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Abstract

Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment.
Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We
exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl
methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N9-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea
(ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two
non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion
strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio
between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by
comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also
identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and
pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic
amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further
validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was
compromised.
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Introduction

The need to develop techniques to test toxicity of chemical

compounds is increasing. Ethical and legal considerations impose

constraints on animal usage for compound testing, making cell

culture based testing an attractive alternative. Toward this goal,

we and others have developed methods for genomic phenotyping,

a gene-by-gene genome-wide approach that provides mechanistic

detail on the modes of action of the test compound [1–9] (reviewed

in [10]). Routinely used tests such as the micronucleus test and

mouse lymphoma assays, are prone to false positives and provide

few indications of the mechanisms underlying the toxicity [11].

Further, cumbersome screens or methods prone to false positive

results stress the need to develop fast, sensitive techniques for drug

screening. We have previously optimized Saccharomyces cerevisiae

genomic phenotyping for liquid assays [9] and before that,

optimized the method for growth on solid agar [1,2]. We recently

showed that genomic phenotyping in yeast cells can be predictive

of toxicity-modulating proteins in human cells, increasing the

method’s relevance [12]. In this study, we demonstrate how high-

throughput parallel sequencing can be used to enhance the power

of genomic phenotyping [13–16].

Two of the major contributors to endogenous and exogenous

DNA damage are alkylating and oxidizing agents. A review on the
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cellular response to DNA damage caused by alkylating agents was

recently published by our group [17]. As for oxidative stress, cells

are exposed to environmental oxidants, but oxidative stress also

arises as a consequence of oxygen utilization for energy production

and other metabolic processes [18–20]. The major source for

reactive oxygen species (ROS) production is electrons leaked from

the respiratory complexes in mitochondria. ROS are also

generated by redox-active compounds such quinones and polycy-

clic aromatic hydrocarbons, which can be converted to redox-

active quinones by aldo-keto reductases [21]. When quinones are

reduced to semiquinones, superoxide (O2
–) is produced and

further reduction leads to hydroquinones and hydrogen peroxide

(H2O2) (reviewed in [22]). By redox cycling, the three quinone

products are kept in equilibrium [23]. Under normal conditions,

cellular antioxidant defenses are capable of neutralizing ROS [20].

However, when ROS exceed the antioxidant capacity, they react

with proteins, DNA, RNA, and lipids, which in turn may impair

cellular processes [19,20] resulting in general cell damage and

apoptosis [24]. ROS have been linked to numerous diseases,

particularly cancer, neurodegenerative diseases and premature

aging (reviewed in [25]).

In this study we exposed a library of 4,852 strains to eight

different compounds, genotoxic or non-genotoxic, alkylating or

oxidizing. The library of deletion strains were grown in

competition with each other and at different time points, the

ratio between the strains was assessed by quantitative ‘barcode’

sequencing. The results using this method produce toxicity profiles

that easily distinguish alkylating and oxidizing genotoxic com-

pounds from each other and from non-genotoxic compounds. In

addition, we show that toxicity profiles mirror previous results

obtained using much more cumbersome methods, and moreover,

revealed a novel role for aromatic amino acids in cellular

protection after ROS-inducing agents.

Results

Fast and Sensitive Method for Screening Agents
To determine differential growth patterns of strains deleted for

non-essential genes, cultures were made where close to equal

numbers of 4,852 deletion mutant strains were pooled and then

grown in competition. Each mutant has a strain-specific ‘barcode’

tag for identification. In different experiments, cultures was

exposed to eight compounds: methyl methanesulfonate (MMS),

N-methyl-N-nitrosourea (MNU), N,N9-bis(2-chloroethyl)-N-nitroso-

urea (BCNU), N-ethylnitrosourea (ENU), 2-methylnaphthalene-

1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone,

HYQ), methyl carbamate (MC) and dimethyl sulfoxide (DMSO).

Seven of these compounds are carcinogens: the alkylating agents

MMS, MNU, BCNU and ENU, plus the oxidizing agents MEN

and HYQ; whereas MC is a non-genotoxic carcinogen. The

eighth compound, DMSO, was a control, which is neither

genotoxic nor carcinogenic (Table 1). Cultures were exposed to

4–5 doses for each agent. Exposure was chronic for 10 generation

times, as measured by increased OD595 for each individual

culture, at which point a sample was taken for sequencing. For the

remaining culture, growth media was exchanged with fresh media

without the test compound and the cells were grown for another

10 generation times to recover, after which a second sample was

taken for sequencing. After DNA extraction from each sample, the

representation of each strain was determined by Illumina high-

throughput sequencing of the strain-specific barcoded tags

(Figure 1A).

To determine the individual strain fitness, the sequencing data

was first filtered in several steps (Figure 1B): (i) by absolute number

of barcode sequence counts (.40); (ii) by fold change compared to

untreated control (abs(log2).1) for each dose; and (iii) by statistical

significance (Student’s t-test followed by Benjamini-Hochberg

False Discovery Rate (BH-FDR), BH-FDR ,0.05). Each

compound generated up to 230 sensitive strains (Table S1).

3,807 out of 4,994 strains (76%) passed the quality criteria of being

represented by at least 40 sequencing reads in at least one of the

untreated samples. 1,203 strains (32%) showed reduced fitness

when grown in at least one of the compounds (Table S2) and a

single strain (pol32D) was sensitive to all eight agents. The high

number of sensitive strains is expected given that almost all genes

are required under certain conditions [6]. There were few

differences between the growth for 10 or 20 generation times.

Genotoxic Agents have Different Profiles of Proteins
Needed for Survival
To group the agents by the gene products needed for cell

growth in the presence of that agent, we performed hierarchical

clustering of the fitness profiles. Strains that showed reduced fitness

to at least one of the compounds were included in the clustering

(Figure S1). The fitness so far was recorded as the log2 ratio

between exposed and unexposed cells. Here, the fitness was

summarized into a score representing the median of the log ratios

of the four-five doses for each compound. In parallel, we used two

groups, the entire set of 1,203 sensitive strains and a subset of 508

sensitive strains (Table S3). The smaller set used more stringent

selection criteria by limiting the input from each compound to a

maximum of 20 toxicity-modulating strains per dose, time-point

and replicate. This threshold was selected as the median number

of toxicity-modulating strains per data point was 23 (Figure S2). By

this method we achieve an easier overview of the data as well as

leveling the contributions of the different compounds and avoid a

clustering based on a single compound which might arise as a

technical artifact. Unsupervised hierarchical clustering of the

Figure 1. Experimental workflow for barcoded genomic
phenotyping. Schematic representation of A) experimental design (t
is the time of cell harvest, which was at 10 or 20 generation times) and
B) analysis and filtering of high-throughput sequencing data.
doi:10.1371/journal.pone.0073736.g001

Genomic Phenotyping of Carcinogens by Sequencing
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fitness scores revealed that, on the horizontal compound axis, the

main break in the clustering tree was created by alkylating (MNU,

ENU, MMS, BCNU) versus non-alkylating agents (Figure S1,

Figure 2A). Non-alkylating agents were further divided into

oxidizing (HYQ, MEN) and non-genotoxic (MC, DMSO) agents.

On the vertical strain axis of the stringent cluster (Figure 2A), four

main clusters were formed by the data-driven clustering (i-iv).

Cluster (i) deviated the most from the rest and was associated

specifically with reduced fitness after exposure to the four

alkylating agents. The largest cluster (iii) was comprised of strains

sensitive primarily to the oxidizing agents, whereas two clusters (ii,

iv) were associated with strains showing growth retardation after

exposure to non-genotoxic agents (Table S3). The 31 strains in

cluster (iv) have deletions of proteins implicated in a wide spectrum

of biological functions, including microtubule processing (Smy1,

She1, Jnm1, Num1, Bni1) and protein deubiquitination (Ubp2,

Ubp8, Sgf11).

To further characterize the strains, the protein-protein interac-

tions between the proteins that were absent in each of the sensitive

strains were mapped (Figure S3). The dense network of all proteins

leading to sensitivity when deleted was reduced by considering the

more stringent selection (Figure 2B). From the protein-protein

interaction networks of this set of strains with reduced fitness, we

identified seven interconnected components with more than five

nodes. The largest component with 19 nodes (Figure 2B1)

consisted of subunits of the ribosomal complex. The major

contribution came from proteins required for recovery upon

exposure to oxidizing agents, but some of these proteins also

contributed toward the recovery upon exposure to alkylating

agents. The second largest component with 17 nodes (Figure 2B2)

consisted almost exclusively of DNA repair proteins. In this

network, proteins required for recovery upon exposure to the

alkylating agents made up the entire cluster. For the four

remaining networks (Figure 2B3–7), contributions were for

recovery from both genotoxic and non-genotoxic compounds

and the functions represented were (broadly defined) cell cycle

regulation, metabolism, signaling and peroxisome organization.

Classification of Toxicity-modulating Proteins into
Functional Groups
To look for enrichment of functional categories among the

proteins that contribute to damage recovery, we analyzed the lists

with respect to gene ontology terms or KEGG pathways (Figure 3,

Table S4). The functional categories affected by the eight

compounds (FDR,0.05) can be divided into three subclusters:

(1) transport, (2) degradation/down regulation of biosynthesis, and

(3) DNA damage repair and cell cycle arrest (Figure 3). This third

cluster contains the most enriched subcluster composed of DNA

repair proteins needed for recovery upon exposure to the

alkylating agents MMS, MNU and ENU, and also a second

subcluster of cell cycle and DNA replication are required for

recovery from exposure to the same agents. Recovery from

exposure to oxidizing agents requires vesicle transport and

autophagy proteins to a higher degree compared to recovery

from alkylation damage.

In the initial phase, during the first 10 generation times (Table

S4), DNA repair and cell cycle-related GO or KEGG terms are

prevalent after treatment with genotoxic agents. For the non-

alkylating agents, the enriched GO terms involve vacuolar

transport and, surprisingly, for the oxidizing agents, phenylala-

nine, tyrosine and tryptophan biosynthesis are also represented.

The involvement of aromatic amino acid synthesis has not, to our

knowledge, previously been linked to the response to oxidative

stress.

In the recovery phase scored after 20 generation times (Table

S4), the MMS and MNU exposed strains lacking different aspects

of DNA repair continue to remain depleted whereas the strains

compromised for cell cycle control show increased representation.

Interestingly, the strains that only appear as having reduced fitness

in the recovery phase are largely involved in different aspects of

transport and relocalization of different cellular components.

Under the less stringent conditions (non-adjusted p,0.1) we re-

identify the biosynthesis of aromatic amino acids as influencing

recovery after exposure to the oxidizing agents MEN and HYQ.

The strains that showed altered growth in DMSO produced no

enriched GO terms at the higher significance level (FDR,0.05).

At lower stringency level (non-adjusted p,0.1) of the enrichment

(Tables S5 and S6), an expanded view can be seen.

Aromatic Amino Acids Specifically Required After ROS
Exposure
To validate the requirement for the biosynthesis of aromatic

amino acids, and especially tryptophan synthesis, for cells to

recover after oxidative genotoxic stress, we exposed five different

Table 1. List of selected compounds and doses used in this study.

Compound Abbreviation CAS number Group Dose (mM)

Methyl methanesulfonate MMS 66-27-3 Alkylating agent, genotoxic carcinogen 18.13, 36.32, 54.48,
72.64

N-Methyl-N-nitrosourea MNU 684-93-5 Alkylating agent, genotoxic carcinogen 0.48, 0.97, 1.46, 1.94

N-Ethyl-N-nitrosourea ENU 759-73-9 Alkylating agent, genotoxic carcinogen 1.708, 3.416, 5.124,
6.832

N,N9-bis(2-chloroethyl)-N-nitroso-urea BCNU 154-93-8 Alkylating agent, genotoxic, therapeutic
chemical

0.028, 0.056, 0.084,
0.112

2-Methylnaphthalene-1,4-dione
(Menadione)

MEN 58-27-5 Oxidizing agent, genotoxic, therapeutic
chemical

0.005, 0.010, 0.015,
0.020

Benzene-1,4-diol (Hydroquinone) HYQ 123-31-9 Oxidizing agent, genotoxic, therapeutic
chemical

18.164, 22.705,
27.245, 31.786

Methyl carbamate MC 598-55-0 Non-genotoxic carcinogen 0.028, 0.056, 0.084,
0.112

Dimethyl sulfoxide DMSO 67-68-5 Non-genotoxic, no carcinogen 0.5, 0.6, 0.7, 0.8, 0.9

doi:10.1371/journal.pone.0073736.t001

Genomic Phenotyping of Carcinogens by Sequencing
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strains lacking various components of the tryptophan biosynthesis

pathway to both ROS-generating (HYQ and MEN) and non-

ROS-generating (tBuOOH) oxidative stress (Figure 4). The

requirement for tryptophan synthesis turns out to be specific for

recovery upon exposure to the ROS-generating quinones/

hydroquinones (MEN, HYQ). Tryptophan synthesis does not

influence recovery from the differently acting oxidizing agent

tBuOOH. As controls we used cells lacking transcription factors

Skn7 and Yap1 that are needed for the transcription of oxidative

stress responsive genes [26]. As expected, the skn7 and yap1 strains

were sensitive to both quinone and non-quinone oxidizing agents.

Comparison with Previous Studies
To estimate the specificity and sensitivity of the barcode-

sequencing method described here we compared the MMS results

to those obtained in previous extensive genomic phenotyping

studies, both from our group on solid agar [2] and in liquid media

[9] and others [7,27]. Of the 48 strains that were associated with

reduced fitness upon exposure to MMS for 10 generation times in

this study, 43 (90%, p= 7610218 Fisher’s exact test) were also

identified as MMS sensitive when grown on solid agar. Among the

strains that showed a growth defect during the recovery phase (20

generation times), 147 of 226 (65%, p= 2610229) were identified

in the solid agar assay. In comparison with the genomic

phenotyping in liquid media, 24 of the strains (50%,

p= 1.4610212) identified at 10 generation times and 35 of the

strains identified at 20 generation times (15%, p= 0.006) in this

study were recovered in the previous results. These results indicate

that the specificity is high using the barcode-sequencing method.

As for the sensitivity, this method identified in total 240 strains

as MMS-sensitive, whereas in the solid agar assay, 1,455 strains

were identified as MMS sensitive [2] and in the liquid media assay,

479 strains were identified as MMS sensitive [9], giving a recovery

rate of 16% compared to the solid agar assay and 50% compared

to liquid media assay. However, when stratifying the data into

categories of different sensitivity, we note that of the most sensitive

strains in the solid agar screen (with a sensitivity score 30; see ref

[2]), 43% (13/30) are also identified using barcode-sequencing.

For the highly sensitive strains (score .20), 34% (26/76) are

recovered and for the strains with medium sensitivity (score

between 11 and 20), 25% (48/195) are recovered. Only for the

strains showing low sensitivity in the solid agar screen (score #10)

is the recovery rate poor, as only 7.4% (88/1184) of the strains are

identified using the barcode-sequencing approach.

Comparison with data from other groups also shows consistency

between results. Among the proteins causing MMS-sensitivity

when deleted, 73% (35/48) are also found in study from the

Parsons et al [7], and from an earlier study from Chang et al [27],

38% (18/48) are re-found in the list of proteins needed for MMS

resistance. The lower concordance with the latter study, is

consistent with a similarly low recovery between these two studies,

38% (39 out of 102) MMS-sensitive strains from Parsons et al [7]

are also identified in Chang et al [27].

Together, the data from these comparisons indicate that the

barcode-sequencing method identifies toxicity-modulating pro-

teins with high confidence.

Figure 2. The difference between alkylating and oxidizing agents can be explained by fitness profiles of the strains. A) Two-
dimensional hierarchical clustering of fitness ratio (median log ratio of exposed/control) results using the strains sensitive after 10 and 20 generation
times upon exposure to different chemicals. Compounds and doses are plotted across the horizontal axis. On the vertical axis, a subset of 508 strains
with reduced fitness is shown. B) Protein-protein interaction networks with.5 toxicity-modulating proteins. The colors (explained in legend, same as
labels in A) within the pie charts indicate the contribution of each of the eight compounds. Alkylating agents represented in shades of yellow-red,
oxidizing agents in shades of blue and non-genotoxic compounds in green.
doi:10.1371/journal.pone.0073736.g002
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Discussion

Here we present a screening method for drug toxicity with data

for eight compounds. The technique separates out different subsets

of proteins needed for cellular recovery upon exposure to a range

of genotoxic and non-genotoxic compounds. This study targets a

problem that faces pharmaceutical and other industries requiring

early indicators of the genotoxic effects of a test compound. The

solid agar genomic phenotyping previously developed [1,2],

provided a sensitive and robust method to screen a library of

eukaryotic cells with a test compound in order to ascertain

whether the compound is toxic and if so by what mechanism.

However, the method uses individually grown cultures of each

mutant strain and is too cumbersome to be a technically feasible

approach for systematic screening of large numbers of compounds.

The method presented here provides a realistic alternative, with

maintained specificity, although with a lower sensitivity.

The results presented in this study provide comprehensive

profiles of the proteins required for cellular recovery after exposure

to a range of alkylating, oxidizing and also non-genotoxic

compounds. Many of the identified toxicity-modulating proteins

and pathways, such as the DNA repair cluster needed after

alkylating agent treatment, have already been heavily studied [28].

However, novel pathways needed for recovery also came to light,

such as the requirement of aromatic amino acid synthesis

(reviewed in [29]) following exposure to the oxidizing agents

menadione (MEN) and hydroquinone (HYQ). Amino acid uptake

or synthesis has previously been implicated in survival after a

variety of compounds [30–33]. A question that remains unan-

swered is, what is the role of aromatic amino acid synthesis in

cellular recovery specifically after quinone exposure? It has been

reported that charge transfer can occur between semiquinones and

the aromatic amino acids tyrosine and tryptophan [34]. Possibly,

the funneling of unpaired electrons to the free aromatic acids acts

as a scavenger for oxygen radicals produced by the quinone/

hydroquinone redox cycling [35,36]. It was previously known that

the transcriptional profile of H2O2 and MEN exposed cells are

largely similar [37]. Genes, such as superoxide dismutases,

glutathione peroxidases, and thiol-specific antioxidants, involved

in the detoxification of both H2O2 and O2
2 are strongly induced

after exposure. The majority of these genes are under control of

the Yap1 and Skn7 transcription factors [38]. However, the Skn7

and Yap1 proteins are also activated in the response to tBuOOH,

suggesting that the tryptophan synthesis is induced under a

different system.

As the details of the DNA damage response are being

elucidated, it is becoming evident that many pathways other than

Figure 3. Functional enrichment reveals an alkylating agent-specific DNA repair and cell cycle dependency. Gene-annotation
enrichment analysis heat map and clustering for sensitive strains to different compounds at early (10 generation times) or late (20 generation times)
timepoints. Heat map colors correspond to the –log10 of the p-values.
doi:10.1371/journal.pone.0073736.g003

Genomic Phenotyping of Carcinogens by Sequencing
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DNA repair and cell cycle checkpoints are involved in cellular

recovery after exposure to DNA damaging agents [1,2,9,12]. At

the time of damage, several different sets of proteins are needed for

a plethora of functions to deal with several different kinds of

molecular damage, but once the cell has dealt with that damage,

the cell reinitiates the cell cycle, requiring another set of proteins.

Some genes, such as the environmental stress response (ESR)

genes [37], are transcriptionally regulated independently of the

stressor. Expression of many other genes is stressor specific.

Among the 868 ESR proteins, 23 (8%) were identified in this

study, indicating that the toxicity-modulating proteins identified by

genomic phenotyping complements the results from expression

profiling.

In conclusion, while further developing a higher throughput

method for toxicity screening, we have discovered that biosynthe-

sis of aromatic amino acids, and specifically tryptophan synthesis,

provides protection from quinone/hydroquinone-induced ROS in

eukaryotic cells.

Materials and Methods

Reagents
Test componds were purchased from Sigma-Aldrich: MMS

(Cat #129925), MNU (Cat #N4766), menadione (Cat #M5625),

hydroquinone (Cat #240125), methyl carbamate (Cat #246352),

DMSO (Cat #D2650), BCNU (Cat #C0400), ENU (Cat

#N8509).

Deletion Pool Construction, Cell Culture, and Sample
Preparation
Pools of the yeast haploid deletion collection were prepared as

described previously [13]. The deletion pools were cultured at

30uC and 250 rpm in an incubator shaker using YPD media

(10 g/l yeast extract, 20 g/l peptone, 20 g/l dextrose) containing

100 mg/ml G418. To prepare sequencing samples, we followed

the protocol as described previously [14,39]. DNA was isolated

using YeaStar genomic DNA kit (ZymoResearch Inc, Irvine CA).

Barcodes were PCR-amplified and the resulting PCR-fragments

were sequenced at the BioMicroCenter at MIT.

Sequence Data Processing
Analysis was performed similarly to as previously described

[40]. Samples were sequenced on a Solexa Genome Analyzer 2.0,

generating single ends reads of 35 nucleotides. The first four bases

comprise the multiplexing code used to assign each read to an

experiment and a sample (five total for each experiment: one of

four sorted fractions or the original pool). The next set of bases

identify whether the read corresponds to an uptag or downtag

barcode, and the final 14 bases (13 for uptags) provides sufficient

information to uniquely identify the barcode [14]. Custom Matlab

scripts parse sequencing reads to tabulate the number of perfect

Figure 4. Tryptophan biosynthesis rescues cells from ROS. A) A schematic of the tryptophan biosynthesis pathway [29]. PRA: N-(59-
phospohribosyl)-anthsranilate, CDRP: 1-(o-carboxyphenylamino)-1-desoxyribuose-5-phosphate. B) Compound sensitivity of selected mutant strains
were analyzed by spot assay. Strains were grown in liquid YPD+G418 overnight at 30uC and then diluted in YPD. Ten-fold serial dilutions of each yeast
culture was spotted onto YPD plates in the absence (control) and presence of the different compounds: MMS (0.006%), MEN (40 mM), HYQ (3 mg
ml21), and tBuOOH (0.75 mM). Plates were incubated at 30uC and growth was recorded after 48 h exposure.
doi:10.1371/journal.pone.0073736.g004

Genomic Phenotyping of Carcinogens by Sequencing
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barcode reads for each strain in each sample, and for each

experiment.

The tabulated counts for each strain were normalized to a

frequency for each sample as to compare frequencies in the

exposed cultures to the frequencies in the original (unexposed)

pool. These frequencies are calculated separately for uptags and

downtags, as well as for each independent experiment (i.e. each

screen has two independent replicates, so that there are four

separate frequency vectors for each sample in each screen).

Because each sample contains strains for which few or no barcodes

are detected, a baseline value of 10 counts was added to each

vector of frequencies to eliminate spurious hits arising from poorly

represented strains. The raw counts were quantile-normalized and

then treated/control ratio was log-transformed (base 2).

Data Analysis
Custom scripts were written in R. Cluster and Treeview [41],

Cytoscape [42], GoogleCharts was used for visualization. Raw

data is deposited at SRA with accession number SRA091991.

Supporting Information

Figure S1 Two-dimensional hierarchical clustering of
fitness ratio (median log ratio of exposed/control)
results using the strains sensitive after 10 and 20
generation times upon exposure to different chemicals.
Compounds and doses are plotted across the horizontal axis. On

the vertical axis, the 1,203 strains with reduced fitness are shown.

(TIF)

Figure S2 Histogram of number of sensitive strains for
each data point (in total 160). Red hashed line indicates the

median number (23) of strains at each data point.

(TIF)

Figure S3 Protein-protein interaction network of all
1,203 toxicity-modulating strains.

(TIF)

Table S1 Growth retarded strains.

(XLSX)

Table S2 Log ratio (treated/control) of growth retarded
strains (all).

(XLSX)

Table S3 Log ratio (treated/control) of growth retarded
strains (top 20).

(XLSX)

Table S4 Enriched gene sets after 10 and 20 generation
times (stringent criteria, FDR,0.05).

(XLSX)

Table S5 Enriched gene sets after 10 generation times
(complete lists).

(XLSX)

Table S6 Enriched gene sets after 20 generation times
(complete lists).

(XLSX)
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