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Abstract—Uniform quantizers are often modeled as additive
uncorrelated noise sources. This paper explores the validity of
the additive noise model in the environment of time-interleaved
A/D converters. Cross-channel quantizer error correlation is an
important discrepancy that arises for channel time delays in close
proximity. It is demonstrated through simulation that negative
error correlation occurs for different granularity quantizers in
close proximity. Statistical analysis is presented to characterize
error correlation between quantizers with different granularity. A
technique exploiting this correlation often yields significant per-
formance gains above the optimal additive noise model solution.

I. I NTRODUCTION

T IME-INTERLEAVED analog-to-digital converters
(ADCs) are often employed to sample high bandwidth

signals or to achieve a large oversampling ratio. These devices
interleave sample times of multiple converters operating at
the same moderate rate. Traditionally, the relative time
delays between channels have been selected to form an
overall uniform sampling pattern, with equal quantization
granularity in each channel. Recent work suggests that it
is often possible to achieve a better signal-to-quantization
noise ratio (SQNR) with different quantization granularity
in each channel, non-uniform sampling, and appropriate
reconstruction filtering ([1],[2],[3],[4]). This analysis relies
on the additive noise model, which represents the effect
of quantization error as an additive uncorrelated random
process with uniform distribution that is also uncorrelated
with the input [5]. In its traditional formulation, the additive
noise model does not account for error correlation between
channels.

In this paper, we explore the validity of the additive noise
model in the environment of time-interleaved ADCs. We also
present a technique that exploits cross-channel error correla-
tion that often yields significant performance gains over the
solutions based solely on the additive noise model.
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II. M ULTI -CHANNEL SAMPLING AND RECONSTRUCTION

The basic multi-channel sampling and reconstruction system
is shown in Fig. 1. In the measurement stage, the bandlimited
signal x(t) with Nyquist rate1/TN is uniformly sampled at
the rate1/(LTN ) in M parallel channels, where it is assumed
that M > L. Although each channel undersamplesx(t) by
a factor ofL, the interleaved constellation has an effective
oversampling ratio ofρ = M/L > 1. We denote the time
delays in one recurrence period byτm and quantizer bit
allocation by the(1 × M) vector b, where themth entry
corresponds to the number of bits in channelm.
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Fig. 1. Multi-channel sampling and reconstruction system.

When the time delays correspond to complex exponentials
e
j2π τm

LTN equally spaced on the complex unit circle, a uniform
sampling grid is obtained. Otherwise, the interleaved gridcan
be characterized as recurrent non-uniform sampling ([6],[7]).
The goal of the second stage in Fig. 1 is to compensate
for non-uniform time delays and quantization error in the
reconstruction.

A well-established analysis technique developed by Widrow
and extended by others ([5],[8],[9],[10]) models quantization



error as additive uniformly distributed white noise. Specifi-
cally, the quantizer error in each channel is assumed to be a
random process uniformly distributed between±∆m/2 and
uncorrelated with the input, where∆m denotes the quantizer
step size in each channel. Correspondingly, the variance ofthe
additive noise is given by:

σ2
m =

∆2
m

12
. (1)

The additive noise model performs quite well under many
circumstances, particularly when the quantizer is not saturated,
the granularity is small, and the probability density function
(PDF) of the input is smooth ([9],[11]). In [1], [2], and [3],
Maymon and Oppenheim derive optimal reconstruction filters
that minimize the average noise power at the output of the
reconstruction system under the additive noise model.

III. H OMOGENEOUSBIT ALLOCATION

Analysis in [1], [2], and [3] based on the additive noise
model suggests that for a homogeneous bit allocation (i.e. with
equal quantizer step size in each channel), the SQNR at the
output of the reconstruction system in Fig. 1 is maximized
when the time delaysτm correspond to uniform sampling.
To verify this result and explore any discrepancies, we have
simulated the multi-channel system shown in Fig. 1. Consider
the homogeneous system specified byM = 3, L = 2, b =
[10, 10, 10], andτ0 = 0. We define the “reduction factor”γ in
(2) as a measure of performance, whereσ2

m denotes the error
variance in themth channel andσ2

emin
denotes error variance

after optimal reconstruction filtering.

γ =
1
M

∑M−1
m=0 σ2

m

σ2
emin

(2)

The simulation allows us to compare the effects of the
additive noise model with those of true quantization. In the
first scenario, a white uniformly distributed random process
is added to each channel to model quantization error. Fig.
2 displays the reduction factorγ as a function ofτ1 and
τ2 with τ0 = 0, simulated with uniformly distributed error
sources as specified by the additive noise model. Channel
input signals are interpolated with recurrence frequency 4
kHz from a recording of the Norwegian Chamber Orchestra
performing “Beethoven’s Symphony No. 1 in C,” bandlimited
to 8 kHz with 24 bits per sample. As predicted, maximum
noise reductionγ is achieved for τ1

TN

= − τ2
TN

= ± 2
3 , which

corresponds to uniform sampling.
The second scenario simulates a real system, where each

channel includes a uniform quantizer. Fig. 3 displays the
simulated reduction factorγ as a function ofτ1 and τ2,
with τ0 = 0 and uniform quantizers. It is encouraging that
the simulated performance based on the additive noise model
matches the simulated performance with uniform quantizers
well. The results reveal a large reduction in performance along
the “groove” where the sampling instants of two channels fall
in close proximity to each other. This reduction is not predicted
by the analysis based on the additive noise model, which
assumes channel error sources are uncorrelated. Samples of

a bandlimited signal approach identical values as their time
separation approaches zero. Quantizing nearly identical values
with the same granularity in a homogeneous system yields
positively correlated error, significantly degrading performance
after optimal reconstruction based on the uncorrelatedness
assumption.
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Fig. 2. Reduction factorγ as a
function of delaysτ1 and τ2 with
the additive noise model forb =
[10, 10, 10] and τ0 = 0. The
two maxima of this surface corre-
spond to uniform sampling patterns,
affirming theoretical analysis.
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Fig. 3. Reduction factorγ as
a function of delaysτ1 and τ2
with uniform quantizers forb =
[10, 10, 10] and τ0 = 0. The
results match those from Fig. 2
closely, except for three “grooves”
with sampling instants in close
proximity.

IV. H ETEROGENEOUSBIT ALLOCATION

As we have seen, cross-channel quantizer error correlation
arises for channel time delays in close proximity. This error
correlation is positive for quantizers with the same granularity
in close proximity, causing performance degradation. In this
section, statistical analysis is presented showing that negative
error correlation occurs for quantizers with different granular-
ity in close proximity. With a diverse bit allocation, it is shown
that error correlation can be exploited to improve performance.

The input-output relationship of a basic uniform, mid-tread
quantizer is a staircase function, with step size∆. For the
purposes of this section, we will assume that the input does
not saturate the quantizer. Increasing the number of bits by
one doubles the number of levels and halves the maximum
quantization error, as shown in Fig. 4.

For a quantizer withk bits and step size∆ = 2−(k−1),
the error signal (e[n] = x̂m[n] − xm[n]) is “wrapped” to
the interval

[
−∆

2 ,
∆
2

)
. We defineEk as the error for ak bit

quantizer. The error for ak+ n bit quantizer can be obtained
from the errorEk for a k bit quantizer by “wrapping”Ek

n times, as shown in (3) for the special case ofn = 1 and
displayed in Fig. 5 forn = 1, 2, 3.

Ek+1(ek) =







ek +∆k+1 if −∆k+1 ≤ ek < −
∆k+1

2

ek if −
∆k+1

2 ≤ ek < ∆k+1

2

ek −∆k+1 if ∆k+1

2 ≤ ek < ∆k+1

(3)
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Fig. 4. Quantization regions and rounding thresholds (dashed lines) fork
andk + 1 bits.

As shown in Fig. 5, more diagonal linear segments appear as
the difference in bitsn increases. The “base” region includes
the linear segment centered around zero, from−∆k+n

2 to
+∆k+n

2 . The “middle” regions contain2n−1−1 shifted linear
segments on each side, forn ≥ 2. Finally, the two “outermost”
regions extend to±2n−1∆k+n with length ∆k+n
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Fig. 5. Deterministic quantizer error functions fork bits to (a)k + 1 bits,
(b) k + 2 bits, and (c)k + 3 bits.

A. Statistical Analysis of Quantizer Error Correlation

Samples of a bandlimited signal approach the same value
as their time separation approaches zero. Correlation between
channel inputs leads to correlation between the respective
quantized error signals. The amount of correlation is dependent
on the granularity of the two quantizers, and generally decays
quickly with reduction in input correlation. Thus, for the
remainder of this section we approximate channel inputs in
close time proximity as identical analog values.

In this section, we analyze the statistical properties of the
errors resulting from quantizing the same input sample with
different granularities. Specifically, we consider the covariance
and correlation coefficient ofEk andEk+n. We begin with the
definition of covariance in (4). We assume thatEk is uniformly
distributed between−∆k

2 and∆k

2 , as suggested by the additive

noise model. Thus,

cov(Ek, Ek+n) = E[EkEk+n]− E[Ek]E[Ek+n] (4)

= E[EkEk+n] (5)

=

∫ ∆k

2

−∆k

2

ekEk+n(ek)fEk
(ek) dek. (6)

Using our previous formulation of the functionEk+n(ek), we
multiply byEk to obtain the desired random variableEkEk+n.
EkEk+n contains quadratic segments over the same regions
asEk+n(ek). Fig. 6 depictsEkEk+3. The area under each of
the quadratic segments has been shaded to emphasize that the
expectation operation amounts to integration of this function
scaled by a density constant for a uniform random variable.
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Fig. 6. EkEk+3 as a function ofEk, where area has been shaded to
emphasize that expectation reduces to integration.

Equation (6) can be simplified by noting that the PDF
fEk

(ek) is uniform, and thus evaluates to a constant.

cov(Ek, Ek+n) =
1

2n∆k+n

∫ 2n−1∆k+n

−2n−1∆k+n

ekEk+n(ek) dek

(7)
We separate the integral into the three regions, as shown in

(8). Note from Fig. 6 that the productEk+n(ek)Ek is an even
function, allowing us to use symmetry to evaluate the integral
more concisely.

cov(Ek, Ek+n) =
1

2n∆k+n







base region
︷ ︸︸ ︷

∫ ∆k+n

2

−

∆k+n

2

e2k dek

+

middle regions
︷ ︸︸ ︷

2

2n−1
−1∑

i=1

∫ ∆k+n(i+ 1
2 )

∆k+n(i− 1
2 )

e2k − i∆k+nek dek

+

outermost regions
︷ ︸︸ ︷

2

∫ 2n−1∆k+n

(2n−1
−

1
2 )∆k+n

e2k − 2n−1∆k+nek dek







(8)

Performing the integration in each region, we obtain (9).
The base region and middle regions simply contribute the
original positive variance ofEk+n weighted by their respective
probabilities. However, the outermost region contributesa
negative scaled version of the original variance. This occurs
because the sign ofEk is always the opposite ofEk+n in



the outermost region. Combining terms, we arrive at (10)
and (11), from which we conclude that the overall covariance
cov(Ek, Ek+n) is simply negative one half of the variance of
Ek+n.

cov(Ek, Ek+n) =
∆2

k+n

12








base region
︷︸︸︷

1

2n
+

middle regions
︷ ︸︸ ︷
(

1−
1

2n−1

)

+

outermost regions
︷ ︸︸ ︷

(
1− 3 · 2n−1

)
(

1

2n

)








(9)

= (−1/2)
∆2

k+n

12
(10)

= (−1/2) var(Ek+n) (11)

By substituting the derived covariance and the variances of
the respective uniform error signals, then using the relationship
∆k = 2n∆k+n, one may obtain the correlation coefficientρ
betweenEk andEk+n in (12).

ρ =

(
− 1

2

) ∆2
k+n

12
√
(

∆2
k+n

12

)(
∆2

k

12

)

=

(
− 1

2

) ∆2
k+n

12
∆2

k+n
2n

12

= −2−n−1 (12)

This reveals a simple formula for the error correlation
between quantizers with the same input. As the difference in
the number of bitsn increases, the negative correlation is less
pronounced. Equation (12) matches results from simulation
well. Fig. 7 illustrates the predicted and measured correlation
coefficient between a 1-20 bit quantizer output and a 10 bit
quantizer output, with a uniformly distributed random input
signal. The derived correlation measure no longer applies
whenn = 0 because the bit allocation is homogeneous.
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Fig. 7. Predicted and measured correlation coefficient between 1-20 bit
quantizer error and 10 bit quantizer error.

B. Exploiting Correlated Error Signals

It is often possible to exploit error correlation to reduce
quantization error. Various levels of design sophistication
can be employed in a time-interleaved ADC to exploit this
correlation. In fact, simply placing two quantizers at the same
time instant with different granularities would clearly result
in improvement in performance although this would not be
predicted by the simple additive noise model.

Consider the system described earlier, with bit allocation
b = [10, 10, 9] and τ0 = 0. Fig. 8 displays the reduc-
tion factor γ as a function ofτ1 and τ2, simulated based
on the additive noise model. As discussed in [3], optimal
constellations allocate high resolution quantizers greater time
separation than low resolution quantizers. Fig. 9 displays
the reduction factorγ when uniform quantizers are used.
Interestingly, unpredicted improvements in performance are
observed in the “groove” when the time separation between
different granularity quantizers is small. In this case, negative
cross-channel error correlation causes the two error signals to
partially cancel during reconstruction, leading to performance
improvements.
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quantizers sample in close proxim-
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More sophisticated methods can be devised to exploit the
error correlation structure. A set ofd quantized measurements
x in close proximity may be viewed as observations of the
same analog input valueµ combined with additive correlated
error components with covariance matrixΣ. The Weighted
Least Squares (WLS) criterion minimizes the sum of the
weighted squares of the residuals to obtain an estimate for
µ [12].

µWLS = argmin
µ

(x− µ)
T
Σ

−1 (x− µ) (13)



TABLE I
COVARIANCE MATRIX FOR ERROR INk − d+ 1 TO k BIT QUANTIZERS.

Σ =















bits k−d+1 k−d+2 ... k−1 k

k−d+1 +22d−2 −22d−5 . . . −21 −2−1

k−d+2 −22d−5 +22d−4 . . . −21 −2−1

...
...

...
...

...
k−1 −21 −21 . . . +22 −2−1

k −2−1 −2−1 . . . −2−1 +1















×
∆2

k

12

TABLE II
WLS WEIGHTS FORd QUANTIZERS WITH BIT ALLOCATION k−d+1 TO k.















d ↓ wk wk−1 wk−2 wk−3 wk−4

1 1 ∗ ∗ ∗ ∗

2 3

4

1

4
∗ ∗ ∗

3 2

3

1

4

1

12
∗ ∗

4 5

8

1

4

3

32

1

32
∗

5 3

5

1

4

1

10

3

80

1

80















Taking the partial derivative with respect toµ and setting
equal to zero yields the following weighted average, where
J = Σ

−1. The error covariance matrixΣ for an arbitrary bit
allocation can be populated using (1) and (11).

µWLS =
d∑

i=1

wixi where wi =

∑d

j=1 Ji,j
∑d

i=1

∑d

j=1 Ji,j
(14)

The covariance matrix ford quantizers with adjacent bit
allocationk − d+ 1 to k is displayed in Table I. Solving for
wi in (14) yields the set of weights in Table II, listed up to
d = 5.

The theoretical effective resolution obtained through WLS
unification of multiple quantizers was derived in [4]. For
example, combining two quantizers (d = 2) with bit allocation
k − 1 and k with the weights in Table II yields an effective
resolution ofk + 0.339 bits [4].

V. I NCORPORATINGCORRELATION INTO DESIGN

Finally, we incorporate the previous statistical analysis
of cross-channel quantization error correlation into the de-
sign of optimal channel configurations. Initially, the channel
configuration is optimized according to the additive noise
model as outlined in [3]. For homogeneous bit allocations,
imposing a minimum time separation between channels avoids
performance degradation. For heterogeneous bit allocations,
“unifying” groups of different-precision quantizers in close
proximity using WLS can significantly improve performance.
Optimal reconstruction filters are calculated with the effective
resolution of the WLS unified quantizer derived in [4].

Consider the case whenM = 9, L = 6, and b =
[10, 10, 10, 9, 9, 9, 8, 8, 8]. The optimal constellation
based on the additive noise model is depicted in Fig. 10,
where the circumference of the circle is equal to the recurrent
sampling periodL·TN . To obtain the optimal configuration for
actual quantizers, we must “unify” the 8 and 9 bit quantizers
in close proximity. Fig. 11 displays the simulated reduction
factor γ with uniform quantizers for various levels of design
sophistication. When the time delays are constrained to be
uniform, the best possible reduction factor isγ = 2.65. Allow-
ing non-uniform time delays without incorporating knowledge

of correlation boosts performance significantly toγ = 3.31.
Correcting the 8 and 9 bit channel time delays so that each
pair has the same sampling instant yields another significant
performance improvement toγ = 3.91. Finally, keeping the
previous corrections and performing WLS estimation yields
another small improvement, toγ = 3.98. This corresponds to
a 16.8% reduction in output error variance versus the predicted
optimal time configuration, and a 33.4% reduction in output
error variance versus the uniform sampling pattern. In general,
systems with many channels and diverse bit allocations allow
for larger performance improvements.
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