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Abstract

Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze
changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to
study each of these stages individually, but do not capture the connections between them. Here we present an approach
for building a network of physical links among these data that can be used to prioritize targets for pharmacological
intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes
in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data.
We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III
mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test
the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model
that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell
viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting
b-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional
regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide
binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes
suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as
constraints for building regulatory networks from the interactome while taking into account noise and missing data, should
be applicable to a wide range of high-throughput datasets.
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Introduction

Cellular signaling and transcription are tightly integrated

processes that underlie many short- and long-term cellular

responses to the environment. Dysregulation of these molecular

events has been implicated in diverse diseases including neurode-

generation [1,2], metabolic disorders [3], and every stage of tumor

development and growth [4,5]. Sophisticated algorithms have

been developed to use transcription profiling data for discovery of

regulatory networks in disease, either de novo or from an

interactome network (see review of theory [6] and tools [7]).

Despite the utility of these methods, they suffer from the limitation

that they use gene transcripts as a proxy for proteomic changes. As

a result, they are unable to capture post-transcriptional changes in

proteins, which are an important part of signaling and regulation.

The advent of improved proteomic methods has the potential to

provide a systematic map of critical signaling pathways that are

altered in disease. Computational approaches to combine tran-

scriptional and proteomic data have focused on assessing the

correlation between the data sources [8–10]. Some network

analyses of proteomic and transcriptional data treated both as

evidence of changes in protein levels, which were then viewed in

the context of known pathway models [11,12]. By equating

transcripts and the proteins they encode, such network models do

not make full use of the data. Alternative approaches that treat

proteomic and transcriptional data as distinct can examine how
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proteomic signaling drives changes in gene regulation. Methods

that search for physical associations among proteins and between

proteome and the genome are likely to be particularly important in

the analysis of phosphoproteomic data from mass spectrometry.

Phosphoproteomics selectively measures protein phosphorylation,

a principal biochemical mechanism of cellular signaling control-

ling gene expression. Since changes in phosphorylation and

transcription are poorly correlated ([13] and Figure S1), they are

highly complementary, providing distinct windows into cellular

processes.

Previously, we have shown that phosphoproteomic and

transcriptional data from the yeast Saccharomyces cerevisiae phero-

mone response could be linked through physical networks in a

framework of constraint optimization on interactome networks

known as the prize-collecting Steiner tree (PCST) [14]. This

approach revealed relevant proteins and pathways that could not

be discovered when each type of data was analyzed in isolation.

Furthermore, it identified a network more compact and function-

ally relevant than networks constructed from direct interactors of

the phosphoproteomic hits and transcription factors or by a

related network optimization method ResponseNet [15,16].

However, the method depended on the availability of experimen-

tally determined genome-wide binding locations for almost all the

transcriptional regulators in yeast [17,18]. Such data are

unavailable for mammalian cells in which the most comprehensive

analysis so far has produced data for fewer than 10% of the

transcription factors and only in a limited number of cell types

[19].

In order to study disease-related pathways in mammalian cells,

we developed a combined computational and experimental

strategy that predicts transcription factors with altered binding

or activity relevant to a particular cell type under specific

conditions. First, we used DNaseI-hypersensitivity site sequencing

(DNase-Seq) [20] to identify regions bound by as yet unknown

regulatory proteins in each condition of interest. Scanning these

sequences with a library of motifs revealed preliminary candidates

of relevant binding proteins [21–23]. To discover the subset of

these motifs most likely to be regulatory, we employed a

regression-based method to infer the activity of specific transcrip-

tion factors [24–26]. For each potential regulatory protein, we

tested whether the quality of transcription factor motif matches in

differentially hypersensitive regions correlated with the expression

level of nearby genes. We then searched for protein-protein

interactions that link these transcriptional regulators to upstream

phosphoproteomic events by solving a PCST problem on the

interactome (Figure 1A).

Beginning with an interactome network in which the reliability

of each interaction is weighted by experimental evidence, we find

an optimal subnetwork of the most reliable interactions that

include a subset of the phosphorylation events and the transcrip-

tional regulators, with preferences given to phosphorylation events

that undergo large changes and transcriptional regulators that

show strong activities. An important aspect of the PCST algorithm

is that it is able to naturally account for missing data and false

positives. In particular, since the input experimental data do not

capture every relevant protein, we allow the network to include

proteins that were not explicitly measured in the proteomic or

transcriptomic assays. In addition, to account for false positives in

the data, we allow the algorithm to exclude experimentally

determined proteins and genes that are not connected with high

confidence interactions. As a result, the final networks are

compact, enriched for functionally relevant proteins and the most

reliable interactions that include these proteins, and can be used to

guide subsequent experiments. To further account for possible

noise in the input datasets, we merge an optimal PCST solution

with a set of suboptimal solutions to obtain a robust final network

(see Materials and Methods).

Here we apply our integrated approach to prioritize experi-

ments for probing the signaling pathways downstream of a mutant

epidermal growth factor receptor (EGFR) in glioblastoma multi-

forme (GBM). The variant III mutant of EGFR (EGFRvIII) is the

most common deletion mutant of EGFR in human cancer [27]

and its levels are highly correlated with poor prognosis in GBM

[28–30]. The deletion of exons 2–7 removes most of the

extracellular ligand binding domain, so it is unable to bind EGF

or other EGFR-binding ligands [31]. Nevertheless, the mutant

receptor is constitutively phosphorylated [32], and is capable of

activating downstream signaling pathways at a low level. Unlike

wild-type EGFR signaling, which shuts itself off through a process

known as receptor-mediated down-regulation, EGFRvIII signaling

does not, leading to its oncogenic properties [31]. To compre-

hensively identify the downstream signaling consequences of the

EGFRvIII, we incorporated phosphoproteomic, transcription

profiling and DNase-Seq data from U87MG glioblastoma cells

expressing this oncogenic mutant receptor (Figure 1B). In addition

to recapitulating many known components in EGFRvIII signaling

and transcriptional regulation, our network predicts key signaling

nodes not apparent from the experimental data and provides a

method for prioritizing experimental tests. We validated several of

these predictions through pharmacological tests and genome-wide

protein-DNA binding measurements. We propose that combining

epigenomic methods to uncover transcriptional regulators and

constraint optimization on biological networks effectively organiz-

es disparate transcriptional and proteomic data, and can be used

to discover unknown components of biological responses leading,

potentially, to new therapeutic strategies.

Results

To understand the signaling pathways downstream of EGFR-

vIII, we used as a model two cell lines derived from human

U87MG glioblastoma cells that were engineered to express high

levels of EGFRvIII (U87H; 2 million receptors per cell) or a

mutant form of the receptor with an inactive kinase (U87DK)

Author Summary

The ways in which cells respond to changes in their
environment are controlled by networks of physical links
among the proteins and genes. The initial signal of a
change in conditions rapidly passes through these
networks from the cytoplasm to the nucleus, where it
can lead to long-term alterations in cellular behavior by
controlling the expression of genes. These cascades of
signaling events underlie many normal biological process-
es. As a result, being able to map out how these networks
change in disease can provide critical insights for new
approaches to treatment. We present a computational
method for reconstructing these networks by finding links
between the rapid short-term changes in proteins and the
longer-term changes in gene regulation. This method
brings together systematic measurements of protein
signaling, genome organization and transcription in the
context of protein-protein and protein-DNA interactions.
When used to analyze datasets from an oncogene
expressing cell line model of human glioblastoma, our
approach identifies key nodes that affect cell survival and
functional transcriptional regulators.

Regulatory Networks from Diverse ‘‘-omics’’ Data
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[31,32] (Figure 1B). U87MG is a widely used cell line model for

human grade IV glioma and many aspects of its biology have

been well characterized. Independent long-term cultures of these

cells are genetically stable [33], making it possible to interpret

results from different laboratories at different times. Many

findings from EGFRvIII expressing-U87MG cells have been

validated in vivo [31,32,34–37]. Since the signaling network for

wild-type EGFR is well established but not for EGFRvIII, this

system provided us the opportunity to explore the global

biochemical events downstream of an important oncogenic

mutant, the relationships between these events and their

functional significance in a setting with established biological

relevance. A previous quantitative phosphoproteomics study [37]

detected 100 phosphorylation sites on 88 proteins in these two

cell lines. In this study, we used microarrays to measure global

expression differences between these cells, identifying 1,623

differentially expressed genes (Table S1).

In order to uncover links between the phosphorylation and

transcriptional changes, we identified a set of transcriptional

regulators that were most likely to be differentially active in the

two cell types and responsible for the transcriptional changes. Our

approach integrates sequence information with epigenomic and

expression differences between the cell lines. We collected DNase-

Seq data in each cell line and found 12,807 regions that showed

quantitative changes in hypersensitivity. About 68% of these sites

were hypersensitive in only one condition, while the rest were

hypersensitive to different extents in the two cell lines. We then

scanned these differentially hypersensitive regions for matches to

known DNA binding motifs to compute affinity scores of the

motifs in these regions. To select a subset of these motifs most

likely to drive expression differences, we scored each motif using a

univariate regression model relating its affinity scores in the

differentially hypersensitive regions to differential mRNA expres-

sion of genes within 40 kb [24–26]. Each regression equation

evaluated the function of one protein over potentially hundreds of

proximal and distal regulatory elements associated with the set of

differentially expressed genes. As a result, we were able to discover

trans-acting transcription factors from the changes between two

cell types.

With this approach, we identified 185 significant motifs that

mapped to 297 proteins in the interactome (see Materials and

Methods). These proteins represent candidate factors that show

either partial or complete changes in their activity between the

cell lines. Proteins identified either through phosphoproteomic

measurements or by this regression analysis were provided as

input to the PCST algorithm along with the interactome data

(Figure 1B). The algorithm was run multiple times to find an

optimal PCST and a set of ten related sub-optimal solutions.

Merging these network solutions, we obtained the network

presented in Figure 2. Adopting the PCST terminology, we refer

to the phosphoproteins and transcription factor candidates as

‘‘termini’’ and the nodes supported only by the network analysis

as ‘‘Steiner nodes’’.

The interactome we used was derived from iRefIndex [38], a

protein interaction database consolidating records from many

primary interaction databases such as BIND [39], BioGRID [40],

HPRD [41], IntAct [42] and MINT [43]. To account for the fact

that the interactions vary in their reliability, we used the Miscore

algorithm [44] to assign to each edge in the interactome graph a

cost that is inversely related to a likelihood score for the

interaction, taking into account the experimental methods that

detect the interaction, the type of the interaction, and the number

of publications supporting the interaction. The PCST algorithm

aims to minimize the sum of the costs of edges required to connect

the termini. Therefore, the optimal PCST solution represents a

most likely network that links together the protein termini

supported by experimental data.

The PCST solution recapitulates known biology of
glioblastoma

The PCST network constructed from the U87 EGFRvIII

dataset consists of 199 edges and 172 nodes, of which 65 are

Figure 1. Setting up the PCST problem. A. Finding a network of interactions that link phosphorylation events and differentially transcribed genes
can be formulated as an optimization problem on a protein interactome. The objective function (equation in box) represents a balance between
excluding nodes for which there is experimental evidence (phosphorylated proteins as yellow circles and transcription factors as blue triangles) and
including edges weighted by reliability. The light grey rectangle containing edges from transcription factors to target mRNAs indicates these edges
are not directly included in the interactome. Instead, they are used to infer the activity of transcription factor candidates (see Materials and Methods).
The optimal solution to the PCST problem connects the phoshoprotein termini and the transcription factor termini by reliable interactions (red lines)
that may involve nodes not explicitly observed in the experimental data (Steiner nodes; dark grey circles). TF: transcription factor. DHS: differentially
hypersensitive. DE: differential expression. The superscripts a to e correspond to the superscript labels of input data types in B. B. The input datasets
from U87MG EGFRvIII-expressing cells used in this study.
doi:10.1371/journal.pcbi.1002887.g001

Regulatory Networks from Diverse ‘‘-omics’’ Data
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phoshoprotein termini and 63 are transcription factor termini

(Figure 2). It gives a high-level view of the overall biological

processes involved. Such processes include signaling pathways

known to be activated downstream of EGFRvIII in U87MG cells,

such as the phosphatidylinositol 3-kinase (PI3K) pathway and the

Ras-Raf-MEK pathway (HRAS, RAF1 and various mitogen-

activated protein kinases (MAPK) in Figure 2) [45,46]. Others are

more general processes induced by EGFRvIII that are known to

contribute to tumor development, such as regulation of the cell

cycle [45], DNA damage response [36], actin cytoskeleton

organization and cell motility [47,48]. We also note that the

network includes the following two cell surface receptors: MET

(met proto-oncogene), which contains a tyrosine phosphorylation

site, and ERBB2 (v-erb-b2 erythroblastic leukemia viral oncogene

homolog 2, neuro/glioblastoma derived oncogene homolog

(avian)), for which no phosphorylated tyrosine residue was

detected. Both were previously shown to be cross-activated by

EGFRvIII [37,49].

Intriguingly, the network includes two subnetworks containing

neurological processes previously linked to GBM: synaptic

transmission and axon guidance. The neurotransmitter glutamate,

which mediates synaptic transmission through the N-methyl-D-

aspartate glutamate receptors 2A and 2B (GRIN2A and GRIN2B)

that appear in the PCST network, can promote glioma cell growth

[50], and this pro-proliferative effect in U87MG cells is due to

EGFR signaling [51]. In addition, genes associated with synaptic

transmission and axon guidance are detected as frequently altered

in large-scale sequencing and gene expression analysis of human

GBM [52]. Although the genetic and transcriptional changes are

associated with the neural subtype of GBM, where the EGFRvIII

mutation was not found [53], our findings raises the possibility that

EGFRvIII-induced post-translational modification may also alter

these processes.

Our approach also recovered a number of transcriptional

regulators already known to be involved in EGFRvIII signaling.

For example, our network identifies the transcription factor

signal transducer and activator of transcription 3 (STAT3),

which has been previously implicated in EGFRvIII induced

transformation [54]. The STAT proteins are unusual in that

they were included due to three types of evidence: the expression

regression procedure, a tyrosine phosphorylation site on STAT3

(Y705) [37] and direct interactions with EGFR (both wild-type

EGFR and EGFRvIII) [54–57]. In contrast, the other transcrip-

tion factors in the PCST network were present solely because of

Figure 2. PCST constructed from the U87 datasets. This is a composite network representing the union of the optimal solution to the original
PCST problem and 10 suboptimal solutions where 15 percent of the nodes must be different from the optimal solution. TF: transcription factor. Node
weight: the log2 fold changes in phosphorylation from the phosphoproteomic data comparing U87H to U87DK cells, or values from the expression
regression procedure using the mRNA microarray, DNase-Seq and transcription factor motif data. The absolute value of node weights was used as
penalty values for the PCST algorithm.
doi:10.1371/journal.pcbi.1002887.g002

Regulatory Networks from Diverse ‘‘-omics’’ Data
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our modeling approach. Several of the prominent transcription

factors in the PCST network, such as nuclear factor (NF)-kB

(RELA and REL), activator protein 1 (AP-1; consisting of c-Fos

(FOS), c-Jun (JUN), ATF proteins), and CCAAT/enhancer

binding protein (C/EBP; family member C/EBP-b (CEBPB)),

have been reported to be activated in EGFRvIII-expressing

glioblastoma cells in an independent study [58]. Furthermore,

the oncoprotein MYC, which was captured by our network, is

known to be expressed in the U87MG cells and its transcrip-

tional activity contributes to the undifferentiated state and

consequently the high tumorigenicity of this cell line [59]. We

emphasize that neither the phosphoproteomic data nor the

transcription profiling data alone would have suggested roles for

these proteins. No phosphorylation sites on these transcription

factors were reported by mass spectrometry, and even the

tyrosine phosphorylation site on STAT3 (Y705) showed less than

10% change in response to EGFRvIII expression. Nevertheless,

in our network solution these transcription factors are promi-

nently featured, demonstrating the value of the PCST algorithm

for integrating these data by the interactome. By contrast,

standard analysis of the promoter sequences of the differentially

expressed genes for enriched transcription factor motifs resulted

in only the cell cycle regulator E2F and a zinc finger protein

(Table S2).

The PSCT solution identifies proteins relevant to GBM
The PCST solution network was constructed by finding a small

number of proteins that directly or indirectly interact with the set

of termini in order to explain the measured changes between

U87H and U87DK cells. Compared to networks constructed from

proteins that directly interact with the set of phosphorylated

proteins, transcription factor candidates or both (‘‘nearest neigh-

bor’’ networks), the number of nodes in the PCST solution

network is about 4% to 7% of these nearest neighbor networks

(Figure 3A). To systematically assess whether the highly compact

view of the experimental data provided by the PCST solution is

able to capture the underlying biological process, we compared the

PCST solution to the alternate network approaches with respect to

curated collections of genes known to be relevant to GBM. The

Cancer Genome Atlas (TCGA) GBM 6000 Gene Ranker [60]

scores and ranks over 7,600 genes for relevance to GBM based on

gene expression, mutation, pathway analysis and literature

curation. Figure 3B illustrates the scoring of all nodes reported

by the various network solutions in addition to the PCST. As

expected, the set of all termini (those directly detected in the

phosphoproteomic data and inferred from differential expression)

have high scores. However, we found that the proteins included in

the PCST solution scored even higher, and also scored higher than

the set of proteins in the input interactome that were excluded

from the PCST solution (Figure 3B). A possible trivial explanation

for this enrichment could have been that all proteins that interact

with the termini are more relevant than the non-interactors, as a

result of the biology or biases in the gene ranker curation. To

explore this possibility, we compared the PCST to the nearest

neighbor networks of various sets of termini and to ResponseNet, a

previously published optimization-based network construction

algorithm [16]. Both ResponseNet and PCST outperform the

nearest neighbor networks. As the PCST solution is smaller than

that of ResponseNet and achieves slightly better performance, it is

likely to be better for guiding experiments. In summary, the PCST

network approach selected a combination of experimentally

determined proteins and ‘‘hidden’’ proteins that are relevant to

GBM.

The PCST solution is specific to EGFRvIII at the signaling
and transcription level

Since GBM is a heterogeneous disease where the EGFRvIII

mutation is among the most common mutation of EGFR [53], we

used independent datasets to validate that our network was specific

to the EGFRvIII mutation among GBM cases. At the signaling

level, we utilized a recently published global phosphoproteomic

analysis of mouse GBM xenografts [61]. This study identified 225

tyrosine phosphorylation sites on 168 proteins, and is independent

of the U87 cell line data that were the input to the PCST network.

Comparison of xenografts expressing high level of EGFRvIII to

xenografts expressing normal level of wild-type EGFR resulted in

11 differentially phosphorylated proteins. We asked how closely

connected (in the protein interaction network) these EGFRvIII-

specific phosphorylation events detected in xenografts were to

proteins in the PCST network derived from the U87MG cell lines

(Figure 3C). 158 of the 168 proteins in this dataset are present in

the set of 11,637 proteins in the interactome that we could score

for connectivity to the PCST. We found that 10 out of the 11

(91%) EGFRvIII-specific phosphorylation events fell in the top

6.4% of the proteins closest to the PCST compared to 36.7% of

the phosphorylation events that were not EGFRvIII-specific

(p,0.003 and Figure 3D). This suggests that the PCST solution,

although constructed using experimental data from a tissue culture

model, is closely related to protein signaling changes induced by

the same oncogenic mutation in vivo.

To determine if the transcription factors in the PCST solution

contribute to the transcriptional response to EGFRvIII mutation

in human patients, we used publicly available TCGA GBM data

[53,62] to compare gene expression alterations in patients with

and without the vIII mutation. More specifically, we extracted a

set of samples that share mutation status with the U87 cells (p53

wild-type and p16 null) and classified those samples by EGFRvIII

status based on EGFR exon probe set expression. Overall, the

differences in expression between tumors with wild-type EGFR

and those with the vIII mutation were small, which is consistent

with the heterogeneous nature of GBM (Figure S2). We tested

whether the targets of transcription factors in the PCST solution

were associated with vIII-associated changes in gene expression as

described below. First, we collected potential targets of each

transcription factor in TRANSFAC by scanning for motif matches

in genomic regions that show higher DNaseI hypersensitivity in

each of the U87H and U87DK cells within 40 kb of transcription

start sites. We then ranked all genes by the log-fold change

between patients with and without the EGFRvIII mutation and

used the minimum hypergeometric statistic (mHG; [63]) to ask

whether the ranks of the putative targets of that transcription

factors differ from the distribution expected from whole genome

background by chance. Thus, for each transcription factor

identified in the U87H and U87DK cells we obtained a p-value

representing the significance of finding EGFRvIII responsive up-

and down-regulated genes in the putative targets of this factor,

depicted in Figure 3E.

The EGFRvIII up-regulated genes in the TCGA samples are

more strongly enriched (lower mHG p-values) for targets of the

transcription factors identified in the U87H cells (U87H TF) than

the EGFRvIII down-regulated genes (Figure 3E top panel).

Conversely, for the set of transcription factors that have motif

matches in regions with increased DNaseI hypersensitivity in the

U87DK cells (U87DK TF), their targets are more strongly

enriched for EGFRvIII down-regulated genes than the up-

regulated genes (Figure 3E bottom panel). These results support

the utility of differential hypersensitivity for identifying transcrip-

tion factors relevant to human tumors even though the DNase-Seq

Regulatory Networks from Diverse ‘‘-omics’’ Data

PLOS Computational Biology | www.ploscompbiol.org 5 February 2013 | Volume 9 | Issue 2 | e1002887



Regulatory Networks from Diverse ‘‘-omics’’ Data

PLOS Computational Biology | www.ploscompbiol.org 6 February 2013 | Volume 9 | Issue 2 | e1002887



data were generated exclusively from cell lines and the EGFRvIII

mutation has a modest effect on the global transcriptional

programs in patients.

To assess the role of the PCST in selecting biologically relevant

transcription factors, we classified factors based on whether they

were included in the PCST solution. The U87H transcription

factors included in the PCST network solution have even stronger

enrichment in the EGFRvIII up-regulated genes than those factors

excluded from the PCST solution (Figure 3F first panel), and the

U87DK transcription factors included in the PCST show stronger

enrichment in genes down-regulated in EGFRvIII patients than

the excluded factors (Figure 3F fourth panel). Such differences

between the included and excluded transcription factors are not

observed for the associations between the U87H transcription

factor targets and the EGFRvIII down-regulated genes, or

between the U87DK transcription factor targets and the

EGFRvIII up-regulated genes (Figure 3F second and third panel).

This finding suggests that for transcription factor candidates

selected based on motif evidence in open chromatin and

correlation with target expression in cell line models, those that

can be linked to upstream signaling changes are more likely to

affect expression changes in vivo.

Network connectivity analysis can be used to prioritize
experiments

Having established that our approach recovered prior knowl-

edge related to GBM, we used the network to prioritize

experiments for testing new points of intervention in the network.

We selected protein targets based on two criteria: (1) a quantitative

score that measures how closely connected they were to the nodes

in the PCST in the interactome (Figure 3C) and (2) whether they

were targets of commercially available small molecules [64–66].

Our final list included fifteen nodes, all of which were among the

30% of the interactome most closely connected to the PCST.

Eight of these were extremely high-scoring nodes (of which seven

are in the original PCST and one is closely connected to the

PCST), one was an intermediate scoring nodes, and six were

lower-scoring nodes (Table 1). We treated the U87DK and U87H

cells with small molecule antagonists for these highest-, interme-

diate- and lower-scoring nodes (‘‘high-ranked’’, ‘‘mid-ranked’’ and

‘‘lower-ranked’’ targets) at a wide range of concentrations and

measured the resulting cell viabilities relative to those of vehicle

treatment.

We first compared the effects of all the compounds at a

concentration of 10 mM (except for harmine, which was only

soluble at 5 mM in the organic solvent DMSO) (Figure 4A). With

the exception of PDTC, which targets NF-kB (NFKB1), all

compounds targeting the highest-ranked nodes reduced viability

by at least 40% at 10 mM. In the cases of 4-OHT (targeting the

estrogen receptor ESR1), 17-AAG (targeting heat shock protein

90kDa a HSP90AA1) and PKF118–310 (targeting b-catenin

CTNNB1), more than 70% of the cells were killed at concentra-

tions lower than 10 mM. The effects on the mid- and lower-ranked

nodes were more modest, resulting in 10 to 50% reduction of

viability. One trivial explanation for such difference would be if

the compounds for the intermediate and lower-ranked targets

happen to require higher doses in all biological contexts. However,

this was not likely the case because these concentrations, which

were only weakly effective in the U87-derived cells, were a few

orders of magnitude higher than the GI50 values (the concentration

that inhibit growth by 50%) in the NCI60 panel of cancer lines as

reported by the In Vitro Cell Line Screening Project (IVCLSP) of

the National Cancer Institute Developmental Therapeutics

Program ([67] and http://dtp.nci.nih.gov/). By contrast, the

doses we used to target the highest-ranked nodes were within the

range of GI50 values (Figure S3). Therefore, we conclude that the

highest-ranked targets have stronger effects on the viability of the

U87 cells than the targets with lower ranks.

Figure 3. The PCST solution network is compact, relevant to GBM and specific to EGFRvIII. A. The number of nodes in networks
constructed from multiple approaches and their overlap with the PCST solution. NN of pY termini: the proteins containing phosphorylated tyrosine
residues reported by mass-spectrometry and their direct interactors (nearest neighbors) in the interactome. NN of TF termini: transcription factor
candidates selected by the expression regression procedure and their direct interactors in the interactome. NN of all termini: the union of pY termini,
TF termini and their direct interactors in the interactome. RN: a network constructed by using a flow based approach ResponseNet [16] to connect
the pY termini to the TF termini. B. GBM gene ranker scores for nodes included in the PCST solution were significantly higher than the nodes excluded
from the PCST solution (labeled as ‘‘Interactome excl. PCST’’; p,2.2E-16 by Wilcoxon rank-sum test) and compared favorably to the nearest neighbor
networks. Higher GBM scores indicate greater relevance to the disease. C. Scoring proteins by connectivity to the PCST solution representing a
disease network. The score of each protein, whether the protein is inside or outside of the original PCST network, is the sum of the scores of all its
interactions with the nodes in the PCST. Thus a node in the interactome (deep red) with many high confidence interactions to the nodes in the PCST
disease network receives a higher score than a node in the interactome (light red) that has fewer or lower confidence interactions to the nodes in the
PCST. D. Proteins with EGFRvIII regulated tyrosine phosphorylation in mouse xenografts (red bars) are more closely connected to the PCST solution
than the proteins on which the tyrosine phosphorylation levels do not change significantly (green bars). Each protein in the interactome was scored
then ranked by its connectivity to the PCST solution constructed from the U87 cell line data as described in B and in Materials and Methods. P-value
was computed by Wilcoxon rank-sum test comparing the ranks of EGFRvIII-specific and not EGFRvIII specific phosphorylated proteins. The number of
proteins in each category is indicated in parentheses. E. The targets for transcription factors identified in condition-specific DNaseI hypersensitive
regions are enriched for genes differentially expressed in response to EGFRvIII. U87H TF: transcription factors that have motif matches in regions with
increased DNaseI hypersensitivity in the U87H cells and within 40 kb of transcription start sites. U87DK TF: transcription factors that have motif
matches in the regions with higher DNaseI hypersensitivity in the U87DK cells and within 40 kb of transcription start sites. EGFRvIII up- and down-
regulated genes: genes that are up- or down- regulated in the TCGA GBM exon array dataset comparing EGFRvIII positive samples to wild-type EGFR
samples. For each TF, we computed a minimum hypergeometric (mHG) p-value that tested for the probability that the set of target genes are
differentially expressed in the TCGA GBM samples by chance. Top panel: U87H TF targets are more enriched (smaller mHG values) in EGFRvIII up-
regulated genes than in EGFRvIII down-regulated genes. Bottom panel: U87DK TF targets are more enriched in EGFRvIII down-regulated genes than
in EGFRvIII up-regulated genes. P-values were computed by Student’s t-test comparing the mHG p-values on EGFRvIII up- and down-regulated genes
for each set of TF. F. The transcription factors included in the PCST solution are more enriched in EGFRvIII-induced differential gene expression than
the transcription factors excluded from the PCST. Each set of U87H TF and U87DK TF were further divided into whether they were included in the
PCST solution, denoted by the ‘‘Yes’’ and ‘‘No’’ categories. First panel: targets of U87H TF included in the PCST solution have stronger enrichment in
EGFRvIII up-regulated genes than targets of the TF excluded from the solution. Fourth panel: targets of U87DK TF included in the PCST solution have
stronger enrichment in EGFRvIII down-regulated genes than targets of the TF excluded from the PCST. Second and third panel: with respect to the
comparison between U87H TF targets and EGFRvIII down-regulated genes, or between U87DK TF targets and EGFRvIII up-regulated genes, the TF
included in the PCST do not show significantly stronger enrichment than the TF excluded from the PCST. P-values were computed by Student’s t-test
comparing the mHG scores of TF included in the PCST and TF excluded from the PCST.
doi:10.1371/journal.pcbi.1002887.g003
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To further understand the behavior of these compounds on the

U87 cells, we fit the measured dose responses to a four-parameter

log-logistic (4-PL) function. For compounds that could be fit to the

4-PL model (lack-of-fit test p.0.05), we compared parameters of

the fitted curves between U87H and U87DK cells (Figure 4B).

Compounds for three out of the four highest-ranked targets,

SAHA (targeting histone deacetylase HDAC1), 4-OHT (targeting

estrogen receptor ESR1) and PFK118–310 (targeting b-catenin

CTNNB1) were more toxic under EGFRvIII expressing condition

(p,0.01), with LD50 values an average of two-fold higher in the

DK cells. In contrast, cells treated with two of the three

compounds for the lower-ranked targets, SB-505124 (targeting

TGF-b receptor 1 TGFBR1, ranked 193 out of 11,637) and

harmine (targeting dual-specificity tyrosine phosphorylation-regu-

lated kinase DYRK1A, ranked 2,232 out of 11,637), exerted

similar effects on the two cell lines. SB-431542 (for the lower-

ranked targets TGFBR1, ranked 193 out of 11,637, and activin

receptor type-1B ACVR1B, ranked 1,695 out of 11,637) appeared

to exert a significantly different effect in the presence of EGFRvIII,

but the difference in LD50 values was only 1% and more than

30 mM was required to reduce viability by 50% compared with

much lower doses for the high-ranked targets. These results

demonstrate that the compounds targeting the high-ranked nodes

are more likely to have strong effects on cell viability and be

associated with large differential sensitivity between two cell lines,

implying the high-ranked targets give rise to important signaling

differences induced by EGFRvIII.

ChIP validated the relevance of transcriptional
coregulator p300

Since transcriptional regulation is the first step that defines the

long-term behavior of the cell including tumorigenesis, we sought

to identify the transcriptional regulators responding to oncogenic

signaling. In addition to several transcription factors known to be

induced by EGFRvIII, our PCST network also included novel

putative transcriptional regulators. Using the same scoring

procedure as for ranking targets for small molecules (Figure 3C),

we selected the highly ranked transcriptional co-regulator p300

(EP300) for experimental validation (Table 1). p300 is a

particularly interesting candidate because it is the highest ranked

transcriptional regulator (out of 937 annotated transcription

factors, co-activators and co-repressors ranked by the network),

and although it appears in the network it is not a terminal, i.e., it

was not identified as a transcription factor candidate, nor does it

contain phosphorylated tyrosine residues. We chose to perform a

chromatin immunoprecipitation sequencing (ChIP-Seq) experi-

ment for p300 since determining the genome-wide binding

locations of a transcriptional regulator may suggest its biological

functions and shed light on its regulatory mechanism. Both aspects

could validate the predicted relevance of p300 in our experimental

system and therefore demonstrate the capability of our method to

uncover important regulators not present in the original signaling

and transcription data.

We therefore performed a ChIP-Seq experiment in the U87H

cells to identify the genes targeted by p300. 60.8 million uniquely

mapped reads of 36 bp were obtained (Table S3). Peak calling by

MACS reported 28,721 peaks at low stringency (p-value threshold

1E-05) and 7,657 peaks at high stringency (p-value threshold 1E-

07), mapped to 6,391 and 1,969 genes within a 10 kb window,

respectively.

p300 does not directly bind DNA but is instead recruited to its

targets by sequence-specific DNA-binding proteins. Therefore, the

PCST algorithm selected it solely by virtue of its protein-protein

interactions. Nevertheless, if the network is correct, we should be

able to detect the consequences of its recruitment to the DNA.

Indeed, we found evidence that p300 is actively involved in

chromatin remodeling of these cells: p300 binding sites are

significantly enriched in regions that increase in hypersensitivity in

the U87H cells compared to U87DK cells (p,1E-23; Figure 5B),

Table 1. High-, mid- lower-ranked nodes by the PCST network and the experiments used to validate their importance.

Experiment Small molecule inhibitor Antibody Target Target rank Target type

Viability Dasatinib SRC 3 High-ranked target

FYN 12

ChIP-Seq sc-585x EP300 4 High-ranked target

Viability ICG-001 CREBBP 5 High-ranked target

Viability 4-hydroxytamoxifen (4-OHT) ESR1 15 High-ranked target

Viability suberoylanilide hydroxamic acid (SAHA) HDAC1 19 High-ranked target

Viability PKF118–310 CTNNB1 21 High-ranked target

Viability ammonium pyrrolidinedithiocarbamate (PDTC) NFKB1 23 High-ranked target

Viability 17-N-Allylamino-17-demethoxygeldanamycin
(17-AAG)

HSP90AA1 26 High-ranked target

Viability SB-505124 TGFBR1 193 Mid-ranked target

Viability SB-431542 TGFBR1 193 Mid-ranked target

ACVR1B 1695

Viability Rapamycin MTOR 698 Lower-ranked target

Viability D4476 CSNK1A1 875 Lower-ranked target

Viability Harmine DYRK1A 2232 Lower-ranked target

MAOA 8508.5

Viability Paclitaxel TUBB1 3582 Lower-ranked target

For cell viability assays, the inhibitors used are listed. Note that some inhibitors have multiple targets. For ChIP-Seq, the antibody used is listed.
doi:10.1371/journal.pcbi.1002887.t001
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Figure 4. Validation of targets predicted by network connectivity by cell viability assays. A. Cell viability for treatment with compounds
targeting high-scoring nodes (high-ranked targets), intermediate-scoring nodes (mid-ranked targets) and low-scoring nodes (lower-ranked targets),
at 0.5 mM concentration of 17-AAG, 5 mM for harmine (due to low solubility in DMSO) and 10 mM concentration of others. The color bar at the top of
each target corresponds to its relative ranking within the interactome. B. Dose response curves of compounds targeting high-scoring nodes and
lower-scoring nodes for those that can be fitted to the four-parameter log-logistic model (lack-of-fit test p-value.0.05). P-values between cell lines
were computed by comparing the model where one curve was fitted to the data from each cell line to the null model where one shared curve was
fitted to the data from both cell lines.
doi:10.1371/journal.pcbi.1002887.g004
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suggesting that p300 may regulate transcriptional changes between

the two cell types.

Our networks also included the DNA-binding proteins that

recruit p300 to its targets. To test these predictions, we examined

the sequence motifs present in the highest confidence p300 targets,

defined as those regions that were present in the ChIP-Seq data

and showed a change in DNaseI hypersensitivity between the cell

lines. We used cross-validation to rank motifs by their ability to

predict which differentially hypersensitive sequences were p300

targets (see Materials and Methods). Of the 151 non-redundant

vertebrate TRANSFAC motifs, 52 correspond to proteins known

to interact with p300; 33 of these were inside the PCST and 19

were outside of it. Among the 20 motifs that were the most

predictive of p300 recruitment, at least 8 correspond to proteins

inside the PCST (enrichment p-value = 0.039 by Fisher exact test),

while only one was outside of the PCST (enrichment p-

value = 0.94 by Fisher exact test) (Table S4). These motif results,

together with the observed association between p300 binding and

hypersensitive sites, provide solid support for the role assigned to

p300 in the network as a transcriptional regulator responding to

EGFRvIII.

Gene Ontology enrichment analysis of the p300 targets

identified by ChIP-Seq revealed the potentially important role of

this protein in regulating the transcriptional consequences of the

EGFRvIII mutation (Table 2), specifically in cellular adhesion and

response to hormone. Neither of these categories is enriched in

p300-bound sites in the two other cell types in ENCODE [19] for

which ChIP-Seq data were available (Table S5), suggesting that

the functional role of p300 is likely to be specific to our system.

Discussion

Linking signaling and transcription data by molecular
interactions generates novel mechanistic hypotheses

We have shown that the PCST solution provided an integrated

view of the biological processes in the EGFRvIII network leading

to directly testable predictions. Our analysis revealed proteins

whose activities we subsequently targeted with small-molecule

inhibitors to block the growth of tumor cell lines. In addition, the

PCST solution network identified transcriptional regulators

enriched at hypersensitive sites. Many of the proteins we targeted

did not appear in the phosphoproteomic and transcriptional

profiling data but were selected among thousands of other proteins

in the interactome graph that interact directly or indirectly with

the hits from the experiments. In particular, a network of direct

interactors of the phosphorylated proteins contains 2,554 nodes. In

the absence of a network optimization approach, it would be

extremely difficult to prioritize experiments. Using the PCST

approach, we were able to integrate the phosphoproteomic data

with additional transcriptional data and provide a ranked list of

proteins for experiments. Targets far from nodes in the PCST

were less likely to exert differential cytotoxic effects in response to

the oncogenic mutation, and in the cases in which targeting these

nodes were cytotoxic, their effects tended to be weaker. Therefore,

our approach provides a powerful way to prioritize targets based

on experimental datasets that represent different aspects of the cell

state such as protein signaling, chromatin conformation, and

transcription output.

Our network-based approach was also able to identify

transcriptional regulators that could not be found by other

methods. Standard promoter analysis of the differential expressed

genes in the current datasets yielded little information about

potential DNA binding proteins besides the cell cycle regulator

E2F and a zinc finger protein (Table S2), whereas integrating data

from upstream signaling allowed us to identify promising

candidates. The experimental validation of p300 exemplifies the

power of our approach. p300 was not a hit in the tyrosine

phosphoproteomic dataset, nor was it a sequence-specific DNA

binding protein for which a motif can be correlated to differential

mRNA expression from the regression analysis. However, it was

included in the network due to its connectivity to the measured

signaling events and to the sequence specific transcription factors.

Identifying genome-wide binding locations of p300 by ChIP-Seq

provided experimental support for its role in chromatin remod-

eling and tumorigenic processes.

Functional roles of p300
At the genome-wide level, p300 targets were found to be

enriched in genes involved in the response to hormone. Little is

known about the role of p300 in regulating hormone response

genes transcriptionally. However, it is known that p300 associates

with multiple nuclear hormone receptor proteins and functions as

a co-regulator [68,69]. Our observation that nuclear receptor

genes are p300 targets may represent a mechanism for the

autocrine loop observed in EGFRvIII expressing glioma cells [70].

p300 targets were also associated with the process of cellular

adhesion. In particular, several p300 target genes that were

differentially expressed in the presence of EGFRvIII (Figure 5A)

are well-characterized markers for the epithelial-mesenchymal

transformation (EMT), a process that is known to alter cellular

adhesion [71]. We observed that in the presence of EGFRvIII the

cells have poor attachment to the tissue culture plate, consistent

with alteration in cellular adhesion and possibly a partial

mesenchymal phenotype. Therefore, our data point to the

potentially important role of p300 in transcriptional regulation

in our system and suggest a mechanism for the mesenchymal

properties displayed by GBM cells [72], demonstrating how

following up on high-ranked transcriptional regulators by ChIP-

Seq can lead to new biological hypotheses.

The sequence specific factors responsible for p300 recruitment

to EMT-related genes remain to be found. C/EBP-b (CEBPB) and

STAT3 have previously been shown to synergistically induce

mesenchymal transformation of glioma cells [73]. However, in our

data, the levels of C/EBP-b transcript did not change in response

to EGFRvIII expression and the phosphoproteomic data showed

no significant change in the levels of activated STAT3. Our

network results suggest a possible explanation for these findings.

The network includes an interaction between C/EBP-b and

SMAD4, and SMAD4 is known to repress the transactivation

function of C/EBP-b [74]. We also note that the SMAD4 mRNA

level is reduced by five-fold in the presence of EGFRvIII.

Together, these data suggest that EGFRvIII expression leads to

a decrease in SMAD4. This in turn activates C/EBP-b, which

recruits p300 to EMT genes.

Therapeutic and mechanistic insights from effective
high-ranked targets

We tested the effects of seven compounds targeting high-ranked

nodes predicted by the PCST solution, and six of these resulted in

significant reduction in cell viability. These compounds represent

both known and novel therapeutic agents for GBM (Table 3). Of

these agents, dasatinib has the best-characterized effect on

EGFRvIII glioblastoma. Dasatinib has anti-tumor effects on

EGFRvIII-expressing glioblastoma models, including inhibition

of invasion and induction of apoptosis [34] although its anti-

proliferative effect has also been reported in U87 cells expressing

wild-type EGFR [75]. Currently several clinical trials are ongoing

for mono- and combination-therapy of dasatinib in GBM [76].
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Figure 5. ChIP-Seq reveals functional role of p300. A. EMT marker genes bound by p300 in U87H cells. Shown are genome browser tracks for
p300 bound regions near several EMT marker genes, where the horizontal axis represent coordinates along the genome and the height of the solid
area represents the number of ChIP-Seq reads mapped to a position in the genome. For each region we show this signal from the ChIP sample that
used an antibody specific to p300 (bottom track) and the signal from the sample that used an IgG antibody for non-specific binding (top track). Arrow
indicates direction of transcription. B. Regions that are more hypersensitive (HS) in the U87H cells were significantly enriched for overlap with p300
binding regions (p,1E-05) compared to a background of all regions called hypersensitive in U87H cells, for a range of peak calling thresholds of
hypersensitivity specified on the x-axis tick marks. Enrichment p-values computed by Fisher exact test are indicated immediately below each set of
bars.
doi:10.1371/journal.pcbi.1002887.g005
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We used dasatinib to target the SRC and FYN kinases, and these

have previously been reported to be activated by EGFRvIII [34].

The HSP90 inhibitor 17-AAG, which we found to be highly

effective at sub-micromolar concentrations, has also been shown to

be effective in a variety of human glioma cell lines and glioma

models [77]. 17-AAG has entered clinical trials for several cancer

types [78], but has not yet been tested in GBM. The HDAC

inhibitor SAHA effectively inhibits tumor cell growth in multiple

glioma cell lines and mouse models [79,80], and a phase 2 clinical

trial in patients with recurrent GBM showed modest single-agent

activity [81]. In addition, co-delivery of SAHA and siRNA against

EGFRvIII synergistically induced apoptosis in GBM cells [82].

Our data is the first demonstration that SAHA alone has

additional potency in EGFRvIII-expressing cells. At a mechanistic

level, this observation may be related to our discovery that the

histone acetylase p300 is involved in chromatin remodeling

induced by EGFRvIII.

Our experiments also illustrated that the selective estrogen

receptor modulator tamoxifen reduced cell viability in both cell

types but more potently in the EGFRvIII-expressing cells.

Epidemiologic data on the effect of steroid hormone in the

etiology of glioma are ambiguous (reviewed in [83]): prior to

menopause, women are at lower risk of glioma than men,

suggesting a protective role of estrogens; however, the relative

reduction in glioma risk in women from the use of exogenous

hormone is small and inconsistent. A high dose of tamoxifen was

reported to reduce tumor volume and stabilize tumor progression

in a subgroup of recurrent malignant glioma patients [84]. At the

molecular level, there are considerable discrepancies regarding the

expression of ESR1 in human glioblastoma (see recent summary in

[83]). Further study is necessary to determine if particular selective

estrogen receptor modulators given alone or in combination with

other therapies might be more effective than the estrogen receptor

modulator alone. Although ESR1 is a well-characterized tran-

scription factor, the algorithm selected it only because of its

interactions with other proteins, not because of the presence of the

estrogen responsive element (ERE) sequence motif on DNA. Such

ERE-independent actions have precedents; ESR1 is known to

cross-talk with protein kinase cascades such as those of ERK

(extracellular-signal-regulated kinases) MAPK and PI3K [85,86]

and it regulates transcription by interaction with other transcrip-

tion factors and co-activators [87,88]. Interestingly, non-genomic

signaling by 17b-Estradiol can both stimulate and inhibit apoptosis

[89].

In addition to these previously reported compounds, we

identified ICG-001 and PKF118–310 – two agents that are

effective against the U87 cells and that had not previously been

reported in the context of GBM. ICG-001 inhibits CREBBP and

was discovered from screening in a colon cancer cell line [90]. A

more potent structural relative of ICG-001, PRI-724, entered

phase 1 clinical trial for advanced colorectal and pancreatic cancer

in February 2011. The 50% growth inhibitory concentration is in

the micromolar range for colon carcinoma cells but ten-fold higher

in normal colonic epithelial cells (4.43, 5.95, and 70.90 mM on

SW480, HCT116 and CCD-841Co cells, respectively [90]),

suggesting the greater than 50% reduction of cell viability we

observed at 10 mM concentration is likely to be relevant

physiologically. PKF118–310 is a potent inhibitor of the interac-

tion between TCF4 (transcription factor 4) and b-catenin

(CTNNB1) [91] and has shown growth inhibitory effects in cell

line models of prostate cancer [92], osteosarcoma [93], hepato-

cellular carcinoma [94], and a mouse model of breast cancer [95],

but effects on GBM have not been reported. However, there is

evidence that the target of this compound is relevant to GBM:

Wnt/b-catenin activation positively correlates with the progression

of glioma [96,97] and down-regulation of b-catenin inhibits

glioma cell growth [97,98]. In our system, expression of EGFRvIII

leads to two-fold higher sensitivity to PKF118–310, bringing it to

the sub-micromolar range of 50% growth inhibitory concentra-

tions reported in osteosarcoma [93] and hepatocellular carcinoma

cells [94]. It is therefore of great interest to determine whether a

link exists between EGFRvIII status and b-catenin activation state

in GBM patients.

Future perspectives
We have demonstrated a method for uncovering a physical

network of proteins and genes that respond to expression of an

oncogenic mutation, which we have used to reveal new methods

for specifically blocking growth of the tumor cells. Our approach

for reconstructing mammalian signaling pathways uses epigenomic

Table 2. Enriched Gene Ontology (GO) categories of p300 target genes in U87H cells.

GO Term Description P-value % FDR Official gene symbol

GO:0007155 cell adhesion 1.15E-03 2.05 AEBP1, NRP1, THRA, MYBPC3, CUZD1, CDH22, WISP1, ROBO1, DGCR6, CNTNAP2, ZYX, LOXL2,
DLG1, SPON1, ROCK1, PTPRF, NRXN2, TRPM7, PCDHB1, SDK1, ACTN1, PTPRT, NRXN1, PSEN1,
HAS1, GPR56, VCAN, SEMA4D, CD226, PARVA, PKHD1, ITGAE, TNC, ITGA11, ITGB2, PKD1L1,
ITGAM, CLDN14, CDH5, ITGBL1, LY6D, SORBS1, PTK2B, COL27A1, TTYH1, ITGB6, BAI1, COL6A2,
TSTA3, THBS2, TECTA, COL18A1, MAG, FLRT1, COL5A3, RAPH1, CLDN23, LYVE1, COL14A1,
LAMA3, CDH16, ITGA6, ERBB2IP, CD300A, DSG3, PKP4, FCGBP, MUC5AC, CDH11, MUC16

GO:0022610 biological adhesion 1.16E-03 2.07 AEBP1, NRP1, THRA, MYBPC3, CUZD1, CDH22, WISP1, ROBO1, DGCR6, CNTNAP2, ZYX, LOXL2,
DLG1, SPON1, ROCK1, PTPRF, NRXN2, TRPM7, PCDHB1, SDK1, ACTN1, PTPRT, NRXN1, PSEN1,
HAS1, GPR56, VCAN, SEMA4D, CD226, PARVA, PKHD1, ITGAE, TNC, ITGA11, ITGB2, PKD1L1,
ITGAM, CLDN14, CDH5, ITGBL1, LY6D, SORBS1, PTK2B, COL27A1, TTYH1, ITGB6, BAI1, COL6A2,
TSTA3, THBS2, TECTA, COL18A1, MAG, FLRT1, COL5A3, RAPH1, CLDN23, LYVE1, COL14A1,
LAMA3, CDH16, ITGA6, ERBB2IP, CD300A, DSG3, PKP4, FCGBP, MUC5AC, CDH11, MUC16

GO:0032870 cellular response to
hormone stimulus

1.65E-03 2.94 ADCY3, IRS2, WDTC1, ADCY2, THRA, ADCY5, PRKCI, AP3S1, IGF2, CUZD1, TRH, IRS1, GNG8,
GRB10, SORBS1, GNB1, PRKAR1B, GHRL, GNAS, HDAC9

GO:0009755 hormone-mediated
signaling

2.34E-03 4.16 GNG8, ADCY3, ADCY2, THRA, GNB1, ADCY5, PRKAR1B, GHRL, GNAS, CUZD1, TRH

1,969 genes within 10 kb of 7,657 high stringency peaks called by MACS (p,1E-07) [112] were input into the DAVID functional annotation tool [120] to identify enriched
Biological Process terms with FDR ,5%.
doi:10.1371/journal.pcbi.1002887.t002
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data to create a critical link between phosphoproteomic changes

and downstream transcriptional events via physical associations

from the interactome. Based on these networks, we were able to

identify key transcriptional regulators and discover a number of

compounds that killed EGFRvIII cells more effectively than

control cells.

While our approach has a low false-positive rate, it is possible

that it will miss many potential targets that lie far from the PCST.

In fact, we found that an inhibitor for one of the lower-ranked

targets (TUBB1, ranked 3,582 out of 11,637) did show a modest

difference in cytotoxicity between DK and H cells. Such false-

negatives arise because they are part of biological responses that

are not connected to the available data, either because the

interactome is incomplete or because these targets are functioning

in biological processes that have little in common with the

proteomic data on which we based our study.

The proteomic data selectively identified phosphorylated

tyrosine residues, which are relatively rare compared to phos-

phorylated serine and threonine [99] but display faster and bigger

fold changes [99]. However, the PCST formulation can be readily

extended to incoporate phosphorylation data on these other

residues, other post-translation modification on proteins, as well as

other experimentally- and computationally-derived protein activ-

ities that can be used as constraints. In a similar vein, we can

supplement or even completely replace the physical interactome

on which to solve for the PCST by associations derived from

purely data-driven approaches, which may create thousands of

connections with different strengths of association. The optimiza-

tion procedure provided by PCST builds parsimonius networks

consisting of the strongest associations that satisfy the experimental

constraints, providing a sound basis for designing experiments.

Our models, which treat transcriptional changes as downstream

of proteomic changes, focused on identifying the differences

between two cell types at steady state. In dynamic systems, it will

be important to include feedback as the transcriptional changes

also lead to changes at the proteomic level. Although differential

equations provide a natural way to describe such feedback, these

approaches are limited to relatively small systems. For example, a

comprehensive differential-equations-based transcriptional and

translational network for Escherichia coli [100] has been developed,

but a genome-wide model for mammalian proteomics and

transcription data is not yet feasible. We propose that our

approach can be applied to ‘‘-omics’’ data to reduce the

complexity of mammalian signaling and transcription to a point

where differential-equations-based modeling becomes feasible.

The combination of comprehensive ‘‘-omics’’ based analysis

followed by quantitative modeling would provide a method for

producing highly quantitative predictions of new therapeutic

strategies even for a broad range of diseases.

Materials and Methods

Cell culture
The human glioblastoma cell lines U87MG expressing high

levels of EGFRvIII (U87H, 2 million EGFRvIII per cell) and a

kinase dead mutant of EGFRvIII (U87DK, 2 million kinase dead

receptors per cell) were generous gifts from Dr. Paul Huang and

Dr. Forest White at MIT. Cells were cultured in complete media

(Dulbecco’s Modified Eagle Medium (DMEM; Mediatech) sup-

plemented with 10% fetal bovine serum, 100 units/mL penicillin,

100 mg/mL streptomycin (Invitrogen), 4 mM L-glutamine) and in

a 95% air/5% CO2 humidified atmosphere at 37uC. Expression of

EGFRvIII and DK receptors were selected by 400 mg/mL G418

(Calbiochem). To enhance cell attachment, tissue culture vessels

with the Corning CellBIND surface (Corning) were used.

Transcription profiling
Total RNA was prepared from the U87MG derived cell lines by

the RNeasy Plus Mini Kit (Qiagen) and quantified on the

Affymetrix Human Genome U133 Plus 2.0 arrays. Labeling,

hybridization, washing and staining were performed following the

standard Affymetrix GeneChip protocol. The arrays were

hybridized in an Affymetrix GeneChip Hybridization Oven 640

at 45uC at 60 rpm for 16 hours, washed and stained in Affymetrix

Fluidics Station 450, and scanned with Affymetrix GeneChip

Scanner 3000 7G. Two biological replicates were done for each

cell line. The intensity values were normalized using the GC

Robust Multi-array Average (gcrma) package [101] in the R

BioConductor library and differential gene expression was

calculated by the Linear Models for Microarray Data method

[102] implemented as the limma package [103] in BioConductor.

DNase-Seq
The U87DK and U87H cells were seeded in parental media

(complete media without G418). After 24 hours, the cells were

washed gently with phosphate buffered saline (PBS) and cultured

in serum free media for 24 hours. Nuclei extraction and DNaseI

digestion followed published protocol [20,104] for 50 million

nuclei for each of the two biological replicates of each cell line.

Sequencing libraries were prepared with the Illumina sample

preparation kit and 100 to 300 bp fragments were specifically

selected by gel electrophoresis. Each biological replicate was

sequenced in one lane on a Genome Analyzer II sequencer

(Illumina). The 35 bp-long sequencing reads were aligned to the

Table 3. Summary of anti-tumor therapies corresponding to the high-ranked targets and compounds that are found to exert
significant killing, with emphasis on relevance to GBM.

Compound Target Current status

Dasatinib SRC, FYN Ongoing phase 1 and 2 trials of mono- and combination-therapy for primary and recurrent GBM [76].

ICG-001 CREBBP Related compound PRI-724 in phase 1 trial of advanced colorectal cancer and pancreatic cancer (trial identifier NCT01302405);
no pre-clinical data for GBM.

17-AAG HSP90AA1 Phase 1, 2, and 3 trials in multiple cancer types but not including GBM [78]; showed efficacy in glioma models [77].

4-OHT ESR1 A subgroup of GBM patients responded to high dose tamoxifen [84]; multiple phase 2 trials have been completed as part of
combination-therapies for GBM [121].

SAHA HDAC1 Modest single agent activity in a phase 2 trial for GBM [81]; multiple ongoing phase 1 and 2 trials for combination therapy.

PKF118–310 CTNNB1 Showed efficacy in models of multiple cancer types but not yet tested for GBM.

doi:10.1371/journal.pcbi.1002887.t003
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hg18 genome by Illumina’s Eland extended software with

maximum two mismatches in the first 25 bp. The sequencing

and alignment statistics are listed in Table S3.

ChIP-Seq
The U87H cells were seeded in media without G418. After

24 hours, the cells were washed gently with PBS and cultured in

serum free media for 24 hours. Crosslinking and cell lysis were

done as previously described [105], and sonication was performed

on a Bioruptor NextGen sonication system (Diagenode) with 10

cycles of 30 sec on, 30 sec off at high power setting. p300 ChIP

was done on the SX-8G IPStar Automated System (Diagenode)

with buffers from the Auto Transcription ChIP kit (Diagenode)

following instruction manual version V1_07-10-10. The pre-set IP

protocol ‘‘ChIP 22 hr IPure16 200vol’’ was used with 5 hours of

antibody coating and 16 hours of ChIP reaction at 4uC. 3 mg of

the p300 antibody sc-585x Lot#E2610 (Santa Cruz) was used on

25 mL of the sonicated chromatin diluted with 75 mL of ChIP

Buffer T. The ChIP products were reverse-crosslinked at 65uC for

6 hours with occasional vortexing. ChIP DNA was purified by

reagents in the Auto IPure kit (Diagenode) but done manually

following the IPure kit (Diagenode) instruction manual version

V2_12-05-10. Sequencing library was prepared from the purified

DNA by the SPRI-te Nucleic Acid extractor (Beckman Coulter)

with SPRIworks Fragment Library System I cartridges according

to manufacturer’s protocol. Enrichment was done with 26
Phusion Master Mix, PE PCR primer 1.0 (Illumina) and a

barcoded paired-end PCR primer 2.0. The library was sequenced

in one paired-end lane on Illumina Genome Analyzer II. The

sequencing reads of 36 bp were aligned to the hg18 genome by the

short reads aligner bowtie [106] version 0.12.5 suppressing all

alignments for reads that align to more than one location (-m 1).

The sequencing and alignment statistics are listed in Table S3.

Cell viability assay
4,000 cells in 100 mL of parental media were seeded per well in

a 96-well CellBIND clear plate. Twenty-four hours later, the

medium was aspirated, each well was washed with 150 mL of PBS,

and 100 mL of fresh serum-free media (DMEM with no phenol

red) containing the indicated concentrations of drugs was added.

Six to eight within-day biological replicates were performed for at

least three between-day biological replicates for each treatment of

each cell line. To make stock solutions of small molecule drugs,

dasatinib, rapamycin, paclitaxel (LC Labs), ICG-001, SAHA, SB-

431542 (Selleck Chemicals), 17-AAG (AG Scientific), PKF118–

310, SB-505124 (Sigma), D4476, and harmine (Cayman Chem-

ical) were dissolved in dimethyl sulfoxide (DMSO), 4-OHT

(Sigma) in pure ethanol and PDTC (Sigma) in PBS. All stock

solutions were stored in the dark at 220uC and diluted to the

desired concentration in cell culture media immediately prior to

treatment. After 72 hours of drug treatment, cell viability was

measured by the WST-1 reagent (Roche Applied Science). 10 mL

of WST-1 was added to each well, the plates were incubated at

37uC for four hours and absorbance at 450 nm was measured by

Varioskan Flash Multimode Reader (Thermo Scientific). Raw

signals were normalized by a linear mixed-effects model (see

below) to eliminate between-day batch effects. Relative viability

values were computed as the ratios between the normalized signals

of drug-treated cells and the corresponding vehicle control cells.

Curve fitting to the four-parameter log-logistic model and

statistical tests of fitted parameter values were performed using

the R package drc [107]. Differential response between U87DK

and U87H cells were assessed using ANOVA on the fitted

parameters.

To eliminate batch effects between plates and experiments

performed on different days, a linear mixed-effects model was

fitted to the viability measurements from the vehicle control wells

on each plate: signal = grand mean+cell line+day of the experi-

ment+plate+residual error, where cell line was classified as a fixed

effect term and day of experiment and plate were classified as

random effect terms. Model fitting was performed by the R lme4

package [108]. The viability measurements from treatment wells

were normalized by subtracting the random effect estimates from

all raw signal values before calculating the relative viabilities and

fitting the dose-response curves.

Applying the prize-collecting Steiner tree method
Formulation. We used the Goemans-Williamson formula-

tion of the PCST problem. Given an undirected graph G~(V ,E)
where nodes v[V are associated with penalties pv§0 and edges

e[E are associated with costs cew0, we aim to find a subtree

F~(VF ,EF ) of G that minimizes the objective function

X

e[EF

cez
X

v=[VF

pv:

Nodes that have positive penalty values are called ‘‘termini’’. For

our application, the nodes and edges were obtained from protein-

protein interaction network datasets (see below). Protein nodes to

which experimental data could be mapped received positive

penalty values (and therefore they were termini) and other nodes

received zero penalties. The cost on edges was inversely related to

the confidence on each interaction based on available evidence

(see below) so that high confidence edges had lower costs and

therefore would be preferentially selected to be in the solution. We

further introduced a scaling parameter b to balance the penalties

paid to exclude nodes with experimental observations and the

costs of including edges to connect these nodes:

X

e[EF

cez
X

v=[VF

bpv:

We solved this optimization problem using the branch-and-cut

approach [109] implemented in the dhea-code software program

that called the ILOG CPLEX linear programming solver version

12.1 (IBM).

Generating solutions that are not trees. To allow the

possibility of multiple alternative pathways that may connect the

data together despite weaker interaction evidence, we report a

composite network (Figure 2) that represents the union of multiple

suboptimal solutions. Each suboptimal solution was found by

solving the original PCST problem with the additional constraints

that 15 percent of the nodes must be different from the original

optimal solution (so each suboptimal solution can have a different

set of these nodes). The composite network is the union of the

nodes and edges from the optimal solution and the nodes and

edges from 10 such sub-optimal solutions.

Interaction graph and edge cost. We ran PSCIQUIC

query [44] to retrieve all the interactions in iRefIndex version 8

[38] for human (species ID 9606). With the PSISCORE Java API

[44] each interaction is then scored by the Miscore scoring

scheme, which takes into account the number of publications, the

experimental method for which the interaction was detected, and

the type of the interaction. Since the confidence score se produced

by this scheme is log likelihood-based, the cost on each edge for

input into the PCST is
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ce~1{se,

so that minimization on the sum of edge costs can be interpreted

as maximizing the product of likelihood. We removed the

ubiquitin protein and its connections from the interactome to

prevent the solutions being skewed by its high degree of

connectivity.

Node penalties. We defined two kinds of penalties for

proteins in the interaction graph. At the signaling level, we used

fold changes in the phosphoproteomics mass-spectrometry (MS)

data, and at the level of transcriptional regulation, we used a t-

statistic derived from DNase-Seq and mRNA expression data

representing our confidence that the transcription factor binds

regulatory sites and influences expression. These penalties are

described in detail below.

Quantitative phosphotyrosine proteomic data on the U87H and

U87DK cells were published previously [37]. Phosphorylated

peptide sequences from MS/MS data were matched to the human

protein sequences provided in Swiss-Prot database using peptide

BLAST program blastp with the following parameters recom-

mended for matching short amino acid sequences: exception value

20000, do not filter low complexity regions, gap opening cost 9,

gap extension cost 1, protein scoring matrix PAM30, word size 2,

multiple hits window size 40 (-p blastp -e 200000 -F F -G 9 -E 1

-M PAM30 -W 2 -A 40). 100 alignments were requested for each

peptide in BLAST XML format report (-b 100 -m 7), which were

parsed by the Bio.Blast module in BioPython. Proteins that

contained perfect alignment to a peptide sequence received a

positive penalty value that was proportional to the absolute value

of log-fold change in phosphorylation between the U87H and

U87DK cells. If one peptide sequence was aligned to multiple

proteins in Swiss-Prot, all these proteins received the same penalty

value. If multiple phosphorylated peptide sequences were perfectly

aligned to one protein, the maximum fold change in phosphor-

ylation of these peptides was used to calculate the penalty value for

this protein.

We derived the penalty values for transcription factors in the

protein interaction network from the inferred activity of these

transcription factors in inducing changes of mRNA expression.

Specifically, we used a regression method to find the correlation

between the differential mRNA expression and the sequence

specific transcription factor binding motifs in nearby differentially

accessible chromatin regions. Filtering the limma analysis results

by a maximum p-value of 0.001 adjusted by the Benjamini and

Hochberg method [110] gave 2,040 probe sets differentially

expressed between U87DK and U87H cells. These probe sets

were mapped to 1,623 genes using annotation from the Ensembl

Project release 54 (http://may2009.archive.ensembl.org and

[111]). From the DNase-Seq data of U87DK and U87H cells,

we found genomic regions that were differentially hypersensitive

between these two cell lines, i.e., enriched for reads in either

U87DK or U87H relative to the other condition, by using the

peak caller MACS [112] version 1.4.0beta. For each cell line,

aligned reads from the two biological replicates were concatenat-

ed. With the U87H read file as the treatment parameter and

U87DK read file as the control parameter, a p-value cutoff of 1E-

06 and also calling subpeaks, 7,760 peaks, further divided into

13,141 subpeaks, were identified to be more hypersensitive in

U87H cells than in U87DK cells. By reversing the treatment and

control read files, 5,047 peaks, divided into 9,683 subpeaks, were

identified to be more hypersensitive in U87DK cells than in U87H

cells. Since functional hypersensitive regions are expected to

regulate expression of nearby genes, we evaluated the differential

hypersensitive regions identified by MACS and alternative

methods based on edgeR [113] for enrichment of nearby

differentially expressed genes and obtained similar performance

(Figure S4E). Each of the subpeak summits from MACS was

mapped to the Ensembl 54 annotated human transcripts that have

transcription start sites within 40 kb of the summit, using

functionalities in the ChIPpeakAnno package [114] in BioCon-

ductor. Sequences from 100 bp upstream and downstream of the

subpeak summits were retrieved and the transcription factor

affinity scores [25] were computed for the 572 good quality

matrices in release 2009.1 of the TRANSFAC database [115]. We

then applied the regression procedure for each motif separately,

using the affinity scores of the motif in the differential

hypersensitive regions and the fold changes in mRNA expression

of genes within 40 kb of the differential hypersensitive regions. Let

Sg,H be the set of sequences whose summits are mapped to the

gene transcript g in U87H cells, Sg,DK be the set of sequences

whose summits are mapped to g in U87DK cells. Let T be the set

of TRANSFAC matrices and xi,g,t,c be the affinity score for matrix

t[T on the ith sequence in Sg,c that is mapped to gene g in

condition c[fDK ,Hg. The affinity score of transcription factor

matrix t for gene transcript g is

xg,t~
XDSg,H D

i~1

xi,g,t,H{
XDSg,DK D

i~1

xi,g,t,DK :

Let G be the set of differential expressed genes described

previously and yg be the log base 2 fold change in expression of

transcript g[G comparing U87H and U87DK cells. For each

matrix t we fit the differential expression of g and the affinity score

by a univariate linear model:

yg~atxg,tzeg:

We selected the matrices for which the coefficient of the linear

regression was significantly different from zero by a p-value

threshold of 0.01 after Bonferroni correction. We used the t-

statistic values of the regression coefficients as the penalties on

proteins that were assigned to these binding matrices according to

TRANSFAC [24,26,116]. In cases where one binding matrix

corresponded to multiple transcription factors (as commonly found

in transcription factor families), all these transcription factors

received the same penalty value. Overall, this resulted in 185

significant motifs mapped to 297 proteins in the interactome,

capturing 563 differential expressed genes within 40 kb of the

differential hypersensitive regions out of the 1,623 differential

expressed genes. We explored alternative approaches for defining

penalties on the transcription factors, which used edgeR instead of

MACS for identifying differential hypersensitive regions and

regression with respect to differential DNaseI signal instead of

differential expression of nearby genes (Figure S4). The penalty

values and the subsequent PCST solution did not change

significantly.

We considered the magnitude of node penalties defined above

as a measure for the activities of the protein termini revealed by

the experimental data. Since the PCST algorithm minimizes

penalty values on termini excluded from the final network, it will

preferentially include proteins with larger penalty values, i.e.,

bigger fold changes in phosphorylation or stronger association of

the transcription factor motif to changes in target gene expression.

In the absence of formal statistical model for the likelihood of these

data, we tested the sensitivity of the PCST solution in Figure 2 to
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different levels of noise artificially introduced into the node

penalties (Figure S5) and concluded that the solution is robust and

by multiple statistics could easily tolerate noise level up to 20%.

Choosing the parameter b
The parameter b controls the size of the PCST network by

balancing the edge costs and node penalties. We would like the

solution network to be small and connect a large number of

termini by a small number of Steiner nodes. Therefore, we defined

the ‘‘efficiency ratio’’ of a PCST solution as the ratio of included

terminal nodes to Steiner nodes and selected a value of b such that

the solution network is small and has a good efficiency ratio.

Specifically, we ran the algorithm with a wide range of b values

and computed the efficiency ratios for the solutions (Figure S6).

We found that the efficiency ratio was relatively stable for b values

between 40 and 100, although the rate of increase of this ratio was

slightly larger between b of 50 and 60 (so increasing network size is

more efficient in connecting the termini) and the network solution

is intermediate in size. The PCST presented in Figure 2 was from

b~60.

EGFRvIII mouse GBM xenograft phosphoproteomic data
A complete list of tyrosine phosphorylated peptides was

downloaded from the supplementary data of [61], which were

collected from mouse xenograft samples established from patient

surgical specimens. Among the eight samples, two express wild-

type EGFR at normal level, three express amplified level of wild-

type EGFR, and three express amplified level of EGFRvIII. For

each phosphorylated peptide, Student’s t-test was used to compare

the three samples with amplified EGFRvIII to the two samples

with normal level of wild-type EGFR, and those peptides with p-

value less than 0.05 were considered differentially phosphorylated

in response to EGFRvIII.

Scoring interactome nodes with respect to the PCST
solution

For each node in the interactome, either inside or outside of the

PCST solution, we found the edges connecting this node to the

nodes in the PCST solution and summed up the confidence scores

on these edges (se described above). Since the score on each edge is

a log-likelihood confidence score of this interaction, a large value

of this sum means this node has more high confidence interactions

with the nodes in the PCST solution. We then ranked all the nodes

in the interactome by this score.

TCGA GBM exon array processing and enrichment
analysis of transcription factor targets

Level 3 exon array data of the TCGA GBM project [53,62]

were downloaded from the TCGA data portal (https://tcga-data.

nci.nih.gov/tcga/). The U87 cell line is reported to contain wild-

type p53 and deletion of p16 [117], which match the mutation

status of 99 patients as reported in the cBio Portal [118]. The

EGFRvIII status of these 99 patients were determined by testing

for significantly lower expression of the exon array probe sets that

map to exon 2–7 of the EGFR gene (p,0.05 by Wilcoxon rank-

sum test). 19 such samples were found and were thus labeled as

EGFRVIII. Gene level expression values from the exon array were

then analyzed for differential expression between the EGFRvIII

and non-EGFRvIII samples by limma [103]. Hierarchical

clustering of the differentially expressed genes (p-value,0.01)

show that the 17 of the 19 patients with EGFRvIII mutation were

grouped together among the major clusters (Figure S2).

Separately, for each transcription factor that has a motif in

TRANSFAC, we used the MATCH program [119] to score for

matches to the motif in the DNaseI hypersensitive regions that are

more hypersensitive in the U87H cells than in the U87DK cells.

This resulted in a set of factors for the U87H cells (U87H TF). The

set of U87DK TF were found similarly from regions with higher

hypersensitivity in the U87DK cells. If there was a motif match

within 40 kb of the transcription start site of a gene, this gene was

considered a target of the TF. Then for each TF, we computed the

minimum hypergeometric (mHG) p-value [63] for testing the

enrichment of its target genes in the list of all genes in the TCGA

expression dataset ranked by log fold change between patients

with the EGFRvIII mutation and those without. To determine the

role of transcription factors in up-regulation, we calculated the

mHG p-value of the genes ranked from highest changes in

expression in EGFRvIII patients to lowest changes in expression.

To determine the role of genes in down-regulation, we reversed

the order of genes. P-values in Figure 3E and Figure 3F were

calculated using Student’s t-test.

Scoring p300 interactors
We searched for sequence motifs that could predict which of the

regions that were more hypersensitive in U87H than in U87DK

cells were bound by p300. Differentially hypersensitive regions

overlapping with p300 bound regions in U87H from ChIP-Seq

were considered positive and the rest were negative. We then

computed matches to the sequence motifs in the TRANSFAC

vertebrate non-redundant set in all the positive and negative

regions. The motif match scores were used in a feature selection

procedure by Wilcoxon test in five-fold cross validation to rank

these motifs by their ability to classify the positive and negative

regions. To compute the significance of the p300 interactors inside

the PCST to those outside of the PCST, the top 20 motifs were

selected in each iteration of the cross-validation. Those correspond

to proteins that interact with p300 were recorded and enrichment

p-values were computed by Fisher exact test.

Accession numbers
The raw data for ChIP-Seq, DNase-Seq and microarray

experiments have been submitted to GEO under accession

number GSE36902.

Supporting Information

Figure S1 Correlation is poor between changes in tyrosine

phosphorylation on proteins and changes in transcript level of the

corresponding mRNA observed in the U87DK and U87H cells.

(PDF)

Figure S2 Hierarchical clustering by exon array gene expression

of TCGA GBM patient samples with wild-type p53 and deleted

p16. The set of differentially expressed genes (limma p-

value,0.01) were the input to the clustering. Each row in the

heatmap is a gene and each column is one sample. EGFRvIII

status of a sample is indicated by the color code at the top of the

heatmap.

(PDF)

Figure S3 Distribution of GI50 values (the concentration that

inhibit growth by 50%) of the NCI60 panel of cell lines for

compounds that were used in this study and also tested in the In

Vitro Cell Line Screening Project (IVCLSP) of the Developmental

Therapeutics Program at the National Cancer Institute. Paclitaxel

and rapamycin were tested more than once in the IVCLSP at the

indicated maximum concentrations. The vertical dashed lines
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mark the concentrations of the compounds for the viability data

presented in Figure 4A.

(PDF)

Figure S4 Assessment of multiple methods for identification of

differential DNaseI hypersensitive regions. A. Scatter plot of log2

read counts from the U87DK and U87H cells inside the DNaseI

hypersensitive regions that were called by MACS to be

differentially hypersensitive (p,1E-06) and otherwise. B Same

scatter plot as in A, but the differential hypersensitive regions were

determined by the edgeR method [113] included in the R

DiffBind package [122] (FDR,0.1). C. Same scatter plots as in A

and B but each differential hypersensitive region is color coded by

whether it was reported by MACS alone, edgeR alone or both.

The hypersensitive regions not reported to be different between

the two conditions were omitted in this plot. D. Cumulative

distribution of log2 read counts from the less hypersensitive

condition inside the differential hypersensitive regions, grouped by

whether that region is called differentially hypersensitive by

MACS alone, edgeR alone, or both. MACS does not have strong

bias for regions that are closed (containing lower read counts) in

one condition. E. Enrichment of differentially expressed genes

within 40 kb of the differential hypersensitive regions reported by

MACS and edgeR. Enrichment p-values shown on top of each

method were computed by Fisher exact test relative to whole

genome background. F. Scatter plot and correlation coefficients

among the TF termini penalty values computed by (i) regression of

differential expression to motif affinity score in the nearby

differential hypersensitive regions called by MACS (‘‘MACS

expr’’); (ii) regression of differential hypersensitivity to motif

affinity score inside the differential hypersensitive regions called

by MACS (‘‘MACS HS’’); (iii) same regression as in (ii) but with

the differential hypersensitive regions determined by edgeR

(‘‘edgeR HS’’). Lower left panels are scatter plots of penalty

values derived from methods in the corresponding row and

column. Upper right panels are Pearson correlation coefficients

between the penalty values. G. Left: overlap of the set of TF

termini from the three regression approaches described in F.

Middle: overlap of PCST solutions using TF termini from the

regression approaches in F and the pY termini. Right: overlap of

the PCST solutions as in the middle panel, with the pY termini

excluded.

(PDF)

Figure S5 The PCST solution was robust to noise in node

penalties and edge costs. The node penalties used to find the U87

PCST network were multiplied by a random factor that is

normally distributed with mean 1 and a specific level of standard

deviation (0.05, 0.1, 0.2, 0.25, 0.5) and a new PCST network was

found for this set of randomized node penalties. For each level of

the standard deviation, 100 such PCST solutions were obtained

and compared to the original PCST. Randomization on edge costs

were performed similarly. A. The mean and standard error for the

percentage of nodes in the original PCST that appear in the

randomized PCST. 80% of the nodes in the original PCST still

appear in the randomization solutions even at 50% noise. B. The

mean and standard error of the Jaccard Index (size of intersection

divided by size of union) comparing the PCST solutions from

randomization to the original PCST. The solution was more

sensitive to changes in edge cost values but still showed Jaccard

index about 0.75 at 20% noise. At much higher noise levels, the

randomization solutions went through other nodes in the

interactome, indicating that optimization on the edge costs indeed

controlled the nodes included in the PCST solution.

(PDF)

Figure S6 Plot of efficiency ratio (number of terminal nodes

divided by number of Steiner nodes) for different sizes of the

PCST solutions obtained from the indicated b values. The

efficiency ratio was relatively stable for b values between 40 and

100. Within this range, the rate of increase of efficiency ratio with

respect to network size is the slightly largest between b of 50 and

60. The PCST presented in Figure 2 was from b of 60.

(PDF)

Table S1 List of differentially expressed genes between the

U87H and U87DK cells. Columns are: Affymetrix probe ID,

official gene symbol, gene name, UniGene ID, (remaining

columns are output from limma) log base 2 fold change of the

probe in U87H cells relative to U87DK cells, average log base 2

expression of the probe over all arrays, moderated t-statistic, raw

p-value, adjusted p-value, log-odds that the gene is differentially

expressed.

(TXT)

Table S2 Significantly enriched motifs in the proximal promoter

of genes differentially expressed between U87H and U87DK. The

differentially expressed genes were analyzed by the motif

enrichment function of Expander [123] for enriched motifs in -

1000 to +200 bp from the transcription start site using vertebrate

TRANSFAC motifs with a corrected p-value threshold of 0.05.

Five sets of genes were analyzed: HToDK_DEG (genes differen-

tially expressed between U87H and U87DK with adjusted p-value

lower than 1E-03), HToDK_DEG_DOWN (genes in HToDK_

DEG and down-regulated in U87H relative to U87DK),

HToDK_DEG_UP (genes in HToDK_DEG and up-regulated

in U87H relative to U87DK), HToDK_DEG_FC2 (genes

differentially expressed between U87H and U87DK with adjusted

p-value less than 1E-03 and fold change greater than 2),

HToDK_DEG_FC2_UP (genes in HToDK_DEG_FC2 and up-

regulated in U87H relative to U87DK), and HToDK_

DEG_FC2_DOWN (genes in HToDK_DEG_FC2 and down-

regulated in U87H relative to U87DK). No motifs passed the

significance threshold for the set HToDK_DEG_UP and

HToDK_DEG_FC2_UP.

(TXT)

Table S3 Illumina sequencing statistics of the DNase-Seq and

p300 ChIP-Seq samples. Aligned unique: reads that are uniquely

aligned to the genome. Aligned repeat: reads that are aligned to

more than one locations in the genome. Aligned none: reads that

are not aligned to any location in the genome.

(TXT)

Table S4 Ranking of motifs by how well the motif scores can

classify hypersensitive regions that overlap with p300 bound

regions from those that do not overlap with p300 bound regions.

For each iteration in five-fold cross-validation, the top 20 motifs

out of a total of 151 are listed. Columns are: iteration number in

five-fold cross-validation, rank of motif, TRANSFAC ID of motif,

whether the motif is mapped to a p300 interacting protein inside

the PCST (1 is yes, 0 is no), whether the motif is mapped to a p300

interacting protein outside of the PCST (1 is yes, 0 is no).

(TXT)

Table S5 Enriched GO categories of p300 bound genes in

GM12878 cells and HepG2 cells. Files containing p300 bound

peaks detected by ChIP-Seq were downloaded from the UCSC

Genome Browser and represented the ENCODE Jan 2010 Freeze

for GM12878 and July 2009 Freeze for HepG2. Mapping peaks to

genes and GO analysis were performed using the same parameters

as for the U87H p300 ChIP-Seq dataset.

(TXT)
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