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Abstract—A large portion of work on compressive sampling
and sensing has focused on reconstructions from a given mea-
surement set. When the individual samples are expensive and
optional, as is the case with autonomous agents operating in
a physical domain and under specific energy limits, the CS
problem takes on a new aspect because the projection is column-
sparse, and the number of samples is not necessarily large. As a
result, random sampling may no longer be the best tactic. The
underlying incoherence properties in [y reconstruction, however,
can still motivate the purposeful design of samples in planning
for CS with one or more agents; we develop here a greedy and
computationally tractable sampling rule that will improve errors
relative to random points. Several example cases illustrate that
the approach is effective and robust.

I. INTRODUCTION

Compressive sampling and its related methodologies [1],[2]
have enjoyed great success in varied domains including geo-
physics, synthetic aperture radar, medical imaging, and many
others. A key result is that, subject to signal sparsity and
uncorrelated measurements, exact reconstruction of a signal is
possible with an unusually small number of randomly-chosen
samples; the critical number scales with the sparsity and the
log of the number of degrees of freedom. Variations for signals
that are not strictly sparse, and for scenarios with sensor noise,
have been developed also, subject to the restricted isometry
property.

Because CS reconstructs signals with few measurements,
it is a reasonable question as to how CS could be employed
when each individual sample has a specific cost. Indeed, if
spatial sampling is to be carried out by a mobile agent moving
through a domain, operational issues arise immediately that
give the CS problem a different flavor. A nonzero cost of
transit between samples would argue for a traveling salesman
(or similarly efficient) path visiting a fixed set of random
points, but there is also a practical desire to be robust against
premature termination of the CS mission. This argues instead
for suitably-sized random steps taken incrementally across
the space. Conventional regular paths, such as the cellular
boustrophedon in two-space [3] are analogous to the TSP in
the sense that premature termination is likely to destroy any
chances of a meaningful reconstruction from the data in hand.
We note that although samples can often be taken in transit,
from the CS point of view these are by definition spatially
correlated with the endpoints, and therefore in some sense
redundant and less valuable than the vertices.
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A compelling application today is the deployment of au-
tonomous vehicles in the ocean, that sample slowly-changing
water properties over a very large domain. The ability to
perform strong reconstruction from a small number of well-
chosen sample locations would improve our understanding
of important ocean features such as oil plumes and other
structures [4], [5]. Increasingly, multiple agents are being
considered for such applications, and underwater they are
usually connected by wireless acoustic networks. As we will
discuss, the use of CS in designing missions is complementary
with wireless networking.

Our goal in this paper is to describe and develop the
basic kinematic compressive sensing problem. In the following
section we state it more fully and discuss how operational
constraints affect compressive sensing. We propose a simple
greedy algorithm - called RIPD - for ranking sample loca-
tions in a way that balances computational and operational
constraints with reconstruction error. Modest but consistent
improvements are demonstrated in the single-vehicle case with
discrete cosine and Haar wavelet transforms.

II. PROBLEM SCENARIO

In the canonical case of CS, an under-determined system
Az = z is solved while minimizing ||z||p, in many cases
equivalent to minimizing ||z||;, for which fast algorithms
exist. Here A is the effective dictionary, = the vector of
modal coefficients for the dictionary, and z the set of m
CS measurements. Denoting N as the number of degrees
of freedom in the system, if = is known to have S < N
components that are nonzero, the signal is said to be strictly
S-sparse, and exact reconstruction is possible with a small
number of incoherent measurements.

CS methods carry the general recommendation of random
samples, for the purpose of reducing their coherence, in
probability, with respect to the reconstruction basis. We can
write A = PD, where D is the underlying, possibly redundant
dictionary matrix and P is a projection matrix that is randomly
chosen, or could be designed. We thus differentiate between
z = Py, the CS measurements, and y = Dz, the set
of physical measurements that are possible. The physical
measurements are the complete set of pixel values in an image,
for instance, whereas the CS measurements are a smaller set
of their linear combinations, as encoded in P. Thus if D is
complete (square), then P is m x N, with N > m.




We are aware of a few works treating the design of
optimal projection matrices for a given dictionary. Elad [6]
addressed the problem by minimizing mutual coherence of
the effective dictionary A. The method iteratively reduces large
elements in the Gram matrix A” A directly, and then computes
a new projection satisfying rank conditions associated with
the desired number of measurements. Duarte-Carvajalino and
Sapiro [7] addressed the same objective shortly thereafter
as an eigenstructure problem, and achieved faster computa-
tions; Xu et al. [8] followed with an approach based on the
equiangular tight frame, and reported further improvements,
although computing times are not given. These methods put
no constraints on P and the outcome of optimization is dense
in the general case, because implicit is the assumption that all
of y is available. We also note that very specific constraints in
measurement matrix design have been developed in the MIMO
radar community; here the task is to choose transmission
waveforms and array parameters so as to create incoherence
in the sensing matrix PD [9],[10],[11].

When some elements of ¢ are not used or available, the
projection P has N — m zero columns. This is a significant
specification, because in contrast with the unconstrained ver-
sions above, the problem is now combinatorial and likely to
be exponential in cost. Column-sparsity of P is indeed the
major consequence when point data is collected by a mobile
agent in a physical domain. Additional factors can come into
play: motions of the agent may be subject to speed, attitude
rate, energy, communication, and collision constraints. If the
vehicle moves too slowly, the field may change. Thus we see
that the collection of data for compressive sensing is a rich
planning problem, and the insertion of transit costs into CS is
only one of many possible aspects.

We first addressed kinematic CS in [13]. In compar-
ing sparse reconstruction from points obtained through a
heuristically-optimized random walk, through a TSP over
random points, and through a quasi-random boustrophedon
strategy, we found no essential differences: assuming that the
mission length allows multiple traversals of the space, the lead-
ing factor in reconstruction performance is simply the number
of points. A key question then becomes the planning horizon,
because both random-point TSP and randomized lawnmowing
approaches are efficient only with long horizons, whereas a
random walk has no particular horizon, beyond the implicit
assumption that the agent crosses the space adequately. More
specifically, we distinguish among three main paradigms for
collection of data:

o A suitably long planning horizon such that m > 45 is
guaranteed. If a full set of points is chosen and they are
not located trivially, they can be visited using a traveling
salesman path, whose distance is approximately 0.75+/m
in the unit square [14].

o A one-step ahead horizon, to generate the best CS product
possible from points sampled so far, plus one additional.

— Transit is cheap so step lengths are unconstrained.
— Transit is expensive and so it is desired to collect

samples frequently - this is accomplished by limiting
the transit length.

A significant factor also is that the number of collected
samples may not be large in kinematic CS, numbering perhaps
in the hundreds or even tens for certain applications. This calls
into question the suitability of fully random point selections,
which are justified only in probability.

An important and broad extension to the basic problem
involves multiple agents communicating wirelessly; we make
a few initial observations. First, a network enables centralized
real-time planning, as well as a centralized reconstruction pro-
cess that can continuously perform reconstructions and thereby
make decisions, for example, on whether enough points have
been obtained. Second, designed CS sample locations can be
visited by partitioned TSP paths [12] that are efficient if the
horizon is long; these would require long-range connectivity.
A one-step-ahead policy can also accommodate physical par-
titions explicitly, but might instead improve connectivity by
moving the vehicles as an unstructured fleet and avoiding
collisions. Finally, as described we are focusing on point
measurements in a physical space; but multiple networked
vehicles are also well-suited to tomographic measurements
taken across the domain (as in MRI scans), in which case
the designed CS samples are specific cross-sections.

We present and demonstrate below a simple greedy method
for actively minimizing coherence. It is developed in the
context of a single vehicle, but the concept applies also to
networked groups of vehicles. As we show in examples,
reconstruction errors appear to be systematically improved
over random point selection, but two caveats are noted. The
method incurs a significant computation load, although it is
well within the capability of modern microprocessors during
transit time for undersea and many other types of mobile
agents. Second, the method requires that the reconstruction
basis be specified at the time of sampling, although it can be
changed on the fly with an added computation. We will not
consider in this method the learning of dictionaries, or non-
square dictionaries.

III. FORMULATION

The specific condition for exact reconstruction in large-scale
CS is that m > Cu?(¢,1)Slog(N)[1]. Here, C is a constant,
and p(¢@,1) captures the incoherence of the reconstruction
basis ¢ and the measurement basis ). As noted above, most
compressive sensing work to date advocates choosing samples
randomly, because this almost surely minimizes y. Related to
incoherence, the bases are said to satisfy the restricted isom-
etry property if each column of the effective dictionary A is
nearly orthogonal to every other column. A scenario satisfying
RIP will be amenable to reconstruction with noise and when
the signal is not strictly sparse, but still compressible.

For the purpose of describing our construction, let us say
that m measurements have been taken already. Hence there
is an m x N A-matrix, which we denote A,,, so that A,, ;
is the 7’th column of A,,. The last measurement is z,,,
taken at location r,,,. The decision is where to take the next



measurement. The best we can do in a greedy algorithm is to
choose the measurement location 7,41 so as to minimize the
resultant coherence of the whole set, which is

Q(Ama rm+1) = Hilz}x |<Am+1,i7 Am+1,j> |

Here 7,41 € R(p, 71,72, . ..,7m), the feasible set of additions
given all the previous measurement locations, and parameters
p. These encode for example the constraints of no repeated
points, limited stepsize, and domain boundaries, as well as
others. For any non-trivial feasible region defined by R,
however, the function ¢ is complicated, with multiple local
minima and discontinuities depending on the transform in use;
this leads to a sampling-based strategy. The idea is to select
t trial locations 7, € R,1 < k < ¢, and set 7,11 = 7
minimizing ¢(A,,,r; ). This is the greedy method we are
proposing in Algorithm 1, referred to as RIP Design, or RIPD.
The algorithm adds a points to a base set of m points. Note
that in our examples below we use m to denote the total
number of samples, consistent with the literature.

The procedure of assessing candidates and choosing one
at each cycle is constant-time and has cost that scales with
tN2. To see this, let Q be the symmetric N x N matrix
whose diagonal is zero and whose off-diagonal terms are the
inner products induced by A,,. This is the Gram matrix, and
coherence ¢ is the maximum absolute value among elements
in Q. Assessing Q~ for a candidate addition 7~ is simple:

Q™ =Q+A(r)TA(r™),
where A(r~) is the projection onto the reconstruction basis;
A(r™) is the row that would be added onto A,,, were the point
r~ accepted.

The ensemble of ¢ candidates can be chosen by any method
desired. For instance, if it is desired to cross the domain
quickly, then one would put them on the boundaries of R,
either deterministically or randomly. They can be placed uni-
formly random in the interior of R, as in our examples below.
In the case of obstacles, feasible paths can be determined
using a fast, and (typically) sub-optimal scheme such as the
RRT [15]. Herein, we see that a new optimization problem
arises that would weigh the long-term statistical improve-
ment in reconstruction error (via greedily reducing coherence)
against the very specific costs and risks of a complicated path
through obstacles. This is outside our scope at present.

We make a few implementation notes and observations.
As indicated in the algorithm listing, the Gram matrix diag-
onal should not be used for the purpose of selecting from
the candidate points. Changing basis on the fly presents no
difficulty, with the understanding that A,, and ) have to be
recomputed each time it is changed. The greedy technique
approaches a deterministic sequence as ¢ grows, because the
candidate points will identify the global minimum for ¢. Such
design locations would depend only on the initial locations and
therefore become correlated, but it is important to note that it
is not in the reconstruction basis. As a result, increasing t
as computational resources permit will tend to improve the
reconstruction performance.

Algorithm 1

1. Q+ AL A,

2. forn=1:ado
32 fork=1:¢tdo
4
5

r=RIPD(Ay,t,a,m1,72, T, D)

7, < sample(R(p, 71,72, , "min—1))
qr + max |Q + A(r; )T A(r;,)| (element-wise max,
excluding terms on the diagonal)

end for

l < argmin ¢

Tm4n = rl_

Q  Q+A(r))TA(ry)

10: Am+n — [Am+n,1,A(T;)]

11: end for
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IV. EXAMPLES

We now address several example computations; these are
meant to show typical behavior of our greedy, RIP-based
design, but not to systematically characterize its behavior. In
the first we consider the cosine basis, which is supported
across the continuous measurement domain, and the effects
of sensor noise estimation errors. In the second we study
the Haar wavelets, involving unsupported basis functions on
a discrete domain; there is no sensor noise in this case, but
we vary the allowable transit distance. Our statistics are taken
over five hundred trials, and our standard for comparison is a
reconstruction based on randomly chosen points, termed RP.

A. Discrete-Cosine Transform in One and Two Dimensions
with Noise

We use the discrete-cosine transform (DCT) in our first two
cases, over a unit domain; the space is considered continuous.
The specific problem parameters are S = 15 (sparsity),
N = 196 (degrees of freedom), and ¢t = 100 (candidates).
We sample one point randomly and then proceed to design
another forty-nine, so that m = 105/3, a slightly lower value
than is typical for exact reconstruction. We apply normally dis-
tributed, zero-mean noise to all measurements, with standard
deviation v equal to one percent of the RMS signal level, and
solve the modified problem with weighted /; minimization as
given by [16]: min, ||z||; s.t. ||Az—b||2 < ?v/m + v/2m. We
do not include kinematic constraints in the one-dimensional
case.

As seen in Figure 1, the random and RIPD-selected points
are indistinguishable viewed directly. Figure 2 shows the
normalized reconstruction errors as a function of estimated
noise level divided by true noise level; the zero log value on
the horizontal axis corresponds to exact matching. Normalized
reconstruction error is taken as the Euclidean norm of the error
in y divided by the norm of the signal variation from its mean;
we refer to the error simply as RMSE. We observe that the
random-points have lowest mean error when /v is around
0.3, an underestimate. This mean grows mildly with 7, and
the scatter across the trials is significant but steady. Toward
lower 7, however, the mean RMSE grows quickly to twice



its minimum value and ultimately hits nearly three times that
level. Coincident with this is an explosive growth of variability
in the ensemble - a closer look at the distribution of cases
shows there is a fraction of utterly failed reconstructions, with
normalized errors greater than one. The RIPD points give a
more consistent outcome in both mean and variability for the
RMSE across the entire range of ©/v. Most notably, the mean
RMSE is always lower than that of the random-points and
thus the RIPD strategy on average improves the reconstruction
error. The lower plot in Figure 2 confirms that for higher /v
a 15-20% reduction in RMSE is expected, whereas for low
U /v this improvement is close to fifty percent. The variability
is high however, and it must be kept in mind that only 60-70%
of trials show an improvement. Overall, this result argues for
setting  safely low - even zero when it is known that there
is nonzero sensor noise - and using the RIPD strategy.

In two dimensions, for the DCT we assume no moves can
be greater than 0.3 units Manhattan distance. The lower part of
Figure 2 indicates a similar trend as for one dimension; as the
sensor noise is underestimated, the RP paths deteriorate while
the RIPD maintains a steady ensemble mean and standard
deviation (not shown).

T

Signal
r *  Random Meas. [
¢ RIPD Meas.

Fig. 1. A representative signal in the 1D case with discrete cosine transform.
Fifty points are selected randomly, or designed according to the RIP, with one-
hundred candidates considered for each addition.

B. Haar Wavelet Transform in Two Dimensions without Noise

Unlike the DCT, the Haar transform has a discrete domain,
and almost all modes are zero on a fraction of it. This makes
D very sparse and therefore amenable to speed improvements
through proper programming. For instance in our example
32x32 image, N = 1024, but a given row of D has only 36
nonzero values, so that the number of nonzero scalar products
in the row is 630, compared to the 523,776 products for a
dense row. By maximizing re-use of the fixed part of the
inner product set among a large group of candidates, we have
been able to evaluate 200 candidates per second on a standard
laptop computer. One might be tempted to apply this speed to
a dynamic programming routine on the discrete state-space,
but this attraction may be illusory because the inner product
set for each given path-to-go still has to be maintained.

This example has no sensor noise, but we consider different
step lengths. Figure 3 shows a test image derived from sea-
surface temperature data, that has been explicitly sparsified.

random points
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Fig. 2. DCT results summary. Top: 1D case, mean values of the random-point
and RIPD ensembles, along with lines showing plus and minus one standard
deviation for the ensemble, as a function of /v; the leftmost point represents
v = 0. Bottom: Alternate view of the mean values above for one dimension,
and three similar points for two-dimensional case with /v = [0, 0.05, 1],
right to left.

The image that is to be reconstructed has fifty Haar elements
and contains both large-scale and small-scale features, most
of which come directly over from the full-resolution base
image. Paths associated with the RP and the RIPD strategy
illustrate that the RIPD is regularizing the points, in the
classical sense of reducing discrepancy and dispersion, along
the lines of quasi-Monte Carlo sequences such as the Halton
and Hammersley.

For m = 45, RMSE values are lowest when the kinematics
are unconstrained; this is a natural analog to the standard CS
recommendation of random points. Even in this case, however,
Figure 4 indicates that design via RIPD will offer a modest but
significant improvement over RP of about ten percent. When
the stepsize constraints are turned on, the improvement offered
by RIPD increases to about fifteen percent, with improvement
occurring in seventy percent of trials. Looking at m = 25, we
expect and observe worse RMSE levels, with RIPD offering
no significant improvement (points along the line of slope 1.0
on the graph). An exception occurs at stepsize five, however,
where the random-point paths fail badly because sometimes
the agent becomes localized in a corner and so does not visit
or even cross the space. RIPD helps the agent to escape these
conditions; improvements here occur in sixty percent of trials.
At the other extreme, setting m = 10 for the stepsize of ten
reduces RMSE values, the reconstructions are very good, and
RIPD again gives a mild improvement. We cannot achieve an
exact reconstruction in general for the Haar wavelets because
of limited support of the modes.
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Fig. 3. Top left: Discretized image of a sea-surface temperature map. Top
right: The sparsified SST map with S$=50. Middle left: Typical reconstruction
result using 200 points randomly selected, with maximum move 10 pixels.
Middle right: Same for 200 RIPD points; the RMSE is 15% less than for
random points. Bottom left: Random path associated with the reconstruction
above. Bottom right: Same for RIPD path. Note: the bounding box drawn is
outside the feasible set of points.

V. CONCLUSION

We have described a variation on standard compressive
sensing, wherein we acknowledge the cost of transit and the
desirability of interruptible CS missions. These and other
aspects of CS data collection with mobile agents are interesting
because they motivate new schemes for selecting points. Our
main contribution in this paper was to apply a cheap rule for
the incremental selection of points. A TSP path can efficiently
visit a large set of such points, or they can be visited as
generated; limited steplengths are then a simple way to reflect
transit cost. Although the improvements in reconstruction error
obtained through our RIPD points are modest, at 10-20%
compared with random points, they appear to be robust; we
encountered no conditions where the RIPD was outperformed.

step < 5, [2S 43] 4
step <10, [2S 3S 4S 6S 10S] A P
step < 15, [2S 48] ,
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Fig. 4. Summary of 2D Haar results. Each color corresponds to a maximum
step length (in pixels), with number of measurements m in square brackets.
Mean values center on lines of &1 ensemble standard deviation. In all cases,
increasing m reduces both random-point and RIPD reconstruction errors, as
expected.
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