point during the run, in-

line real-time testing of the electrodes were simple anomalies would easily limit

such behavior from destroying large quantities of outgoing material unknowingly.

With simple audio or visual cues to indicate a defect, quick operator adjustments

can be made to respond before waste builds.

7.3 Weld Effect

Comparisons between failure rates at the dip test and on-card levels revealed the

detrimental effect of the welding process on electrode quality. More specifically, the

intersection of metallic and weld lines proved to cause failures in previously

accepted electrodes. However, electrodes manufactured using the ideal print

parameters, as determined by the operation qualification, showed little evidence of
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worsened performance after being attached to a card. The standard increase in CV,

as has been shown to always occur when passing through Daktari's contractor, was

the only apparent influence. With further optimization of the print process, the

effects of laser welding might be mitigated ever further.

7.4 Aging Effect

The aging effect on samples has yet to be analyzed at this scale. After exposure to

the environment, including thermal and humidity-related cycling, the electrodes

could suffer from a quality perspective. Even minor drifting in sensitivity can throw

off measurement accuracy. Therefore, future studies must be performed on the

effect of time over the shelf life of the product.

7.5 Scaling Up

The most important aspect of this study has been on quantifying the variation in

electrode production on a production scale ten times anything performed

previously. With long run times, a more accurate assessment of the behavior of

production can made. Thermal transfer printing involves many small intricacies that

can affect outgoing material, especially due to the micron-level scale of the product.

It was seen during process qualification in this study that the process needs time to

settle in before consistent product can be produced. Many processes seen

throughout the industry and with applications far outside the medical field have

exhibited similar behavior. Quantification of this need, including time need to settle,

is important when planning production runs of even greater scale.
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Daktari will scale up production to fulfill the needs of millions of people that will

require CD4 cell testing in the future. But in order to properly meet the demand,

from a quality perspective, it is crucial to understand the process at low thresholds.

As production through-put increases, ensuring sensitivity and variation in

sensitivity does not increase as well is vital.

Figure 7-1: Several hundred samples in collected and saved from various electrode
production stages.

In order to do this, it is important that a more automated test system is

implemented. As mentioned in Section 6.2.3, in-line quality control at the point of

printed will prevent production of defective product from a macro scale. Visual

defects such as breaks and especially shorting within the fingers, is simple to

prevent at this processing point. However, more detailed testing, at intervals or

even at the 100% inspection level is also necessary. Product that may appear

acceptable from a visual perspective may be deviating from the expected values
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electrically (resistively). The process performed in this study involved extremely

time-intensive procedures and cannot be duplicated at higher throughput levels.

Therefore, more automated processes must be developed to verify production at QC

standards.
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