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Digital Signal Processing Group
77 Massachusetts Avenue, Cambridge MA 02139
jmcmicha@mit.edu, maymon@mit.edu, avo@mit.edu

Abstract—Uniform quantizers are often modeled as additive Il. M ULTI-CHANNEL SAMPLING AND RECONSTRUCTION

uncorrelated noise sources. This paper explores the validity of The basic multi-channel sampling and reconstruction gyste
the additive noise model in the environment of time-interleaved . - .
A/D converters. Cross-channel quantizer error correlation is an 1S Shown in FigLLL. In the measurement stage, the bandlimited
important discrepancy that arises for channel time delays in close signal z(t) with Nyquist ratel/Ty is uniformly sampled at
proximity. It is demonstrated through simulation that negative the ratel/(LTy) in M parallel channels, where it is assumed
error correlation occurs for different granularity quantizers in - that A/ > L. Although each channel undersampleg) by

close proximity. Statistical analysis is presented to characterize o 4oor of 7, the interleaved constellation has an effective
error correlation between quantizers with different granularity. A

technique exploiting this correlation often yields significant per- Oversampling ratio ofp = M/L > 1. We denote the time
formance gains above the optimal additive noise model solution. delays in one recurrence period by, and quantizer bit
allocation by the(1 x M) vector b, where them'" entry
l. INTRODUCTION corresponds to the number of bits in channel

IME-INTERLEAVED  analog-to-digital ~ converters ===~ (7~ ~="""" : EPERRIRIRE

(ADCs) are often employed to sample high bandwidth
signals or to achieve a large oversampling ratio. Thesecdsvi i
interleave sample times of multiple converters operating a |
the same moderate rate. Traditionally, the relative time | ]
delays between channels have been selected to form an nT — 1o
overall uniform sampling pattern, with equal quantization i
granularity in each channel. Recent work suggests that it ! o 1[n) o
is often possible to achieve a better signal-to-quantmati |
noise ratio (SQNR) with different quantization granubarit:() - ]
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in each channel, non-uniform sampling, and appropriate =7
reconstruction filtering (1].[2].[3].14]). This analysirelies
on the additive noise model, which represents the effect
of quantization error as an additive uncorrelated random
process with uniform distribution that is also uncorretate
with the input [5]. In its traditional formulation, the adidie
noise model does not account for error correlation between
channels.
In this paper, we explore the validity of the additive noise Fig. 1. Multi-channel sampling and reconstruction system.
model in the environment of time-interleaved ADCs. We also \when the time delays correspond to complex exponentials
present a technique that exploits cross-channel erroeleerr ,j27 7 equally spaced on the complex unit circle, a uniform
tion that often yields significant performance gains oves thyampling grid is obtained. Otherwise, the interleaved gad
solutions based solely on the additive noise model. be characterized as recurrent non-uniform samplifig B[
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error as additive uniformly distributed white noise. Sfiieci a bandlimited signal approach identical values as theietim
cally, the quantizer error in each channel is assumed to beeparation approaches zero. Quantizing nearly identadakg
random process uniformly distributed betweem\,,/2 and with the same granularity in a homogeneous system yields
uncorrelated with the input, wher&,,, denotes the quantizer positively correlated error, significantly degrading penfiance
step size in each channel. Correspondingly, the varianteeof after optimal reconstruction based on the uncorrelateddnes
additive noise is given by: ) assumption.

02, = 2o @ -
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The additive noise model performs quite well under mar :
circumstances, particularly when the quantizer is notraged, ..
the granularity is small, and the probability density fioot
(PDF) of the input is smooth[([9.[11]). In 1]/ [2], andl[3],
Maymon and Oppenheim derive optimal reconstruction filte
that minimize the average noise power at the output of the

reconstruction system under the additive noise model.

I11. HOMOGENEOUSBIT ALLOCATION

Analysis in [1], [2], and [[3] based on the additive nois¢ *
model suggests that for a homogeneous bit allocation (ith. w
equal quantizer step size in each channel), the SQNR at
output of the reconstruction system in Fig. 1 is maximize

when the time delays;, correspond to uniform sampling. ) i )
T ify this result and explore any discrepancies, we ha}?ﬁ' 2. Reduction factory as a Fig. 3. Reduction factory as
0 Ve”fy p y p ) ction of delaysr; and » with a function of delaysm; and

simulated the multi-channel system shown in Fig. 1. Conside additive noise model fob =  with uniform quantizers forb =
the homogeneous system specified y= 3, L = 2, b = [0, 10, 10] and 7o = 0. The [10, 10, 10] and 7o = 0. The

. « . " two maxima of this surface corre- results match those from Fidl 2
[10, 10, 10], and7y = 0. We define the “reduction factor in - ¢y5nq 1o uniform sampling patters, closely, except for three “grooves”

(@) as a measure of performance, whefe denotes the error affirming theoretical analysis. with sampling instants in close
variance in then'” channel and2  denotes error variance proximity.
after optimal reconstruction filtering. IV. HETEROGENEOUSBIT ALLOCATION
1 M-1 2 . .
= A7 2m=0 Tm @) As we have seen, cross-channel quantizer error correlation
- 2

arises for channel time delays in close proximity. This erro
h%orrelation is positive for quantizers with the same grarityt
iy close proximity, causing performance degradation. is th

€min
The simulation allows us to compare the effects of t

additive noise model with those of true quantization. In t " tatistical vsis i ted showing thadtie
first scenario, a white uniformly distributed random prcszcessec ion, statistical analysis is presented showing thed

is added to each channel to model quantization error. F ror correlation occurs for quantizers with differentrgréar-
D displays the reduction factoy as a function ofr; and ity in close proximity. With a diverse bit allocation, it ifewn

7 with 7, = 0, simulated with uniformly distributed errorthat error correlation can be exploited to improve perfarosa

sources as specified by the additive noise model. Channe-lrhe input-output relationship of a basic uniform, mid-tiea

input signals are interpolated with recurrence frequency %?n;'zjr (')Sf ;.Stagzﬁﬁ fuZCt'QIrII’aW'tth;etEast%ﬁeF: ﬂle doe
kHz from a recording of the Norwegian Chamber Orchestpéjtp St N ¢ thls S It' ' WI WIT assu th b ! F;ub't bs
performing “Beethoven’s Symphony No. 1 in C,” bandlimited'©* Saturate the quantizer. Increasing he number of bils by

to 8 kHz with 24 bits per sample. As predicted maximurSne doubles the number of levels and halves the maximum

. : . . T T _ 42 . guantization error, as shown in F[g. 4.
noise reductiony is achieved forz; v = F3 which e quantizer withk: bits and step size\ = 2~ (-1,
corresponds to uniform sampling.

The second scenario simulates a real system, where egc% error signal d[n] = Zp[n] — zm[nl) is “wrapped” to

_A A i i
channel includes a uniform quantizer. F[g. 3 displays the |n.terval[ 20 3)- We defmeEk as 'ghe error for & p't
simulated reduction factoty as a function ofr; and 7, quantizer. The error for & + n bit quantizer can be obtained

from the error E, for a k bit quantizer by “wrapping”Ej

with 75 = 0 and uniform quantizers. It is encouraging that . : :
the simulated performance based on the additive noise mo eli'mes’ as shown irl13) for the special caserot= 1 and
lssplayed in Fig[b fom = 1,2, 3.

matches the simulated performance with uniform quantizer
well. The results reveal a large reduction in performanoegl

. . H Ay
the “groove” where the sampling instants of two channels fal ep + Appr f —%kﬂ <ep < g%
in close proximity to each other. This reduction is not peegti ~ Er+1(ex) = e I == < < =52
by the analysis based on the additive noise model, which er — Agypq f Ag“ <ep < Akt

assumes channel error sources are uncorrelated. Samples of 3)



k bits k + 1 bits noise model. Thus,

A
cov(Ek, Bkyn) = E[ExErin] — E[EL]E[Eryn]  (4)
A Rounding Threshold - E[Ek'Ek+n] (5)
2 TTTTTTTTTTTTT Ay
2
""""""" = [A e Erin(er) fe, (ex) dex.  (6)
0 = Tk
Max. Error2 o l Max Brrores Using our previous formulation of the functioy, ., (ex.), we
I multiply by E}, to obtain the desired random variatile £ ,,.
’ EEy, contains quadratic segments over the same regions
""""""" as Ey4n(ex). Fig.[8 depictsEy Fr3. The area under each of
-A the quadratic segments has been shaded to emphasize that the
Fig. 4. Quantization regions and rounding thresholds (eddtes) fork ~ €XPECtation operation amounts to integration of this ﬁmt
andk + 1 bits. scaled by a density constant for a uniform random variable.

203 EpEiys

Ay

As shown in Figl b, more diagonal linear segments appear as \ \ N ,\][ ' P / /

the difference in bits: increases. The “base” region includes \ NG -A ][ AM/ / /E;
A

the linear segment centered around zero, frerﬁ% to
+—Ak‘2+". The “middle” regions contai@™~! — 1 shifted linear
segments on each side, fer> 2. Finally, the two “outermost” Fig. 6. £, E,.; as a function ofE5y,, where area has been shaded to

regions extend td:2n_1Ak+n with length % emphasize that expectation reduces to integration.
(a) Fr Equation [6) can be simplified by noting that the PDF
5 fE, (ex) is uniform, and thus evaluates to a constant.
=T By
;AAZH 1 2™ 1Ak+n
(b) B cov (B, Ein) = 5 —— / exErin(er) dek
S Qn'Ak'—i-n =271 Apyp
S S S )
/ 5 7 / b We separate the integral into the three regions, as shown in
- E; (@) Note from Fig[6 that the produéty_, , (e;)Ey is an even
" function, allowing us to use symmetry to evaluate the irgkgr
/ / / / / / / more concisely.
/ / / -5 ] / / / /Ek

base region

Fig. 5. Deterministic quantizer error functions fbrbits to (a)k + 1 bits, —_———
(b) k + 2 bits, and (c)k + 3 bits. 1 Bktn
_ 2
cov(Ey, Exqn) = 72”'Ak+n /_Ak;»n ej, deg
A. Satistical Analysis of Quantizer Error Correlation middle regions
Samples of a bandlimited signal approach the same value 2"l Ak (i43) .
as their time separation approaches zero. Correlationdastw +2 Z /A (i-1) €, — 1Apyner dey
. . . i nli—3
channel inputs leads to correlation between the respective =1 outem:;t . Ijns
guantized error signals. The amount of correlation is ddpeh Y
on the granularity of the two quantizers, and generally geca 2" Aggn ,
quickly with reduction in input correlation. Thus, for the + 2/(2 1) € — 2" Apyner dey (8)
nTi—3 k+n

remainder of this section we approximate channel inputs in
close time proximity as identical analog values.

In this section, we analyze the statistical properties ef th Performing the integration in each region, we obtaih (9).
errors resulting from quantizing the same input sample witthe base region and middle regions simply contribute the
different granularities. Specifically, we consider theariance original positive variance of,,, weighted by their respective
and correlation coefficient df, and £y, We begin with the probabilities. However, the outermost region contributes
definition of covariance iri{4). We assume tlatis uniformly negative scaled version of the original variance. This m&cu
distributed betweepr% and%, as suggested by the additivebecause the sign of}, is always the opposite of,,, in



the outermost region. Combining terms, we arrive [afl (1®. Exploiting Correlated Error Sgnals
and [I1), from which we conclude that the overall covariance

o . ) It is often possible to exploit error correlation to reduce
cov(FEy, Ex4n) is simply negative one half of the variance of . ) ) L
> guantization error. Various levels of design sophistarati
k+n-

can be employed in a time-interleaved ADC to exploit this

base region _middle regions correlation. In fact, simply placing two quantizers at tlene

A%, 1 1 time instant with different granularities would clearlysrdt
cov(Eg, Exqn) = — +(1- L : ;
192 on gn—1 in improvement in performance although this would not be

predicted by the simple additive noise model.

Consider the system described earlier, with bit allocation
b = [10, 10, 9] and 79 = 0. Fig. [8 displays the reduc-
+ (1 _3_2n—1) <1> ) tion factor v as a function ofr; and 7», simulated based

an on the additive noise model. As discussed [in [3], optimal
constellations allocate high resolution quantizers gretine

outermost regions

2 separation than low resolution quantizers. Higl. 9 displays
= (—1/2)% (10) the reduction factory when uniform quantizers are used.

_ Interestingly, unpredicted improvements in performance a
= (=1/2) var(Ely1n) (11) observed in the “groove” when the time separation between

By substituting the derived covariance and the variances @fferent granularity quantizers is small. In this casegative
the respective uniform error signals, then using the i@tatiip Cross-channel error correlation causes the two error lsigoa
A = 2", one may obtain the correlation coefficient partially cancel during reconstruction, leading to perfance
betweenFE), and Ey.,, in (I2). Improvements.

2
(-3) Sag

Aiin (AL
12 12
(—1) 2
2 12
A7,,2"
12

= g1 (12)

This reveals a simple formula for the error correlatio
between quantizers with the same input. As the difference
the number of bits: increases, the negative correlation is les
pronounced. Equatiof {(112) matches results from simulatir
well. Fig.[7 illustrates the predicted and measured cdiogla
coefficient between a 1-20 bit quantizer output and a 10 |
quantizer output, with a uniformly distributed random itpu
signal. The derived correlation measure no longer applie. 8. Reduction factory as a Fig. 9.  Reduction factory as
whenn = 0 because the bit allocation is homogeneous. function of delaysm; and with a function of delayst; and 7

the additive noise model fob =  with uniform quantizers forb =
[10, 10, 9] andp = 0. [10, 10, 9] and 79 = 0. Unpre-
. o dicted performance improvements
occur when different granularity
10+ Random Signal = quantizers sample in close proxim-
B ity.

05

More sophisticated methods can be devised to exploit the
error correlation structure. A set dfquantized measurements
x in close proximity may be viewed as observations of the

Correlation Coefficient with 10 bit Quantizer Error

o seoseq, o 8-0-80-00 same analog input valyg combined with additive correlated
w =7 error components with covariance mat® The Weighted
‘i‘ g Least Squares (WLS) criterion minimizes the sum of the
\\,' weighted squares of the residuals to obtain an estimate for
-0.5 . .| . ;
0 5 10 15 20 12 [12]

Number of Bits

Fig. 7. Predicted and measured correlation coefficient batwe20 bit N . T s—1 13
quantizer error and 10 bit quantizer error. HwrLs = arglltmn (x—p) (x —p) (13)



TABLE | . L
COVARIANCE MATRIX FOR ERROR INk — d + 1 To k BiT uanTizers,  Of correlation boosts performance significantly o= 3.31.

, Correcting the 8 and 9 bit channel time delays so that each
bits k—d+1 k—d+2 k-1 k . . . . . .
hoar1 [ 422d-2  _92d-5 | _gl  _g-1 pair has the same sampling instant ylellds another' significan
hedi2 | —92d-5 4o2d-4 o1 _g-1 performance improvement t9 = 3.91. Finally, keeping the
s— - : : : : y A7 previous corrections and performing WLS estimation yields
o oy Y S 12 another small improvement, tp = 3.98. This corresponds to
B B N = T | a 16.8% reduction in output error variance versus the piedlic
optimal time configuration, and a 33.4% reduction in output
error variance versus the uniform sampling pattern. In gene
systems with many channels and diverse bit allocationsvallo
for larger performance improvements.

TABLE Il
WLS WEIGHTS FORd QUANTIZERS WITH BIT ALLOCATION £ —d+ 1 TO k.

dl  Wg Wg_1 Wg_2 W3 Wg_4

1 1 * * * * a0) ®
3 1 T. T.

2 i v} * * * P) 3 (8)
2 1 1

N I T T T,

4 8 3 32 32 *

5 3 1 T 3 1
5 4 10 80 80

Taking the partial derivative with respect fo and setting
equal to zero yields the following weighted average, where
J = X7, The error covariance matriX for an arbitrary bit
allocation can be populated usirid (1) ahdl (11).

Fig. 10. Predicted optimal time delays f&f = 9 and L = 6 found through

d Z‘? J: - numerical optimization, fob = [10, 10, 10, 9, 9, 9, 8, 8, 8]. Superscripts
UwWLs = Z w;z; where w; = % (14) denote the associated bit allocation for each channel.
i=1 Dzt 2j=1 Jig
. . . . . . v =331)
The covariance matrix fotl quantizers with adjacent bit
allocationk — d + 1 to k is displayed in TablélI. Solving for __ : \
w; in ([@4) yields the set of weights in Tahlg Il, listed up to 2 / 3 4 7
The theoretical effective resolution obtained through WLS 7 = 2.65) Correction § — 3.91)

unification of multiple quantizers was derived inl [4]. For_ _

example, combining two quantizers € 2) with bit allocation | % ilnlc'reaBseirslgrgf’/zg'g? éz‘;tigfnfgg;]gﬂ[cla%o?’ 10, 9,9, 9, 8, 8, 8],
k — 1 and k with the weights in Tabl€]l yields an effective

resolution ofk + 0.339 bits [4]. REFERENCES
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