
MIT Open Access Articles

Retroactivity Attenuation in Bio-Molecular 
Systems Based on Timescale Separation

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Jayanthi, Shridhar, and Domitilla Del Vecchio. "Retroactivity Attenuation in Bio-
Molecular Systems Based on Timescale Separation." IEEE Transactions on Automatic Control 
56(4): 748–761. © Copyright 2011 IEEE.

As Published: http://dx.doi.org/10.1109/TAC.2010.2069631

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/78620

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/78620
http://creativecommons.org/licenses/by-nc-sa/3.0/


1

Retroactivity Attenuation in Bio-molecular Systems
Based on Timescale Separation

Shridhar Jayanthi and Domitilla Del Vecchio

Abstract—As with several engineering systems, bio-molecular
systems display impedance-like effects at interconnections, called
retroactivity. In this paper, we propose a mechanism that exploits
the natural timescale separation present in bio-molecular systems
to attenuate retroactivity. Retroactivity enters the dynamics of a
bio-molecular system as a state dependent disturbance multiplied
by gains that can be very large. By virtue of the system structure,
retroactivity can be arbitrarily attenuated by internal system
gains even when these are much smaller than the gains multi-
plying retroactivity terms. This result is obtained by employing
a suitable change of coordinates and a nested application of the
singular perturbation theorem on the finite time interval. As
an application example, we show that two modules extracted
from natural signal transduction pathways have a remarkable
capability of attenuating retroactivity, which is certainly desirable
in any (engineered or natural) signal transmission system.

I. Introduction

MODULARITY is a fundamental property that allows
the prediction of the behavior of a system from the

behavior of its components, guaranteeing that the input/output
behavior of a component does not change upon intercon-
nection. This property is often taken for granted and tacitly
exploited in several engineering areas, such as electrical en-
gineering. Modularity is usually a fair assumption because
mechanisms such as operational amplifiers in suitable feed-
back configurations are employed so that impedance effects
at interconnections can be neglected [1]. As a result, systems
can be conveniently composed by simple static output-to-input
assignments. Modularity has been more recently advocated
also in systems biology and in synthetic biology, in which
networks of bio-molecular interactions between species, such
as proteins, enzymes, DNA sites, and signaling molecules
take place. In particular, in systems biology one seeks to
understand the behavior of a natural bio-molecular network
from the behavior of the composing modules or motifs [2]–[4].
Complementary to systems biology, researchers in synthetic
biology aim at constructing complex networks of interactions
between genes and proteins in living cells with the ultimate
goal of controlling cell behavior. A key approach in doing so is
the design and construction of simple bio-molecular systems,
such as oscillators [5], [6] and toggles [7], which are then
interconnected in a modular fashion to design bio-molecular
circuits with more complex functionalities [8], [9].
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A fundamental systems engineering issue that arises when
interconnecting systems with each other is how the dynamic
state of the sending system (upstream system) is affected by
the dynamic state of the receiving system (downstream sys-
tem). The effect of downstream loads has been well character-
ized and accounted for in electrical, mechanical, and hydraulic
systems. It has been recently argued that similar problems
appear in bio-molecular systems. In particular, Alon states
that bio-molecular modules, just like engineering modules,
should have special features that make them easily embedded
in almost any system. For example, output connections should
have “low impedance” so that connecting additional down-
stream clients should not change the output to existing clients
up to some limit [10]. A recent theoretical study has shown,
however, that output connections in bio-molecular systems do
not always have low impedance. Instead, they can be affected
by large impedance-like effects that dramatically distort the
dynamics of a system in the face of downstream loads [11].
These impedance-like effects have been called retroactivity to
extend the notion of impedance to non-electrical systems and
in particular to bio-molecular systems.

Figure 1. A system Σ with input and output signals, along with the
interconnection structure with its upstream and its downstream systems. The
retroactivity to the output s accounts for the change in the system Σ dynamics
when it is connected to downstream systems. The retroactivity to the input r
accounts for changes that Σ causes on upstream systems when it connects to
receive the information u.

From a systems biology point of view, one method to deal
with retroactivity is to partition large networks into “modules”
for which retroactivity effects are minimal, by employing
graph and information theoretic approaches [12]–[16]. By
contrast, the studies in [11], [17] consider fixed modules,
which is more aligned with the synthetic biology perspective.
Specifically, [11] characterizes retroactivity, and investigates
interconnection mechanisms that provide arbitrary retroactivity
attenuation. To this end, it proposes an alternative model to
the standard input/output model employed in virtually every
systems engineering book [18] (a notable exception to the stan-
dard system input/output model is Willem’s work [19], which
blurs the distinction between inputs, states, and outputs).
Within this alternative modeling framework, an input/output
system model is augmented with two additional signals: the
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retroactivity to the input r and the retroactivity to the output
s (Figure 1).

In this formalism, achieving low output impedance becomes
the problem of attenuating retroactivity to the output. The
problem of arbitrarily attenuating the retroactivity to the output
is in turn conceptually similar to problems of disturbance
attenuation and decoupling [20], [21]. Insulation devices are
then designed in such a way to (a) arbitrarily attenuate the
retroactivity to the output (thus they can keep the same output
independently of the downstream systems connected to such
an output) and (b) have low retroactivity to the input (thus they
do not affect the upstream system from which they receive the
signal). Insulation devices can be placed between the upstream
system sending the signal and the downstream one receiving
the signal to insulate these systems from retroactivity. One
design method for bio-molecular insulation devices has been
illustrated in [11]. It employs a large amplification gain in
a negative feedback loop (in analogy to the design of non-
inverting amplifiers in electronics) to attenuate the retroactivity
to the output.

In this paper, we show that a special interconnection struc-
ture found in bio-molecular systems enables a different mech-
anism for retroactivity attenuation. Retroactivity to the output
enters the system dynamics as a state dependent disturbance,
which is often multiplied by very large gains. These gains are
large due to the fact that bio-molecular system interconnection
often occurs through processes that can be among the fastest
processes in bio-molecular systems [10], [22]. We show that,
for a class of systems with this interconnection structure,
whenever the dynamics of a system Σ evolves on a timescale
faster than that of its upstream system, the retroactivity to the
output of Σ can be arbitrarily attenuated. We also show that this
attenuation property is independent of the gains multiplying
retroactivity and that the faster the timescale of system Σ
with respect to its upstream system, the better the retroactivity
to the output attenuation achieved. As a consequence, one
can arbitrarily attenuate state dependent disturbances even
when these enter the dynamics of system Σ through gains
that are orders of magnitude higher than the gains internal
to Σ itself. In order to show this retroactivity attenuation
capability enabled by timescale separation, we employ singular
perturbation techniques for systems with one and multiple
small parameters [23]–[25].

Singular perturbation arguments have been used in biochem-
ical applications to show the validity of the quasi-steady state
approximation for enzyme kinetics [26]–[31]. In these studies,
the timescale separation stems from large initial conditions
of either substrate or enzyme, or due to large values for the
Michaelis-Menten constant. The separation of timescales in
the systems studied in this paper are also due to differences in
the order of magnitude of the reaction rates of the processes
considered. In bacterial systems, for example, the timescale of
gene expression and protein dilution is of the order of minutes
[10], [32], the one of post-translational modification processes
range from the order of milliseconds to seconds [33], [34], that
of proteins binding to small signaling molecules can be in the
sub-second timescale [10], and the timescale of transcription
factor-DNA interactions can be as fast as few milliseconds

[22], [35], [36].
Despite several timescales being present in the processes

here considered, the resulting models are not in standard
singular perturbation form. This issue arises because the
states involved in the interconnection are shared by systems
with dynamics in different timescales. This problem is often
encountered also in chemical reaction systems [37], [38] and
in biochemical systems [27], [29]. A common solution is to
employ a change of variables for which the system is in
standard singular perturbation form. In this study, we provide
sufficient conditions for the existence of a linear coordinate
transformation that takes the original system to standard sin-
gular perturbation form. Then, we perform a nested application
of Tikhonov singular perturbation theorem on the finite time
interval as it appears in standard references [25]. Finally, by
taking the reduced system back to the original coordinates,
we find that the dynamics of the original system on the slow
manifold is independent of the retroactivity to the output.

As an application example, we show how modules extracted
from natural signal transduction systems can attenuate the
retroactivity to the output based on the separation of time
scale mechanism illustrated in the paper. It is also shown that
the capacity of attenuating retroactivity holds independently
of the timescale of the downstream interconnection. The
examples in this paper employ a phosphorylation cycle and
a phosphotransfer module, both of which are ubiquitous in
natural signal transduction systems [39], [40].

This paper is organized as follows. In Section II, we
introduce the bio-molecular system model and the retroactivity
to the output attenuation problem. The main result is provided
in Section III, in which a change of coordinates and a
nested application of Tikhonov singular perturbation theorem
is performed. Section IV shows the application of the theory to
two motifs extracted from natural signal transduction systems:
a phosphorylation system and a phosphotransfer system.

II. SystemModel and Problem Formulation

In this paper, we consider the system model depicted in
Figure 1. In addition to the usual input and output signals,
we add two additional signals traveling from downstream to
upstream: a retroactivity to the output s and a retroactivity
to the input r. The retroactivity to the output s is a signal
(which may depend on x and on the internal variables v
of the downstream system) that appears in the dynamics of
Σ whenever Σ is connected to the downstream system. The
retroactivity to the input r (which may depend on u and on x)
is a signal that system Σ applies to its upstream system as an
input whenever Σ connects to the upstream system to receive
the information u. The system Σ is said isolated when it is not
connected to the downstream system. In such a case, s = 0.

From an engineering point of view, signals s and r do not
necessarily carry information. They are present only because
of the physics of the interconnection between system compo-
nents. For example, if Σ is a voltage generator with voltage V
and internal resistance R0, the value x of its output when Σ is
isolated is exactly equal to V. However, when Σ is connected
to a downstream load, a voltage drop is caused by current
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flowing through the internal resistance R0 so that the new
value x of its output voltage will be smaller than what we
had in the isolated configuration. In this case, s is due to
the non-zero current flowing through R 0 upon interconnection
with the downstream load. A similar situation is found in bio-
molecular systems. When a synthetic bio-molecular oscillator,
such as those of [5], [6], is employed as a signal generator and
connected to downstream clients to, for example, synchronize
them, the oscillator dynamics can be dramatically affected
[11].

A. Bio-molecular System Model

In this section, we specialize the general interconnection
structure of Figure 1 to the case of bio-molecular systems so
that u ∈ Du ⊂ Rq

+, x ∈ Dx ⊂ Rn
+, and v ∈ Dv ⊂ Rp

+ are vectors
whose components denote concentrations of chemical species,
such as proteins, enzymes, DNA sites, etc. We employ a model
similar from a formal point of view to that of metabolic
networks [41]. Let r(x, u) ∈ Rr and s(x, v) ∈ Rs be reaction
rate vectors modeling the interaction of species in the vector
u with species in the vector x and of species in the vector
x with species in the vector v, respectively. Let A ∈ Rr×q,
B ∈ Rr×n, C ∈ Rs×n, and D ∈ Rs×p be constant matrices. Let
f (x, u) ∈ Rn, l(v) ∈ Rp, and h(v, t) ∈ Rp be vector fields and
G1,G2 be positive constants. The model that we consider for
Σ in the interconnection of Figure 1 is thus the following:

u̇ = g(u, t) +G1Ar(x, u)

ẋ = G1Br(x, u) +G1 f (x, u) +G2Cs(x, v)

v̇ = G2Ds(x, v) +G2l(v) + h(v, t),

(1)

with initial conditions u(t0), x(t0), v(t0). The model of Σ when it
is isolated from the downstream system becomes (s(x, v) = 0)

u̇is = g(uis, t) +G1Ar(uis, xis)

ẋis = G1Br(uis, xis) +G1 f (xis, uis),
(2)

with initial conditions uis(t0) = u(t0), xis(t0) = x(t0).
System (1) is a general model for a bio-molecular system.

Interconnections always occur through reactions, whose rates
(r and s, in this case) appear in both the upstream and the
downstream systems with different coefficients (captured by
matrices A, B, C, and D). Constants G1 and G2 explicitly
model the fact that some of the reactions may be several
orders of magnitude faster than others. Constant G 1 models
the timescale of system Σ. In this paper, we are interested
in those cases in which Σ evolves on a faster timescale than
its input, that is, G1 � 1. This situation is encountered, for
example, when Σ models protein modification processes (such
as phosphorylation, allosteric modification, dimerization, etc.),
while its upstream system models slower processes such as
protein production and decay or signaling from outside the cell
(here modeled by g(u, t)) [10], [33], [34]. Constant G 2 models
the timescale of the interconnection mechanism of Σ with
its downstream system. For example, when this downstream
system models gene expression, s models the binding and
unbinding process of transcription factors to DNA binding
sites. This reaction is faster than expression and degradation
of proteins and therefore, G2 � 1 [10], [22]. Additionally,

it is possible for the protein modification processes to be
in the same range as, much faster than, or much slower
than DNA-transcription factor binding and unbinding [33]–
[36]. Therefore, it is important to consider the cases in which
G1 = G2, G1 � G2, and G1 � G2.

B. Retroactivity Attenuation Problem

In this paper, we are interested in determining conditions
that allow Σ to attenuate the retroactivity to the output and
in quantifying the retroactivity to the input. To this end, we
define the retroactivity to the output attenuation property
of system Σ in the interconnection structure of Figure 1 as
follows. Let u(t, 1/G1, 1/G2), x(t, 1/G1, 1/G2), v(t, 1/G1, 1/G2)
and uis(t, 1/G1), xis(t, 1/G1) be the unique solutions for t ∈
[t0, t̄ f ] with t̄ f > t0 to systems (1) and (2), respectively.

Definition 1. System Σ has the retroactivity to the output
attenuation property provided there are constants t b ∈ (t0, t̄ f ],
G∗1 > 0, G∗2 > 0, and a compact set Ω ⊂ Dx × Du × Dv

such that the following properties hold for G 1 > G∗1 and
(x(t0), u(t0), v(t0)) ∈ Ω:
(i) x(t, 1/G1, 1/G2) − xis(t, 1/G1) = O

(
1

G1

)
∀t ∈ [tb, t̄ f ] when

(G2/G1)→ {O(1), 0} as G1 → ∞;
(ii) x(t, 1/G1, 1/G2) − xis(t, 1/G1) = O

(
G1
G2

)
∀t ∈ [tb, t̄ f ] when

(G2/G1)→ ∞ as G1 → ∞ and G2 > G∗2.

If a system Σ enjoys the retroactivity to the output attenua-
tion property, its dynamics are not affected by the retroactivity
to the output as G1 grows, independent of the value of G 2. In
particular, independently of whether G 2 is smaller than, much
larger than, or of the same order as G 1, state dependent distur-
bances G2s(x, v) can be arbitrarily attenuated by a sufficiently
large G1. Furthermore, one can achieve arbitrary retroactivity
attenuation by properly adjusting the system parameter G 1.

The remainder of this paper focuses on providing sufficient
conditions under which system Σ enjoys the retroactivity to
the output attenuation property. Furthermore, we quantify the
retroactivity to the input of Σ by determining the impact of Σ
on the dynamics of u.

III. Problem Solution

System (1) models processes occurring at multiple
timescales. Specifically, since G1 � 1, there are at least two
timescales and when G2 � G1 there are three timescales.
However, there may not be a separation of timescales as the
system is not in standard singular perturbation form [25]. This
situation is typical of bio-molecular and chemical systems.
Such systems often display multiple timescales but there is no
explicit separation between fast and slow variables [29], [37].
However, when the interconnection occurs trough binding
processes, faster reaction rates appear in the dynamics of
both upstream and downstream systems multiplied by integers
related to the stoichiometric coefficients [41]. Therefore it is
possible to extract the slow variables of a system through a
linear combination of the states of the upstream and down-
stream systems. This motivates an approach that employs a
linear coordinate transformation to take the original system to
standard singular perturbation form.
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In what follows, we first determine conditions for the
existence of a linear coordinate transformation independent
of G1 and G2 that transforms systems (1) and (2) to standard
singular perturbation form. Then, we employ Tikhonov singu-
lar perturbation theorem to study the dynamics of the system
on the slow manifold. To this end, we restrict the class of
systems (1) to those with the two following central properties:

P1 There is an invertible matrix T ∈ Rq×q and a matrix M ∈
R

n×q such that (i) T A+MB = 0; (ii) M f (x, u) = 0 for all
(x, u); and (iii) MC = 0.

P2 There is an invertible matrix Q ∈ Rn×n, and a matrix
P ∈ Rp×n such that (i) QC + PD = 0; (ii) Pl(v) = 0 for
all v.

Let ε1 := 1/G1, ε2 := 1/G2, and

h̄(y, v) := D s(Q−1(y − Pv), v) + l(v) (3)

f̄ (z, y, v) := Q
[
Br

(
Q−1(y − Pv), T −1(z − MQ−1(y − Pv)

))
+ f

(
(Q−1(y − Pv), T −1(z − MQ−1(y − Pv))

) ] (4)

f̃ (z, x) := Br(x, T−1(z − Mx)) + f (x, T−1(z − Mx)). (5)

Then, we prove the following proposition.

Proposition 1. Under properties P1 and P2, the linear change
of coordinates

z = Tu + Mx, y = Qx + Pv (6)

takes systems (1) and (2) respectively to the standard singular
perturbation forms

ż = Tg
(
T−1(z − MQ−1(y − Pv)), t

)
ε1ẏ = f̄ (z, y, v) + ε1Ph(v, t)

ε2v̇ = h̄(y, v) + ε2h(v, t)

(7)

and

żis = Tg
(
T−1(zis − Mxis), t

)
ε1 ẋis = f̃ (zis, xis).

(8)

Proof: From the linear coordinate transformation (6), we
have that ż = Tu̇+Mẋ and ẏ = Qẋ+Pv̇. By substituting in these
relations the expressions of u̇, ẋ, and v̇ from system (1) (from
system (2)), writing u = T −1(z − Mx), and x = Q−1(y − Pv),
one obtains system (7) (system (8)).

Conditions T A + MB = 0 and M f (x, u) = 0 from property
P1 and the conditions from property P2 ensure the existence
of a linear coordinate transformation that takes the system to
standard singular perturbation form. Additionally, condition
MC = 0 from property P1 is necessary to ensure that once
ε1 = ε2 = 0, the dynamics of u do not depend on v, and thus
that the retroactivity to the output does not directly propagate
to the input. Properties P1 and P2 give sufficient conditions
on the interconnection structure that allows for insulation em-
ploying separation of timescales. For low dimensional systems,
matrices T , M, Q and P that satisfy properties P1 and P2
can be easily determined by inspection of matrices A, B,
C and D. This is illustrated in Section IV with two five-
dimensional application examples. For more general cases,
prior work has focused on the existence and construction of

non-linear coordinate transformations that bring a system to
standard singular perturbation form [37].

For (u, x, v) ∈ Du × Dx × Dv, define the domains Dz and
Dy to be the images of Du,Dx,Dv through transformations
(6). We also define the map F : Du × Dx → Dz × Dx for all
(u, x) ∈ Du × Dx as F (u, x) := (Tu + Mx, x). Note that this
map is continuous and invertible. Similarly, define the map
G : Du×Dx×Dv → Dz×Dy×Dv for all (u, x, v) ∈ Du×Dx×Dv

as G(u, x, v) := (Tu + Mx,Qx + Pv, v). Note that this map is
also continuous and invertible.

A. Technical Assumptions

In the following sections, a nested application of Tikhonov
singular perturbation theorem, as found in standard references,
is employed in systems (7) and (8). To assure validity of the
theorems, we pose technical assumptions which are considered
valid on the domains Du,Dx,Dv,Dz, and Dy. In what follows,
we say that a square matrix A(x) depending on x ∈ D ⊂ R n is
Hurwitz uniformly for x ∈ D if there is a real c > 0 such that

{λ(A(x))} < −c for all x ∈ D.
A1 The functions g, f , h, r, s are smooth;
A2 The functions g, f , h, r are Lipschitz continuous for all

t ∈ R+;
A3 The function v = φ1(y) is the unique solution of h̄(y, v) =

0, it is Lipschitz continuous and smooth;
A4 The function y = φ2(z) is the unique solution of

f̄ (z, y, φ1(y)) = 0 and it is Lipschitz continuous;
A5 The function x = φx(z) is the unique solution of f̃ (z, x) =

0 and it is Lipschitz continuous;
A6 We have that ∂

∂v h̄(y, v)
∣∣∣
v=φ1(y)

is Hurwitz uniformly for
y ∈ Dy;

A7 We have that ∂
∂y f̄ (z, y, φ1(y))

∣∣∣∣
y=φ2(z)

is Hurwitz uniformly

for z ∈ Dz;

A8 We have that ∂
∂(y,v)

[
f̄ (z, y, v)
h̄(y, v)

]∣∣∣∣∣∣
y=φ2(z),v=φ1◦φ2(z)

is Hurwitz

uniformly for z ∈ Dz;
A9 We have that ∂

∂x f̃ (z, x)
∣∣∣
x=φx(z)

is Hurwitz uniformly for
z ∈ Dz.

Assumptions A1 and A2 guarantee existence and uniqueness
of the solutions of systems (1) and (2). As a consequence,
assumptions A1 and A2 also guarantee the existence and
uniqueness of the solutions of systems (7) and (8). Assump-
tions A3, A4, A6 and A7 guarantee the stability of the
boundary layer systems obtained when employing a nested
application of Tikhonov theorem to system (7) for the case
in which G1 � G2. Along with assumption A8, assumptions
A3 and A4 are also employed to guarantee the stability of the
boundary layer system in the application of Tikhonov theorem
to system (7) for the case in which G1 and G2 are of the
same order of magnitude. Assumptions A5 and A9 guarantee
the stability of the boundary layer system when employing
Tikhonov theorem to system (8) and to system (7) when
G1 � G2.

Proposition 2. Let (y, v) = (ϕy(z), ϕv(z)) be a solution to
( f̄ (z, y, v), h̄(y, v)) = 0. Then, such a solution is unique.
Furthermore ϕy(z) = φ2(z) and ϕv(z) = φ1 ◦ φ2(z).
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Proof: Since (y, v) = (ϕy(z), ϕv(z)) is a solution to equation
( f̄ (z, y, v), h̄(y, v)) = 0, we have that h̄(ϕy(z), ϕv(z)) = 0. By
A3, this implies that ϕv(z) = φ1 ◦ ϕy(z). This along with
f̄ (z, ϕy(z), ϕv(z)) = 0 imply that f̄ (z, ϕy(z), φ1 ◦ ϕy(z)) = 0. This
along with A4 imply that ϕy(z) = φ2(z). As a consequence, we
have that ϕv(z) = φ1 ◦ ϕy(z) = φ1 ◦ φ2(z).

B. Main Result

The main result of the paper is based on the two following
lemmas, which employ Tikhonov singular perturbation theo-
rem in the form presented in [25]. Specifically, Lemmas 1
and 2 provide approximations of the isolated and connected
system trajectories, respectively, when we consider as small
parameters ε1 := 1/G1 and ε2 := 1/G2. These approximations
are then compared with each other to obtain the retroactivity
to the output attenuation property, which is the main result of
the paper.

Before giving the first lemma, we define the two following
sets. For any α > 0, define the set Ru,x(α) ⊂ Du × Dx by

Ru,x(α) := {(u, x) ∈ Du × Dx | ‖x − φx(Tu + Mx)‖ < α} (9)

and let Ωu,x(α) be any compact subset of Ru,x(α). For α > 0,
define the set Ru,x,v(α) ⊂ Du × Dx × Dv by

Ru,x,v(α) :=

{
(u, x, v) ∈ Du × Dx × Dv

∣∣∣∣∣∣∥∥∥∥∥∥ v − φ1(Qx + Pv)
Qx + Pv − φ2(Tu + Mx)

∥∥∥∥∥∥ < α
}
,

(10)

and let Ωu,x,v(α) be any compact subset of Ru,x,v(α). The next
proposition shows the relationship between the sets Ru,x and
Ru,x,v.

Proposition 3. Consider the sets defined in equations (9) and
(10). Then, for all α > 0 there is β > 0 such that (u, x, v) ∈
Ru,x,v(β) implies that (u, x) ∈ Ru,x(α).

Proof: Since x = φx(z) is the unique solution of f̃ (z, x) =
0 and f̄ (z, φ2(z), φ1◦φ2(z)) = 0, it follows from the definition of
f̄ (equation (4)) that Q−1[φ2(z)−Pφ1◦φ2(z)] = φx(z). Since Q is
invertible, for all α > 0 there is β2 > 0 such that ‖Qx−φ2(Tu+
Mx)+Pφ1◦φ2(Tu+Mx)‖ < β2 implies ‖x−φx(Tu+Mx)‖ < α.
By applying the triangular inequality, one can show that for all
β2 > 0 there is β1 > 0 such that ‖v−φ1◦φ2(Tu+Mx)‖ < β1 and
‖Qx+Pv−φ2(Tu+Mx)‖ < β1 imply ‖Qx−φ2(Tu+Mx)+Pφ1◦
φ2(Tu+Mx)‖ < β2. Finally, the continuity of φ1 along with the
triangular inequality imply that for all β1 > 0 there is β0 > 0
such that ‖v−φ1(Qx+Pv)‖ < β0 and ‖Qx+Pv−φ2(Tu+Mx)‖ <
β0 imply ‖v−φ1 ◦φ2(Tu+Mx)‖ < β1. Let β := min(β0, β1).

As a consequence of this proposition, if Ω ⊂ Ru,x,v(β) is
compact, then the set {(u, x) | (u, x, v) ∈ Ω} is a compact subset
of Ru,x(α).

Under properties P1-P2 and assumptions A1-A9, we give
the two following lemmas.

Lemma 1. Let uis(t, 1/G1), xis(t, 1/G1) be the unique solution
of system (2) for t ∈ [t0, t f ] with initial condition uis(t0) ∈ Du

and xis(t0) ∈ Dx. Let ū(t) be the unique solution of system

u̇ =

(
T + M

dγx(ū)
dū

)−1

Tg(ū, t) (11)

for t ∈ [t0, t̄ f ] with initial condition ū(t0) = T−1(zis(t0) −
φx(zis(t0))) where zis(t0) = Tuis(t0) + Mxis(t0) and x = γx(u)
is the locally unique solution of Br(x, u) + f (x, u) = 0.
Then, there is α > 0 such that for all tb ∈ (t0, t̄ f ] there
exists G∗1 > 0 such that uis(t, 1/G1) − ū(t) = O

(
1

G1

)
and

xis(t, 1/G1) − γx(ū(t)) = O
(

1
G1

)
hold uniformly for t ∈ [tb, t̄ f ]

provided G1 > G∗1 and (uis(t0), xis(t0)) ∈ Ωu,x(α).

Proof: For convenience, define ḡ(z is, xis) :=
Tg

(
T−1(zis − Mxis), t

)
and denote the solution of

system (8) by zis(t, ε1), xis(t, ε1) for t ∈ [t0, t f ] with
zis(t0) = Tuis(t0) + Mxis(t0). Let x = φx(z) be the unique
solution of the algebraic equation f̃ (z, x) = 0 and denote by
z̄is(t) the unique solution of the reduced system

˙̄zis = ḡ(z̄is, φx(z̄is)) (12)

for t ∈ [t0, t̄ f ] and z̄is(t0) = zis(t0) (the uniqueness of the
solution follows from the fact that ḡ is Lipschitz continuous
on its domain by Assumptions A2 and A5). Assumption A9
further guarantees that the boundary layer system is locally
exponentially stable. The region of attraction thus contains the
set of x such that ‖x−φx(z(t0))‖ < β for some β > 0 sufficiently
small. Define the set Rz,x(β) = {(z, x) | ‖x − φx(z)‖ < β}.
Let Ωz,x(β) be any compact subset of Rz,x(β). By Tikhonov
theorem, for all tb ∈ (t0, t̄ f ], there exists ε∗1 > 0 such that

zis(t, ε1) − z̄is(t) = O(ε1) and

xis(t, ε1) − φx(z̄is(t)) = O(ε1) uniformly for t ∈ [tb, t̄ f ]
(13)

provided ε1 < ε∗1 and (xis(t0), zis(t0)) ∈ Ωz,x(β).
To obtain these approximations in the original coordinate

system, define

ūis := T−1 (z̄is − Mφx(z̄is)) . (14)

We seek to show that ūis(t) satisfies the differential equation
(11). Since x = φx(z) is the locally unique solution of f̃ (z, x) =
0, we must have that

f̃ (z, φx(z)) = 0. (15)

Since f̃ (z, x) = Br
(
x, T−1(z − Mx)

)
+ f

(
x, T−1(z − Mx)

)
, equa-

tion (15) implies that

Br
(
φx(z̄is), T−1 (z̄is − Mφx(z̄is))

)
+ f

(
φx(z̄is), T

−1 (z̄is − Mφx(z̄is))
)
= 0.

(16)

From the assumptions of the lemma, we have that x =
γx(u) is the locally unique solution of Br(x, u) + f (x, u) =
0. This along with equation (16) imply that φ x(z̄is) =
γx(T−1 (z̄is − Mφx(z̄is))) = γx(ūis). As a consequence, we can
re-write equation (14) as z̄ is = Tūis + Mγx(ūis). Taking the
time derivative of both sides of this expression, we obtain
˙̄zis = T ˙̄uis + M dγx(ūis)

dūis
˙̄uis. Employing equation (12) on the

left-hand side and re-arranging the terms, we obtain that
˙̄uis =

(
T + M dγx(ūis )

dūis

)−1
ḡ(z̄is, φx(z̄is)), in which (by equations

(8)) we have that ḡ(z̄is, φx(z̄is)) = Tg
(
T−1(z̄is − Mφx(z̄is)), t

)
=

Tg(ūis, t), leading to ūis(t) satisfying the differential equation
(11) for t ∈ [t0, t̄ f ] with ūis(t0) = T−1(z̄is(t0) − Mφx(z̄is(t0))).
Since uis(t, ε1) = T−1[zis(t, ε1)−Mxis(t, ε1)] and equations (13)
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hold, we have that uis(t, ε1) = T−1[z̄is(t)+O(ε1)−M(φx(z̄is(t))+
O(ε1))], which, by employing equation (14) and the fact that
φx(z̄is) = γx(T−1 (z̄is − Mφx(z̄is))) = γx(ūis), leads to

uis(t, ε1) − ūis(t) = O(ε1) and

xis(t, ε1) − γx(ūis(t)) = O(ε1) uniformly for t ∈ [tb, t̄ f ]
(17)

provided that ε1 < ε∗1 and (zis(t0), uis(t0)) ∈ Ωz,x(β). Since
Rz,x(β) is the image of Ru,x(β) under the continuous map F , we
have that for any compact set Ωz,x(β) ⊂ Rz,x(β), there is a com-
pact subset Ωu,x(β) ⊂ Ru,x(β) such that Ωz,x(β) = F (Ωu,x(β)).
As a consequence, equations (17) hold provided ε 1 < ε

∗
1 and

(uis(t0), xis(t0)) ∈ Ωu,x(β) with Ωu,x(β) := F −1(Ωz,x(β)). Set
α = β and G∗1 := 1/ε∗1.

The following lemma provides approximations to the solu-
tion of system (1) in a way similar to what was performed
in Lemma 1 for system (2). The main technical difference
between Lemma 1 and Lemma 2 is that system (1) has
two small parameters, that is, ε1 = 1/G1 and ε2 = 1/G2,
which can take different relative values. The proof of the
lemma thus considers three different cases: G2/G1 → O(1)
as G1 → ∞ (i.e., G1 and G2 are of the same order of
magnitude); G2/G1 → 0 as G1 → ∞ (i.e., G1 is orders of
magnitude larger than G2); G2/G1 → ∞ as G1 → ∞ (i.e.,
G2 is orders of magnitude larger than G 1). In particular, in
the latter case the system has three different timescales and
therefore it is treated by performing a nested application of
Tikhonov singular perturbation theorem.

Lemma 2. Let x(t, 1/G1, 1/G2), u(t, 1/G1, 1/G2),
v(t, 1/G1, 1/G2) be the unique solution of system (1) for
t ∈ [t0, t f ] with initial conditions (x(t0), u(t0), v(t0)) ∈
Dx × Du × Dv. Let ū(t) be the unique solution of system

˙̄u =

(
T + M

dγx(ū)
dū

)−1

Tg(ū, t), (18)

for t ∈ [t0, t̄ f ] with initial condition ū(t0) = T−1(z(t0)−φx(z(t0)))
with z(t0) = Tu(t0) + Mx(t0) and x = γx(u) the locally unique
solution of f (x, u) + Br(x, u) = 0. Then, there is α > 0 such
that for all tb ∈ (t0, t̄ f ] there are G∗1 > 0 and G∗2 > 0 such that
the following properties hold for (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(α)
and G1 > G∗1:

(i) x(t, 1/G1, 1/G2)−γx(ū(t)) = O
(

1
G1

)
and u(t, 1/G1, 1/G2)−

ū(t) = O
(

1
G1

)
uniformly for t ∈ [tb, t̄ f ] when G2/G1 →

{O(1), 0} as G1 → ∞;
(ii) x(t, 1/G1, 1/G2)−γx(ū(t)) = O

(
G1
G2

)
and u(t, 1/G1, 1/G2)−

ū(t) = O
(

G1
G2

)
uniformly for t ∈ [tb, t̄ f ] when G2/G1 → ∞

as G1 → ∞ and G2 > G∗2.

Proof:
Define for convenience the function ḡ(z, y, v, t) :=

Tg
(
T−1(z − MQ−1(y − Pv)), t

)
and let z(t, ε1, ε2), y(t, ε1, ε2),

v(t, ε1, ε2) be the unique solution of system (7) for t ∈ [t 0, t f ]
with initial conditions z(t0) = Tu(t0)+Mx(t0), y(t0) = Qx(t0)+
Pv(t0), and v(t0). There are three cases: ε2/ε1 → 0 as ε1 → 0,
ε2/ε2 → O(1) as ε1 → 0, and ε2/ε1 → ∞ as ε1 → 0.

Case 1: ε2/ε1 → 0 as ε1 → 0. We perform a nested
application of Tikhonov singular perturbation theorem. Define

the new small parameters μ1 := ε1 and μ2 := ε2/ε1 and re-write
system (7) as

ż = ḡ(z, y, v, t)

μ1ẏ = f̄ (z, y, v) + μ1Ph(v, t)

μ2μ1v̇ = h̄(y, v) + μ2μ1h(v, t).

(19)

Set μ2 = 0 and let v = φ1(y) be the locally unique solution of
h̄(y, v) = 0. Let also z̄(t, ε1) and ȳ(t, ε1) be the unique solution
of the reduced system obtained once μ2 = 0

ż = ḡ(z, y, φ1(y), t)

μ1ẏ = f̄ (z, y, φ1(y)) + μ1Ph(φ1(y), t)
(20)

for t ∈ [t0, Ta], z̄(t0) = z(t0), and ȳ(t0) = y(t0) (uniqueness of the
solution follows from Assumptions A2 and A3). Assumption
A6 further guarantees that the boundary layer system is locally
exponentially stable. For some β > 0 sufficiently small, the
region of attraction contains the set of v such that ‖v−φ1(y(t0))‖
is sufficiently small. Define the set Ry,v(β) := {(y, v) ∈ Dy ×
Dv | ‖v − φ1(y)‖ < β} and let Ωy,v(β) ⊂ Ry,v(β) be compact.
Then, by Tikhonov theorem, for all t b > 0 there is μ∗2 > 0
such that

z(t, μ1, μ1μ2) − z̄(t, μ1) = O(μ2) and

y(t, μ1, μ1μ2) − ȳ(t, μ1) = O(μ2) uniformly for t ∈ [t0, Ta]

v(t, μ1, μ1μ2) − φ1(ȳ(t, μ1)) = O(μ2) uniformly for t ∈ [tb, Ta]
(21)

hold provided μ2 < μ
∗
2 and (ȳ(t0), v(t0)) ∈ Ωy,v(β).

System (20) is also in standard singular perturbation form
with small parameter μ1. Set μ1 = 0 and let y = φ2(z) be the
locally unique solution of f̄ (z, y, φ1(y)) = 0. Let z̃(t) be the
unique solution of the resulting reduced system when μ 1 = 0

˙̃z = ḡ(z̃, φ2(z̃), φ1 ◦ φ2(z̃), t) (22)

for t ∈ [t0, t̄ f ] with z̃(t0) = z̄(t0) (uniqueness of the solution
follows from Assumptions A2, A3, and A4). Furthermore,
Assumption A7 guarantees that the boundary layer system
is locally exponentially stable. For some δ > 0 sufficiently
small, the region of attraction contains the set of y such
that ‖y − φ2(z(t0))‖ < δ. Define the set Rz,y(δ) := {(z, y) ∈
Dz ×Dy | ‖y− φ2(z)‖ < δ} and let Ωz,y(δ) ⊂ Rz,y(δ) be compact.
Then, from Tikhonov theorem, for all t b > 0, there is μ∗1 > 0
such that

z̄(t, μ1) − z̃(t) = O(μ1) uniformly for t ∈ [t0, t̄ f ]

ȳ(t, μ1) − φ2(z̃(t)) = O(μ1) uniformly for t ∈ [tb, t̄ f ]
(23)

hold provided μ1 < μ
∗
1 and (z̃(t0), ȳ(t0)) ∈ Ωz,y(δ). As a

consequence of relations (23), for μ1 < μ
∗
1 the solution of

system (20) is uniquely defined for t ∈ [t0, t̄ f ]. We can
thus let Ta = t̄ f so that for μ2 < μ

∗
2, with μ∗2 sufficiently

small, also the solution of system (19) is uniquely defined
for t ∈ [t0, t̄ f ]. Let η := min(β, δ) and define Rz,y,v(η) :={
(z, y, v) ∈ Dz × Dy × Dv |

∥∥∥∥∥∥ v − φ1(y)
y − φ2(z)

∥∥∥∥∥∥ < η
}
. Let Ωz,y,v(η) ⊂

Rz,y,v(η) be any compact set. Combining expression (21) with
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Ta = t̄ f and expression (23), the solution of system (1) satisfies

v(t, μ1, μ1μ2) − φ1 ◦ φ2(z̃(t)) = O(μ1) + O(μ2)

y(t, μ1, μ1μ2) − φ2(z̃(t)) = O(μ1) + O(μ2)

z(t, μ1, μ1μ2) − z̃(t) = O(μ1) + O(μ2) uniformly for t ∈ [tb, t̄ f ],
(24)

in which we have used that φ1(φ2(z)+O(μ1)) = φ1◦φ2(z)+O(μ1)
since φ1 is smooth. In order to return to the original coordinate
system, define

ū = T−1
(
z̃ − MQ−1(φ2(z̃) − Pφ1 ◦ φ2(z̃))

)
. (25)

We seek to show that ū(t) satisfies equation (11). Since y =
φ2(z) is the locally unique solution of f̄ (z, y, φ1(y)) = 0, by
the definition of f̄ (equation (4)), we have that Br(Q−1(φ2(z̃)−
Pφ1◦φ2(z̃)), ū)+ f (Q−1(φ2(z̃)−Pφ1◦φ2(z̃)), ū) = 0. This equation
along with the fact that x = γx(u) is the locally unique solution
of Br(x, u) + f (x, u) = 0 lead to

Q−1(φ2(z̃) − Pφ1 ◦ φ2(z̃)
)

= γx
(
T−1(z̃ − MQ−1(φ2(z̃) − Pφ1 ◦ φ2(z̃)))

)
= γx(ū).

(26)

Substituting this into equation (25) and re-arranging
the terms, we obtain the equation z̃ = Tū + Mγ x(ū).
Taking the time derivative both sides, we obtain
that ˙̃z = T ˙̄u + M dγx(ū)

dū
˙̄u. Employing equation (22)

on the left-hand side and re-arranging the terms, we

obtain ˙̄u =
(
T + M dγx(ū)

dū

)−1
ḡ(z̃, φ2(z̃), φ1 ◦ φ2(z̃), t),

in which we have that ḡ(z̃, φ2(z̃), φ1 ◦ φ2(z̃), t) =

Tg
(
T−1(z̃ − MQ−1(φ2(z̃) − Pφ1 ◦ φ2(z̃))), t

)
with

T−1(z̃ − MQ−1(φ2(z̃) − Pφ1 ◦ φ2(z̃))) = ū from equation (25).
Therefore, ū(t) is the unique solution of (18) for t ∈ [t 0, t̄ f ]
and ū(t0) = T−1

(
z̃(t0) − MQ−1[φ2(z̃(t0)) − Pφ1 ◦ φ2(z̃(t0))]

)
,

in which z̃(t0) = z(t0). Since x = φx(z) is the unique
solution of f̃ (z, x) = 0 and f̄ (z, φ2(z), φ1 ◦ φ2(z)) = 0,
it follows from the definition of f̄ (equation (4))
that Q−1[φ2(z) − Pφ1 ◦ φ2(z)] = φx(z). Thus,
ū(t0) = T−1[z(t0) − Mφx(z(t0))].

From the coordinate transformation (6), we have
x(t, μ1, μ1μ2) = Q−1(y(t, μ1, μ1μ2)−Pv(t, μ1, μ1μ2)). Employing
the relations for y and v from (24), we obtain x(t, μ 1, μ1μ2) =
Q−1[φ2(z̃(t))+O(μ1)+O(μ2)−P (φ1 ◦ φ2(z̃(t)) + O(μ1) + O(μ2))].
By employing equations (25) and (26), one obtains
that x(t, μ1, μ1μ2) = γx(ū(t)) + O(μ1) + O(μ2).
Similarly, from the change of variable u(t, μ1, μ1μ2) =

T−1(z(t, μ1, μ1μ2)−MQ−1[y(t, μ1, μ1μ2)−Pv(t, μ1, μ1μ2)
])
, (24),

and (25), we obtain that u(t, μ1, μ1μ2) = ū(t) + O(μ1) + O(μ2).
Hence, we have that

u(t, μ1, μ1μ2) − ū(t) = O(μ1) + O(μ2) and

x(t, μ1, μ1μ2) − γx(ū(t)) = O(μ1) + O(μ2)
(27)

uniformly for t ∈ [tb, t̄ f ] provided μ1 < μ
∗
1, μ2 < μ

∗
2,

and (z̃(t0), ȳ(t0), v(t0)) ∈ Ωz,y,v(η). Since Rz,y,v(η) is the image
of Ru,x,v(η) under the continuous map G, we have that for
any compact set Ωz,x,v(η) ⊂ Rz,x,v(η), there is a compact set
Ωu,x,v(η) ⊂ Ru,x,v(η) such that Ωz,x,v(η) = G(Ωu,x,v(η)). As a con-
sequence, equations (27) hold provided μ 1 < μ

∗
1, μ2 < μ

∗
2, and

(u(t0), x(t0), v(t0)) ∈ Ωu,x,v(η) with Ωu,x,v(η) = G−1(Ωz,x,v(η)).
Define εcase 1

1 := μ∗1 and αCase 1 := η.

Case 2: ε2/ε1 = O(1) as ε1 → 0. Letting a := ε1/ε2, system
(7) becomes

ż = ḡ(z, y, v, t)

ε1ẏ = f̄ (z, y, v) + ε1Ph(v, t)

ε1v̇ = ah̄(y, v) + ε1h(v, t).

(28)

Denote the solution of system (28) by z(t, ε1), y(t, ε1), and
v(t, ε1) for t ∈ [t0, t f ]. By Proposition 2, (y, v) = (φ2(z), φ1 ◦
φ2(z)) is the locally unique solution of ( f̄ (z, y, v), h̄(y, v)) = 0.
Define φ3(z) := φ1 ◦ φ2(z) to simplify notation. Let z̄(t) be the
unique solution of the reduced system

ż = ḡ(z, φ2(z), φ3(z), t) (29)

for t ∈ [t0, t̄ f ] and z̄(t0) = z(t0) (uniqueness of the solution
follows from Assumptions A2, A3, and A4). Furthermore,
Assumption A8 guarantees that the boundary layer system
is locally exponentially stable. For some β > 0 sufficiently
small, the region of attraction contains the set of all (y, v)
such that ‖(y, v) − (φ2(z(t0)), φ3(z(t0)))‖ < β. Define the set
Rz,y,v(β) := {(z, y, v) ∈ Dz×Dy×Dv | ‖(y, v)− (φ2(z), φ3(z))‖ < β}
and let Ωz,y,v(β) ⊂ Rz,y,v(β) be compact. Then, by Tikhonov
theorem, for all t ∈ (t0, t̄ f ] there is εCase 2

1 > 0 such that

z(t, ε) − z̄(t) = O(ε1) uniformly for t ∈ [0, t̄ f ]

y(t, ε) − φ2(z̄(t)) = O(ε1) and

v(t, ε) − φ3(z̄(t)) = O(ε1) uniformly for t ∈ [tb, t̄ f ]

(30)

provided ε1 < εCase 2
1 and (z(t0), y(t0), v(t0)) ∈ Ωz,y,v(β).

Define

ū := T−1(z̄ − MQ−1(φ2(z̄) − Pφ3(z̄))). (31)

We seek to determine the differential equation that ū(t)
obeys. Since f̄ (z, φ2(z), φ3(z)) = 0, we have by the defini-

tion of f̄ (equation (4)) that Br
(
Q−1(φ2(z) − Pφ3(z)), T−1(z −

MQ−1(φ2(z) − Pφ3(z)))
)
+ f

(
Q−1(φ2(z) − Pφ3(z)), T−1(z −

MQ−1(φ2(z) − Pφ3(z)))
)
= 0. Given that by assumption

x = γx(u) is the locally unique solution of Br(x, u) +
f (x, u) = 0, we must have that Q−1(φ2(z̄) − Pφ3(z̄))) =
γx

(
T−1[z̄ − MQ−1(φ2(z̄) − Pφ3(z̄))]

)
= γx(ū). Substituting this

in equation (31), we obtain that z̄ = Tū +Mγ x(ū). Computing
the time derivative both sides of this equation, employing
equation (29) and equation (31), one obtains that ū(t) is the

solution of (18) for t ∈ [t0, t̄ f ] with ū(t0) = T−1
(
z̄(t0) −

MQ−1[φ2(z̄(t0)) − Pφ3(z̄(t0))]
)

and z̄(t0) = z(t0). Since, as for

Case 1, we have that Q−1[φ2(z̄(t0)) − Pφ3(z̄(t0))] = φx(z̄(t0)),
then ū(t0) = T−1[z̄(t0) − Mφx(z̄(t0))].

Finally, employing the change of coordinates (6) and ap-
proximations (30), we obtain that

u(t, ε1) − ū(t) = O(ε1) and

x(t, ε1) − γx(ū(t)) = O(ε1)
(32)

hold uniformly for t ∈ [tb, t̄ f ] provided (z(t0), y(t0), v(t0)) ∈
Ωz,y,v(β) and ε1 < εCase 2

1 . Define the new region R̄z,y,v(η) :=
{(z, y, v) | ‖(y, v) − (φ2(z), φ1(y))‖ < η}. By the continuity of
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φ1 and the triangular inequality, it follows that for all β > 0
there is η > 0 such that R̄z,y,v(η) ⊂ Rz,y,v(β). Since Ωz,y,v(β) is
an arbitrary compact subset of Rz,y,v(β), it can be chosen such
that Ωz,y,v(β) = Ω̄z,y,v(η) for Ω̄z,y,v(η) a suitable compact subset
of R̄z,y,v(η). Since R̄z,y,v(η) = G(Ru,x,v(η)) and G is a continuous
mapping, we have that for all compact sets Ω̄z,y,v(η) ⊂ R̄z,y,v(η)
there is a compact set Ωu,x,v(η) ⊂ Ru,x,v(η) such that Ω̄z,y,v(η) =
G(Ωu,x,v(η)). As a consequence, equations (32) hold provided
ε1 < ε

Case 2
1 and (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(η) with Ωu,x,v(η) =

G−1(Ω̄z,y,v(η)). Define αCase 2 := η.
Case 3: ε2/ε1 → ∞ as ε1 → 0. In this case, only the change

of coordinates z = Tu + Mx is applied to system (1), leading
to the system in the new coordinates

ż = g(T−1(z − Mx), t),

ε1 ẋ = f̃ (z, x) +
ε1
ε2

Cs(x, v),

ε2v̇ = Ds(x, v) + l(v) + ε2h(v, t).

(33)

Let x = φx(z) be the locally unique solution to the equation
f̃ (z, x) = 0 (in which we have that φ x(z) = Q−1[φ2(z) − Pφ1 ◦
φ2(z)]) and let z̄(t), v̄(t, ε2) be the unique solution of the reduced
system

ż = g(T−1(z − Mφx(z)), t)

ε2v̇ = Ds(φx(z), v) + l(v) + ε2h(v, t)
(34)

for t ∈ [t0, t̄ f ] with z̄(t0) = z(t0) and v̄(t0) = v(t0) (uniqueness
of the solution follows from Assumptions A2 and A5). As-
sumption A9 further guarantees that the boundary layer system
is locally exponentially stable. For some β > 0 sufficiently
small, the region of attraction contains the set of x such
that ‖x − φx(z(t0))‖ < β. Define the set Rz,x(β) := {(z, x) ∈
Dz × Dx | ‖x − φx(z)‖ < β}. Let Ωz,x(β) be any compact set
contained in Rz,x(β). From Tikhonov theorem, there is β > 0
such that for all tb ∈ (0, t̄ f ], there exist εCase 3

1 > 0 such that

z(t, ε1, ε2) − z̄(t) = O(ε1) and

v(t, ε1, ε2) − v̄(t, ε2) = O(ε1) uniformly for t ∈ [0, t̄ f ]

x(t, ε1, ε2) − φx(z̄(t)) = O(ε1) uniformly for t ∈ [tb, t̄ f ]

(35)

provided ε1 < εCase 3
1 and (z(t0), x(t0)) ∈ Ωz,x(β). In order to

obtain the approximations in the original coordinate system,
define ū = T −1(z̄ − Mφx(z̄)). Since x = γx(u) is the locally
unique solution of Br(x, u) + f (x, u) = 0 and x = φ x(z) is the
locally unique solution of Br(x, T −1(z − Mx)) + f (x, T−1(z −
Mx)) = 0, we have that φx(z̄) = γx(T−1(z̄ − Mφx(z̄))) = γx(ū).
Then, we can write z̄ = Tū+Mγx(ū) and conclude that ū(t) is
the unique solution to system (11) for t ∈ [t0, t̄ f ] with ū(t0) =
T−1[z̄(t0) − Mφx(z̄(t0))]. By employing the coordinate change
z = Tu + Mx as performed in Case 1, we finally obtain that

u(t, ε1, ε2) − ū(t) = O(ε1) and

x(t, ε1, ε2) − γx(ū(t)) = O(ε1),
(36)

uniformly for t ∈ [tb, t̄ f ] provided ε1 < εCase 3
1 and

(z(t0), x(t0)) ∈ Ωz,x(β). Since Rz,x(β) is the image of Ru,x(β)
under the continuous map F , for any compact set Ω z,x(β) ⊂
Rz,x(β), there is a compact set Ωu,x(β) ⊂ Ru,x(β) such that
Ωz,x(β) = F (Ωu,x(β)). As a consequence, equations (36) hold

provided ε1 < εCase 3
1 and (u(t0), x(t0)) ∈ Ωu,x(β). By Proposi-

tion 3, for all β > 0 there is η > 0 such that (u, x, v) ∈ Ru,x,v(η)
implies (u, x) ∈ Ru,x(β). Let Ωu,x,v(η) ⊂ Ru,x,v(η) be any
compact set. Then, (u, x, v) ∈ Ωu,x,v(η) implies (u, x) ∈ Ωu,x(β)
for some compact set Ωu,x(β) ⊂ Ru,x(β). As a consequence,
equations (36) hold provided (u(t 0), x(t0), v(t0)) ∈ Ωu,x,v(η). Let
αCase 3 := η.

By combining Case 1, Case 2, and Case 3, the result of the
theorem follows with α = min(αCase 1, αCase 2, αCase 3), G∗1 =
1/ε∗1 with ε∗1 = min(εCase 1

1 , εCase 2
1 , εCase 3

1 ), and G∗2 := 1/(ε∗1μ
∗
2).

By combining the results of the lemmas, we can obtain the
main result of the paper.

Theorem 1. Under Properties P1-P2 and Assumptions A1-
A9, system Σ has the retroactivity to the output attenuation
property.

Proof: By virtue of Lemma 1, we have that there is
α1 > 0 such that for all tb ∈ (t0, t̄ f ] there exists Ga

1 > 0
such that xis(t, 1/G1) − γx(ū(t)) = O( 1

G1
) hold uniformly for

t ∈ [tb, t̄ f ] whenever G1 > Ga
1 and (uis(t0), xis(t0)) ∈ Ωu,x(α1).

Similarly, Lemma 2 shows that there is α2 > 0 such that for
all tb ∈ (t0, t̄ f ] there are Gb

1 > 0 and G∗2 > 0 such that (i)
and (ii) hold uniformly for in t ∈ [tb, t̄ f ] whenever G1 > Gb

1
and (u(t0), x(t0), v(t0)) ∈ Ωu,x,v(α2). By Proposition 3, for all
α1 > 0 there is η > 0 such that (u, x, v) ∈ Ru,x,v(η) implies
(u, x) ∈ Ru,x(α1). Let Ωu,x,v(η) ⊂ Ru,x,v(η) be any compact set.
Then, (u, x, v) ∈ Ωu,x,v(η) implies (u, x) ∈ Ωu,x(α1) for some
compact set Ωu,x(α1) ⊂ Ru,x(α1). Letting G∗1 := max(Ga

1,G
b
1)

and α := min(η, α2), we obtain the desired result.

Remark 1. (Retroactivity to the input) An immediate conse-
quence of Lemma 2 is the quantification of the retroactivity
to the input of system Σ, that is, the impact of Σ on the
dynamics of the upstream system. Specifically, one can make
the retroactivity to the input small by choosing the parameters
of Σ in such a way to make dγ x(ū)/dū small. Therefore,
dγx(ū)/dū can be considered as a measure of the retroactivity
to the input of system Σ.

IV. Application Examples

In this section, we show how the interconnection structure
of system (1) is found in bio-molecular systems extracted
from natural signal transduction pathways and how it can be
used to build insulation devices. In particular, we consider as
system Σ two post-translational modification systems which
are recurrent motifs in signal transduction: phosphorylation
cycles and phosphotransfer systems. In both examples, the
system output is connected to the downstream system through
the binding of transcription factors to DNA. Studies show that
this type of interaction can be much faster than, much slower
than or of the same order as the post-translational modification
processes analyzed here. For example, [35] gives a first-order
reaction rate of 40s−1 for DNA-protein interaction, while [33],
[34] give first-order reaction rates ranging from 10 −1s−1 to
104s−1 for phosphorylation cycles and phosphotransfer sys-
tems. Therefore, in this application, it is important to show that
the retroactivity to the output attenuation property holds when
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the downstream interconnection dynamics are of the same
order as, much faster or much slower than the dynamics of
system Σ. Phosphorylation cycles are among the most common
intracellular signal transduction mechanisms. They have been
observed in virtually every organism, carrying signals that reg-
ulate processes such as cell motility, nutrition, interaction with
environment and cell death [42]. In this paper, we describe
a phosphorylation system extracted from the MAPK cascade
[33], similar to the device proposed in [11]. While in [11] the
timescales of the downstream interconnection and that of the
phosphorylation cycle are the same, here we consider the situa-
tion in which the timescale of the downstream interconnection
is much faster than that of the phosphorylation cycle reactions.
Phosphotransfer systems are also a common motif in cellular
signal transduction [43], [44]. These structures are composed
of proteins that can phosphorylate each other. By contrast
to kinase-mediated phosphorylation, in which the phosphate
donor is usually ATP, in phosphotransfer the phosphate group
comes from the donor protein itself. Each protein carrying
a phosphate group can donate it to the next protein in the
system through a reversible reaction. In this paper, we describe
a module extracted from the phosphotransferase system [45].
In this example, we consider all the three possible relationships
between the timescale of the downstream interconnection and
that of the phosphotranfer device.

A. Example 1: Phosphorylation

Figure 2. System Σ is a phosphorylation cycle. Its product X* activates
transcription through the reversible binding of X* to downstream DNA
promoter sites p.

In this section, we analyze the dynamics of a system Σ
modeling a phosphorylation cycle as shown in Figure 2.
This system takes as input a kinase Z that phosphorylates
a protein X. The phosphorylated form of X, denoted X ∗,
is a transcription factor, which binds to downstream DNA
promoter binding sites p. Therefore, the downstream system
in terms of Figure 1 is the binding and unbinding process
to DNA sites. The phosphorylated protein X∗ is converted
to the original dephosphorylated form by phosphatase Y. A
standard two-step reaction model for the phosphorylation and

dephosphorylation reactions is given by Z + X
β1−⇀↽−
β2

C1
k1−→

X∗ + Z and Y + X∗
α1−−⇀↽−−
α2

C2
k2−→ X + Y, respectively, in which

C1 and C2 are the complexes of protein Z with substrate
X and of protein Y with protein X∗, respectively [46]. The
binding reactions of transcription factor X∗ with downstream

binding sites p are given by X∗ + p
kon−−−⇀↽−−−
ko f f

C, in which C is

the complex of X∗ bound to site p. In this system, the total
amounts of proteins X and Y and the total amount of promoter
p are conserved. Their total amounts are denoted X T , YT , and
pT , respectively, so that the conservation laws are given by
XT = X + X∗ + C1 + C2 + C, YT = Y + C2, and pT = X∗ + p.
Assuming Z is expressed at time-varying rate k(t) and decays
at rate δ, the differential equations for the concentrations of the
various species of system Σ when connected to the downstream
system are given by

Ż = k(t) − δZ − β1Z(XT − X∗ −C1 − C2 −C)

+ (β2 + k1)C1

Ċ1 = β1Z(XT − X∗ −C1 −C2 −C) − (β2 + k1)C1

Ċ2 = −(k2 + α2)C2 + α1X∗(YT −C2)

Ẋ∗ = k1C1 + α2C2 − α1X∗(YT −C2) + ko f f C

− konX∗(pT −C)

Ċ = −ko f f C + konX∗(pT −C).

(37)

A common approach to take a system to the standard
singular perturbation form is to rewrite it in terms of non-
dimensional variables [25], [30]. To this end, let k̄ :=
maxt k(t)/δ and define the non-dimensional input k̃(t) :=
k(t)/(δk̄). Define also the new variables u := Z

k̄
, x1 :=

C1
XT
, x2 := C2

XT
, x3 := X∗

XT
, v := C

pT
and τ = δt. For a variable

x, denote ẋ := dx/dτ. The system (37) in these new variables
becomes

u̇ = k̃(t) − u − β1XT

δ
u

(
1 − x1 − x2 − x3 − pT

XT
v

)

+
(β2 + k1)XT

δk̄
x1

ẋ1 =
β1k̄
δ

u

(
1 − x1 − x2 − x3 − pT

XT
v

)
− β2 + k1

δ
x1

ẋ2 = −k2 + α2

δ
x2 +

α1YT

δ
x3

(
1 − XT

YT
x2

)

ẋ3 =
k1

δ
x1 +

α2

δ
x2 − α1YT

δ
x3

(
1 − XT

YT
x2

)

+
pT ko f f

XTδ
v − kon pT

δ
x3(1 − v)

v̇ = −ko f f

δ
v +

konXT

δ
x3(1 − v).

(38)

In this example, we assume the parameter ko f f to be much
larger than k1, k2, α1YT , α2, β1XT , β2, which are in turn
much larger than δ [10], [32], [33], [35]. This timescale
differences can be made explicit by defining the large pa-
rameters G1 := k1

δ
and G2 := ko f f

δ
, in which G2 � G1 � 1.

Define also the non-dimensional constants a1 := α1YT
k1

, a2 :=
α2
k1

, b1 := β1XT

k1
, b2 := β2

k1
, ρ := XT

YT
and c2 := k2

k1
. Define also

the dissociation constant kd := ko f f /kon. By employing these



10

constants, system (38) can be re-written as

u̇ = k̃(t) − u −G1b1u

(
1 − x1 − x2 − x3 − pT

XT
v

)

+G1
XT (b2 + 1)

k̄
x1

ẋ1 = G1
b1k̄
XT

u

(
1 − x1 − x2 − x3 − pT

XT
v

)
−G1(b2 + 1)x1

ẋ2 = −G1(c2 + a2)x2 +G1a1x3 (1 − ρx2)

ẋ3 = G1x1 +G1a2x2 −G1a1x3 (1 − ρx2) +G2
pT

XT
v

−G2
pT

kd
x3(1 − v)

v̇ = −G2v +G2
XT

kd
x3(1 − v).

(39)

The domains for the variables of this system are given
by Du := R+, Dx := [0, 1] × [0, 1] × [0, 1], and
Dv := [0, 1]. Compare system (39) with the structure
of model (1). The retroactivity to the input term r =
−b1u (1 − x1 − x2 − x3 − (pT/XT )v)+(XT (b2+1)/k̄)x1 is a func-
tion of the downstream system state v. This implies that the
retroactivity to the output of impacts directly the retroactivity
to the input. In order to remove this effect, and therefore, match
the structure of system (1), in which r does not depend on v,
we require the ratio pT/XT to be small enough so that the
term (pT/XT )v becomes negligible with respect to one, since
v ∈ [0, 1]. This assumption gives a limit to the amount of load
that can be added to the system for any fixed value of X T .
Under this assumption, the system fits the structure (1) with
g(u, t) = k̃(t) − u, r(x, u) = b1u (1 − x1 − x2 − x3) − (b2+1)XT

k̄
x1,

[ f (x, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0

−(c2 + a2)x2 + a1x3 (1 − ρx2)
x1 + a2x2 − a1x3 (1 − ρx2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , s(x, v) = − pT

XT
v +

pT

kd
x3 (1 − v) , l(v) = 0, h(v, t) = 0, A = −1, B =[
k̄/XT 0 0

]T
, C =

[
0 0 −1

]T
and D = XT

pT
.

By inspection of the matrices A, B, C and D, we
can choose matrices T = 1, M = [ XT

k̄
0 0], Q =

I3 (3 by 3 identity matrix) and P =
[

0 0 pT

XT

]T
that sat-

isfy properties P1 and P2. This can be verified by checking
that indeed T A+MB = 0, M f (x, u) = 0, MC = 0, QC+PD = 0
and, trivially, Pl(v)=0. The linear coordinate transformation
that takes this system to the standard singular perturbation
form is, thus, given by z := Tu + Mx = u + XT

k̄
x1 and y =

(y1, y2, y3) := Qx + Pv =
(
x1, x2, x3 +

pT

XT
v
)
.

Since we are considering the case in which G1 � G2, it is
necessary to show that technical assumptions A1-A7 and A9
are satisfied. For brevity, we show the properties A3, A6 and
A7 only. Expression h̄(y, v) = 0 leads to pT v2 − v(XT y3 + pT +

kd)+XTy3 = 0 which leads to the unique isolated solution v =

φ1(y) =
XT y3+pT+kd−

√
(XT y3+pT+kd)2−4pT XT y3

2pT
in the domain Dv =

[0, 1]. This function is Lipschitz continuous as the argument
of the square root is bounded away from zero and thus A3
is satisfied. The Jacobian matrix ∂h̄(y,v)

∂v evaluated at v = φ1(y)

is given by ∂h̄(y,v)
∂v

∣∣∣∣∣
v=φ1(y)

= −√
(XT y3 + pT + kd)2 − 4pT XT y3,

in which the argument of the square root is always bounded

G1 = 10
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Figure 3. Output response to a sinusoidal signal k(t) = δ(1 + 0.5 sinωt) of
the phosphorylation system Σ. The parameter values are given by ω = 0.005,
δ = 0.01, XT = 5000, YT = 5000, α1 = β1 = 2 × 10−6G1, and α2 = β2 = k1 =
k2 = 0.01G1, in which G1 = 10 (left-side panel), and G1 = 1000 (right-side
panel). The downstream system parameters are kon = 100, ko f f = 100 and,
thus, G2 = 10000. Simulations for the connected system (s � 0) correspond
to pTOT = 100 while simulations for the isolated system (s = 0) correspond
to pTOT = 0.

away from zero. Therefore, A6 is satisfied. The Jacobian ∂ f̄
∂y

gives ∂ f̄
∂y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Ã −B̃ −ηB̃

0 −C̃ D̃
1 −c2 + C̃ −D̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , in which η = 1− pT

XT

dφ1(y)
dy3

,

Ã = b2 + 1 + (1 − y1 − y2 − y3 + (pT/XT )φ1(y)) + (k̄/XT )z − y1,
B̃ = (k̄/XT )z − y1, C̃ = c2 + a2 + a1ρ(y3 − (pT/XT )φ1(y)), D̃ =
a1η (1 − ρy2) . We show that this Jacobian matrix is Hurwitz
by employing the Routh-Hurwitz criterion. Note first that Ã,
B̃, C̃ and D̃ are all positive terms. The characteristic equation
of the Jacobian is given by Δ(λ) = λ3 + λ2(Ã + C̃ + D̃) +
λ(ÃC̃ + ÃD̃+ cD̃+ ηB̃)+ cÃD̃+ B̃(ηC̃ + D̃). Employing Routh-
Hurwitz method, the terms in the first column of the Routh-
Hurwitz table are given by μ0 = 1, μ1 = Ã + C̃ + D̃, μ2 =

(Ã + C̃ + D̃)(ÃC̃ + ÃD̃) + cD̃(C̃ + D̃) + ηB̃(Ã + D̃) − B̃D̃, and
μ3 = (cÃD̃+ηB̃C̃ + B̃D̃). Provided that XT is large enough, all
the coefficients are positive and, therefore, the real part of all
eigenvalues of ∂h̄(y,v)

∂v is negative and property A7 is satisfied.
Similarly, it is possible to show that assumptions A4, A5 and
A9 are satisfied.

Figure 3 shows that, for low values of G1, the system does
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not attenuate the retroactivity to the output s as the permanent
behavior of the isolated and connected systems are different.
By contrast, and in accordance to the theory, large values of
G1 lead to retroactivity to the output attenuation. Note also
that this property is achieved even if the gain G 2 multiplying
the state-dependent disturbance s(x, v) is much larger than G 1.

In practice, while reactions rates k1, k2, α2 and β2 are often
much larger than δ, constants α1 and β1 may not achieve such
high values [33]. It is, however, possible to compensate for
this and obtain the desired timescale separation by having
larger amounts of XT and YT . Large values of XT and YT are
also instrumental in removing the direct effect of retroactivity
to the ouput on the retroactivity to the input. Finally, large
values of XT and YT are also necessary to guarantee the
stability of the boundary layer system, as concluded when
showing that property A7 holds. In a synthetic bio-molecular
system, expression level of proteins X and Y can be tuned by
having their respective genes under the control of inducible
promoters. It is therefore possible to tune this system so that
the retroactivity to the output attenuation property holds.

B. Example 2: Phosphotransfer

Figure 4. System Σ is a phosphotransfer system. The output X* activates
transcription through the reversible binding of X* to downstream DNA
promoter sites p.

In this section, we model the phosphotransfer module shown
in Figure 4. Let X be a transcription factor in its inactive
form and let X∗ be the same transcription factor once it has
been activated by the addition of a phosphate group. Let Z ∗
be a phosphate donor, that is, a protein that can transfer its
phosphate group to the acceptor X. The standard phospho-
transfer reactions [34] can be modeled according to the two-

step reaction model Z∗ + X
k1−⇀↽−
k2

C1
k3−⇀↽−
k4

X∗ + Z, in which C1 is

the complex of Z bound to X bound to the phosphate group.
Additionally, protein Z can be phosphorylated and protein X ∗
dephosphorylated by other phosphotransfer interactions. These
reactions are modeled as one step reactions depending only on
the concentrations of Z and X∗, that is, Z

π1−→ Z∗, X∗
π2−→ X.

Protein X is assumed to be conserved in the system, that is,
XTOT = X+C1+X∗+C. We assume that protein Z is produced
with time-varying production rate k(t) and decays with rate
δ. The active transcription factor X∗ binds to downstream
DNA binding sites p with total concentration pTOT to activate

transcription through the reversible reaction p + X ∗
kon−−−⇀↽−−−
ko f f

C.

Since the total amount of p is conserved, we also have that
C + p = pTOT . The ODE model corresponding to this system
is thus given by the equations

Ż = k(t) − δZ + k3C1 − k4X∗Z − π1Z

Ċ1 = k1XT

(
1 − X∗

XT
− C1

XT
− C

XT

)
Z∗ − k3C1 − k2C1

+ k4X∗Z

Ż∗ = π1Z + k2C1 − k1XT

(
1 − X∗

XT
− C1

XT
− C

XT

)
Z∗

Ẋ∗ = k3C1 − k4X∗Z − konX∗(pT −C) + ko f f C − π2X∗

Ċ = konX∗(pT − C) − ko f f C.

(40)

As performed in Example 1, we introduce non-dimensional
variables for this system. Let k̄ := maxt k(t)/δ and define the
non-dimensional input k̃ := k(t)/(δk̄). Define also the non-
dimensional variables u := Z

k̄
, x1 =

C1
XT

, x2 =
Z∗
k̄

, x3 =
X∗
XT

, v =
C
pT

and τ := δt. For a variable x, denote ẋ := dx/dτ. System
(40) in these new variables becomes

u̇ = k̃(t) − u +
k3XT

δk̄
x1 − k4XT

δ
x3u − π1

δ
u

ẋ1 =
k1k̄
δ

(
1 − x1 − x3 − pT

XT
v

)
x2 − k3

δ
x1 − k2

δ
x1

+
k4k̄
δ

x3u

ẋ2 =
π1

δ
u +

k2XT

δk̄
x1 − k1XT

δ

(
1 − x1 − x3 − pT

XT
v

)
x2

ẋ3 =
k3

δ
x1 − k4k̄

δ
x3u − kon pT

δ
x3(1 − v) +

ko f f pT

δXT
v

− π2

δ
x3

v̇ =
XT kon

δ
x3(1 − v) − ko f f

δ
v.

(41)

Phosphotranferase reactions are much faster than gene expres-
sion and protein decay rates [34]. To make this timescale
separation explicit, we define the large parameter G 1 := k2

δ � 1
and define the non-dimensional constants k̄1 := k1XT

k2
, k̄3 :=

k3
k2

, k̄4 := k4XT
k2

, π̄1 := π1
k2

and π̄2 := π2
k2
. The fact that the process

of protein binding and unbinding to promoter sites is much
faster than protein production and decay [10], [32] is made
explicit by the ratio G2 := ko f f

δ
� 1. In this example we do

not make any assumption on the relationship between G 1 and
G2. Let also the dissociation constant be kd := ko f f /kon. By



12

using these constants, system (41) can be written as

u̇ = k̃(t) − u +G1
k̄3XT

k̄
x1 −G1k̄4x3u −G1π̄1u

ẋ1 = G1
k̄1k̄
XT

(
1 − x1 − x3 − pT

XT
v

)
x2 −G1k̄3x1 −G1x1

+G1
k̄4k̄
XT

x3u

ẋ2 = G1π̄1u +G1
XT

k̄
x1 −G1k̄1

(
1 − x1 − x3 − pT

XT
v

)
x2

ẋ3 = G1k̄3x1 −G1
k̄4k̄
XT

x3u −G1π̄2x3 −G2
pT

kd
x3(1 − v)

+G2
pT

XT
v

v̇ = G2
XT

kd
x3(1 − v) −G2v.

(42)

The domain for the states of this system are given by Dz = R+,
Dx = [0, 1] × R+ × [0, 1] and Dv = [0, 1]. Compare system
(42) with system (1). In system (42), the internal dynamics

term is given by f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k̄1 k̄
XT

(
1 − x1 − x3 − pT

XT
v
)

x2 − x1
XT

k̄
x1 − k̄1

(
1 − x1 − x3 − pT

XT
v
)

x2

k̄3x1 − k̄4 k̄
XT

ux3 − π̄2x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ and

it depends on output term v. Therefore, in order for system
(42) to fit the structure of system (1), we require that the
ratio pT/XT to be small enough so that (pT/XT )v becomes
negligible with respect to 1 in the term (1−x1−x3−(pT/XT )v),
as v ∈ [0, 1]. This assumption, in practice, limits the amount
of load this insulation device can accommodate for a given
amount of XT . Under this assumption, system (42) fits the
structure of model (1) with g(u, t) = k̃(t) − u, r(x, u) =[

k̄3XT

k̄
x1 − k̄4x3u
−π̄1u

]
, f (x, u)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
k̄1 k̄
XT

(1 − x1 − x3) x2 − x1
XT

k̄
x1 − k̄1 (1 − x1 − x3) x2

k̄3x1 − k̄4 k̄
XT

ux3 − π̄2x3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
s(x, v) = − pT

kd
x3(1 − v) + pT

XT
v, l(v) = 0, h(v, t) = 0,

A := [1 1], B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
− k̄

XT
0

0 −1
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and D = − XT
pT
.

By inspecting matrices A, B, C and D it is possible to
choose matrices T = 1, M =

[
XT

k̄
1 0

]
, Q = I3×3 and P =[

0 0 pT

XT

]T
, which satisfy properties P1 and P2. This

can be verified by checking that indeed T A + MB = 0,
M f (x, u) = 0, MC = 0, QC + PD = 0 and, trivially, Pl(v) = 0.
By applying the linear coordinate transformation given by

z = Tu + Mx and y = Qx + Pv, we obtain the system

ż = k(t) −
(
z − XT

k̄
y1 − y2

)

ε1ẏ1 =
k̄1k̄
XT

(
1 − y1 − y3 +

pT

XT
v

)
y2 − k̄3y1 − y1

+
k̄4k̄
XT

(
y3 − pT

XT
v

) (
z − XT

k̄
y1 − y2

)

ε1ẏ2 = π̄1

(
z − pT

XT
y1 − y2

)
+ y1 − k̄1

(
1 − y1 − y3 +

pT

XT
v

)
y2

ε1ẏ3 = k̄3y1 − k̄4k̄
XT

(
y3 − pT

XT
v

) (
z − XT

k̄
y1 − y2

)

− π̄2

(
y3 − pT

XT
v

)

ε2v̇ =
XT

kd

(
y3 − pT

XT
v

)
(1 − v) − v.

(43)

In this example, we do not claim any relationship between
G1 and G2. In this the situation it is necessary to show that all
assumptions A1-A9 are satisfied to prove that the retroactivity
to the output property holds. For brevity we restrict to show
that assumptions A3, A6 and A7 hold.

As in the phosphorylation system, we have that h̄(y, v) =
1
kd

(XTy3 − pT v) − v. Therefore, A3 and A6 are satisfied as it
was for the phosphorylation system.

Since the function φ1(y) =
y3+pT+kd−

√
(y3+pT+kd)2−4pT y3

2 is
sufficiently smooth (the argument of the square root is
bounded away from zero) we define the diffeomorphism
w := Ψ(y) =

[
y1 y2 y3 − φ1(y)

]T
. Define f̂ (z,w) :=

f̄ (z, y, φ1(y))
∣∣∣
y=Ψ−1(w)

. Since under a diffeomorphism the lin-
earization of a nonlinear system is invariant [47], it is suffi-
cient to show that ∂ f̂ (z,w)

∂w

∣∣∣
w=Ψ(φ2(z))

is Hurwitz. We have that

∂ f̂ (z,w)
∂w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−Ẽ − ρF̃ ρB̃ − Ã D̃ − C̃
− π̄1
ρ + F̃ −π̄1 − B̃ C̃

ρ

Ẽ Ã −D̃ − π̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , in which ρ = k̄
XT

,

Ã = k̄4k̄w3, B̃ = XT (1−w1−w3), C̃ = k̄w2, D̃ = k̄4k̄(z− w1
ρ
−w2),

Ẽ = k̄3 +
Ã
ρ

and F̃ = k̄2
ρ
+ C̃
ρ
. The characteristic equation of

this Jacobian is given by Δ(λ) = λ3 + λ2(Ẽ + ρF̃ + π̄1 + π̄2 +

B̃ + D̃) + λ(π̄1π̄2 + Ãk̄2/ρ + π̄1k̄3 + π̄1D̃ + π̄2B̃ + B̃D̃ + ρπ̄1F̃ +
B̃Ẽ + ρD̃F̃ + π̄1B̃ + ẼC̃ + π̄2Ẽ + ρπ̄2F̃) + π̄1π̄2k̄3 + π̄1C̃k̄3 +

ρπ̄1π̄2F̃ + ρπ̄1D̃F̃ + π̄2B̃Ẽ + π̄1π̄2B̃ + π̄1B̃D̃ + π̄2ÃF̃. Write the
characteristic equation as Δ(λ) = λ3 + α2λ

2 + α1λ + α0 where
αi are implicitly defined. The terms on the first column of the
Routh-Hurwitz table are given by 1, α2, (α1α2 − α0)/α2 and
α0. Since all αi are positive, we are guaranteed to have only
positive terms on the first column of the Routh-Hurwitz table
if α2α1 − α0 > 0. In particular, the term α2α1 − α0 can be
reduced to α2α1 − α0 = μ + π̄1k̄2k̄4k̄

(
z − w1

ρ
− w2

)
− π̄2 k̄2 k̄4w3

ρ
,

in which the term μ > 0. It remains to show that k̄2k̄4[π̄1(z −
w1/ρ − w2) − π̄2w3/ρ] ≥ 0 on the manifold w = Ψ(φ2(z)).
From the system of equations f̄ (x, y, φ1(y)) = 0, one can
obtain the identity π̄2(y3 − pTφ1(y)/XT ) = ρπ̄1(z − y1/ρ − y2).
Substituting y = Ψ−1(w) in this identity, we obtain that
π̄2w3−π̄1(z−w1/ρ−w2) = 0. As a result, α2α1−α0 = μ > 0 and
thus, the Jacobian matrix ∂ f̂ (z,w)

∂w

∣∣∣
w=Ψ(φ2(z))

is Hurwitz satisfying
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Figure 5. Output response of the phosphotransfer system with a periodic
signal k(t) = δ(1+0.5sinωt). The parameters are given by δ = 0.01, XT = 5000,
k1 = k2 = k3 = k4 = π1 = π2 = 0.01G1 in which G1 = 1 (left-side panel), and
G1 = 100 (right-side panel). The downstream system parameters are given
by kd = 1 and ko f f = 0.01G2, in which G2 assumes the values indicated on
the legend. The isolated system (s = 0) corresponds to pTOT = 0 while the
connected system (s � 0) corresponds to pTOT = 100.

condition A7.
We illustrate the retroactivity to the output attenuation

property of this system using simulations for the cases in
which G1 � G2, G1 = G2, and G1 � G2. Figure 5 shows that,
for a periodic input k(t), the system with low value for G 1

suffers the impact of retroactivity to the output. However, for
a large value of G1, the permanent behavior of the connected
system becomes similar to that of the isolated system, whether
G1 � G2, G1 = G2 or G1 � G2. Notice that, in the
bottom panel of Figure 5, when G 1 � G2, the impact of the
retroactivity to the output is not as dramatic as it is when
G1 = G2 or G1 � G2. This is due to the fact that s is scaled
by G2 and it is not related to the retroactivity to the output
attenuation property. This confirms the theoretical result that,
independently of the order of magnitude of G 2, the system can
arbitrarily attenuate retroactivity for large enough G 1.

V. Conclusions

In this paper, we have proposed a mechanism for attenuating
the retroactivity to the output of a bio-molecular system which
is based on timescale separation. A special structure found in
bio-molecular systems allows the attenuation of state depen-
dent disturbances that enter the dynamics through arbitrarily

large gains. This attenuation can be achieved even when the
internal system gains are several orders of magnitude smaller
than the gains that multiply the disturbance. One structural
assumption at the basis of our result is that the retroactivity
to the input r of the system and the vector field f do not
explicitly depend on the variables v of the downstream system.
In future work, we will investigate how the retroactivity to
the output attenuation property may be relaxed when both the
retroactivity r and the function f depend on v.

We illustrated this mechanism by presenting two instances
of bio-molecular systems that have the capability of attenuat-
ing the retroactivity to the output based on timescale separa-
tion. These are a phosphorylation cycle and a phosphotransfer
system, which are ubiquitous in natural signal transduction
systems. Our finding suggests that a reason why these systems
are fundamental building blocks of natural signal transduction
systems is that, in addition to their well recognized signal
amplification capability, they can attenuate retroactivity to the
output and therefore enforce unidirectional signal propagation.
This property is certainly desirable in any signal transmission
system, natural or engineered. More interestingly, this finding
suggests that phosphorylation and phosphotransfer systems
can be employed in synthetic bio-molecular circuits to attenu-
ate retroactivity and to thus allow modular interconnection of
synthetic circuit components.
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