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Abstract

Solar thermal fuels and fluorescent solar concentrators provide two ways in which the
energy from the sun can be harnessed and stored. While much progress has been made in
recent years, there is still much more to learn about the way that these applications work and
more efficient materials are needed to make this a feasible source of renewable energy.
Theoretical chemistry is a powerful tool which can provide insight into the processes involved
and the properties of materials, allowing us to predict substances that might improve the
efficiency of these devices. In this work, we explore how the delta self-consistent field method
performs for the calculation of Stokes shifts for conjugated dyes. We also develop a new
reaction path finding method which uses a combination of trigonometric functions and
information about the initial and final states in the reaction to generate an approximate path.
We show that this path finding method works well for several model systems including a seven
atom Lennard-Jones cluster. The ability to calculate excited state properties at a reasonably
low cost and to find convergent reaction pathways is extremely beneficial for understanding
and improving solar devices.
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Chapter 1

Introduction

1.1 Renewable Energy Sources

Solar energy has become a very active area of research in recent years. The sunis a
promising source of alternative energy, and much time has been spent developing ways to

harness its power.

1.2 Solar Thermal Fuels

Research suggests that solar thermal fuels are a viable method and have the potential to
supply enough heat for houses and engines. Solar fuels work by using chemical bonds to store
energy. The molecules used for this purpose are photoactive and have two conformational
states. When a molecule is in its lower energy geometry, it will absorb light which causes it to
conformationally change to a higher energy state. This state is metastable and if supplied with
a small amount of energy to overcome the activation barrier, the molecule will return to its
lower energy conformation and release the energy stored in its bonds in the form of usable
heat. This is an example of a photoswitching reaction. By exposing the molecule to light again,
the process can reoccur, thus making the fuel reusable. Besides being renewable, solar fuels
are advantageous because of their transportablity, their storage stability, and the lack of waste
produced. The main challenge of implementing these fuels today is that most fuels decompose
so quickly that they can only be reused for a short period of time, thus making this an expensive

way to store energy.



1.3 Functionalized Carbon Nanotubes

It was recently proposed that carbon nanotubes could be used as a substrate to covalently
bind photoswitch molecules to. This would increase their capacity to store energy as well as
their thermal stability, thus causing them to degrade more slowly. The photomolecules adsorb
to the carbon nanotubes in a close-packed, highly ordered fashion. This allows for an increase
in photoisomer concentration as well as manipulation of molecular interactions. Azobenzene
derivatives are commonly studied as photoswitch molecules and it has been shown that the

effect of attaching them to carbon nanotubes could be extremely useful in solar fuel research

\ hv .
1 trans —/——> cis
excited state A
PES o

(see Figure 1) [1].

AH=1.55eV
(per azobenzene)

ground state
PES \

Figure 1. lllustration of the mechanics of solar thermal energy storage. The
conformational change of an azobenzene photoswitch derivative is shown in
the inset [1].

1.4 Fluorescent Solar Concentrators

Another popular area of solar research is in the field of light channeling devices, such as
fluorescent (or luminescent) solar concentrators. These devices are made with transparent
polymer sheets that are doped with luminescent agent molecules. The transparent sheets

allow for the absorption of sunlight which is then fluoresced due to the luminescent agents. A



fraction of the emitted light is trapped between the sheets. This causes the light to move to the
edges of the device where solar cells are located to use the concentrated radiation. These

fluorescent solar concentrators could improve solar panels since they allow for the collection of
sunlight over a larger area, while decreasing the number of expensive photovoltaic cells needed

[2].

Stokes Shifts play an important role in the development of materials for these fluorescent
solar concentrators. A Stokes shift is the difference between the absorption and emission

peaks of a molecule (see Figure 2).

\__/
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(a) (b)
Figure 2. Two illustrations of Stokes shifts. In (a) the vertical transitions from ground state to excited state for
both absorption and emission are shown, and in (b) the diagram illustrates the spectral shift of the emission peak

from the absorption peak.

Since solar concentrators are sensitive to the reabsorption of photons, minimal overlap
between the absorption and emission peaks is beneficial. In other words, materials with large

Stokes shifts are optimal materials for these devices [3].
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1.5 Challenges and Motivation

Theoretical chemistry can be a valuable tool for exploring new materials for solar fuels and
fluorescent solar concentrators. Computational methods can act as predictive tools and
suggest new directions for material development. The design of both solar fuels and
concentrators depends heavily on the optical and electronic properties of the materials used.
Computational tools for calculating electronic excited state properties have become very useful
for this reason. In addition, information about reaction paths and transition states can be
computed and provide insight into the mechanics of solar fuels. However, some challenges are
encountered while computing electronic excited states of large molecules and finding transition
states in chemical reactions is still a major struggle in the theoretical world. We would like to
address these issues by developing a method to explore excited state reaction pathways that

we could apply to solar applications.
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Chapter 2

Investigation of Stokes Shifts Using the Delta Self-Consistent
Field Method

2.1 Introduction

Over time several methods have been developed to study electronic excited state structure.
Some of the oldest methods are semi empirical molecular orbital methods that are not
quantitative, but are sufficient to predict trends. Later, ab initio methods became more
widespread, but these remain too expensive for the large conjugated molecules typically used
in solar applications. The primary method used for excited state electronic structure
calculations today is time-dependent density functional theory (TDDFT), specifically within the
adiabatic approximation, which provides a reasonable accuracy to expense ratio for many

systems [4]. TDDFT can still be expensive for large systems however.

2.2 Delta Self-Consistent Field Method

In an attempt to alleviate this problem, as well as other issues with TDDFT, time-
independent DFT alternatives have been proposed. One time-independent method is delta
self-consistent field density functional theory (ASCF-DFT or ASCF) which is characterized by
applying ground state DFT to non-Aufbau electronic configurations. Figure 3 illustrates the

orbital relaxation of ASCF.
From the ground state, an electron is promoted to a higher orbital to enforce non-Aufbau

occupation. The orbitals are then relaxed within the non-Aufbau constraint. The resulting ASCF

orbitals are no longer spin eigenfunctions, and thus we need to take a linear combination of
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calculated spin-mixed and spin-pure energies to acquire the energy for a singlet excited state

[5].

Ground State Non-Aufbau ASCF Orbital
Occupation Occupation Relaxation

I S—

[

e d —_
. -
. _ _ £ _ _*® 4 _ & i
— v ~— T 3 — I 3
a B a B a B

Figure 3. The orbitals used for calculating excited states within ASCF and the result of orbital relaxation.

Recently there has been evidence to suggest that ASCF is effective for Rydberg states, core
excitations, solvent effects, and double excitations, which make it a great candidate for excited
state calculations. ASCF also gives stationary densities (with respect to the molecular orbital
coefficients) which are exact within the adiabatic approximation, which means it is local in time
and uses the same exchange correlation functional for both the ground and excited states.
ASCF has recently been shown to calculate the absorption of conjugated organic molecules with

roughly the same accuracy as TDDFT. [6]

2.3 Calculation of Stokes Shifts for Conjugated Dyes

To continue the exploration of ASCF effectiveness, we have calculated Stokes shifts for a test
set of 13 organic dye molecules using ASCF and TDDFT and compared the theoretical shifts to
experimental values (see Table 1). We treated all molecules as if they were in the gas phase for
simplicity, although some of the experimental numbers were measured in solvents. All of the
solvents used in experiments, however, were nonpolar, and thus we can ignore them as
nonpolar solvents do not significantly change the Stokes shift. Both methods give comparable

results and predict the shifts quite well for the molecules we investigated.
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Experimental

TDDFT Stokes

ASCF Stokes

D i Ref.
ve Structure Environment ¢, \kes Shift (eV) Shift (eV) Shift (eV) o
1 Gas Phase 0.44 0.51 0.42 [7]
2 Gas Phase 0.10 0.60 0.14 [8]
3 Gas Phase 0.19 0.16 0.21 [8]
4 Gas Phase 0.36 0.34 0.32 [9]
5 Cyclohexane 0.17 0.41 0.40 [10]
6 Gas Phase 0.00 0.08 0.12 [11]

\'N N=
7 A, Gas Phase 0.02 0.07 0.10 [11]
O
. STIQ
8 B g L4 Benzene 0.34 0.20 0.32 [12]
QAL
<
P
9 L B Hexane 0.15 0.31 0.35 [13]
[
10 Gas Phase 0.23 0.12 0.36 [14]
11 Octane 0.43 0.40 0.55 [15]
12 @ Rk Cyclohexane 0.57 0.69 0.72 (16]
5
13
H H N’LN%H'
"‘Q_ﬁ H Gas Phase 0.68 0.60 0.53 [17],[18]
[-]
H H

Table 1. Test set of dyes: chemical structures, environment, experimental Stokes shifts, and theoretical Stokes
shifts (calculated using ASCF with the B3LYP functional and the 6-31G* basis set).
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We computed test statistics for this set of calculations (see Table 2) and the mean error and
mean absolute errors appear favorable, since the intrinsic accuracy of DFT is around 0.3 eV.
However, there is no indication of a systematic overestimation or underestimation by either

ASCSF or TDDFT.

Method Mean Error Mean Absolute Error Root Mean Standard
Deviation
ASCF 0.07 0.10 0.12
TDDFT 0.07 0.13 0.18

Table 2. Statistics for the test set of ASCF calculations. Units are electron-volts.

Since some of the experimental numbers were measured in solvents, we have separated the
gas phase (Table 3) and solution phase (Table 4) dyes and looked at the accuracy of ASCF and
TDDFT in each case. All calculations were done excluding solvent effects. These tables also

show the individual absorptions and emissions of each molecule.

Experimental ASCF TDDFT
Dye Absorption Emission Stokes Shift |Absorption Emission Stokes Shift | Absorption Emission Stokes Shift
Number Dye Medium (ev) (eV) (eV) (eV) (eV) (eV) (eV) (ev) (eV)
10 Coronene Gas Phase 3.05 2.82 0.23 3.68 3.32 0.36 3.46 3.34 0.12

Table 3. Experimental and theoretical Stokes shifts for dyes in the gas phase. Dye numbers refer to Table 1. All
ASCF and TDDFT calculations were performed in the gas phase using the B3LYP functional and the 6-31G* basis set.

Experimental ASCF TDDFT
Dye Absorption Emission Stokes Shift |Absorption Emission Stokes Shift | Absorption Emission Stokes Shift
Number Dye Medium (ev) (ev) (ev) (ev) (ev) (eV) (ev) (ev) (ev)
12 3MAF ) Cchhexane 3.0 - 2.5 0.57 3.02 230 072 - 3.02 2.33 0.69

Rubrene Cyclohexan

Table 4. Comparison of gas phase ASCF and TDDFT calculations to experimental measurements done in solution.
Dye numbers refer to Table 1. All ASCF and TDDFT calculations were performed using the B3LYP functional and the
6-31G* basis set.
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Performing error analysis separately on the gas phase and the solution dyes indicates that
ignoring the solvent effects in our calculations may be a minor source of error (Tables 5 and 6).
Overall, these calculations confirmed our assumption that nonpolar solvent effects for these

dyes would be insignificant.

Dyes in Gas Phase Dyes in Solution
ASCF TDDFT ASCF TDDFT

Mean Error 0.02 0.08 Mean Error 0.14 0.06
Mean Absolute Error 0.08 0.12 Mean Absolute Error 0.14 0.14
RMSD 0.09 0.19 RMSD 0.16 0.17
Table 5. Error analysis for ASCF and TDDFT Table 6. Error analysis for gas phase ASCF and TDDFT
calculations for gas phase dyes. All units are electron- calculations for dyes with experimental Stokes shifts
volts. measured in solution. All units are electron-volts.

2.4 Conclusions

The calculation of electronic excited states is very beneficial for studying molecules that
could be used in renewable energy sources, particularly for solar energy. Since these molecules
store and release energy via their absorption and emission processes, it is important that we
have a good understanding of how these molecules absorb and emit light and in what
wavelength regime. Looking at Stokes shifts allows us to compare the relative absorption and
emission spectra for each molecule and allows us to predict the compounds that might work
better for any given application. For the calculation of Stokes shifts, ASCF has proven to be
comparable to TDDFT and reproduces experimental results accurately. In addition, it could

reduce the expense of doing excited state calculations, which would allow us to tackle larger

chemical systems.
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Chapter 3

A New Approach to Finding Reaction Pathways

3.1 Introduction

Transition states play a major role in chemistry as they are necessary for the calculation of
reaction rates and lend significant insight into the way that reactions occur. Due to their
importance, the identification of minimum energy paths (MEPs) for reactions is an active area

of research and many optimization algorithms currently exist.

Reaction pathway mapping can be broken down into two main categories: pathway
optimization and transition state optimization. For transition state optimization methods, the
transition state is first optimized and then paths to the reactant and product states are
subsequently determined. For pathway optimization however, it is assumed that there is no
prior knowledge of the transition state. These pathway optimization methods can also be
categorized into single minima methods and two minima methods, depending on whether both
initial and final states are known, or if only one minimum on the potential energy surface (PES)
is used. A common single minima method is the path of slowest ascent [19]. Two typical
categories of two minima methods are the reaction coordinate (or ‘drag’) methods and chain-
of-states methods. In reaction coordinate methods, a progress variable is defined (frequently
through linear interpolation) between the product and reactant configurations. At each step,
the remaining degrees of freedom are minimized over [20]. Figure 4 illustrates the “family tree”

of reaction path finding.
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Reaction pathway mapping

/\

Pathway optimization Transition state optimization

Single minima Two minima

/ 7N

Path of slowest ascent  Chain-of-states Reacti?rcljcoor)dinate
£ rag,

Figure 4. Tree diagram of major methods for reaction pathway mapping.

The chain-of-states methods are perhaps the most efficient and widely used today. In chain-
of-states methods, a chain of images is generated between the two end points. The
intermediate images are then optimized simultaneously to yield a path closer to the MEP. Note
that these methods are not guaranteed to converge to the exact MEP. One major benefit of this
method is that the distribution of states can be controlled allowing the density of images to be

made higher in the critical region, i.e. more replicas can be created closer to the saddle point.

The nudged elastic band method (NEB) is an example of a chain-of-states method in which
the chain of images is connected by springs. NEB is characterized by “nudging” which involves
projecting out the perpendicular component of the spring force and the parallel component of
the true force. This means that only the component of the spring force that lies along the
tangent to the path is included. NEB has been shown to be an effective method for finding

transition states with the caveat that it requires a reasonable initial guess for the path. [20]

Another method which has been widely used for constructing transition state paths is the
string method which works by evolving “strings” or smooth parameterized curves. [21] Instead
of using a spring force to connect the images, the states are repositioned to be equally spaced
along the path after each optimization cycle. [22] Like NEB, this works well for smooth potential
energy surfaces, but struggles to accurately capture reaction pathways along more rough,
complicated landscapes. [21] Again, it is highly likely that starting with a better guess path

would improve the convergence of the string method.
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To summarize, the majority of existing path-finding methods are costly and more importantly,
hard to converge. We could avoid performing many of the expensive iterations involved in

these methods if we had a way to generate a good initial guess for the path.
3.2 Generating a New Initial Guess

Since no systematic method for making this initial guess has previously been developed, we
have created a precursory path-finding method utilizing the information we have about the
properties of the true MEP. We begin by assuming that we have two optimized geometries, A
and B, which serve as the initial and final configurations for our reaction, and for which we can
calculate energies, gradients, and hessians. We can make these assumptions because the
gradient of the energy should be zero at a local minimum, and hessians are widely available for

electronic structure methods.
We also know that the path consists of initial and final endpoints, g; and g, and that it can

be parameterized by a variable s that ranges from 0 to 1. Furthermore, we know that along the

path, the derivative, Z—Z, must be parallel to the gradient of the potential energy surface. At the

) ag ) .
endpoints, d—z must be parallel to the eigenvectors of the Hessian, x; and x;. Thus we have four

constraints for our path, Which we can express mathematically as follows.
= Condition1: (s =0) = g;
= Condition 2: 4(s =1) = g,
= Condition 3: %(s =0) = ax;

e . dg -
= Condition 4: d—‘;(s =1) = bx,

19



We can now write down a functional form for our guess path by choosing a linear combination

of trigonometric functions that satisfies these four conditions.

q(s) = %(cos(ns) +1)g; + % (1 —cos(ms))q, + %(sin(ns) + %sin(Zns)) X + %(sin(ns) - %sin(Zns))Ef

(Egqn. 1)

1.4 T r r T

0.8

o4

0.2

o}

0 0.2 04 0.6 0.8 1

Figure 5. The trigonometric functions which serve as the bases for our guess path. The blue curve represents the
first cosine term in equation 1, the red curve represents the second cosine term, and the green and purple curves
represent the first and second sine terms, respectively.

Using trigonometric functions not only allows us to treat the initial and final points
symmetrically, but also provides a one-to-one correspondence between the terms in our path
equation and the conditions that they satisfy. Each basis function is a smooth curve (Figure 5),
and thus a linear combination of these trigonometric terms provides a smooth path between

the initial and final points.

20



3.3 Test Systems

3.3.1 Miiller-Brown Potential Energy Surface

We began testing our guess path by applying it to the simple and well known Miiller-Brown
potential energy surface [23] and hand selecting the appropriate eigenvectors while varying the
parameters, a and b (see Figure 6). The potential for the Miller-Brown surface can be written

down analytically as seen in Equation 2:

MB(x,y) = l3=0Al.eCj("“x?)z+dj(’C"‘?)(y‘y?)*fj(y‘y?)z (Eqn. 2)
where A = [-200, -100, -170, 15], ¢ = [-1, -1, -6.5, 0.7], d = [0, O, 11, 0.6], f = [-10, -10, -6.5, 0.7],
x’=[1,0,-0.6,-1],y°=[0, 0.5, 1.5, 1]. |

300
250
200
150
100
50
0
-50

-100

-150

2 15 1 05 0 05 1

Figure 6. The linear combination of trigonometric functions is used as a guess path for the Miiller-Brown surface.
The gray curve represents the internal reaction coordinate for this potential and every other curve represents a
different pair of @ and b parameter choices.
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It is apparent from Figure 6 that by changing the a and b parameters we can tune the
curvature of the path and create a family of curves that vary in their proximity to the true path.
In addition, it appears that by choosing the a and b parameters wisely, we can come up with a

good estimate for the path.

3.3.2 Wolfe-Quapp Potential Energy Surface

As an additional test case, we used another two dimensional analytical potential surface
known as the Wolf-Quapp potential [24]. This potential can also be expressed mathematically

as follows:

WQ(x,y) = x*+y*—2x? —4y? + xy + 0.3x + 0.1y  (Eqn.3)

This potential provides a slightly more interesting case in that it has three distinct minima,
with a saddle point in the center. In Figure 7, we demonstrate another family of curves
generated using two minima from the Wolfe-Quapp surface, our guess path formula, and a
variety of a and b parameters.

2,

- 15 1 05 0 05 1 15 2

Figure 7. The trigonometric functional form is used to create a guess path for the Wolfe-Quapp surface. The gray
curve represents the internal reaction coordinate for this potential while every other curve represents a different
pair of a and b parameter choices .
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Figure 7 again demonstrate that by appropriately choosing a and b we can generate guess
paths that closely resemble the true path connecting the minima on the potential energy
surface. We now want to come up with a systematic method for optimizing a and b. While
there may be many approaches to solving this problem, we choose to minimize the maximum
potential (i.e., we scan over a grid of a and b values and choose the ones that genérate the
lowest barrier height). This simple solution works well for us because we are using the exact
potential along the path. At this point we are just trying to show that we can generate an
accurate path for simple test cases, but this optimization method could also be used in more
difficult examples where we can approximate the potential along the path using an electronic

structure or similar method.

Figure 8 illustrates the results of this optimization method. In the top two plots we are able
to reproduce almost exactly the true path connecting the minima. Starting search for a and b
at the same values when connecting the last two minima results in a guess path that goes
through the highest barrier possible, however (bottom left of Figure 8). This issue can be
resolved by choosing a better starting point for the a and b parameter scan as shown in the

bottom right plot of Figure 8.
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Figure 8. The a and b parameters in the functional form of our guess path are optimized by minimizing the barrier
height along the path. For most cases this results in a nearly perfect reproduction of the true path. In the bottom
left case however, a closer estimate of the correct @ and b parameters was necessary before optimizing in order to

avoid the saddle point (bottom right).
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3.3.3 Quapp-Hirsch-Heidrich Potential Energy Surface

The Quapp-Hirsch-Heidrich potential energy surface is an effectively two dimensional surface
which we tested as yet another confirmation of our function’s ability to reproduce basic
reaction paths. Equation 4 gives the functional form for the Quapp-Hirsch-Heidrich potential

[25].

QHH(x,y,z) =2y + y*+ (v + 0.4x? + z%)x* + 0.01z%2  (Eqn. 5)

Figure 9. Plot of the minimum energy path found using our trigonometric form connecting the minima on the
Quapp-Hirsch-Heidrich surface. On the left is a surface plot with our guess path indicated in black, and on the right
is a contour plot with our guess path in red. Both images are plotted along the z=1 isosurface.

Again we see that our function performs admirably, and the optimization of the a and b

parameters results in a path that passes close to the true transition state barrier.

3.3.4 Cosine Potential

To move to a slightly more complicated test case, let us now consider a three particle system
where the interaction between any two particles is given by a simple cosine potential:

COS\Tji
V i (;])
T'U'

(Eqn. 6)

where rj is the interatomic distance between particles i and j.
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Figure 10. The cos(r)/r’is plotted on the y axis for a range of r values on the x axis.

This potential has several minium, but we will look at the case where the three particles
begin in the first well with a short interatomic distance, and stretch to the next well where they
all have slightly longer interatomic distances. We can roughly think of this as atoms initially
connected by “double” bonds stretching into “single” bonds. The intial and final states are
indicated in Figure 11.

2.46 246 —> 921 9.21

9.21

Figure 11. A three particle system stretching from short bond distances to longer bond distances. Both the initial
and final geometries are local minima for our cosine potential.

When we convert the formula for our potential into Cartesian coordinates and apply our
method, we find that we generate a guess path with two barriers (Figure 12). This is promising
because the true reaction path for this potential also has two barriers. Our guess path slightly
overestimates the first barrier (for which the correct value is indicated by the blue line in Figure
12) and the intermediate (indicated by the green line). We reproduce the second barrier

correctly (shown by the purple line in Figure 12).
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Figure 12. The guess path generated for our cosine potential when the optimization is performed in Cartesian
coordinates. Several features of the true path are indicated- the blue line indicates the energy at the first barrier,
the green line indicates the energy at the intermediate, and the purple line represents the energy at the second

barrier.

We can also observe the motion of the particles for this path (Figure 13). Ideally, one

particle (red) should into its new position first, while a second particle (green) moves just

enough to obey the triangle inequality. After the first particle has reached its final position, the

second particle should finish its movement, thus creating the second barrier. The third particle

(blue) should remain fixed for the entire process. This mechanism results in a minimization of

energy at every point along the path. The guess path pictured in Figure 13 exhibits behavior

very close to what we expect, thus affirming that our method works well for simple particle

motions.

0.0

0.1

®
-0.2
-0.3F
04F
/o 2 1 6 [} 10 12
Py Figure 13. Cartoon of the motion of particles along our guess path for
° ® the cosine potential. The green dot on the path indicates the starting
configuration. We see that the particles reproduce the expected

movements almost exactly.
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3.3.5 Seven Atom Lennard-Jones Cluster

Moving towards even more complicated systems, we apply this method to the
rearrangement of a seven atom Lennard-Jones cluster in two dimensions [26]. This will give us
some idea of how our method will work for a more realistic chemical system. In the cluster, the
interaction between any two particles is governed by a typical Lennard-Jones potential

(Equation 7).

L] = 4¢ [(5)12 - (%)6] (Eqn. 7)

In this equation, r is the interatomic distance between any two particles. For our system, we

chose =1 and 0=2"/5.

We have chosen a reaction where we take the central particle in the
cluster and exchange it with one of the particles in the outer ring. Converting our potential into
Cartesian coordinates, we can use our method to generate a guess path. The initial and final

configurations for our cluster and our guess path are pictured in Figure 14a.

In calculating reaction paths for this Lennard-Jones cluster, we encounter an interesting
problem. Depending on the order in which the particles are numbered, we generate different
“best” paths for the system. Since there are 7! possible orderings, this creates a lot of paths to
search through to find the path with the lowest barrier. Figure 14 illustrates two of the paths
that we can create by changing the indexing of the particles. The paths are qualitatively and
quantitavely different as the second path (Figure 14b) has three barriers as opposed to one,
and the barrier heights are about two Lennard-Jones energy units higher than the path
generated in Figure 14a. It is important, therefore, to use one’s intuition about the motion of
the particles along the path to index the particles in such a way as to minimize the required
movement of the particles thereby minimizing the energy needed to reach the final

configuration.
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After generating an initial guess path, we can use the estimated barrier to refine the path.
For example, if we find a path with one barrier, we can break that path up into two pieces,
creating a path from the initial configuration to the intermediate, and another from the
intermediate to the final configuration. We can then apply our path-finding method to each

piece and concatenate the new guess paths to create a better path for the overall reaction.
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Figure 15 illustrates an example of this process, where the path pictured on the left is the initial
reaction proposed by our method and the path on the left is a refined path created by
recalculating paths between the initial geometry and the intermediate, and the intermediate
and the final geometry. Applying this algorithm just once qualitatively changed the potential
profile along the path as well as lowering the energy by about four Lennard-Jones units. This

process could be repeated until another iteration no longer lowers the barrier height.

If indices are chosen wisely, and the intermediate found is used to refine the path, our

method can very reasonable reaction pathways for the Lennard-Jones system which shows

promise for real chemical systems.
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Figure 15. The illustration on the left shows a guess path generated using only the initial and final configurations
with a particular set of indices for our Lennard-Jones cluster. This path was then refined by using the intermediate
and the new path is shown on the right. The potential profile has changed qualitatively and the energy was
lowered by about 4 Lennard-Jones units.
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3.4 Dependence on Choice of Coordinate System

Besides the choice of indices used for cluster-type systems, the paths that we are able to
generate using our method can also change depending on which coordinate system we perform
our optimization in. This makes intuitive sense, since most electronic structure methods
choose not to use Cartesian coordinates, but a set of internal coordinates for better geometry
optimizations. To see how large of a role the choice of coordinate system played in our
method, we revisited the cosine potential and seven atom Lennard-Jones cluster with different

choices of coordinates.

3.4.1 Cosine Potential

In Section 3.3.4 we approximated a reaction path for a three particle system whose
interactions were governed by the cosine potential in Equation 6. There we performed the

calculations using Cartesian coordinates.

Here, we use the same potential, but we recalculate the guess path using interatomic
distances and internal coordinates. Figure 16 illustrates our simple choice for internal

coordinates for this system of two interatomic distances and an angle.

M
]

3

Figure 16. For our three particle system, we choose internal coordinates consisting of two interatomic distances,
r2 and ry3 and an angle, ©.

The results of these optimizations can be seen in Figure 17. In the top plot we show our
original calculation of the path using Cartesian coordinates. The middle plotis the optimization
performed using interatomic distances, and the bottom plot is the path generated by using the

interal coordinate scheme in Figure 16. In all three plots the blue, green, and purple lines
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indicate the correct energy levels of the first barrier, intermediate, and the second barrier,

respectively. The Cartesian coordinates are the only ones that reproduce a qualitatively correct

path with two barriers. The internal coordinates are clearly the worst choice, since they result

in a path with a strange and unrealistic cusp. All three paths do manage to get some of the

energetics right, however. This figure definitely confirms that the choice of coordinate system

makes a significant difference in the predicted path.
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Figure 17. Three predicted paths for
the cosine potential in Section 3.3.4.
The top plot is the best path
determined using Cartesian
coordinates, and the middle and
bottom plots are the optimized
paths generated using interatomic
distances and internal coordinates,
respectively. The Cartesian
coordinates produce the most
qualitatively and quantitatively
accurate path.
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3.4.2 Seven Atom Lennard-Jones Cluster
Since the Lennard-Jones potential lends itself to calculations in interatomic distances, we

chose to compare the path predicted by our method in interatomic distances to the path using
Cartesian coordinates in Section 3.3.5. The path optimized using interatomic distance is shown

below (Figure 18).
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Figure 18. A plot of potential energy (in Lennard-Jones units) versus the s path parameter. This guess path was
generated by performing the optimization using interatomic distances.

In the case of the seven atom Lennard-Jones cluster, we run into significant problems. As
illustrated in Figure 18, the potential predicted by our method dips way below the energy at the
endpoints (i.e. the energy along the path is lower than the energy at the minima)! This is due to
the fact that interatomic distances are a redundant set of coordinates for this system. In other
words, the configuration is overdetermined. This results in the cluster satisfying the triangle
equality in higher dimensions than we physically have access too. Thus, the Cartesian

coordinates are again the better choice for this system.
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3.5 Conclusions

Since transition states play such a vital role in chemistry, it is important to have an accurate
way to predict reaction pathways and barrier heights. We have developed a method of
constructing a guess path using a simple trigonometric form for the path function. We have
demonstrated its ability to accurately predict the path for analytical potential energy surfaces
ranging from simple two dimensional test cases to more complicated cluster rearrangements.
It is clear that some intuition is necessary for determining the most accurate path, however.
We must be able to make a wise choice of eigenvectors to use, and have a reasonable initial
guess to start the optimization of the a and b parameters. As demonstrated by the cosine and
Lennard-Jones potentials, the choice of coordinate system makes a significant difference in the
qualitative and quantitative properties of the path. In the cases that we examined, Cartesian
coordinates appeared to be the best choice, but this could change depending on the system. A
well-chosen set of internal coordinates could be the best choice for many systems.
Intermediates can also be used to further refine the path. Overall, though, this method is an
excellent scheme for generating an approximate reaction path given initial and final geometries
with their energies, gradients, and hessians. Our guess path could be used as a better starting
point for other path-finding methods such as the nudged elastic band method, to help speed up

convergence and reduce the number of more costly iterations needed.
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Chapter 4

Conclusions

Solar energy has been a popular research topic lately, particularly in materials laboratories.
Creating materials that can efficiently store energy from the sun would be a huge step in
utilizing all of the sunlight that is reflected back into the atmosphere. Theoretical chemistry has
a unique opportunity to contribute to this research. By utilizing our ability to predict trends and
test properties of new materials before they are able to be synthesized in a lab, we can supply
experimentalists with promising directions to explore. Both theory and experiment play a huge
role in the development of materials, and by working together scientists from both

backgrounds can make amazing progress.

We have shown that ASCF is a promising way to compute Stokes shifts. It would be very
beneficial to use ASCF to study the behavior of molecules with large Stokes shifts, since these
systems are often used in fluorescent solar concentrators. Since ASCF is less expensive and as
accurate for large molecules as TDDFT, it would interesting to explore how it performs for other
electronic properties of materials. ASCF could also be used to investigate vibronic transitions

and Franck Condon factors which describe the overlap of vibrational wave functions.

We have found that we can use the information that we know about the endpoints in a
reaction to generate a good estimate for the path between them using a simple combination of
trigonometric functions. It is important to choose a coordinate system and particle indices
wisely, where appropriate, but we have seen that our guess path reproduces the exact path
very accurately for simple systems. Future work in this area would include applying our path
finding method to real systems and other systems typically used as path finding benchmarks to

see how well the model will work for practical applications [27]. The method could then be

35



implemented as a precursor to NEB or another more sophisticated path finding method to see

if it improves the convergence and cost of the transition state search.

After pursuing these projects a bit further individually, the ASCF approach could be
combined with the path finding method to explore excited state potential energy surfaces.
Complications arise when treating reactions that occur in the excited state due to conical
intersections [28]. Conical intersections are simply the intersections of two potential energy
surfaces and often play a role when a molecule moves between an excited state and the ground
state. When electrons are excited, in photoexcitation, for example, the electrons must
eventually return to the electronic ground state. This contradicts the assumption of the Born-
Oppenheimer approximation which says that the atoms move on a potential energy surface
governed only by their atomic coordinates and Coulombic repulsion. The return to the ground
state usually occurs at geometries where at least two electronic states have the same energy,
and this constitutes a conical intersection [29]. Since conical intersections could play a role in
solar thermal fuels, investigating them with ASCF to see how this method performs at these
short-lived, energetically unstable geometries would be very useful After looking at ways to
compute energies at conical intersections, both ASCF and our path finding method could be

incorporated into an excited state transition state search method.

ASCF has the potential to be applied to some widely known photoswitching molecules. The
electrons in these molecules are excited via exposure to light, and eventually ‘cool’ back down
to the ground state. By looking at the way they behave in the excited state and during their
transitions between the ground and excited state we may be able to glean important
information about the properties of these solar fuels. Specifically it would be interesting to
study more azobenzene derivatives and compare how the molecules in solution behave relative
to the azobenzene derivatives covalently bound to carbon nanotubes. Other photoswitching
molecules such as fulgides, azulenes, and diarylethenes both with and without carbon
nanotube binding could also be explored [30]. This could give us new insight into choosing

materials for solar thermal fuels.
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In addition, combining the ASCF method with an efficient path finding tool would allow us to
look at the dynamics and mechanics of the reactions that take place in photoswitching systems
such as azobenzene derivatives covalently bonded to carbon nanotubes. This, in turn, would

help us tune the properties of these materials and allow us to develop a more efficient solar

thermal fuel.
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