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Abstract Recently, Fourier domain OCT (FD-OCT) has

been introduced for clinical use. This approach allows in

vivo, high resolution (15 micron) imaging with very fast

data acquisition, however, it requires brief flushing of the

lumen during imaging. The reproducibility of such fast data

acquisition under intracoronary flush application is poorly

understood. To assess the inter-study variability of FD-

OCT and to compare lumen morphometry to the estab-

lished invasive imaging method, IVUS. 18 consecutive

patients with coronary artery disease scheduled for PCI

were included. In each target vessel a FD-OCT pullback

(MGH system, light source 1,310 nm, 105 fps, pullback

speed 20 mm/s) was acquired during brief (3 s) injection of

X-ray contrast (flow 3 ml/s) through the guiding catheter.

A second pullback was repeated under the same conditions

after re-introduction of the FD OCT catheter into the

coronary artery. IVUS and OCT imaging was performed

in random order. FD-OCT and IVUS pullback data were

analyzed using a recently developed software employing

semi automated lumen contour and stent strut detection

algorithms. Corresponding ROI were matched based on

anatomical landmarks such as side branches and/or stent

edges. Inter-study variability is presented as the absolute

difference between the two pullbacks. FD-OCT showed

remarkably good reproducibility. Inter-study variability in

native vessels (cohort A) was very low for mean and

minimal luminal area (0.10 ± 0.38, 0.19 ± 0.57 mm2,

respectively). Likewise inter-study variability was very low

in stented coronary segments (cohort B) for mean lumen,

mean stent, minimal luminal and minimal stent area

(0.06 ± 0.08, 0.07 ± 0.10, 0.04 ± 0.09, 0.04 ± 0.10

mm2, respectively). Comparison to IVUS morphometry

revealed no significant differences. The differences

between both imaging methods, OCT and IVUS, were very

low for mean lumen, mean stent, minimal luminal and

minimal stent area (0.10 ± 0.45, 0.10 ± 0.36, 0.26 ±

0.54, 0.05 ± 0.47 mm2, respectively). FD-OCT shows

excellent reproducibility and very low inter-study variability

in both, native and stented coronary segments. No significant

differences in quantitative lumen morphometry were

observed between FD-OCT and IVUS. Evaluating these

results suggest that FD-OCT is a reliable imaging tool to

apply in longitudinal coronary artery disease studies.

Keywords Interstudy variability � Fourier domain �
Optical coherence tomography � Intravascular �
Ultrasound � Reproducibility

Introduction

Optical coherence tomography (OCT) is a relatively new,

but rapidly accepted invasive coronary imaging tool [1]. As
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it requires good spatial coherence of the near infrared light

beam to create high resolution [2], cross sectional images

of the coronary artery, it requires transient clearing of the

coronary during image acquisition [3]. This prerequisite

hampered widespread use of the first generation time-

domain OCT (TD-OCT) systems in the past, which

required proximal balloon occlusion and simultaneous

distal flush delivery during pull-back of the OCT imaging

probe [4]. Recently, a second generation of the technology,

Fourier domain OCT (FD-OCT), has been introduced for

clinical application to overcome these limitations. FD-OCT

allows high speed data acquisition, both in terms of frame

rate ([100 frames/s) and in pullback speed (between 20

and 40 mm/s) and alleviates the need for transient balloon

occlusion. In consequence, a long coronary artery segment

can be rapidly imaged within few seconds and without

introducing ischemia during imaging [5]. The older TD-

OCT method was only able to acquire images at a maxi-

mum of 30 frames/s and a used pullback speeds up to

3 mm/s, requiring a pullback time of 10 s per 30 mm of

coronary artery. The introduction of FD-OCT has sparked

widespread application in clinical practice and research. Its

high resolution, excellent image quality and the high con-

trast between lumen and vessel wall have proven to provide

highly accurate [6] morphometry in vivo, both in terms of

accuracy when compared to histomorphometry as well as

in terms of inter- and intra-observer variability [7–11].

Until today, intravascular ultrasound (IVUS) is still the

reference method in longitudinal intravascular imaging

driven studies. In contrast to OCT it uses an acoustic wave

to create cross-sectional images of the coronary artery. To

apply FD-OCT in such longitudinal studies it is important

to know its inter-study variability of quantitative mea-

surements. The reproducibility of fast data acquisition, as

required in the FD-OCT imaging protocol, with intracor-

onary flush application is poorly understood. Therefore, we

investigated the inter-study variability of FD-OCT in both

native and stented coronary segments, and compared OCT

morphometry to intravascular ultrasound (IVUS).

Methods and materials

Study population

We included 18 patients with angina and/or objective

evidence of ischemia, who were scheduled for percutane-

ous coronary intervention. The study protocol was

approved by the local medical ethics committee. Patients

with acute myocardial infarction, hemodynamic instability,

renal insufficiency, allergy to X-ray contrast, left main

stem or ostial right coronary artery lesions, bifurca-

tion lesions, venous bypass graft lesions, chronic total

occlusions, last remaining vessel or extremely tortuous

vessels were excluded.

Patients underwent the following procedures in the

catheterization laboratory: Coronary angiography, treat-

ment of culprit lesion (PCI according to local standards),

and invasive imaging in random order: FD-OCT imaging

(test series), FD-OCT imaging (retest series), IVUS

imaging. We performed 10 FD-OCT pullbacks in native

coronaries (n = 5 test, n = 5 retest) (Cohort A) and 26

FD-OCT pullbacks in stented coronary segments (n = 13

test, n = 13 retest) (Cohort B). For the comparison with

IVUS we used 10 FD-OCT pullbacks and 10 matched

IVUS pullbacks. The corresponding regions of interest

were selected for morphometry using side branches and

stent edges as landmarks (Fig. 1).

FD-OCT imaging system

OCT imaging was performed with a non-commercial, FD-

OCT system, as described in detail elsewhere [12, 13]. This

system used a wavelength-swept laser with a center fre-

quency of 1,310 nm as a light source. The FD-OCT

imaging catheter had a short monorail design with a cath-

eter profile of 2.4Fr compatible with 6F guiding catheters

The FD-OCT imaging catheter contained a fiber-optic

imaging core covered by and withdrawn within a translu-

cent sheath at a pullback speed of 20 mm/s. Data were

processed in real-time and stored digitally.

FD-OCT data acquisition

We used standard femoral approach in all patients. Weight

adapted, unfractionated heparin was given to maintain an

activated clotting time (ACT) [300 s. After placement of

the guiding catheter (6F) into the coronary ostium, a

standard PCI guide wire was advanced into the coronary

artery in conventional manner. After administration of

nitrates (0.2 mg NTG ic), the FD-OCT imaging catheter

was advanced into the coronary artery. Radiopaque mark-

ers at the distal catheter tip and at the imaging core allowed

positioning of the optical probe distal to the region of

interest. After FD-OCT catheter placement, blood was

cleared by injection of iso-osmolar contrast (Iodixanol 370,

VisipaqueTM, GE Health Care, Ireland) at 37 �C with an

injection pump (Mark-V ProVis, Medrad, Inc. Indianola,

PA, USA; flow rate 3 ml/s) through the guiding catheter.

The FD-OCT pullback was started as soon as the artery

was cleared from blood and stopped when the imaging core

reached the guiding-catheter. After successful completion

of the first FD-OCT pullback, the imaging catheter was

withdrawn within the guiding catheter. Then the FD-OCT

imaging catheter was re-advanced into the coronary artery

for the second pullback as described above.
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FD-OCT analysis

To evaluate the inter-study variability the two FD-OCT

pullbacks were analyzed independently. The OCT pull-

backs were first converted to the standard medical imaging

format, e.g. DICOM, using a custom viewing and con-

version package called OFDEye. Then the lumen contour

was drawn using ‘automatic contour detection’ available in

MATLAB software [14]. The stent contour was traced

using a multiple point detection option in MATLAB soft-

ware. Corrections to the lumen and stent contour were

made where necessary and then the contour data was

exported to CURAD (vessel analysis, CURAD BV, Wijk

bij Duurstede, The Netherlands) [15] for further analysis.

Side-branch containing cross-sections were not excluded.

For each cross-section, the enclosed area of the lumen

contour was calculated. Frames showing a relatively large

deviation in areas compared to their neighbors were labeled

as incorrect. A search and substitute algorithm replaced

these contours by the closest available correct contour in

the longitudinal direction. And these were corrected man-

ually where needed.

Fig. 1 Corresponding cross sectional (1) longitudinal (2) FD-OCT (A, B) and IVUS (C) images. The yellow lines on 2 indicate the region of

interest. The blue lines indicate stent area and the red lines indicate lumen area
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Z-offset correction

During image acquisition, the optical fiber in the catheter core

can stretch. This may produce changes in the size of the

z-offset along the pullback that can affect the accuracy of the

measurements (Fig. 2A). Therefore, the z-offset was checked

and modified if necessary in all the pullbacks before per-

forming any quantitative measurement. After image acquisi-

tion the z-offset was checked again using the OFDEye viewer

and corrected for the complete pullback in a frame in which

the FD-OCT imaging catheter sheath was in direct contact

with the vessel wall, based on aligning the FD-OCT imaging

catheter sheath and the vessel wall with the fiducials.

IVUS imaging

IVUS imaging was performed after administration of

nitrates (0.2 mg NTG ic) using commercially available

mechanical (Atlantis, Boston Scientific, MA, USA) or

phased array transducer systems (Volcano eagle eye, Vol-

cano Corp, Rancho Cordova) as described elsewhere in

conventional manner, using an automated pullback device

operating at 0.5 mm/s [16].

IVUS analysis

All IVUS pullbacks were first gated by the validated

Intelligate method [17], which automatically selects the

end-diastolic frames only to form a new pullback. The

gated pullbacks have a smooth appearance of the coro-

nary instead of the rough appearance in non-gated IVUS,

which helps to improve accuracy. The lumen and stent

area were analyzed using previously validated dedicated

quantitative IVUS analysis software (Vessel analysis,

CURAD B.V., Wijk bij Duurstede, Netherlands) [15].

Fig. 2 A1 and A2 show cross sectional images of two different

pullbacks where the z-offset is slightly different. A1 has a correct

z-offset and A2 shows a image of a pullback where the z-offset needs

to be corrected. B Strut malapposition was defined as presence of at

least one strut separated from the vessel wall (not being a side

branch), if the distance between the endoluminal reflection of the strut

and the vessel wall was larger than the thickness of the stent strut and

polymer. The arrow in B shows a side branch. The blue line indicate

stent area and the red line indicate lumen area. C Example of tissue

protrusion: defined as convex shaped tissue between the stent struts

without disruption of the continuity of the endoluminal vessel surface

strut. The arrow in C shows two areas of tissue protrusion
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Invasive imaging pullback analysis

Both, for repeated FD-OCT pullbacks, as well as for the

corresponding IVUS pullbacks, the same regions of interest

were selected for morphometry using vessel analysis soft-

ware available in CURAD, using side branches and stent

edges as landmarks (Fig. 1).

Definitions

The definitions of the lumen measurements, stent mea-

surements, strut malapposition (Fig. 2B), tissue protrusion

(Fig. 2C) and relocation are found in Table 1.

Relocation

Relocation of the MLA or MSA was considered significant

if the difference between the two OCT pullbacks (test and

retest) or the OCT and IVUS pullback was [10 % and if

the MLA or MSA had a [10 % difference in the normal-

ized longitudinal position.

Statistical analysis

Statistical analysis was performed using SPSS 17.0 for

Windows (SPSS, Chicago, IL, USA) and MedCalc 11.5.

Continuous variables are expressed as mean ± 95 % CI or

median and interquartile range if appropriate. Categorical

variables are expressed as percentages. The absolute and

relative differences between measurements obtained with

the different techniques were calculated. The relative dif-

ference was defined as the absolute difference between

repeated pullbacks divided by their average. Data are also

expressed in Bland–Altman plots [18] showing the differ-

ence between corresponding lumen measurements for both

techniques.

The OCT data were presented as per-frame analysis and

as per segment or as per stent analysis. In the per frame

analysis the morphometry of corresponding frames was

compared individually. The per-frame analysis reflects the

variability between repeated measurements at correspond-

ing locations within the coronary artery.

The per-segment analysis compares the mean lumen and

stent areas as well as their minimal areas and reflects

clinically relevant measures for the smallest lumen and

stent expansion within a pullback.

Results

Invasive imaging was successfully performed in 20 coro-

nary arteries (LAD n = 14, RCA n = 3, LCx n = 3). No

imaging related complications were observed.

Table 1 Definitions

Lumen area (mm2) The surface of the lumen clearly visualized during flush administration as dark, signal poor region delineated

by the most inner, signal intense endoluminal leading edge

Mean lumen area (mm2) The mean of lumen areas of all frames in the selected ROI

Minimal lumen area (mm2)

(MLA)

The smallest lumen area in the selected ROI

Relocation of minimal luminal

area (MLA)

In those cases which the longitudinal position of MLA of first, test pullback or OCT was located in a different

position in the second, retest pullback or IVUS. For the comparison of the position of the MLA between the

two repeated pullbacks, the distance of the frame with the MLA from the distal starting point of the ROI

was noted in the test series. Then, the position of the frame with the MLA was expressed as length

percentage of the total ROI. The same procedure was performed in the re-test series and IVUS pullbacks

Stent struts (1) Highly reflective surfaces (metal) that cast dorsal, radial shadows

(2) Highly reflective surfaces without dorsal shadowing

(3) Sector shaped shadows with sharp defined borders radial to the lumen

Start and end of stent The first and the last frame with circumferentially visible struts

Stent area (mm2) The surface of the stent by tracing individual stent struts assuming a circular shaped lumen

Mean stent area (mm2) The mean of stent areas of all frames in the selected ROI

Minimal stent area (mm2) (MSA) The smallest stent area in the selected ROI

Relocation of minimal stent area

(MSA)

Was assessed as described for relocation of minimal lumen area

Tissue protrusion Convex shaped tissue between the stent struts without disruption of the continuity of the endoluminal vessel

surface strut

Strut malapposition Presence of at least one strut separated from the vessel wall (not being a side branch), if the distance between

the endoluminal reflection of the strut and the vessel wall was larger than the thickness of the stent strut and

polymer [31, 34]
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Quantitative OCT analysis using an automated contour

detection software was successful in all arteries. Manual

adjustment of the automated contour tracing was required

in 15 % of the cross-sections in our series. Manual

adjustment was primarily necessary cross sections with

multiple or large side-branches or in the stented segments

when only few stent struts were visible in a particular

cross-section, e.g. due to non centered, non-co axial OCT

catheter position in bended or tortuous coronary segments.

Cohort A: FD-OCT native coronary segments

A total of 1,472 frames were included into the analysis. 736

frames from the test series (n = 5 pullbacks), and 736

matching frames from the retest series (n = 5 pullbacks).

Per frame analysis revealed a very low inter-study vari-

ability for mean lumen area of 0.02 ± 0.04 mm2 (0.37 %).

Figure 3A shows the Bland–Altman plot and linear

regression analysis.

Likewise, per coronary segment analysis (mean test

pullback length = 182 frames; mean retest pullback

length = 177 frames) demonstrated an inter-study vari-

ability for mean lumen area of 0.10 ± 0.38 mm2 and for

minimal luminal area of 0.19 ± 0.57 mm2 (Table 2).

There was no case of relocation of the MLA (Fig. 4).

Cohort B: FD-OCT stented coronary segments

A total of 3,520 frames were included into the analysis.

1,760 frames from the test series (n = 13 pullbacks), and

1,760 matching frames from the retest series (n = 13

pullbacks). Per frame analysis revealed that inter-

study variability for mean lumen area and mean stent area

was very low [resp. 0.01 ± 0.02 mm2 (0.19 %) and 0.01 ±

0.02 mm2 (0.11 %)]. Figure 3B shows Bland–Altman plots

and regression analysis for these frames.

Per stent analysis (mean test pullback length = 139

frames, mean retest pullback length = 139 frames) showed

a very low inter-study variability for mean lumen area and

mean stent area (0.06 ± 0.08, 0.07 ± 0.10 mm2, respec-

tively). The inter-study variability for minimal luminal area

and minimal stent area was 0.04 ± 0.09, 0.04 ± 0.10

mm2, respectively (Table 3). Relocation of the minimal

luminal area and minimal stent area in stented coronary

segments is shown in Fig. 5A. There were no significant

relocations from MLA. There were five relocations of

MLA with a difference[10 % in the longitudinal position

between test and retest pullbacks, however the difference in

MLA measurement was \10 % for these relocations. The

biggest difference in MLA was 0.42 mm2 (9.27 mm2 in the

test pullback and 9.69 mm2 in the retest pullback), this was

not relocated. There were also no significant relocations

from MSA. There were seven relocations of MSA with a

difference [10 % in the longitudinal position between test

and retest pullbacks, however the difference in MSA

measurement was\10 % for these relocations. The biggest

difference in MSA was 0.34 mm2 (6.75 mm2 in the test

pullback and 6.41 mm2 in the retest pullback), this was not

relocated.

Malapposition (Fig. 2B) of stent struts was observed in

2 vessels; n = 1 LCx (n = 7 struts) and n = 1 RCA

(n = 8 struts). In both stents, the malapposed struts were

located at the proximal stent entrance. The mean malap-

position area for the LCx stent was 0.28 mm2 and for the

RCA stent 1.33 mm2. The inter-study variability for the

malapposition area was 0.04 mm2 (14.2 %) for the LCx

stent and 0.07 mm2 (5.2 %) for the RCA stent.

Tissue protrusion (Fig. 2C) was visible in n = 10 stents.

The mean tissue protrusion area was 0.09 ± (0.04) mm2 in

the test pullback series and 0.09 ± (0.04) mm2 in the retest

pullback series, respectively. The inter-study variability for

tissue protrusion was also very low [0.00 ± 0.02 mm2

(1.0 %)].

Comparison to IVUS

Comparison to IVUS morphometry revealed no significant

differences between the invasive imaging methods.

The differences between both methods were very low for

mean lumen area, mean stent area, minimal luminal

area and minimal stent area (0.10 ± 0.45, 0.10 ± 0.36,

0.26 ± 0.54, 0.05 ± 0.47 mm2, respectively) (Table 4).

Bland–Altman plots and linear regression analysis for

mean lumen area and mean stent area in stented coronary

segments (n = 10) are shown in Fig. 6. Relocation of the

minimal luminal area and minimal stent area in stented

coronary segments is shown in Fig. 5B. There were no

significant relocations of MLA. There were four reloca-

tions of MLA with a difference [10 % in the longitudinal

position between OCT and IVUS pullbacks, however the

difference in MLA measurement was \10 % for these

relocations. The biggest difference in MLA was 1.52 mm2

(2.22 mm2 in the OCT pullback and 3.74 mm2 in the IVUS

pullback), this was not relocated. There were also no sig-

nificant relocations from MSA. There were four relocations

of MSA with a difference [10 % in the longitudinal

position between OCT and IVUS pullbacks, however the

Fig. 3 A Per frame (n = 1,472) analyses in native coronary arteries.

Bland–Altman plot (A0) showing the differences in lumen areas

between two corresponding pullbacks. Regression analyses line (A00)
showing correlation between corresponding lumen areas per frame.

B Per frame (n = 3,520) analyses in stented coronary arteries. Bland–

Altman plots showing the differences in lumen areas (B0) and stent

areas (C0) between two corresponding pullbacks in stented coronary

arteries. Regression analyses lines showing correlation between

corresponding lumen areas (B00) and stent areas (C00) per frame

c
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difference in MSA measurement was \10 % for these

relocations. The biggest difference in minimal stent area

was 1.69 mm2 (6.53 mm2 in the OCT pullback and

8.22 mm2 in the IVUS pullback), this was not relocated.

IVUS was able to visualize strut malapposition in one

stent located in the LCx, that was also observed by OCT.

Mean malapposition area was 0.26 mm2 by both IVUS and

OCT.

Tissue protrusion was visible in n = 7 stents by both

IVUS and OCT. The mean protrusion area by IVUS was

0.09 ± 0.06 mm2 and by OCT was 0.11 ± 0.04 mm2. The

difference between the mean protrusion area’s for OCT and

IVUS was 0.02 ± 0.04 mm2 (19.7 %).

Discussion

Our main findings in this study are: OCT shows very low

inter-study variability in vivo and OCT shows no signifi-

cant difference in quantitative lumen measurement as

compared to IVUS. Because the FD-OCT technique is

relatively new, little was known on the inter-study vari-

ability of this technique. Our study had two objectives:

(a) to determine the inter-study variability of the intracor-

onary FD-OCT imaging system, and (b) to compare pull-

back images acquired by FD-OCT to the reference

intravascular imaging method of IVUS within the same

coronary segments.

OCT has rapidly been accepted as an alternative intra-

coronary imaging tool for the interventional cardiologist,

due to more detailed information on atherosclerotic plaque

pathology as well as on stent apposition and other repeat-

edly observed conditions after stent implementation such

as dissection, tissue prolapse (in drug eluting stents),

restenosis, fracture and thrombosis [2, 5, 7, 9, 19–23].

Given these advantages, OCT could be considered for

application in studies evaluating new therapeutic treat-

ments [24, 25].

Interstudy variability

We found that the inter-study variability for lumen and

stent area measurements with OCT using computer-assis-

ted contour analysis is very low. The observed variability

in our study is in the order of magnitude reported in pre-

vious studies for inter-observer and intra-observer repro-

ducibility [8–11]. Our observations suggest that FD-OCT is

a reliable imaging tool for the assessment of coronary

artery disease, especially for longitudinal studies with

repeated OCT examinations.

We were interested to understand to what extent relo-

cation of the MLA is occurring, This question is of clinical

interest especially in stented segments as the MLA as

observed by invasive imaging might drive the decision for

postdilatation, the balloon selection (in terms of diameter

and lengths) and balloon position within the stent. In the

native coronary series, there was no significant relocation

observed, indicating that MLA by OCT is a robust

parameter. The ROI length measured in number of frames,

had a mean difference of 1 frame, which is 0.7 % of the

mean pullback length. The mean longitudinal pullback

speed relative to the coronary artery may be influenced, in

principle, by cardiac motion. The finding of a small vari-

ation in ROI length indicates that it is sufficiently constant

Table 2 Inter-study variability in native coronary segments (per

segment analysis)

Mean lumen area Minimal luminal area

OCT pb1 6.74 ± (3.99) mm2 3.24 ± (3.85) mm2

OCT pb2 6.64 ± (3.73) mm2 3.05 ± (3.30) mm2

Pullback 1 versus pullback 2

Absolute difference 0.10 ± (0.38) mm2 0.19 ± (0.57) mm2

Relative difference 1.55 % 6.11 %

Linear regression

Slope 1.07 1.16

Intercept -0.35 -0.31

R2 0.99 0.99

P \0.001 \0.001

Fig. 4 Comparison of the longitudinal position of minimal luminal

area (MLA) in native coronary segments between two corresponding

OCT pullbacks. X-axis: length percentage of the total ROI/longitu-

dinal position. Y-axis: corresponding pullbacks
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to perform reliable measurements in the vessel direction,

which is a relevant observation in relation to stent sizing

during PCI.

In our stented segments, no significant relocation was

observed. Relocations with a difference in MLA or MSA of

\10 % were observed, this can most likely be explained by

a rather uniform stent expansion over the entire ROI. The

incidence of relocations was increased compared to native

vessels; however the absolute differences in lumen

dimensions were very small due to the uniformity of stent

expansion. Thus, they are unlikely to alter therapeutic

decisions.

Comparison to IVUS

Comparison of lumen and stent area morphometry for FD-

OCT and IVUS did not demonstrate significant differences.

However, OCT was able to visualize strut malapposition

and tissue protrusion with higher sensitivity than IVUS.

While Fourier domain OCT offers high resolution imaging

at a high acquisition speed with a high contrast between the

lumen and the arterial structures allowing OCT to visualize

strut malapposition and tissue pretrusion better than IVUS

[2, 26], it is hampered by its limited penetration depth. This

often precludes the measurement of EEM and plaque area

by OCT, especially in the presence of advanced athero-

sclerosis, which, however, is a strength of IVUS. There is

controversy regarding differences in morphometry between

both imaging techniques. A number of researchers reported

no significant differences between both imaging tech-

niques, while others reported a bias for IVUS with an

overestimation of lumen and stent dimensions as compared

to OCT. Kawamori et al. [26] reported no difference in

lumen and minimal stent area for OCT compared to IVUS

in patients. Kawasi et al. [27] reported no difference for

lumen area and volume for OCT and IVUS in porcine

coronaries. In contrast, others observed a tendency for

smaller lumen areas when measured by OCT as compared

to IVUS [3, 9, 28, 29].

The reason for these inconclusive findings is poorly

understood. In most clinical studies, the sample size is

rather small. Statistical significance should therefore be

interpreted with caution. Morphometry by both technolo-

gies can be influenced by a number of variables including

blood flow velocity, blood/flush media temperature and

eccentric catheter placement [30]. We used X-ray contrast

to clear artery form blood during OCT imaging and care

was taken to maintain a temperature of 37 �C, while IVUS

was performed under continuous blood flow. Flush delivery

at constant flow rate could influence vasotonus, but the

effect on scaffolded arteries is unclear.

Other possible explanations include differences in the

delineation of the endoluminal border. OCT with its high

resolution and the high contrast between the lumen and the

vessel wall allows for clear visualization of the lumen, strut

malapposition and tissue protrusion, while IVUS analysis

can be hampered by the difficulties in differentiating the

lumen border due to blood speckle or the presence of

artifacts [28, 31]. Another reason for discrepancies could

lay in differences in the analysis approaches, employed

algorithms and the use of gating methods or not. Our

findings in patients are in line with an in vitro study, Satoko

et al. [45], who compared FD-OCT and IVUS in a coronary

phantom model. They observed that FD-OCT was more

accurate than IVUS in the phantom and showed better

correlation with actual dimensions by OCT than IVUS.

Limitations

The main limitation of our in vivo study was the small

sample size, although more than 5,000 frames were

included for analyses. As it was a clinical study, the

guiding catheter was inserted only once, namely in the

beginning of the procedure, we did not remove and

Table 3 mean lumen area, mean stent area, minimal luminal area and minimal stent area in stented coronary segments in mm2

Mean lumen area (mm2) Mean stent area (mm2) Minimal luminal area (mm2) Minimal stent area (mm2)

OCT pullback 1 7.18 ± (1.37) 7.73 ± (1.09) 5.32 ± (1.30) 6.12 ± (0.85)

OCT pullback 2 7.12 ± (1.40) 7.66 ± (1.07) 5.36 ± (1.35) 6.08 ± (0.88)

Pullback 1 versus pullback 2

Absolute difference 0.06 ± (0.08) 0.07 ± (0.10) 0.04 ± (0.09) 0.04 ± (0.10)

Relative difference 0.81 % 0.93 % 0.68 % 0.66 %

Linear regression

Slope 0.98 1.01 0.96 0.97

Intercept 0.20 -0.03 0.16 0.24

R2 0.99 0.99 0.99 0.99

P \0.001 \0.001 \0.001 \0.001
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re-insert the guiding catheter for the re-test series. Fur-

thermore, we acknowledge the potential role of cofounders,

including changes in blood pressure, heart rate, vascular

tonus and intravascular pressure that might affect the inter-

study variability. However, nitroglycerine was given to all

patients before every pullback and no major changes in

heart rate or blood pressure were observed.

A limitation of the study is the lack of inter-observer

analysis and the fact that this is a single-centre study, which

implies potential biases. However, we recently reported the

observer-related variability of quantitative Fourier-domain

OCT measurements in vivo. The intra-observer variance and

coefficient of variation for lumen area on frame level was

0.0016 mm2 and 0.0052 respectively. The inter-observer

Fig. 5 Comparison of the position of minimal luminal area (MLA)

(A0, B0) and minimal stent are (MSA) (A00, B00) in stented coronary

segments between two corresponding OCT pullbacks (A0, A00) and

between OCT and IVUS (B0, B00). X-axis: length percentage of the

total ROI/longitudinal position. Y-axis: corresponding pullbacks
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variance and coefficient of variation for lumen area was

0.0003 mm2 and 0.0024 respectively [9].

Likewise, OCT demonstrated consistently low obser-

ver variability in various patient, lesion and experimental

subsets. Generally, the reported inter- and intra- observer

variability is very low, which might be explained by the

high contrast in the OCT images, allowing to recognizes

arterial structures easily.

Gonzalo et al. [10] examined the reproducibility of

quantitative stent analysis. The relative difference for

Table 4 OCT comparison to IVUS (per segment analysis)

Mean lumen area (mm2) Mean stent area (mm2) Minimal lumen area (mm2) Minimal stent area (mm2)

OCT pullback 6.24 ± (1.04) 6.84 ± (1.06) 4.59 ± (1.05) 5.31 ± (0.78)

IVUS pullback 6.34 ± (1.18) 6.74 ± (1.30) 4.84 ± (1.05) 5.35 ± (1.04)

Pullback 1 versus pullback 2

Absolute difference 0.10 ± (0.45) 0.10 ± (0.36) 0.26 ± (0.54) 0.05 ± (0.47)

Relative difference 1.6 % 1.5 % 5.4 % 0.9 %

Linear regression

Slope 0.82 0.80 0.86 0.68

Intercept 1.05 1.47 0.40 1.68

R2 0.86 0.94 0.75 0.82

P \0.001 \0.001 =0.001 \0.001
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Fig. 6 Bland Altman plots showing the differences in mean lumen

areas (A0) and mean stent areas (B0) between OCT and IVUS in

stented coronary arteries. Regression analyses lines showing

correlation of mean lumen areas (A00) and mean stent areas (B00)
between OCT and IVUS in stented coronary arteries
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lumen area, stent area, tissue coverage area, tissue cover-

age thickness and strut coverage was around 1 % for the

inter- and intra- observer reproducibility.

Tanimoto et al. [15] examined the observer-related vari-

ability of quantitative time-domain OCT measurements in

both, in vitro and in vivo data. In vitro, the absolute and

relative difference between lumen area measurements

derived from two observers was 0.02 ± 0.10 mm2 and

0.3 ± 0.5 %, respectively with excellent correlation con-

firmed by linear regression analysis (R2 = 0.99; P \ 0.001).

In vivo, the absolute and relative difference between mea-

surements were 0.11 ± 0.33 mm2 (1.57 ± 0.05 %) for

lumen area (R2 = 0.98; P \ 0.001), 0.17 ± 0.68 mm2

(1.44 ± 0.08 %) for stent area (R2 = 0.94; P \ 0.001), and

0.26 ± 0.72 mm2 (14.08 ± 0.37 %) for neointimal area

(R2 = 0.78; P \ 0.001).

Gonzalo et al. analysed the inter- and intra- observer

reproducibility for the diagnosis of qualitative features in

coronary stents and plaque components. Kappa coefficients

for strut malapposition were 0.83 and 0.83; for edge dis-

section 0.77 and 1.0, for tissue prolapse 0.78 and 1.0 and for

intrastent dissection 1.0 and 1.0 for inter- and intra- observer,

respectively. Plaque classification into main tissue compo-

nents showed inter- observer agreement in the classification

of 53 out of 60 plaques (k = 0.82; P \ 0.001). The intra-

observer variability showed agreement in the classification

of 58 out of 60 plaques k = 0.95; P \ 0.001) [8].

Okamura et al. [11] examined the inter software vari-

ability by comparing mean LA, mean SA, MLA based on

corresponding cross sections. The absolute and relative

differences between software packages were low, e.g. for

lumen area 0.12 ± 0.10 mm2 and 1.98 ± 1.76 % (soft-

ware 1 vs. software 2); 0.09 ± 0.10 mm2 and 1.43 ±

1.59 % (software 1 vs. software 3). Linear regression

analysis confirmed these observations and showed a good

correlation between measurements (R2 = 0.98–1.00).

Further, the z-offset was not automatically corrected but

required manual calibration for every pullback. In the

future algorithms for continuous, automated z-offset cor-

rection might reduce this source of variability.

We used two different IVUS systems for comparison

with OCT. In the past, we reported a slight, systematic

difference in lumen area measurements for phased array

system as compared to a mechanical transducer system

[32]. However, it warrants emphasis that the observed

differences are comparable to those previously shown on

intra and inter-observer variability for IVUS measurements

[33]. Further, it remains unclear whether such variability is

caused by an overestimation of measurements with the

phased-array system, or by an underestimation by the

mechanical system. Given this background, we assumed

that potential difference in the used IVUS systems are

within the order of magnitude of the measurement

variability for IVUS and should, thus not significantly

impact the comparison to OCT. Stratification of our data

for the used IVUS system did not reveal a trend towards

better or worse agreement with OCT in our series.

We cannot completely exclude a potential change in

vascular tonus during intracoronary imaging, with potential

lumen narrowing if the imaging procedure induces spasm

or potential distension of the lumen if the imaging

increases intra-arterial pressure.

In order to avoid the first, we apply NTG ic. before

every imaging run in a standardized fashion. In order to

avoid the latter, we apply a standard flush protocol

injecting X-ray contrast medium (Iodixanol 370) at 37 �C

with a flow rate of 3 ml/s. Care is taken that the guide

catheter is in a co-axial position and that no wedging is

observed. Such flush protocol increases the intra-arterial

pressure by typically 10 mmHg, which is not expected to

induce significant lumen changes [29].

Conclusion

FD-OCT shows excellent reproducibility and very low

inter-study variability in both, native and stented coronary

segments. No significant differences in lumen morphome-

try were observed between FD-OCT and IVUS.
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