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Abstract

Stochasticity is prevalent in transportation networks in general, and traffic networks in

particular. The overall objective of this thesis is to study implications and significance
of stochasticity in the development of models and algorithms for dynamic traffic flows
in road networks. There are two major parts in this thesis. We first study the best

routing policy problems in stochastic and time-dependent networks, and then develop
policy-based stochastic dynamic traffic assignment models and algorithms.

Routing problems are not only useful to develop dynamic traffic assignment (DTA)
methods, but are also fundamental network optimization problems with a wider ap-

plication domain. We define the problem in general and give a framework, which we
believe is the first in the literature. We give a comprehensive taxonomy and an in-

depth discussion of most of the variants of the problem. We study in detail a variant

pertinent to the traffic in road networks. We give an exact solution algorithm to this
variant, analyze its running time complexity and point out the importance of finding

good approximation algorithms. We then present several approximations, and study
their effectiveness against the exact algorithm, both theoretically and computation-
ally.

We proceed to develop a policy-based stochastic dynamic traffic assignment model.

We give a conceptual framework and then develop models for users' choice of policies
and the dynamic network loading problem. These models are two major components
of the overal DTA model. We give solution algorithms for these models, and present a

heuristic algorithm to solve the proposed policy-based DTA model. Using an example,
we show that policy-based DTA models have solutions that are different in expected
travel times than the path-based models.
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Chapter 1

Introduction

1.1 Motivation

Road traffic congestion is a significant problem of modem society. The effects of

congestion impact work trips, as personal trips and freight trips alike. The impacts

of congestion are multi-fold. To an individual traveler, congestion reduces the quality

of life by consuming one's leisure time, increasing anxiety, and wasting personal re-

sources. To firms, congestion reduces the work efficiency of employees and increases

freight transportation costs. To the society as a whole, congestion deteriorates en-

vironmental quality by causing more gas emissions and noise, and endangers traffic

safety by causing drivers' psychological disturbances.

It is commonly recognized that building more infrastructure, which is usually

politically, financially, and environmentally constrained, is not the only remedy to

congestion. Furthermore, new infrastructure will induce more demand, which could

affect the increased capacity or even make the congestion worse. In nowadays, traffic

management and control measures to relieve congestions are generally based on the

concept of making maximum use of current infrastructure. These measures can be

categorized as from either demand side or supply side. Those from demand side

include taking alternative traffic modes and taking alternative ways of work, such as

e-conference. Those from the supply side aim at improving traffic flows by making use

of advances in information technology, which is the underlying idea of the Intelligent
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Transportation Systems (ITS).

ITS requires Traffic models that are different from the traditional planning models.

In such models, traffic variables are represented in a much smaller time scale than

those used for traditional planning purpose. For example, an analysis period of 1.5

hours during the peak hours is usually discretized into 90 time steps with 1 minute

per step, and traffic flows can be modeled as functions of time step. This time-

dependency of traffic models is required, because real-time traffic measurements are

available and real-time decisions are desired. A number of dynamic traffic models

have been built, with corresponding algorithms and implementations. Among them

the dynamic traffic assignment model is a very important one. The dynamic traffic

assignment model takes as input the time-dependent O-D trips and a given traffic

network, and outputs time-dependent traffic variables, such as link travel times, O-D

travel times and link volumes, which are needed to make real-time control and/or

management decisions. Dynamic traffic assignment (DTA) models are the intelligent

core of ITS applications and are the topic of many ongoing research projects.

Another feature of traffic models required by ITS applications, yet less recognized

and less studied by the transportation research community, is the ability to model

stochasticity. In traffic applications, many variables are typically known a priori at

best with uncertainty. The uncertainty is due to multiple sources. One source of un-

certainty is the imperfect data and limited modeling abilities. Data on O-D trips, for

example, is hardly known perfectly and deterministically. We might have an average

pattern for O-D trips from historical data, but the possibility of deviation from the

average pattern always exists. The magnitude of deviation cannot be known deter-

ministically a priori, and can only be revealed as informative traffic measurements

are available. Data on traffic network supply is also usually uncertain. Bad weather

is a major cause of traffic congestion, while weather forecast are usually made at best

with errors. Accordingly, the reduction in capacity induced by bad weather is also

not deterministic. Unlike bad weather which is predictable to some extent, traffic ac-

cidents and incidents are typically unpredictable, making the stochasticity in network

supply even more significant. Besides imperfect data, the limited modeling ability is

20



another important source of stochasticity. An example is the modeling of drivers'

behavior. Classical behavioral models are naturally stochastic, as all factors affecting

a driver's decisions cannot be captured in the model. Ben-Akiva [3] gives four causes

of random errors in drivers' behavioral models.

Another source of uncertainty is the random factors in implementing models.

Bottom [6] does a comprehensive survey on this issue. Several sources of stochasticity

from the model implementations are studied, including rounding data to integers and

randomizing the order in processing of network elements. Gibbs sampling, a method

to obtain samples from a stochastic process with full conditional probabilities, is used

to study link volumes for the test network.

Frequency (out of 100)

35 -

30 -

25 -

20 -

15

10

5

00

0 0 D

600 60

1000 00 2

12W08

Time Step (sec.) 1400 Link Volume (veh.)

1800

Ltkt

Figure 1-1: Link Volume of Link 2 by Gibbs Sampling (borrowed from Bottom [6]
p.162)

Figure 1-1 shows a profile of link volume for one of the links. We can observe a

certain level of stochasticity in the link volume distribution. During a certain period

(e.g. time step 800-1200), the distributions spread over a relatively large range and

it may not be valid to assume the volume is a deterministic value perturbed by

21



noises, which is a prevailing assumption in most of the dynamic traffic models in

the current literature. This can be viewed as a proof of stochasticity due to model

implementations.

Unlike the time-dependency of traffic models which has been fully modeled in

nearly all current ITS applications, stochasticity is recognized but rarely explicitly

modeled. In the literature, it is realized that there exist random factors in many

aspects of a system, but usually a deterministic approximation of the random system

is adopted, due to the difficulty in explicitly modeling stochasticity.

A DTA model is usually composed of three individual models: the users' behav-

ioral model, the dynamic network loading model, and the routing model. The three

components interact with each other. As discussed before, users' behavioral models

generally output choice probabilities for available alternatives such as paths. How-

ever, when these probabilities are taken as input to a dynamic network loading model,

they are transformed into population share fractions for paths, which is only a large-

sample approximation of the choice probabilities. A dynamic network loading model

is to load the trips to their selected paths in a given network and output the resulting

link travel times and other traffic variables of interest. We have already seen that the

network supply could be very stochastic, yet current network loading models do not

consider the stochasticity: in an analytical network loading model, the equations that

define the loading processes are deterministic; and in a simulation network loading

model, generally the average of link travel times over individual vehicles and over

different simulation runs is taken as the output, rather than the random profiles of

the link trav:i1 times. These deterministic link travel times are then taken as input to

the routing model where deterministic dynamic shortest path algorithms are applied.

In this thesis, traffic variables are explicitly modeled as time-dependent random

variables. Specifically, we define a stochastic time-dependent (STD) network as a net-

work whose link travel times are random variables with time-dependent distributions.

Traffic models that work with random traffic variables have the potential to be more

realistic than their deterministic counterparts, as they capture more characteristics

of the traffic system. However, whether and to which extent stochastic traffic mod-
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els arc superior to deterministic models is not known yet. This question cannot be

answered until stochastic traffic models are built and tested against real-world data.

One such traffic model of interest is the stochastic dynamic traffic assignment model.

Due to the central role of a dynamic traffic assignment model to ITS applications,

the study of the implications and significance of stochasticity for a DTA model is of

great importance.

In this thesis, we first study in depth the routing model in a given stochastic

dynamic traffic network. We use routing to denote the action to move entities from

one location to another in the given network. This is usually done such that a

given criterion is optimized, such as travel cost or travel reliability. Routing in a

stochastic and time-dependent network is also a problem of fundamental research

significance and has a wide domain of applications. In this thesis, the best routing

policy problems in stochastic and time-dependent networks, abbreviated as "the BRP

problems in STD networks", are studied. A routing policy is a decision rule that

specifies which node to take next at each decision node based on current time and

realized network link travel times. A best routing policy (BRP) is a routing policy

that moves a traveler on a network from one node to another in least expected travel

time. Mathematical definitions of these terms can be found in Chapter 2 in this

thesis. In fact there might be various criteria to determine a best routing policy.

For instance, in addition to expected travel times, the variability of travel times ca.

also be an important factor in a traveler's routing decision. Consequently depending

on the traveler's attitude to risk, variability may play different role in the routing

decision-making. After building the routing model, we then proceed to the other two

components: the users' behavioral model and the dynamic network loading model.

Both of the two models are based on routing policies. The three components are then

integrated into a stochastic dynamic traffic assignment model.
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1.2 Path vs. Routing Policy

The focus of our discussion has been on routing policy. In fact, routing in a STD

network can take one of the two forms: a path and a routing policy. A path is a

pre-specified set of successive links between a pair of nodes. Travelers who follow a

path make decisions a priori and take a fixed set of links, regardless of the network

conditions. In contrast, travelers who follow a routing policy make decisions en route

and therefore can end up taking different set of links, depending on the network

conditions that have been revealed during their trip up to the current time. Two

illustrative examples in Figure 1-2 and Figure 1-3 will show the difference between a

path and a routing policy.

a 2 b

1 4

C 3 d

(ta,tbc,d)-(,6,4,M), 0.5 ,where M is a very large positive number

Figure 1-2: Paths vs. Routing Policies in a Non-Time-Dependent and Statistically
Dependent Network

In Figure 1-2, we seek to do routing from node 1 to node 4. Two paths, a-b and

c-d, are available from node I to node 4. The network is stochastic but not time-

dependent. The data shown beneath the network shows the distribution of travel

times of different parts of the network. From this data, we can see that one of the

paths will be blocked at a given time. For instance, link b can have a very large travel

time M with probability 0.5. Assume that one can learn the actual realization of

travel times of link a and link c when one arrives at node 1.
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We can compute the expected travel times of path a - b and path c - d. The

expected travel time of path a-b is (5+ M) x 0.5 + (1+6) x 0.5 = 6+ M/2, and that

of path c-d is (1 + 9) x 0.5 + (4 + M) x 0.5 = 7 + M/2. If the routing model from

node 1 to node 4 outputs least expected travel time paths, one will always choose

path a-b. However, one can do better if the information we collected at node 1 is

adequately explored. If the routing model outputs least expected travel time routing

policies, we will do the following: when the travel time of link a is 2, we choose path

c-d; otherwise we choose path a-b. The expected O-D travel time of the policy is

(1 + 9) x 0.5 + (1 + 6) x 0.5 = 8.5. A best routing policy defers the decision until

some useful information is collected. In this example, the decision is delayed until

one knows which path is blocked.

This example shows the usefulness of information in a stochastic routing problem.

The value of information in the example is due to the statistically dependency of

link travel times. When we learn the realizations of some of the links, we can make

inferences about travel times of other links so that better decisions can be made.

There are cases where the link travel times are not statistically dependent, but their

time-dependency makes information valuable. An example in Figure 1-3 shows the

case.

t =2: w.p.0.5 ; t = 4:{7, w.p. 1.0}
=.w.p. 0.5

2 w.p. 0.5 C

t = 2: {8, w.p. 1.0}; t = 4 : 2w .

Figure 1-3: Paths vs. Routing Policies in a Time-Dependent and Statistically Inde-
pendent Network

Data next to each link shows the probability mass function (PMF) of the link travel
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time for that link at each departure time of interest. Let us assume in this example

that the link travel time random variables are statistically independent. We also

assume that only the arrival times are available to the traveler. This implies, among

others, that the traveler does not know the actual realizations of link b or link c at

node 2. This assumption is made in order to show that the knowledge of arrival times

can also benefit the routing decision-making in a STD network. We seek to do routing

from node 1 to node 3 for departure time 0. The least expected travel time path is path

a-b, with an expected travel time of (2+2) x0.25+(2+4) x0.25+(4+7) x0.5 = 8, while

the expected travel time of path a-c is (2+8) x 0.5+(4+2) x0.25+(4+4) x0.25 = 8.5.

Let us consider the following routing policy: when the arrival time at node 2 is

2, take link b as next link; if the arrival time at node 2 is 4, take link c as next link.

The expected travel time of the routing policy is (2+2) x 0.25 + (2+4) x 0.25 + (4+

2) x 0.25 + (4 + 4) x 0.25 = 6. The decision in this routing policy is delayed until the

arrival time at a decision node is known.

An intuitive representation of the routing policy, denoted as a "state network",

is shown in Figure 1-4. We use the pair (j, t) to identify the network state based on

which the decision is made, where j is a node and t is a time point. The traveler

starts from (1,0), and the decision is to go to node 2. At node 2, two situations

(2,2) or (2,4) are possible. With (2,2), the traveler chooses link a, and could end

up at either of the following two situations: (3,4) or (3,6). Similarly with (2,4), the

traveler chooses link b, and could end up at two situations: (3,6) and (3,8).

From the above two examples, we can see that a routing policy generally involves

more than one path. Which path is to be taken depends on the network conditions,

i.e. link travel time realizations and/or the arrival times. When one is at a given

node, the least expected travel time path implicitly does not exploit the possible

information collected during the trip, and thus is generally less effective than a best

routing policy. The value of information is either due to the statistical dependency or

or due to the time dependency of stochastic link travel times. One can make various

assumptions about the statistical dependency of link travel times and the degree of

knowledge one would have about available link travel times. These factors lead to
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Figure 1-4: The Best Routing Policy for the Example in Figure 1-3

numerous variants of the BRP problem in a STD network. A limited number of these

variants have been studied in the literature, and some will be explored in this thesis

for the first time.

1.3 Thesis Contributions

The contributions of the thesis to the knowledge base of routing problems in stochastic

time-dependent networks are summarized as follows:

1. The concept of routing policies is well developed. The study of routing policies

in STD networks in the literature has been restricted to policies based on arrival

times on decision nodes. This thesis recognizes the role of information in routing

decision making, and includes information as an integral part of a routing policy.

2. The first framework for BRP problems in STD networks is established. Various

assumptions have been made in the literature to define routing problems in

stochastic networks. These studies, however are ad hoc. This thesis identifies
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the similarities among these variants and establishes a framework for a unifying

understanding of the problem.

3. A comprehensive taxonomy of the BRP problems in STD networks is provided.

The taxonomy is based on information access and network statistical depen-

dency. It contains all variants in the literature and can lead to new variants

suitable to various applications.

4. Statistical dependency of link travel times is modeled and a solution algorithm

is designed. Traffic networks are generally statistically dependent both link-wise

and time-wise, yet no papers in the literature have addressed this problem in

STD networks.

5. The importance of designing good approximation algorithms for BRP problems

is identified. This thesis provides four possible approximation algorithms and

studies their effectiveness both theoretically and computationally. These studies

are the first step to designing time-effecient routing policy algorithms for real-

time traffic applications.

The contributions of the thesis to the knowledge base of dynamic traffic assignment

are summarized as follows:

1. The first DTA model that works with general link travel time distributions

is developed. Most current dynamic traffic assignment models work with de-

terministic networks. Some others assume specific forms of distribution (e.g.

normal distributions) for link travel times. This thesis thus allows for a better

representation of stochasticity in traffic modeling.

2. The first policy-based DTA model is established. Results from a policy-based

DTA model and a path-based DTA model are compared and shown to be dif-

ferent. This suggests further study on implications of routing policies in DTA

models.
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3. The first DTA model that outputs link travel time distributions is built. This

property of the DTA model allows for a richer representation of traffic. Better

traffic managment decisions are then possible based on this richer representa-

tion.

1.4 Thesis Organization

The thesis is organized as follows. We study the stochastic routing problem first.

We propose exact algorithms and approximations. We then design a policy-based

stochastic dynamic traffic assignment model.

In Chapter 2, we study the best routing policy problem in a stochastic time-

dependent network. We give a framework of the problem which includes a general

description of a STD network, the decision process, the problem statement and the

optimality conditions. We then present a comprehensive taxonomy based on assump-

tions of the network statistical dependency and information access. A discussion of

nearly each variant is given. Specifically two variants are studied in details. The first

one is the no-information variant which is easy to understand and can be solved in

polynomial times. We give the formulation, an algorithm and computational tests

for this variant. Two algorithms exist for this variant and we make comparison be-

tween them both theoretically and computationally. The second variant studied in

detail is the perfect-on-line information variant, which is pertinent to transportation

applications. This variant has never been studied before in the literature. We give

a formulation, an algorithm, and results from computational tests. The complexity

analysis shows that the algorithm for the second variant can be prohibitively time-

consuming. Therefore good approximations are also developed.

Chapter 3 studies approximations to the second variant studied in Chapter 2. Four

approximations are presented with analysis on their efficiency and effectiveness. This

analysis is done both theoretically and computationally. The computational tests are

not comprehensive, but they provide insights into the performance of approximations.

Other approximations are suggested, however without computational tests.
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In Chapter 4, we develop a dynamic traffic assignment model. The model funda-

mentally differs from traditional ones, in the sense that it is based on routing policies,

rather than paths, to explicitly model the stochasticity in a dynamic traffic context.

It tries to achieve more accurate results than traditional deterministic DTA models,

as it models link travel times as stochastic random variables. An illustrative example

is used to show the unique characteristics of a policy-based traffic assignment model.

We then present a users' policy choice model and a dynamic traffic network loading

model. All models are based on routing policies. A stochastic DTA heuristic is then

proposed based on the routing model, the user's policy choice model and the dynamic

network loading model.
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Chapter 2

Best Routing Policy Problems in

Stochastic Time-Dependent

Networks

In this chapter, we study best routing policy problems in stochastic time-dependent

networks. We first provide a literature review on a broad range of routing problems in

networks. We then establish a framework, in order to provide a unified view toward

this problem, considering the large variety of variants already in the literature and

the numerous possibilities of new variants. This framework includes a general de-

scription of a stochastic time-dependent network, the decision process in a stochastic

time-dependent network, the minimization problem, and the optimality conditions.

Following this somewhat abstract framework, we give comprehensive taxonomy based

on two criteria: the network statistically dependency and the information access. We

discuss the variants within the taxonomy, and pay special attention to the variants

already in the literature to see how they fit in the framework. This discussion may

still seem abstract, as no algorithms are given at this point. We suggest that the

reader come back to this part after he/she finishes the following algorithmic parts.

We study two variants in details after the framework and taxonomy, The first is the

no-information variant which is not so realistic in traffic settings, but has a very

encouraging running time and is relatively easy to understand. We study it first
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to provide some knowledge preparation for the more complicated variant. Next we

study the perfect-online-information variant where the dependency of traffic network

is considered. Both variants are studied in a formal way: the formulation, algorithm,

implementation, complexity analysis, and computational tests are presented in se-

quence. The study of the perfect-online-information variant also suggest the need to

design good approximations to the exact algorithm, which is the topic of the next

chapter.

2.1 Literature Review

The routing problem in networks has been an important and well researched topic

for a long time. We first give a brief introduction of the shortest path problem

in deterministic networks, including the well developed static shortest path (SSP)

problem and the dynamic shortest path problem. This will be useful to the study

of routing problems in stochastic networks. We then proceed to stochastic networks.

There are various assumptions about how a stochastic network is defined, and this

results in a variety of vaiiants of the BRP problem. Most of the problem variants

studied in the literature assume that the underlying network is static (not dependent

on time). Some other variants studied in the literature work with a special case of

dynamic stochastic networks. They do not represent time explicitly. These variants

can be viewed as the infinite horizon version of the BRP problem in a STD network.

A limited number of papers studied the BRP problem in a STD network with specific

assumptions. A comprehensive study of the problem is not available in the literature.

2.1.1 Deterministic Routing Problems

Compared to routing in STD networks, the classical static shortest path (SSP) prob-

lem has been more extensively studied. Let G(N, A) be a network, where N is the

set of nodes and A is the set of links. Each link (i, j) has a cost c(i, j). The SSP is

to find a shortest path for a source node s and a destination node d. Dijkstra's al-

gorithm is the most commonly used algorithm to solve the shortest path problem for
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networks with non-negative costs. Various implementations of Dijkstra's algorithm

exist. The most straightforward one is based on the data structure of array and has

a running time of 0(n2 ), where n is the number of nodes. The implementation using

a binary heap can achieve a running time of 0(m Inn), where m is the number of

arcs. If the network has negative arc cost, more sophisticated algorithms (such as the

label-correcting algorithms) are needed. These algorithms basically check whether the

optimality condition d(i) + c(i, j) d(j), V(i, j) E A, where d(i) is the distance label

for node i, are satisfied. They make necessary changes by changing distance labels

until no arec viloates this condition. A first-in-first-out (FIFO) queue implementation

of the label correcting algorithm has a running time of 0(mn).

The dynamic shortest path problem becomes interesting when modeling of the

transportation system with large variability in trvel times as a function of time is

required. Let G(N, A, T) be a dynamic network. T is the set of time periods. At

each time period t, each link (i, j) has a cost c, > 0. The dynamic shortest path

problem is to find a shortest path from a given source node s to a destination node d

for a given departure time t at node s. We define a link (i, j) as FIFO, iff t1 + c

t2 + c, Vt,t 2 E T and t1 > t 2 . A network is FIFO, iff all links are FIFO. When

the dynamic network is FIFO, we can apply a Dijkstra-like algorithm to solve the

dynamic shortest path problem. When the network is non-FIFO, generally a label-

correcting-like algorithm would be able to solve the problem. Chabini [9] presents an

algorithm DOT with an optimal running time 6(SSP + mK + nK) to the dynamic

shortest path problem with positive travel times from all nodes at all departure time

to one destination node, where SSP is the running time of a static shortest path

algorithm and K is the number of time periods. Algorithm DOT is optimal in the

sense that no algorithm with better theoretical running time exists. Algorithm DOT

sets the labels in decreasing order of time, based on the fact that the distance label of

a node at a given time can only be updated by labels of later times. This algorithm

is the base of the algorithms we develop for the stochastic routing problem.
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2.1.2 Routing in Stochastic Static Networks

Loosely speaking, a stochastic network is a network where the link travel times are

random variables with some a priori distributions. If the underlying network is as-

sumed to be static (non-time-dependent), the link travel times remain unchanged

after they are revealed to the travelers. While in a time-dependent network, the

travel time of every link at every time period is an individual random variable, so

travel times revealed at different time periods could be different. The study of BRP

problems in static networks is useful to the study of its time-dependent counterpart.

Andreatta and Romeo [2] study the problem in a static network where the topology

is stochastic. A stochastic topology is defined by a deterministic set of nodes N and

a random set of links A E N x N. Each possible topology is associated with a

positive probability. The decision maker (DM) can learn whether a link is active or

not once he/she reaches the node from which the link emanates from. The DM can

take recourse once he/she finds out the next link is inactive. The notion "stochastic

shortest path" is used, yet actually a routing policy problem is studied. The path

without recourse actions in a routing policy (i.e. the path composed solely of nodes

representing "active" scenarios in the state network of a routing policy) is used to

denote that policy, so a stochastic shortest path in this paper is actually a least

expected cost routing policy. Andreatta and Romeo [2] proves four facts about a

stochastic shortest path that are different from those about a deterministic shortest

path. A stochastic dynamic programming formulation of the problem is provided,

with the definition of "information state" which gives the active/inactive links of the

network revealed to the decision maker so far and based which the recourse decision

is made. It is pointed out the complexity of the algorithm can grow exponentially

with the number of links. Therefore a restricted version of the problem is studied and

it is shown polynomial algorithms exist for this particular case.

Polychronopoulos and Tsitsiklis [25] extend the work of [2]. They study the prob-

lem both in networks with strongly dependent link travel times and in networks with

independent link travel times. For the dependent case, a joint distribution of link
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travel times is used to represent the stochastic network. We can see that the stochas-

tic topology in [21 is actually one special form of joint distribution of link travel

times. It is assumed that the travel time realizations of outgoing links of a given

node is known and remembered by the traveler once he/she arrives at this node, and

the realizations remain unchanged afterward. As the traveler moves on the network

from the origin to the destination, more link travel time realizations are learned, and

the network becomes closer to a deterministic one. The concept of information set is

introduced to represent the traveler's knowledge about the network. An information

set is composed of joint realizations that are consistent with the revealed link travel

times so far. When the information set becomes a singleton, the network becomes

deterministic. A dynamic programming approach is presented where the stage of dy-

namic programming is labeled by the cardinality of the information set, starting from

the smallest. Some of the main concepts in the present paper originate from (25]. A

similar approach is designed for the independent case, with changes in the manner

in which the information set is defined. The algorithms, however, have exponential

running times: the algorithm for the dependent case has running time exponential

in the number of joint realizations, and the algorithm for the independent case ex-

ponential in the number of links. It is proved that the problem with dependent link

travel times is NP-complete, and that with independent link travel times is #P-hard.

Some heuristics are given and the relationship between results from heuristics and

exact algorithms are studied.

Cheung [13] studies the problem with the same independent network assumptions

as those in [25], except the assumption that two visits to the same node result in differ-

ent realizations of outgoing link travel times. This assumption actually make ambigu-

ous the statement that the network is static, as the same link can take different travel

times at different time periods, although the distribution is the same. An approach

that mimics the classical label-correcting algorithm is presented. Computational tests

are carried out to compare different implementations of the label-correcting approach.
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2.1.3 Routing in Stochastic Time-Dependent Networks

Hall [17] studies for the first time the time-dependent version of the best routing

policy problem. The problem is studied within the context of transit networks. It is

shown that in a stochastic time-dependent network, adaptive route choices (routing

policies) are more effective than simple paths. A dynamic programming approach

is provided, where the stages of the dynamic program are the number of links from

the destination node. An upper bound k on the number of stages is specified, and

it is stated that when k is sufficiently large, the solution should be very close to the

optimum. The recurrence equations for the dynamic program are given and it is

implicitly assumed in the equations that routing policies are based only on arrival

times at decision nodes. We note that with this implicit assumption, k can be set

to be the sum of number of time periods and number of nodes to guarantee the

optimality of the solution.

The assumption that routing policies only depend on arrival times at decision

nodes is also made by Chabini [10]. A dynamic programming algorithm where the

stage of the program is the time period t is developed, based on the concept of

decreasing order of time that is also used in developing Algorithm DOT [9]. This

formulation of the problem enables an optimal algorithm DOT-S with a complexity

of 9(SSP + nK + mKQ), where Q is the maximum number of realizations for a

single link travel time distribution. This algorithm is optimal in the sense that no

algorithms with better theoretical complexity exist. The algorithm is extended to

solve the minimum expected travel cost routing policy problem with minor changes.

Computational tests are carried out to study the running times of Algorithm DOT-S

and the label-correcting algorithm developed in [20]. It is concluded that algorithm

DOT-S is computationally efficient both in theory and in practice.

Miller-Hooks and Mahmassani [20] study the BRP problem assuming time-wise

and link-wise statistically independent link travel time random variables. This as-

sumption leads to routing policies based only on arrival times at decisions nodes. A

label-correcting algorithm is developed to solve the problem. The label-correcting
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algorithm has a rather high worst-case running time, but its practical performance

proves to be good. Miller-Hooks [21] compares the label-correcting algorithm pre-

sented in [20] and the dynamic programming algorithm working in decreasing order

of time [10] in both sparse transportation networks and dense telecommunication data

networks. It is shown that the label-correcting algorithm has an empirical running

time much better than its worst-case theoretical complexity. It is also concluded that

in dense networks, the label-correcting algorithm is more computationally efficient

than algorithm DOT-S. This conclusion is somehow against the theoretical analysis,

and computational tests are carried out in this thesis to study the problem.

We also make a brief literature review on the least expected time path problem

in a STD network, as it is closely related to the BRP problem. Fu and Rilett [16]

model link travel times as a continuous-time stochastic process. It is assumed that

travel times on individual links at a particular point in time are statistically in-

dependent, and the correlation between link travel times are modeled through the

time-dependency of link travel time distributions. Relationships between the mean

and variance of the travel time of a given path and the mean and variance of link

travel times on that path are identified. A heuristic is designed in recognition of

the computational intractability of the problem. Miller-Hooks and Mahmassani [20]

study the least expected time path problem under the same assumptions for the

BRP problem. They establish a dominance rule for paths in STD networks and de-

sign a label-correcting-like algorithm. The worst-case complexity of the algorithm is

exponential as a function of the network size, but computational tests on sparse trans-

portation networks show the actual performance is practically linear with respect to

the network size.

Some researchers studied the BRP problem variants with stationary Markovian

link costs and these variants can be viewed as an infinite horizon version of the dy-

namic BRP problem. Polychronopoulos [24] assumes global information access and

defines a combination of travel times of all links as a state. It is further assumed

that the transition probability matrix is available, and that the occurrence of tran-

sition in unit time is related to the network conditions. A dynamic programming
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formulation of the problem is suggested and it is claimed that any standard Markov

decision algorithm can solve the problem. Psaraftis and Tsitsiklis [26] assume travel

times of outgoing links of a given node are functions of condition at this node, which

evolves as a Markovian chain. Markovian chains at different nodes are assumed to

be independent and the network is acyclic. Vehicles can wait at a node (at a cost)

in anticipation of more favorable arc cost. Three different types of algorithms are

developed to solve the case of single arc network: successive approximation (SA),

policy iteration (PI), and parametric linear programming. A dynamic programming

approach is then developed, making use of the algorithm for a single arc. The al-

gorithm is shown to be polynomial, due to the assumptions of acyclic networks and

stationary Markovian costs independent across nodes.

2.2 Framework and Taxonomy

2.2.1 Framework

Through the literature review, we find that there is not a formal definition of the

routing problem in a stochastic time-dependent network (even not for the non-time-

dependent network). Various assumptions are made to define a stochastic network and

to define how the realizations of the stochastic network are revealed to the travelers

(decision makers). For example, in [2], the topology of the network is stochastic; in

[25], the whole static network is described by joint distribution of link travel costs;

in [24] and [26], the link costs evolve as Markov chains; in [17], [10] and [20], time-

dependent networks are described by marginal distributions of link travel times. As

for the revealing of the stochastic network, some assume that one learns the realization

of a link travel cost once he/she arrives at the node from which the link emanates

from [2] [25] [13], while most papers do not state explicitly how travelers learn about

the network conditions as their formulations of the problem can be validated solely

by their assumptions of statistical Independence of the network [26] [10] [20]. Yet we

can have these various descriptions and assumptions generalized. We also realize that
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the routing process in a stochastic network is merely a mapping from some knowledge

of the network to a decision, and what knowledge is available and/or useful depends

on specific assumptions about the network and the information access, as shown

in different papers in the literature. A general set of optimality conditions is then

possible with the formal definitions of the problem.

We establish the framework to provide a unified view to toward the best routing

policy problem in a stochastic time-dependent network. We will be able to see the

connections among various variants in the literature with the aid of the framework,

and to gain insight of generating new variants that are required by specific appli-

cations. The general optimality conditions can provide a general way of designing

solution algorithms for variants of the problem.

The Network

Let G = (N, A, T, P) be a stochastic time-dependent network. N is the set of

nodes and A is the set of links. The number of nodes and links are denoted respectively

as INI= n and JAl= m. The network has a destination node d. T is the set of time

periods {0, 1, ..., K - 1}. Travel time of each link (j, k) at each time period t is a

random variable Cjk,t with discrete, non-negative and integral realizations. Beyond

time period K - 1, travel times are static and deterministic, i.e. travel times of link

(j, k) at any time t > K - 1 is equal to Cjk,K-1. In this thesis, we only study the

problem of finding least expected travel time routing policies, but the study can be

easily extended to the problem of finding least expected travel cost routing policies.

For this reason, we do not define link costs here.

P is the probabilistic description of link travel times. Different descriptions exist

because of different assumptions about network statistics. The most general one

is in the form of joint probability distribution of all the link travel time random

variables, which is described next. Let P = {vi, v2 ,..., VR} be the set of possible

joint realizations of link travel times, for all links and all time periods. The rth

realization has a probability p,, and z,= 1 Pr = 1 . Ct is the travel time of link (j, k)

at time t in the rth realization. Note that we assume the underlying topology of the
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network is deterministic, as a network with stochastic topology can be transformed

into a network with deterministic topology where a blocked (or missing/inactive) link

is modeled by setting its travel time to infinity (or computationally, a very large

positive number).

We will use an example to show how the joint distribution description works.

Figure 2-1 shows a small network with three nodes, three links and the number of

time periods is 3. The values of the travel time realizations are in Table 2.1. Each of

the eight realizations has a probability of 0.125. The network is designed to be very

small to make the understanding of the concept easier.

1 A3

Figure 2-1: A Small Network

Time Link v, v2 v3 v4 v5 v6 v7 v8
1 TYT 1i 1 iT1

0 2 ii 1 1 1 111
3 1 1 1 4 4 4 3 3
1 1 1>11 illW1

1 2 2 2 1 2 2 1 2 1
3 3 3 2 2 2 1 3 2
1 1 1 2 1 1 1 2 2

t>2 2 1 2 1 1 1 2 1
3 3 2 2 3 4 3 5 2

Table 2.1: Joint Realizations for the Small Network

The joint realization description of the network statistics can be specialized to

other descriptions, depending on the assumptions about the network statistics. If all

the link travel time random variables are statistically independent, both link-wise and
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time-wise, we could still use the joint realization description. However, it would be

much more efficient if we only keep the marginal distributions of link travel times. If

we assume all links can be divided into several groups and link travel times in a given

group are independent of link travel times outside the group, we need only the joint

distribution of link travel times in each group. The same grouping can also be done

along the time dimension, or along both the time dimension and link dimension.

The Decision Process

Throughout the thesis, we assume the traveler knows a priori the probabilistic descrip-

tion P of the network. Assume the traveler can make decisions only at nodes. The

decision is what node k to take next (no waiting is allowed), based on the current state

x = {j, t, I}, where j is the current-node, t is the current-time, and I is the current-

information. Current-information I contains links whose travel time realizations are

useful in making inferences about future link travel times. It represents the traveler's

knowledge about the network conditions. This knowledge could be dependent on

time, location of the traveler, mode of the transportation, etc. Current-information I

therefore should be regarded as I(j, t), but we usually use only I to denote it as I is

always associated with a state where j and t are well defined. More discussion about

current-information can be found in the next subsection about taxonomy. An ideal

case is that travelers have perfect information about the whole network, but generally

the information is local, as shown in the example of Figure 1-2, where one learns the

travel time realization of a link when he/she arrives at the node from which the link

emanates from. In this example, the current-information would be the combination

of link travel time realizations of link a and link c. The decision at node 1 can then

be described as: when current state is {1, t, (2,1)}, take node 3 next; when current

state is {1, t, (1, 3)}, take node 2 next, for all t. Note that "current-information" is

one component of a current state and refers to link travel time realizations based

on which the current decision is made, while a reference to "information" alone is

in the general sense. One can be in many different states traveling in the stochastic

time-dependent network, and we define
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a routing policy p(x) as a mapping from states to decisions (next nodes

specifically in networks).

This definition indicates that the routing decision in a stochastic time-dependent

network is far from being set a priori. Rather, it is closely related to the network

conditions, and this notion is critical in any ITS applications.

We look ahead after making the decision at the current state. We do assume

that the realization of the decision is certain, i.e. the traveler will end up arriving at

node k if he/she chooses it. The next state y = {k, t', I'} the traveler will occupy is

uncertain, i.e. t' and I' are random variables. The travel time of link (j, k) at time t

conditional on I could be uncertain, resulting in an uncertain arrival time t' at node

k. The next current-information I' is also uncertain, as t' itself is uncertain. Even if

t' is certain, link travel time realizations from t to t' could take multiple values, as

the network is still stochastic to the traveler at current state. However, for a given

current state and a given decision, probabilities of all possible next states can be

evaluated from the network statistics P.

Define a state chain {xo, x 1, ..., xs} as the series of states a traveler expe-

riences during the trip, where xs is a state with the destination node d as

its current-node.

Current-nodes of a state chain form a path, and S is the number of links in the path.

With a given initial state io and a routing policy p, one could experience multiple

state chains. For example, the routing policies in Figure 1-2 and Figure 1-3 involve

more than one path. As stated in to the visualization of a routing policy in Figure 1-4,

a routing policy with an initial state can be visualized as a state network. In this

state network, a node is a state and outgoing links of a node is the decision based on

that state. The succeeding nodes stand for the possible next states the traveler will

be in.

Denote this set of possible state chains for a given initial state xO and a

given policy p as M(xo, p),
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then the state network is a representation of M(xo, p).

We use the small network example in Figure 2-1 and Table 2.1 to show the decision

process. We assume the traveler have knowledge of all the link travel time realizations

up to the current-time, regardless of his/her current-node. This assumption implies

the following: at time 0, the traveler knows what travel time values of link 1, link

2 and link 3 take as of time 0; at time 1, the traveler knows what link travel time

values of link 1, link 2 and link 3 take as of time 0 and time 1; at time 2, the traveler

knows what link travel time values of link 1, link 2 and link 3 take as of time 0, time

1 and time 2; etc. Therefore the current-information I at time t would be one of

the joint realizations of C1,o, C2 ,o, C3,o, ... , C1 ,t, C2,, and C3,. Note that we use one

single link number to denote a link rather than a pair of node numbers, for the sake

of simplicity.

We seek to travel from node 1 to node 3. As there is no choice at node 2 or node

3, our focus is at the choice at node 1. A naive threshold routing policy would be: for

all time t, take node 3 if travel time of link 3 at current-time is less than 3, and take

node 2 otherwise. This routing policy can be understood as follows. We can view

node I as the traveler's home, and node 3 as the traveler's work place. Link 3 is an

artery. Link 2 is part of a freeway, and link 1 is a ramp to the freeway. The traveler

make some observation at the home location. If he/she finds out that it takes less

than 3 unit time to travel on the artery, he/she is pretty sure he/she will be better off

to take it. Otherwise, he/she will conclude that the artery is congested, and he/she

will just take the freeway. Under all the above specifications, the routing policy with

an initial state {1, 0, (1, 1, 4)} is shown in Figure 2-2.

Let us now go through the state network step by step. The initial state is

{1, 0, (1, 1, 4)}. We can see from the joint realization table that the network could

be in v4 , v5 , or v6 . As travel time of link 3 at time 0 is greater than 3, the traveler

chooses node 2 as the next node. When he/she arrives at node 2, he/she could be in

two possible states. One is y = {2, t', I'} = {2, 1, (1, 1,4, 1,2,2)} as represented by

the upper one of the two succeeding nodes of node 2 in the state network. The other

is y = {2,t',I'} = {2,1,(1,1,4,1,1,1)} as represented by the lower one of the two
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node 3 3,3,V4}

node .2,.,(.,.,4,.,2,2)

node 3 {3,3,w}

node 2 {21,(l,1,4,1,1,1)} node 3 3,2,v}

Figure 2-2: The Decision Tree of the Naive Routing Policy

succeeding nodes of node 2. The only choice at node 2 is node 3, and the traveler

arrives at the destination (node 3). However, the ending states could be different.

From the state {2, 1, (1, 1, 4,1,2, 2)}, the traveler could end up at state {3, 3, v4} or

state {3, 3, v5 }. From the state {2, 1, (1, 1, 4, 1,1, 1)}, the traveler could end up at

state {3, 2, v6 }.

There are altogether three state chains in this state network. Note that the arrival

times at the destination are different for different state chains. For all state chains,

the arrival time at node 2 is 1, as the travel time of link I at time 0 is 1. For the

upper two state chains, however, the link travel time of link 2 at time 1 is 2, so the

arrival time at node 3 is 3(= 1 + 2). For the lower state chain, the link travel time of

link 2 at time 1 is 1, so the arrival time at node 3 is 2(= 1 + 1).

We see that for a given routing policy and a given initial state, the O-D travel

time is a random variable. For example, the O-D travel time as shown in the state

chain of Figure 2-2 is a random variable with two possible realizations: 2 and 3. The

probability that the O-D travel time is realized as 3 is the probability the state chain

is realized as the upper two chains, which is the probability that link travel time

realizations for all links at time 1 is (1, 2, 2). Note that this probability should be
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evaluated conditional on the fact the link travel time realizations for all links at time

0 is (1, 1, 4). Therefore the probability in question is

P4 + P50.125+ 0.125 2

p4 + pS + p6 0.125 + 0.125+ 0.125 3

Similarly, the probability that the O-D travel time is realized as 2 is 1/3. Therefore

the expected O-D travel time for the routing policy with the given initial state as in

Figure 2-2 is 3 x 2/3 + 2 x 1/3 = 8/3, and the variance is (3 - 8/3)2 x 2/3 + (2 -

8/3)2 x 1/3 = 5/27.

The Minimization Problem

In traffic applications, we want to reach the destination in an optimal way. Since link

travel times are random variables, there exist multiple criteria on what optimal travel

times are. Usually the primary concern of routing is the expected travel times from

origins to destinations, i.e. a routing policy with less expected travel time is a better

one. However, the variances of O-D travel time random variables are also important.

Depending on the traveler's attitude toward risk and the type of trips, he/she will

make trade-offs between expected travel times and variances. A good routing model

should be able to handle this trade-off.

The expected travel time is used as the only criterion of optimization at the time

being, and the risk-taking behavior will be modeled in Chapter 4. Define t as the

current-time of state x, and E[Z] as the expectation of random variable Z. The best

routing policy problem in a stochastic time-dependent network with one

destination node d is to find It*, such that

p* = arg min{EjxO,2,...,XsjEM(Xou)[ts - tJ}b, VxO (2.1)

The random variable to be taken expectation is ts - t, 0, the travel time from the

origin as defined in the initial state xo to the destination node d for a given routing

policy p. The expectation is taken over all possible state chains, M(xo, p). The
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minimum is taken over all routing policies. Note a best routing policy is optimal for

all initial states, not just for a specific initial state.

We can compare the best routing policy with a shortest path tree in the deter-

ministic and static all-to-one shortest path problem. The classical all-to-one shortest

path problem is to find the shortest paths from all nodes to one destination node

in a static and deterministic network. The result is a directed in-tree rooted at the

destination node. The shortest path from any node j to d is the path from j to d in

the shortest path tree. The shortest path tree can be viewed as a specialized routing

policy, where there is only one possible state for a given node and the decision (next

node) for that state is the successor node in the shortest path tree. In the classical

all-to-one shortest path problem, all stands for "all nodes", while in the best routing

policy problem in a STD network, we have an implicit all standing for "all times"

and "all current-information" as well as all nodes. A counterpart of the shortest path

tree in the best routing policy problem would be the union of state networks for all

the possible states. There is no guarantee that the state network union is acyclic or

connected, however, as opposed to the shortest path tree.

The Optimality Condition

Let e, (x) denote the expected travel time to the destination node d when the initial

state is x and the routing policy p is applied. Define A(j) as the set of adjacent nodes

of node j, Cjk,tII as a travel time random variable of link (j, k) at time t conditional

on current-information I, and I'jI as a current-information random variable at the

next node k and at time t + C~kII. For Vj E N - {d},Vt E T,VI that is possible at

node j and at time t, e. (x) and p* are optimal if and only if they are solutions of

the following system of equations:

e,.(j, t, I) = min {Eck,, [Cjk,t + Ep[eg. (k, t + Cyi, I')]II} (2.2)
kEA(j)

p* (j, t, I) = arg min {EcA,,[Cyk,t + E1 [e-(k, t + CJk,t, I')]I]} (2.3)
kEA(j)
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with the boundary conditions: e. (d, t, I) = 0, p*(d t, I) = d, Vt E T, Vt E T, VI that

is possible at node d and at time t. Since I'll is dependent on CpA,tjI, we first take the

expectation over I'jI with a given realization of Ct,tII and then take the expectation

over CjA,tII. Note that we assume the realization of the decision is deterministic,

i.e. the traveler will end up at node k if he/she chooses node k as his/her next

node. Croucher [14] studies the problem where the realization of the decision itself

is stochastic. We do not discuss this case, as our original initiative in studying the

BRP problem is for traffic applications where this case rarely arises.

The proof of the optimality conditions is similar to the proof of Proposition 7.2.1

in [4]. The problem in [4] is denoted as a stochastic shortest path problem and is

viewed as an infinite horizon dynamic programming problem. The proof provided

in [4] uses only the node number as a state, yet we can simply replace the state by

{j, t, I} and the proof becomes valid for our case.

2.2.2 Taxonomy

In this subsection, we give taxonomy of the best routing policy problem in a STD

network. There are four major objectives of providing taxonomy:

* To make the abstract framework concrete and applicable to traffic context

* To show the variety of the best routing policy problems

* To study the role of information in a stochastic routing context

* To gain insight of the complexity of the problem

The framework is abstract in the sense that no concrete form of current-information

I is specified. Current-information depends on two factors: network statistical depen-

dency defined as the statistical dependency of link travel time random variables, and

information access defined as the link travel time realizations that are available to the

travelers at any given time and given node. The taxonomy of the BRP problem is

therefore along these two dimensions. We will see that depending on the assumptions
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about the two factors, we can have a large variety of the BRP problem variants. Some

of them are just for the purpose of theoretical analysis, while others are realistic in

traffic context. Specifically we can see the role of information in stochastic routing. In

fact, ITS applications rely to a large extent on the acquisition and processing of infor-

mation on traffic conditions, therefore the study of the role of information is needed.

During the discussion of each variant, we give a brief overview on the complexity of

the BRP problem and show how the complexity varies from variant to variant.

Taxonomy

Network statistical dependency is characterized by link-wise and time-wise statistical

dependencies of link travel times. At one extreme, all the link travel time random

variables are independent, both link-wise and time-wise. At the other extreme, all the

link travel time random variables are strongly dependent. There are numerous cases

in between these two extremes, and we denote them as partial statistical dependency.

Information access has the following four categories:

* Perfect a priori information

* Perfect on-line information

* Partial on-line information

* No information

Travelers with perfect a priori information have knowledge of the realizations of all

link travel time random variables before the trip. Travelers with perfect on-line

information have knowledge of the realizations of all link travel times up to current

time period. Travelers with partial on-line information only have knowledge of part

of the link travel time realizations and the restrictions in on-line information can be

either temporal, spatial or both. Travelers with no information have no knowledge

of any of the realizations and the only knowledge they have about the current state

is the current-node and current-time. Table 2.2 gives a possible taxonomy along the

two dimensions.
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Perfect Perfect Partial
a priori No On-line On-line

Information Information Information Information

No link-wise and no Group 1
time-wise dependency WS NI

Strong dependency (wait-and-see) Group 2 Group 3
Partial dependency _II_ I

Table 2.2: Taxonomy of the BRP Problem

Discussion of Taxonomy

In the discussion of the variants listed in Table 2.2, we focus on the specification

of current-information for each variant and the resulting implications for algorithm

design. A general rule in determining current-information is as follows: informa-

tion access determines which link travel times have the potential to be included in

current-information, while network statistical dependency determines whether all the

available link travel time realizations are necessary. The unnecessary link travel times

can be eliminated so that the dimension of current-information is minimized. For ex-

ample, assume we are equipped with the most advanced traffic information system so

that we know the realizations of all link travel times up to current time (i.e. perfect

on-line information). Presumably we hope we can make use of all the available infor-

mation. However, assume all the link travel time random variables are statistically

independent, implying that knowledge about one link cannot help infer about any

other links, then none of the information is useful and the current-information is ac-

tually an empty set. This rather extreme case shows how the two factors act together

to determine a current-information, and we will see more in the following discussion.

The WS variant has perfect a priori information and any kind of network sta-

tistical dependency. We borrow a term from stochastic programming to denote the

variant as WS (wait-and-see). In WS, the current-information I includes all the link

travel times at all time periods, so travelers can know the network deterministically

a priori. To put it in mathematical phases, in a network G = (N, A, T, P) as defined
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in subsection 2.2.1, current-information I = A x T and the traveler knows a priori

which joint realization of link travel times, v1 , v2 , ... or VR, the network will take. This

variant is not realistic, as in reality the future is always uncertain to some extent. It

is discussed here, since for a network with a given type of statistical dependency, WS

variant gives a solution lower bound for all other variants of the BRP problem. It

can be used as a benchmark in the robustness analysis of solutions to other variants.

Under perfect a priori information, the BRP problem reduces to multiple deter-

ministic dynamic shortest path prob ems, each of which works on a deterministic

network defined by one of the R joint realizations v1 , v2 , ... , VR. Since we are work-

ing only on deterministic networks, network statistical dependency does not make

any difference in algorithm design. Algorithm DOT [91 with a running time of

9(SSP + nK + mK) for all-to-one shortest path problem, where SSP is the running

time of a classical static shortest path algorithm, can be used to solve the individual

deterministic dynamic shortest path problems. The complexity of the WS variant is

then 9(R x (SSP + nK + mK)).

The No-Information variant is the other extreme case when no information

(NI) is available. The lack of information prevents travelers from being able to make

any useful inferences about future network conditions. The current-information is an

empty set at any point in space and time, and decisions depend only on current-node

and current-time. This is true for any kind of statistical dependency, which is another

example besides the WS variant showing the role of information in defining a BRP

problem. As the current-information is an empty set, we can simply remove it from

the current-state, and the optimality conditions in subsection 2.2.1 reduce to

e". (j, t) = min {Ec,t [Cjk,i + e.(k, t + CJk,t)]} (2.4)
kEA(j)

p*(j,t) = arg min { Ec,, [CJk,t + e,. (k,t + Ct)]} (2.5)
kEA(j)-7, 1

Several algorithms have appeared in the literature to solve this variant [17] [101][20],

yet no explicit discussion of the role of information is provided. It is sometimes pa-

pers that link travel times are statistically independent so as to obtain the optimality
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conditions as shown above. However, the assumption of statistical independence is

neither sufficient nor necessary to validate (2.4) and (2.5). It is not necessary, because

variants with statistically dependent link travel times and no information can have

this formulation. It is not sufficient, because if the realizations of outgoing link travel

times at current-time is available in a statistically independent network, the current-

information is no longer an empty set and thus the above optimality conditions of

the problem is no longer valid.

Algorithm DOT-S [10] has an optimal running time of 9(SSP + nKQ + mKQ)

for the NI variant, where Q is the maximum number of realizations of a single link

travel time, in the sense that no algorithms with less theoretical complexity exist. In

Section 2.3, the solution algorithms for the NI variant are extensively discussed and

computational tests are presented.

The Independent variants. In the rest of the section, we discuss variants

with some online information access. The above discussion shows that sometimes

information access alone can determine the current-information, as in the case of

WS and NI. On the other hand, network statistical dependency sometimes can play

a very important role in determining the current-information. This can be shown

by the variants in Group 1 with statistically independent link travel times. First of

all, the knowledge about the adjacent links of the current-node at the current-time

is useful, as they are explicitly included in the optimality conditions by all means.

Any other link travel time realizations, however, cannot contribute to the decision

making. Define 6(j) as the adjacent links of node j. This fact then is stated formally

as follows:

Theorem For a given network G = (N, A, T, P) as defined in subsection 2.2.1

where the link travel time random variables Ck, are statistically independent, V(j, k) E

A, Vt E T, define two types of current-information:

1. 1 = A x {0,1,...,t}, Vt E T

2. 12 = 6(j) x {t}, Vj E N,Vt E T

Let p* and t4 be the best routing policy respectively with the first and second defi-
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nition of current-information. If travel time realizations of 6(j) x {t} are the same in

1(t) and I2(j, t), we have

e.;(j, tI,) = e,;(j,t,I2),VIh,I 2 ,Vj E N,Vt E T.

Proof: We use induction on time t to prove the theorem. Since travel time

realizations of 6(j) x {t} are the same in I 1(t) and 12(j, t), let irat denote the travel

time realization of link (j, k) at time t in both I and 12. Following are notations used

in the proof:

I= A x {0, 1,)..,2t,..., t + 7rjkt, Vt ET

21= 6(k) x {t + irjk,t}, Vk E A(j),Vt E T

A = I,/- I

12 = 11 -12

Please see Figure 2-3 for an intuitive representation of the relationship of these vari-

ables.

Figure 2-3: Relationship of 11, 12, Il, 1, 1,112
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Induction Base: When t > K - 1, the network is deterministic and static. There-

fore the BRP problem reduces to the classical shortest path problem where the short-

est distance to the destination only depends on the origin node. Thus e;(j, t, I) =

e;(j, t,12),VIi,I 2,Vj E NVt > K - 1.

Induction Assumption: Assume e,;(j, t, 1 ) = e,;(j, t, 12),VI, 12, Vj E N, Vt > 1.

Induction Step: When t = I - 1,

e,;(- , t, Io)

= minkeA(j){Ec,tII1 [Cyk,t|I1 + EPI 1 [e,; (k, t + Cic,t|I, II I)]]}

= minkEA(j){rit + EoI1, [eg; (k, t + , IhI)1}

= minkeA)Jlrjk,t + E1,1 [e,; (k, t + 7jk,, I + Ii)]}

= minkEAU){rjk,t + Ei;[EI12 [e,;(k, t + rjk,t, A + 112 + 12)]]}

= minkEA(c){lrjk,t + EI;[EI12 [eM; (k, t + 7jik,t, 2)]]}

= minkEA(j) {rjk,t + Er;[e,; (j, t + krjA,, 21)]1

= minkEA(f){rjk,t + Ei;1i2[e; (J, t + jk,t,12112)]}

= minkEA(i){EcktI12[Cjk,t|I1 + Ei;1i2[ep;(k, t + Cjk,tII2 | 12112)II}

= ep;(j,t,12 )
The first equal sign is due to the definitions of e,;. The second equal sign is due

to the definition of jkt. The third equal sign is due to the statistical independence

of link travel times in A1 and A,. The fourth equal sign is due to the definition of 112

and the statistical independence of link travel times in '12 and 1. The fifth equal

sign is due to the induction assumption. The sixth equal sign is due to the statistical

independence of link travel times in I12 and 1. The seventh equal sign is due to the

statistical independence of link travel times in I2 and 1. The eighth equal sign is due

to the definition of lj,,t. The ninth (last) equal sign is due to the definition of e,.

End of Proof

We can extend the theorem to the case when only part of the adjacent link travel

time realizations are available. We conclude that current-information I for a given

current-node and a given current-time in Group 1 is the available travel time real-

izations of adjacent links of the node at the current-time. Mathematically speaking,

I(j, t) = 6(j) n IA, where IA stands for information access, i.e. the available link
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travel time realizations. When the knowledge about the adjacent links of the current-

node at the current-time is not available, the current-information becomes an empty

set and the problem has the same current-information as that presented in the NI

variant. Note that the name "NI" represents a variant where current-information I

is an empty set. No information is only a sufficient condition to validate the spec-

ification of current-information. We choose "NI" as the name, as it is intuitive to

get the idea of an empty current-information from the no-information assumption.

However, we should remember that there are other conditions that can validate the

"NI" formulation, one of which is discussed just now.

Variants with complicated information access and statistical depen-

dency. Variants in Group 2 and Group 3 generally have complicated current-information.

All available link travel time realizations are potentially useful and could be included

in the current-information I. Network statistical dependency can be utilized to elim-

inate unnecessary link travel times from the current-information, as what we did in

the independent case, but the judgment sometimes requires very smart work and the

resulted dimension reduction of current-information may not compensate for the extra

effort needed to distinguish them. In a word, the determination of current-information

for variants in these two groups depends largely on the actual assumptions on both

information access and network statistical dependency. In Section 2.4, we will discuss

in more detail the perfect online information variants in Group 2.

Most transportation networks belong to Group 2 and Group 3. For example, a

typical urban traffic network can be divided into several zones and we can assume that

traffic within one zone is highly dependent, while weak relationship exists between

traffic within the zone and that out of the zone. Furthermore, we can assume that

only traffic conditions within the last one hour are helpful in predicting future. It

is also very likely that there are several local traffic information centers that provide

information to vehicles within their respective functional ranges. All these assump-

tions about network statistical dependency and information access complicated the

problem, and careful problem definition is required.

We distinguish between Group 2 and Group 3, because the complexity of algo-
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rithms for variants in Group 2 and Group 3 could differ greatly. Complexity of an

algorithm for the BRP problem depends largely on the maximum number of possible

current-information realizations. For the sake of convenience of presentation, assume

the partial on-line information is partial in the spatial dimension, not in the temporal

dimension. With perfect on-line information, the current-information is composed

of all link travel times up to current time t, and the maximum number of current-

information realizations is just the maximum number of joint realizations of these

tm random variables, which is at most R. With partial spatial on-line information,

however, the current-information is composed of links around the path (what specific

links are included depends on specific assumptions about "partial" spatial depen-

dency) from the origin to the current-node. Therefore the current-information can

take a maximum of 2 tm - 1 different sets of links. As each set of link travel times has

at most R joint realizations, the maximum number of current-information realizations

is (2" - 1)R. The maximum numbers of current-information realizations in these

two groups differ in a ratio of 2tm - 1, which is significant. It is stated in [25] that

in a static network, the maximum number of current-information realizations with

partial on-line information is 2" - 1. This is a quite loose upper bound, and a tighter

upper bound obtained by applying the above logic would be (2' - 1)R.

The dynamic shortest path problem in acyclic networks with independent station-

ary Markovian arc costs studied in [261 tan be viewed as an infinite horizon version

of a variant in Group 3. Please refer to the literature review of Section 2.1 for an

introduction of the basic assumptions. The assumption of acyclic networks implies

that node j cannot be visited again after the traveler leaves it. Since the Markovian

are costs are independent across nodes, it is not helpful to keep information of any

already visited nodes. Thus the dimension problem of current-information with par-

tial spatial online information as discussed above does not exist in this case. This

assumption along with the stationary assumption makes a polynomial running time

algorithm possible.
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2.3 The No-Information Variant

In this section, we discuss in details the no-information (NI) variant of the best routing

policy problems in STD networks. In subsection 2.2.2, we defined the no-information

variant as a variant of the BRP problem where the current-information component

of any state is an empty set. We also discussed several situations under which the NI

variant is applicable. These situations include:

* When no knowledge about any of the link travel time realizations is available

* When all link travel time random variables are statistically independent and no

knowledge about the realizations of outgoing link travel times of current node

at current time is available

We call this definition of NI variant the special definition. A direct implication of

this definition is that current-information will not appear in the optimality conditions.

In other words, routing decisions only depend on the current node and the current

time. We deem that the decision dependency (i.e. what the routing policies are

based on) is the key in defining a variant, as it directly affects the algorithm design.

In light of this, a general definition of NI variant would be: the current-information

component of any state is the same. In this case, routing decisions also only depend

on the current node and the current time. In the rest of the thesis, the NI variant is

defined with the special definition, otherwise indicated.

2.3.1 Motivation

There are three kinds of motivation for studying the no-information variant. Theo-

retically, the NI variant is the simplest in terms of algorithm design among all BRP

problem variants with on-line information, due to the lack of current-information. It

is therefore the basis for the study of more complicated variants. Furthermore, even

though it is the simplest, it suffices to show some of the implications and significamce

of stochasticity in a dynamic context for traffic models. It also shows the fact that

how information access can affect the routing problem formulation. Practically, there
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does exist quite a few traffic situations where the NI formulation is applicable. For

example, in a network where link travel times are weakly coupled, or where little or

no information is available. Computationally, the NI variant can be solved in poly-

nomial time, as shown later in the section. This is a very desirable result, as the

BRP problem in a STD network generally requires exponential running time to solve.

Therefore NI can be used as an approximation to more complicated variants, and we

will discuss this in great details in Chapter 3.

2.3.2 Optimality Conditions

The optimality conditions have been presented in subsection 2.2.2. We list them here

for the convenience of reference:

e. (j, t) = min {Ec,kt[Ck,t + e. (k, t + Ck,t)I} (2.6)
kEA(j)

U*(j, t) = arg mn {Ec,.,[C'k,t + e,.(k, t + Cjk,t)]} (2.7)
keA(j)

with the boundary conditions: e,.-(d, t) = 0, Vt E T, and e.(j, t) = e,(j, K -1), Vj E

N,Vt > K - 1.

We can image the traveler in a network whose level of uncertainty never decreases.

The t:aveler's knowledge about the network remains as the a prior distribution of link

travel times, either because he/she has no en route information access, or because the

network is statistically independent and online information cannot help to predict the

future. Thereafter, one can work only with the unconditional marginal distributions

of link travel times, as shown in the optimality conditions, either because there is

nothing to be conditional on, or because the conditional probabilities are the same as

the unconditional probabilities.

We will work on an illustrative example to show how NI optimality conditions

work. Please see Figure 2-4 for the network and link travel time data. The topological

network is shown at the upper-left corner of the figure, and the major part of the figure

is a time-space representation of the network. In a time-space network, time is marked

along the vertical axis (the so-called time axis), and node number is marked along
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the horizontal axis (the so-calld space axis). Each point in this network represents a

node-time pair (j, t), and any link between (j, t 1 ) and (k, t2) indicates that link (j, k)

has a travel time of t 2 - t1 if departure time from node j is t1. We are interested in

finding the best routing policy from node 1 to node 4 at departure time 0, namely

e,. (1, 0), and only those node-time pairs and links relevant to the computation are

shown.

Time Time

8 2 4 8

1 4

3 4 (wp0.2

6 4 6
3( 0.

5 3 4 5

4 2
3

33

4 (wp 0.5)

2 2 2

21(wp 0.5)

0 0

Figure 2-4: An Illustrative Example for NI Optimality Conditions: Topological Net-
work and Time-Space Network

Figure 2-4 shows the marginal distribution of link travel time random variables.

Link (1, 2) at time 0 could have two realizations of travel time: 4 w.p. 0.5 and 2 w.p.
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0.5. Link (2,4) at time 4 could have two realizations of travel times: 4 w.p. 0.25 and

3 w.p. 0.75. All other link travel times are deterministic.

We apply the optimality conditions to obtain the value of e(1, 0).

e.(1,0) = min{1 + e,.(3, 1), 0.5 x (2 + e,-(2,2)) + 0.5 x (4 + eg. (2, 4))}.

It can be easily observed from the figure that e.(3,1) = 5 and p*s(3, 1) = (node) 4,

and e,.(2, 2) = 3 and p* (2, 2) = (node) 4. We apply the optimality condition again

to obtain e,.(2, 4):

e. (2, 4) = min{1 + e,. (3, 5), 0.25 x 4 + 0.75 x 3} = min{1+3,1+ 2.25} = 3.25

and p*(2 , 4) = (node)4. With the values of e,.(3, 1), e. (2, 2), and e,. (2, 4) in hand,

we can obtain

e,(1, 0) = min{1+ 5,0.5 x (2+ 3) + 0.5 x (4 + 3.25)} = 6

and p*(1, 0) = (node) 3. Therefore the optimal routing policy for node 1 at time 0

turns out to be a path: 1-3-4.

2.3.3 Algorithm DOT-S and Algorithm LC

We can associate with each pair (j, t) a label which is the upper bound of the minimum

expected travel time from node j to the destination node d at departure time t. We

will design a procedure to update these labels according to the optimal conditions,

until all of them are optimal. Depending on the way the labels are updated, there

are two different algorithms.

Algorithm DOT-S is a counterpart of Algorithm DOT [9] which finds the shortest

path in a deterministic time-dependent network. DOT stands for "Decreasing Order

of Time", and S stands for "Stochastic". It is noted that the update of labels at time

t depends only on labels at times later than t, due to the assumption of positive link

travel times. Therefore, we can first solve a classical shortest path problem for the
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deterministic and static period where link travel times are Cjk,K-1, V(, k) E A, and

set e,,. (j, K - 1) = shortest path length from j in the classical SSP problem, Vj E N.

We then proceed to the labels of time K - 2 which only depend on labels of time

K - 1. As labels of time K - 1 is already optimal, by optimality condition 2.6, the

updated labels of time K - 2 are also optimal. We continue this procedure back in

time until time 0, and every label will then be set to be optimal.

We define -ik,t as the vth realization of the marginal distribution of travel time of

link (j, k) at time t, and qjkt the corresponding marginal probability. We also define

Q as the maximum number of realizations for a single link travel time marginal

distribution. The statement of Algorithm DOT-S is as follows:

Algorithm DOT-S

Step 0: (Initialization)

0.1: Run the classical shortest path problem algorithm (e.g. Dijkstra's)

on the deterministic and static network G'(N, A)

where link (j, k) has a travel time of Cjk,K1, V(j, k) E A;

0.2: e. (j, K - 1) = Shortest path length from node j to node d;

0.3: e.(j, t) =0oo, p*(j, t) =0oo,Vj E A - {d}, Vt < K - 1;

ep.(d,t) = 0,Vt 6 T.

Step 1: (Main loop)

for t = K - 1 to 0

for (j, k) E A

temp = E (7,, + e.(k, t + CJk,t)) x qk,,t;

If temp < ep.(j, t)

e4. (j, t) = temp

/p* (jqt= k

Let us now make a comparison between solutions from Algorithm DOT-S and

Algorithm DOT. They look similar, as each pair (j, t) has an associated cost to

the destination node, and an associated next node to take. The difference can be
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obtained by tracing a traveler in the network. Assume a traveler starts from the

pair (j, t) in a deterministic time-dependent network and follows the optimal routing

decisions computed from Algorithm DOT. As the travel times are deterministic, we

can tell for sure when he/she will arrive at downstream nodes and thus the path

he/she will take can be determined. Instead of telling him/her to make routing

decisions based on current node j and current time t, one can just tell him/her to

follow an a priori path. However, if the traveler travels in a STD network with no

information access, one cannot tell what path he/she will end up following before the

trip begins, as the link travel times are random. To put in other words, the traveler

could arrive at downstream nodes at several possible times. Therefore the traveler

must have the routing policy p*(j,t) computed from Algorithm DOT-S and make

decisions depending on arrival times.

The complexity analysis of Algorithm DOT-S is straightforward. At the initial-

ization period, a classical shortest path algorithm is run and the running time is

9(SSP), where SSP is the running time of a classical shortest path algorithm (cf [1]

for a summary of running times of difference algorithms). In the main loop, at each

time period of the dynamic period (i.e. t < K - 1), each arc is visited exactly once

with Q arithmetic operations, and each node is visited at least once and at most three

times. Therefore the running time of the main loop is 9(nK + mQK). To sum up,

the complexity of Algorithm DOT-S is 9(SSP + nK + mQK).

There are other kinds of algorithms that implement the optimality conditions to

solve the NI variant. One of them is a straightforward extension of the label correcting

algorithm for the classical shortest path problem. Miller-Hooks and Mahmassani [20]

presented such an algorithm. The statement of the algorithm can be rewritten in our

notation as follows. We will denote it as Algorithm LC.

Algorithm LC

Step 0: (Initialization)

0.1: Initialize node labels

eg (j, t) = oo,p*(j, t) = 00, Vj E A - {d},Vt < K - 1;
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e,. (d, t) =0,Vt E T.

0.2: Initialize the scan-eligible list

Create the scan-eligible list SE, and insert node d.

Step 1: (Choose Current Node)

If the SE list is empty, stop.

Otherwise, select the first node from the SE list.

Call this node the current node k.

Step 2: (Update the Node Labels)

For each j E B(k)

For each t E T

temp = E, (rYkt + e. (k, t + C,)) x qjk,t;

If temp < ew.(j, t)

e. (j, t) = temp

P*(j,t) = k

If j V SE, put j in SE list.

According to Miller-Hooks and Mahmassani [20], the LC algorithm with a basic

FIFO SE list has a worst-case computational complexity of O(K2n 3 Q). The readers

are referred to their paper for a detailed proof of the result.

2.3.4 Extension to Minimum Expected Cost Problems

We have so far focused on the minimum expected travel time problem. In fact, the

minimum expected travel cost problem can be handled with straightforward exten-

sion. Define a link cost function g(Cjk,t) to be the cost of link (j, k) at time t as a

function of link travel time CJk,t, and particularly g(0) = 0. The minimum expected

cost problem is to find a routing policy with minimum expected cost from all origins

for all departure times to the destination node.

The optimality conditions for the minimum expected cost problem can be obtained

by making slight changes from those for the minimum expected travel time problem.
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For the sake of notation simplification, we will still use e,(j, t) to denote the expected

cost of a routing policy p with origin node j, departure time t, and empty current-

information. The optimal routing policy p* and the corresponding optimal expected

cost eM. are solutions of the following system of equations:

e,.(j, t) = min {Ec.,,[g(CJk,t)+ e.(k, t + CAg,t)1} (2.8)
kEAQ)

p*(Q, t) = arg min {Eck,, [g(Ck,t) + e. (k, t + Cjk,t)I} (2.9)
kEA(j)

with the boundary conditions: eW.(d, t) = 0, Vt E T, and e,.(j, t) = e,. (j, K -1), V E

N,Vt > K - 1.

Algorithms for the minimum expected cost problem can be obtained similarly.

We can see that algorithms for the "cost" problem has the same asymptotic running

times as those for the "time" problem, as the only additional operation of the "cost"

problem is the mapping from Cp,t to g(Cyk,t). In actual implementation, the mapping

can be done in the data generation. For example, for each realization of Cft,t, one

can generate a cost realization associated with it. In this case, the "cost" problem

algorithms and the "time" problem algorithms have exactly the same running times.

2.3.5 Comparison of Running Times of Algorithm DOT-S

and LC

Algorithm DOT-S and Algorithm LC are two different ways to apply the same opti-

mality conditions. They differ in the order the node labels are checked. Algorithm

DOT-S checks labels in decreasing order of time, while Algorithm LC uses a scan

eligible list to maintain active nodes and the checking order is primarily topological.

Using the terminology of network optimization [1J, Algorithm DOT-S is a label-setting

algorithm, while Algorithm LC is a label-correcting algorithm. A label-setting algo-

rithm sets a label to its optimal value at the first time the label is updated, while a

label-correcting algorithm needs to run several passes over the labels to have them

optimal. The reason that Algorithm DOT-S can be a label-setting algorithm is the
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assumption of positive link travel times, as discussed before.

It is shown by Chabini [10] that Algorithm DOT-S is optimal, in the sense that no

other algorithm can have better theoretical complexity. The argument is as follows.

In order to make sure the solution is optimal, any algorithm has to retrieve the data

at the dynamic period, i.e. t < K - 1, for at least once. The data for the problem is

the discretized marginal probability distributions for all links at all times lower than

K -1. Thus the retrieve of data takes a running time of (mKQ). Furthermore, any

solution algorithm must in the worst case compute and output, or in the very least

initialize (nK) variables consisting of the values of e,.(j, t) and p*(j, t) for all pair

(j, t). Finally, computing all-to-one least expected travel times for departure times

beyond the time horizon K - 1, is equivalent to computing an all-to-one shortest

path tree using cjk,K-1 as link travel times. In summary, any solution algorithm to

the NI variant has a worst-case complexity of Q(SSP + nK + mKQ), which is the

same as the worst-case complexity of Algorithm DOT-S. Following the claim, we can

conclude that asymptotically Algorithm DOT-S has a running time at least as good

as Algorithm LC does.

Extensive computational tests have been carried out. The objectives of the com-

putational tests are: to study experimentally the running times of the two algorithms

as functions of various network parameters, and to compare the actual running times

of Algorithm DOT-S and Algorithm LC. In the rest of the subsection, detailed de-

scription of the computational tests will be provided.

Random Network Generator

The random network generator generates a random directed network on which the

algorithms are to be applied. Two sets of data have to be generated, the topology

of the network and the discretized link travel time distributions. To generate the

topology of the network, the required input from the users is: 1) the number of nodes

n; 2) the number of links m; 3) the maximum in-degree; and 4) the maximum out-

degree. By default, the node with the highest number is set to be the destination

node. To assure connectivity to the destination node, a directed in-tree rooted at
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the destination node is generated at the first place. The remaining m - (n - 1) links

are generated by selecting the head node and tail node randomly, assuring that the

maximum in-degree and out-degree constraints are satisfied.

To generate the discretized link travel time distributions, the required input from

the users is: 1) the number of time periods K; 2) the number of realizations for a

single link at a given time Q; 3) the maximum of link travel time realizations; 4) the

minimum of link travel time realizations; 5) the maximum of link cost realizations;

and 6) the minimum of link cost realizations. For each time point and each link, two

sets of numbers are generated, the first set contains Q random numbers in the range

of the given minimum and maximum link travel time realizations, and the second

set contains Q random numbers in the range of 0 and 1. The first set are the link

travel time realizations for the specific link at the specific time, and the second set

normalized by the sum of the Q numbers are the marginal probabilities associated

with each realization.

Tests Design

Basically the tests can be divided into two parts: those on sparse networks which

are usually the cases for transportation networks, and those on dense networks. For

the tests on sparse networks, we set the ratio of the number of links to the number of

nodes to a constant of 3. The maximum link travel time is 25, and the minimum link

travel time is 1. The maximum link travel cost is 40, and the minimum travel cost is

1. We examine three different topologies of networks: 100 nodes, 500 nodes, and 1000

nodes. For each topology, there are 3 different numbers of realizations (R): 5, 10,

and 20 and 3 different numbers of time periods (K): 30, 60, and 90. Therefore there

are 9 different sets of link travel time/cost data for a given topology, and altogether

there are 27 experiments for sparse networks. We define an experiment as a series of

runs with the same topological and link travel time/cost data, namely with the same

triple (n, Q, K). 10 independent runs are carried out for each of the 27 experiment.

For example, for the experiment with the triple (n, Q, K) = (100,5, 30), 10 different

random networks are generated with the destination node fixed as the last node. In
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each run, the running time in CPU seconds for both Algorithm LC and Algorithm

DOT-S for the minimum expected cost problem are recorded, and their ratio

recorded, too. We then take average of the running times and their ratio over the 10

runs.

For the tests on dense networks, we fix the number of nodes to be 100, and have

three different values for the number of links: 1000, 2500, and 5000, with average in-

and out-degree of 10, 25, and 50 respectively. The maximum link travel time and

maximum link cost are both 2 x Q, and the minimum link travel time and minimum

link cost are both 1. We will discuss later in the tests results why we choose 2 x Q
rather than a fixed number. There are 3 different numbers of realizations that are the

same as those in the sparse network tests: 5, 10, and 20. The values that the number

of time periods can take are different from those in sparse tests: 60, 120, and 240.

Therefore in the dense tests, an experiment is defined by a different triple (m, Q, K).

Similarly, 10 independent runs are carried out for each experiment and averages of

running times for both algorithms and their ratios are taken.

Algorithm DOT-S and Algorithm LC are implemented in C++ and complied by

GNU C++ complier. We use the classical label correcting algorithm with a complex-

ity of O(nm) to compute the static shortest path at the static period for Algorithm

DOT-S. The codes are run on a Dell OptiPlex GX100 workstation with 933MHz

CPU, 256 megabytes RAM, running Red Hat Linux 7.0 operating system.

Tests Results for Sparse Networks

The test results for sparse networks are shown in Table 2.3 and in Figure 2-5

through Figure 2-10. First of all, we study respectively the running times of Algorithm

DOT-S and Algorithm LC as functions of network parameters: m, K, and Q. We

first discuss Algorithm DOT-S, and then Algorithm LC. At last we compare the two

algorithms: how their relative running time varies with network parameters.

We only present some typical results in figures, as other results have similar fea-

tures. Figure 2-5 show the running time of Algorithm DOT-S as a function of the

number of links (m), with the number of time periods (K) fixed at 60, and for all
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DOT-S
# nodes # links # realizations K = 30 K = 60 K = 90

5 0.012 0.026 0.041
100 300 10 0.025 0.049 0.070

20 0.045 0.089 0.133
5 0.093 0.194 0.296

500 1500 10 0.146 0.305 0.463
20 0.251 0.519 0.780
5 0.204 0.419 0.637

1000 3000 10 0.308 0.628 0.966
20 0.518 1.050 1.601

Label Correcting

# nodes # links # realizations K = 30 K = 60 K = 90
5 0.021 0.045 0.070

100 300 10 0.029 0.056 0.101
20 0.050 0.101 0.150
5 0.108 0.231 0.380

500 1500 10 0.151 0.305 0.476
20 0.256 0.510 0.753
5 0.222 0.485 0.778

1000 3000 10 0.308 0.673 0.992
20 0.513 1.033 1.570

Ratio(LC/DOT-S)
# nodes # links # realizations K = 30 K = 60 K = 90

5 1.90 1.82 1.72
100 300 10 1.23 1.15 1.44

20 1.13 1.14 1.13
5 1.16 1.19 1.28

500 1500 10 1.03 1.00 1.03
20 1.02 0.98 0.97
5 1.09 1.16 1.22

1000 3000 10 1.00 1.07 1.03
20 0.99 0.98 0.98

Table 2.3: DOT-S vs. LC: Summary of Running Times (CPU sec.)
(#links/#nodes = 3)

- Sparse Networks
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Running Time of DOT-S as Function of Number of Links (K=6O)
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Running Time of DOT-S as Function of Number of Marginal Realizations (n=1000,m=3000:
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Running Time of LC as Function of Number of Time Periods (n=1000, m=3000)
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three possible number of marginal realizations: 20, 10, and 5. We can see that the

running time of Algorithm DOT-S increases linearly with the number of links for all

three Q values. We can also see this nearly perfect linear relationship with respect

to the number of time periods and the number of realizations in Figure 2-6 and Fig-

ure 2-7 respectively. These results are consistent with the theoretical analysis which

gives a running time of 9(SSP + nK + mKQ). As Algorithm DOT-S is a dynamic-

programming-type algorithm, the actual running time can be accurately analyzed.

This explains the closeness between the theoretical and experimental results.

Figure 2-8, Figure 2-9 and Figure 2-10 show the running times of Algorithm LC as

functions of the number of lin s (m), the number of time periods (K), and the number

of realizations (Q) respectively. The relationship is roughly linear, which is much

better than the worst-case complexity predicted by the theoretical analysis. This is

not quite surprising, because label correcting algorithms usually have different actual

running times depending on network topology, cost structure and data structure

implementation. If we look at the analysis of Algorithm LC [20] in details, we find

that the worst case happens if: 1) only one label is permanently set during one

pass over all nodes. As there are (n - 1)K labels to be set and each pass contains

(n - 1) updates, there are altogether (n -1) 2K updates; 2) the network is completely

connected, i.e. each node is connected to every other links, so that each update

requires (n - 1)KQ computations. In actual cases, it is very likely that more than

one label will be permanently set during one pass, and that each pass contains less

than (n - 1) updates and that the network is far from being completely connected.

Indeed, the optimal next arc choice for a given node at a given time points is usually

also optimal for other time points for the same node, so possibly O(K) labels can

be permanently set during one pass. Furthermore, in a sparse network such as the

one used in the tests, the average degree is 0(1) rather than O(n). Please note in the

sparse network tests, we fix the ratio of number of links to number of nodes, so in the

theoretical analysis 9(m) = O(n).

Next we study the relative running times of the two algorithms. As we discussed

before, Algorithm DOT-S has an optimal theoretical running time among all solution
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algorithms for the NI variant. In the sparse network tests, we can see in Table 2.3 that

Algorithm DOT-S is more efficient than Algorithm LC for most of the experiments.

In fact, every operation of Algorithm DOT-S in the dynamic phase (i.e. t < K - 1)

must be performed in Algorithm LC, and the initialization of the two algorithms

are the same. The only difference lies in the way the labels in the static period

is computed. Specifically in our implementation, Algorithm DOT-S uses a classical

label-correcting algorithm with FIFO scan eligible list to compute the static shortest

path, while Algorithm LC has the computations for the static period and dynamic

period bundled together. Although the static shortest path problem is solved by

label-correcting algorithm in both algorithms, the actual orders in which the nodes

are scanned and labels are updated can be different, therefore the relative running

times can be either greater or less than 1. To sum up, in the dynamic phase, Algorithm

DOT-S needs no more running time than Algorithm LC does, and in the static phase,

either algorithm possibly needs more running time than the other. This explains the

phenomena that for some experiments, the running time ratio of LC to DOT-S is less

than 1, e.g. when n = 1000, m = 3000, Q = 20. If traveling beyond the dynamic

phase is prohibited, Algorithm DOT-S always performs at least as well as Algorithm

LC does.

Now we will see how the ratio varies with network parameters: K, Q, and m(n).

The order in which the labels are set in Algorithm DOT-S is optimal, while Algorithm

LC does some overhead work in label updating. Therefore the ratio of LC/DOT-S

represents to some extent the overhead work Algorithm LC does in additional to the

necessary work. Our discussion below can also be viewed as about the efficiency of

Algorithm LC with Algorithm DOT-S as the benchmark. Here we will provide some

intuition on the label correcting algorithm. They are not aimed not be rigorous,

though. Rather they are to be helpful in understanding the behavior of Algorithm

LC in a high level. As we use a FIFO queue to implement the scan eligible list, we

are actually scanning the nodes roughly in the order of breadth first search (BFS).

It is well known that a breadth first search tree is a shortest path tree if the link

travel costs are the same for all links in a static and deterministic network. In a
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dynamic and stochastic network, this argument requires more discernment. However,

a general idea is that more evenly distributed link travel cost data will very likely

yield less overhead label updating work. On the other hand, if the network itself is a

tree, no matter what the link travel costs are, the shortest path tree will be the tree

itself. Therefore the topology of the network also matters a lot in label correcting

algorithms. Specifically the average degree determines to some extent how far away

a final shortest path tree can deviate from a breadth first search tree. This effect will

be discussed in details in the dense network tests.

There is no definite relationship between the ratio of running times of Algorithm

LC and Algorithm DOT-S with respect to the number of time periods, K, as shown

in Table 2.3. This is intuitively correct, since we can view computations of additional

time periods as replications of those for earlier periods. This is not to say that they are

identical. Rather it says that no fundamental changes in data structure or topology

exist if we change the number of time periods from 30 to 60.

Next we can see that the ratio of running times of Algorithm LC and Algorithm

DOT-S decreases with respect to the number of realizations for a single link travel

cost marginal distribution, Q. Note that link costs have uniform distributions within

a fixed range, in the case, from 1 to 40, so the variance of the continuous uniform

distribution is fixed. We are actually sampling from this distribution and Q is the

sample size. It is well known that the variance of sample mean is inversely related to

the sample size and accordingly the standard deviation of sample mean is inversely

related to the square rK of 6ample t Therefore with larger Q, the link travel

costs are more evenly distributed and the label updating overhead is less.

Finally the ratio of running times of Algorithm LC and Algorithm DOT-S de-

creases with the number of links, m. When networks are scaled up with the same

link cost structure and topology, the average number of links in a routing policy is

larger and the average expected travel cost of a routing policy is larger. Therefore

intuitively the travel cost of a path (policy) is more dependent on the number of links

in that path (policy) and thus a BFS is a more optimai order of scanning the nodes.

Tests Results for Dense Networks
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The test results for dense networks are shown in Table 2.4 and in Figure 2-11

through Figure 2-14. First of all, we study the running times of Algorithm DOT-

S and Algorithm LC as functions of network parameters d which is defined as the

average degree. Next we compare the two algorithms: how their relative running time

varies with network parameters.

Figure 2-11 through Figure 2-14 show the running times of Algorithm DOT-S and

Algorithm LC as functions of average degree. As the number of nodes is fixed, this

relationship is actually with respect to the number of links m. For algorithm DOT-S,

this relationship should be linear asymptotically, yet we observe a relationship a little

bit worse than linear in Figure 2-11 and Figure 2-12. This is due to the overhead of

shortest path computation in the static phase. Note we use a label correcting algo-

rithm in the static phase, and the actual running time of a label correcting algorithm

increases more than linearly with average degree. In Figure 2-13 and Figure 2-14,

we see a relationship even worse than linear, and this is consistent with the general

conception than the actual running time of label-correcting-type algorithm is greatly

affected by the average degree of a network. Indeed, if each node has more incoming

arcs, the update of its label will potentially affect more nodes and therefore poten-

tially more nodes will enter the scan eligible list more than once. However, this effect

is constrained by the variability of link costs. At the extreme case, when all links

have the same cost, the average degree does not affect the actual running time at all.

Next let us look at the ratio of running times of Algorithm DOT-S and Algorithm

LC. Note that in the dense network tests, the range of the uniform distribution for

link travel costs are proportional to the number of realizations Q. This is due to the

fact that with fixed uniform distribution range, the actual running of Algorithm LC

for Q = 10 is even less than that for Q = 5. This shows that the sample size effect

is rather significant. In order to counter this effect to some extent, we set this new

range. As shown from the ratio table, the difference with respect to Q is less dramatic

than that shown in Table 2.3 where the uniform distribution range is fixed (compare

the cas2 for K = 60 and n = 100).

The relationship between the ratio and average degree is not obvious. Indeed two
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DOT-S
# nodes # links # realizations K = 60 K = 120 K = 240

5 0.097 0.276 0.551
1000 10 0.183 0.439 0.903

20 0.324 0.786 1.635
5 0.194 0.564 0.140

100 2500 10 0.372 0.921 1.842
20 0.668 1.633 3.239
5 0.412 1.188 2.364

5000 10 0.756 1.904 3.727
20 1.347 3.302 n/a

Label Correcting

# nodes # links # realizations K = 60 K = 120 K = 240
5 0.173 0.459 1.092

1000 10 0.267 0.524 1.392
20 0.445 0.916 2.201
5 0.379 0.986 2.218

100 2500 10 0.527 1.085 2.945
20 0.941 1.820 4.404
5 0.800 2.044 4.712

5000 10 1.076 2.413 6.496
20 1.876 3.776 n/a

Ratio(LC/DOT-S)
# nodes # links # realizations K = 60 K = 120 K = 240

5 1.79 1.66 1.98
1000 10 1.46 1.19 1.54

20 1.37 1.16 1.35
5 1.96 1.75 1.95

100 2500 10 1.42 1.18 1.60
20 1.41 1.12 1.36
5 1.94 1.72 1.99

5000 10 1.42 1.27 1.74
20 1.39 1.14 n/a

Table 2.4: DOT-S vs. LC: Summary of
works(#links/#nodes > 10)

Running Times (CPU sec.) - Dense Net-
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Running Time of DOT-S as Function of Nurber of Average Degree (n=100,K=120)
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Figure 2-11: Running Time of DOT-S as Function of Average Degree (n=100, K=120)
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Figure 2-12: Running Time of DOT-S as Function of Average Degree (n=100, Q=10)
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Running rime of LC as Function of Number of Average Degree (n=1 00,K=1 20)
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Figure 2-13: Running Time of LC as Function of Average Degree (n=100, K=120)

Running Time of LC as Function of Number of Average Degree (n=1 00,0=100)
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Figure 2-14: Running Time of LC as Function of Average Degree (n=100, Q=10)
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forces are countering each other here. As discussed before, larger average degree will

bring more overhead in label updating, while more links will smooth out the difference

in link costs and make the cost of a path (policy) more dependent on the number

of links on it. With larger average degree and therefore larger number of links in

this case, the first force makes Algorithm LC more time-consuming while the second

force makes it less time-consuming. Further test where the number of links are fixed

with varying average degrees can potentially show the ratio as a function of average

degree.

We note that the ratio is greater than 1 (i.e. Algorithm DOT-S outperforms

Algorithm LC) for all dense network tests. This is because the effect of static phase

shortest path computation is less significant here. However, one of the conclusions in

[21] is that in dense networks, Algorithm LC outperforms Algorithm DOT-S. Further

details of computation tests in [21] is needed to determine the cause of this counter-

theory results.

2.4 The Perfect Online Information Variant

In the previous section, we studied the no-information (NI) variant in details. The as-

sumption of empty current-information is not so realistic in the presence of Advanced

Traveler Information System (ATIS) and/or Advanced Traffic Management System

(ATMS). On the other hand, a congested traffic network is usually highly dependent

in terms of link travel times, and thus the assumption of independent link travel times

is also in question. These considerations lead us to a more realistic variant, the perfect

online information (POI) variant. As stated in the taxonomy, a traveler with perfect

online information has knowledge about realizations of all links up to current time.

To put it another way, the current-information I is a set {CktI(j, k) E A, t < to},

where to is current time. We will not make specific assumptions about the network

statistical dependency. Instead, we will adopt the most general probabilistic descrip-

tion of a network, i.e. the joint realization description, to accommodate all kinds of

assumptions on statistical dependency. In particular, a network with strongly de-
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pendent link travel times can be handled with this description. It is sometimes a

concern that the assumption of perfect online information is not so realistic itself.

We acknowledge this, however, as discussed in subsection 2.2.2, variants with perfect

online information are easier to study than those with partial online information. Fur-

thermore, in a highly centidlized architecture for traffic management, perfect online

information is a rather valid assumption. Finally, the algorithm to POI variants also

provides building blocks that can be used in developing algorithms for other variants

with online information.

In this subsection, we present an operational algorithm DOT-SPI for the perfect

on-line information variants. We introduce an important concept of event set, which

is a counterpart of current-information in the more general framework and describe

the properties of event sets in a POI variant. The general optimality conditions are

adopted to the specific case and the algorithm comes out from that naturally. We

then proceed with the complexity analysis and point out the importance of finding

good approximations for the BRP problems.

2.4.1 Algorithm DOT-SPI

We have a network as described in subsection 2.2.1 with a minor change that the link

travel times are positive. We seek to find the least expected travel times from all nodes

at all departure times with all possible current-informatiov to a certain destination

node d. We assume that travelers have perfect on-line information about the link

travel times. Mathematically speaking, at any time t, any traveler has knowledge of

the realizations of Cjk,t',V(j, k) E A, Vt' < t.

We use a different way to represent the concept of current-information. The

current-information defined in the framework of the BRP problem is composed of link

travel times. This definition is not convenient for the implementation of the algorithm.

At each current time t, each possible joint realization of CJk,',V(j, k) E A,Vt' < t,

corresponds to a unique set of vr, therefore we define a new term as the counterpart of

current-information in algorithm design. Let ryk,L be the realization of C, we have

already learned until the current time. Define the event collection EV :={VICjrktf =
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rjk,tI,, V(j, k) E A, Vt' < t, for a certain t}. This is the set of realization candidates after

we collect information at time t. As we collect more information (i.e. t increases),

the size of EV remains the same or decreases. When EV becomes a singleton, we

obtain a deterministic network and can apply any deterministic dynamic shortest

path algorithm. Let EV(t) be the set of all possible event collections at time t and

the element of EV(t) is an event collection EV = v,.CJk,tI, = rjk,t', V(j, k) E A, Vt' <t.

Specifically, EV(K - 1) = {{vi}, {v 2 }, ... , {VR}}. All the possible event collections

can be generated in preprocessing. Here are some important facts about the event

collection:

* There is no overlapping among elements of EV(t) for a given t, so there are at

most R event collections at any certain time t ( EV(t) < R). Thus there are

at most RK event collections in total.

* Any element of EV(t) is a subset of an element of EV(t - 1).

" IEV(t) > IEV(t - 1)1.

A possible scheme of event collections is in Figure 2-15. The rows represents

time points in increasing order, i.e. the first row represents the first time point.

Each cell in the last row represents a single joint realization v,, which means that the

network becomes deterministic beyond time period K -1. At each time t, cells within

the bold boundary form an event collection. For example, at time 0, {vi,-...,vio}

is one event collection, and {vii,...., vis} is the other. At time 1, when more link

travel time realizations are available, {vi, ... , vio} is split into three event collections

{v}, {v 2 ,..., V}, and {v6 ,..., vio}. Other event collections are obtained similarly.

Let e,,. (j, t, EV) be the least expected travel time to the destination node d if

the departure from node j happens at time t with the event collection EV. Let

p*(J, t, EV) be the next are to take out of node j to realize e,. (j, t, EV). Assume we

select arc (j, k) out of node j. At the end of the journey along arc (j, k), we have a

new event collection EV' which is one of the possible event collections at time t+7rjk,t.

EV' is a random variable and the probability of a certain EV' can be evaluated as

following:
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t = 0 V1 , V2 , v3, V4, V5 , V6, v7, V 8, V9 , V10  V11, V12, V13 , V14 , V15

t = 1 V1  V V3, V47 V5 V67 V7, V8, )9 j0 p11, p12, p13, p147,V15

t = 2 v, V2, V3, v4, V5  V6, v7 , V 8, V9, 10  v 117v 127V 1 3  V 1 47 V 15

t = 32 77jj2jV3j4I iV5  V6 V7879,Vjj 11 12V13a 14,V15

t=4 V1  +f F2V 4v 5V6 IV7IV8IV9I V10 V11 V121 V13 V14, 15

t =5 v 33jVJji41v5 V6 V78j§jjj 19 io IL j1Z2 IV3ilifli1

Figure 2-15: A Possible Scheme of Event Collections

Pr(EV'IEV) = rIrEEV'fEV"'A I , VEV' E EV(t + ir,), VEV E EV(t).
ZrrEEV Pr

Note that EV' n EV = 0 or EV'.

The optimality conditions for the problem are:

e,.(U, t, EV)

= minkEA(j){7rk,t + EEv' [ey (k, t + 7 Jk,t, EV']}

= minkC-A(j)f{lJk,t + EEVEEV(t+,f,k,t) e,* (k, t + 7rik,t, EV') x Pr(EV'IEV)}}, Vj $d,

e,.(d, t,EV) = 0,e,.(j,t > K -- 1,EV) = e4-(j, K - 1,EV)

Vt E T,VEV E EV(t)

The solution of these equations can be carried out in a decreasing order of time,

since the evaluation of e,.(j, t, EV) only depends on e- (j, t', EV'), where t' > t. At

time K - 1 or beyond, the network becomes deterministic and static, and we can use

any deterministic static shortest path algorithm to compute e,(j, t7 V), Vj E N,Vt E

K - 1, VEV E EV(K - 1). Denote the algorithm as DOT-SPI (a counterpart of

Algorithm DOT [9] to solve a stochastic problem with perfect information). The

statement is as follows.

Algorithm DOT-SPI

Step 0: (Construct EV(t), t = 0,..., K - 1)

Call Generate-Event-Collection
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Step 1: (Initialization)

1.1 Compute e,.(j,K - 1,EV),Vj E N,VEV E EV(K - 1)

1.2 eM.(j, t, EV) +- +oo,Vj E N\{d},

e,.(d, t, EV) +- 0,

Vt < K - 1,VEV E EV(t)

Step 2: (Main Loop)

For t = K - 1 down to 0

For each EV E EV(t)

For each arc (j, k) E A

temp = wik,t+

EEV'EEV(t+rp.,t) eA* (k, t + jkt, EV') x Pr(EV'IEV)};

If temp < e,,. (j, t, EV)

e,.(j, t, EV) = temp

*( j,t,EV) =k

Generate-Event..Collection

D = {{vi, ... , vR}}

For t = 0 to K - 1

For each arc (j, k) E A

For each disjoint set S E D

w = number of distinct values among ck,, Vr E S;

Divide S into disjoint sets S, S,..., S' ,

such that cirkt is constant over all r E S ,i = 1,...wand Ui S=S;

D' +- D'\{S} U {S , S21,..., S' };

Next S

D +- D'

Next (j,k)

EV(t) +- D;

Next t
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2.4.2 Complexity Analysis

The basic step in GenerateiEvent.Collection is the division of S into disjoint sets. This

can be done by sorting the elements in S in time 6(slns), where s is the cardinality

of S. For a given time and a given link, all S are mutually exclusive and collectively

exhaustive over all realizations. Assume there are u such disjoint sets for a given time

and a given link, S1, S2,..., S, and 1 < < <R. Therefore the sorting of all the u

sets takes time (E 1 silnsi) = 0(n H?= s) = O(ln(si + s2+...+ s)1+32+.+SB) =

O(RInR). On the other hand, the sorting has to retrieve all the R realizations at least

once, so the running time is also Q(R). Altogether constructing event collections takes

time O(mKRInR) and Q(mKR). Step 1.1 is solving R static shortest path problems,

so the running time is 9(R x SSP). Step 1.2 takes time 6(KRn). At a given time t

and for a given link (j, k), the evaluation of all Pr(EV'fEV) takes time 6(R). There

are altogether K time periods and m links, so the main loop has a running time

of6(mKR).

To sum up, Algorithm DOT-SPI has a complexity of O(mKRInR + R x SSP) and

£(mKR + R x SSP). This algorithm is strongly polynomial in R, however R could

be an exponential function of m. If the link travel times are highly dependent, we

expect that R is much less than Qm, where Q is the maximum number of realizations

for a single link travel time, but it is still very likely that R is exponential in m.

Other variants with less online information could also have running time exponential

in number of link travel time random variables involved in current-information.

In fact, this is a well-known drawback of dynamic programming, the so-called

Bellman's "curse of dimensionality". Approximations and heuristics of dynamic pro-

gramming have been a very active research topic in the research community of dy-

namic programming and stochastic control for a long time and many encouraging

results exists [4] [5]. In the transportation community, however, it is believed that

no research has been done on systematically designing heuristics and approximations
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in light of stochastic optimization. The present research serves as a first step in this

direction. Futwre work of this research will largely focus on finding efficient heuristics

that perform well in transportation applications.
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Chapter 3

Approximations for the BRP

Problem in STD Networks

In this chapter, we study approximations to the POI variant studied in Chapter 2.

Four approximations are presented with analysis on their efficiency and effectiveness.

This analysis is done both theoretically and computationally. The computational

tests are not comprehensive, but they provide insights into the performance of ap-

proximations. Other approximations are suggested, however without computational

tests.

3.1 Four Approximations

3.1.1 The Certainty Equivalent (CE) Approximation

The certainty equivalent approximation is most commonly used in traffic applications.

The CE approximation replaces every link travel time random variable by its expected

value. Thus it transforms the stochastic network into a deterministic network, It then

applies any dynamic shortest path problem algorithm (e.g. Algorithm DOT) to obtain

an "optimal" path p*(j, t). Define CE(j, t) as the expected travel time from node j

and departure time t when the path p*(j, t) is taken. The ,unning time of CE is

the same as that of a deterministic dynamic shortest path algorithm, but its solution
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could be arbitrarily worse than the optimal, as shown by the example in Figure 1-2.

The "optimal" path output from CE will be path a - b. The expected travel time of

path a - b is 6+ M/2, which could be arbitrarily worse than the expected travel time

of the optimal routing policy, which is 10.

3.1.2 The No-Information (NI) Approximation

NI variant can be solved in polynomial time as stated in the complexity analysis of

Section 2.3. NI formulation of the BRP problem is valid when the network is time-

wise and link-wise independent and the link travel time realizations at the current

time are not available. Therefore NI could serve as a good approximation to POI

when the statistical dependency of link travel times is weak. Note that NI works with

the marginal distributions of link travel times instead of joint distributions. Define

NI(j, t) as the expected travel time from node j at departure time t when the routing

policy output from the NI approximation is applied. However, the performance of NI

as an approximation can also be arbitrarily worse than the optimal. We will not prove

this directly. Rather it can be proved as a byproduct of the following statement.

NI(j, t) can be either greater or less than CE(j, fY for a given network. An

intuitive argument is that both NI approximation and CE approximation are working

on joint distributions distorted from the original one. Which leads to a travel cost

farther from the optimal solution depends on the data, as illustrated in the following

example.

a b

0 D

c d

Figure 3-1: CE vs. NI: The Network
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Time Link v1  v2
a 1 2

0 b n/a n/a
c 1 2
d n/a n/a
a n/a n/a

1 b 1 1
c n/a n/a
d 1 1
a n/a n/a_

2 b 1 3
c n/a n/a
d 3 11

Time Link Travel Times
a 1(w.p. x), 2(w.p. y)

0 b n/a
c 1(w.p. x), 2(w.p. y)
d n/a
a n/a

1 b 1(w.p. 1)
c n/a
d 1(w.p. 1)
a n/a

2 b 1(w.p. x), 3(w.p. y)
c n/a
d 3(w.p. x), 1(w.p. y)

Joint Realizations Marginal Distributions
(Pi = x,p2 = y =1- x) (x+y= 1)

Table 3.1: CE vs. NI: Travel Times

The network in Figure 3-1 has two possible joint realizations of all link travel times.

The corresponding marginal PMF is also provided. The expected link travel times are

not listed, as they can be easily computed from the marginal PMF. There is only one

O-D pair, and we only study departure time 0. The expected travel time of path a - o

is x(1+1)+y(2+3) = 2x+5y, and that of path c-d is x(1+1)+y(2+1) = 2x+3y.

As y is positive, the expected travel time of path a - b is greater than that of path

c - d.

Now let us see how the NI approximation and CE approximation will make the

routing decisions When NI approximation is applied, we work on the marginal

distribution instead of the joint distribution. The "expected travel time" of path

a - b computed from NI would be x(1 + 1) + y(2 + x + 3y), and that of path c - d

would be x(1 + 1) + y(2 + 3x + y). The difference between expected travel times of

path a - b and path c - d in NI is 2y(y - x). Note that in this example, the routing

policy from NI reduces to paths, due to the special topology of the network.

Let x = 3/4, y = 1/4, then NI will choose path a - b. Assume the travel time of

link b at time 5/4 is greater than the travel time of link d at time 5/4, then CE will

choose path c - d. In this case, CE is better than NI. Let x = 1/4, y = 3/4, then NI
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will choose path c - d. Assume the travel time of link b at time 7/4 is less than the

travel time of link d at time 7/4, then CE will choose path a - b. In this case, NI is

better than CE. Note that we use fractions in departure times only to minimize the

efforts in presenting data. Actually one can always multiply the existing data by a

large enough number to obtain integral data.

Since NI can have worse solutions than CE, and CE can have solutions that are

arbitrarily worse than the optimal, NI also can have solutions that are arbitrarily

worse than the optimal.

3.1.3 The Open Loop Feedback with Certainty Equivalent

Approximation (OLFCE)

OLFCE is an improved certainty equivalent approximation. At each decision node,

travelers employ a CE that replaces every link travel time random variable in later

times by Ats expected value conditional on the network conditions realized so far.

Travelers follow the resulted "optimal" path until a new decision node is reached.

At that time, a CE is applied again, conditional on the updated network conditions.

Define OLFCE(j, t) as the expected travel time from node j and departure time t

when the series of "optimal" paths generated by the open loop feedback with CE ap-

proximation are followed. It was proved in by Bertsekas [4] that "open loop feedback

controls perform at least as well as open loop controls" in dynamic programming.

This result can be translated into the terminology of this thesis such that routing

policies generated by OLFCE performs at least as well as a minimum expected travel

time path. Since output from CE are paths and cannot perform better than the min-

imum expected travel time paths, we have OLFCE(j, t) _ CE(j, C). The running

time of the OLFCE is min(K, R) times the time to solve one CE, and still the vrfor-

mance of OLFCE can be arbitrarily worse than the optimal. To obtain an example

to show this, we can set the conditional link travel times as those used to prove the

performance of CE could be arbitrarily worse than the optimal.
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3.1.4 The Open Loop Feedback with No-Information Ap-

proximation (OLFNI)

Both CE and OLFCE have appeared in the literature for quite a long time. The

transition from CE to OLFCE suggests a new approximation OLFNI developed from

the NI approximation. Similar to OLFCE, at each decision node, travelers employ

an NI approximation that works on the marginal distributions of link travel times

conditional on the network conditions realized so far. Travelers follow the resulted

"optimal" routing policy until a new decision node is reached. At that time, an NI

approximation is applied again, conditional on the updated network conditions. It is

conjectured that OLFNI will perform at least as well as NI. However, its performance

can still be arbitrarily worse than the optimal.

Similar to the relationship between CE and NI, results from OLFCE could be

either greater or less than results from OLFNI. To obtain an example to show this,

we can set the conditional link travel times as those used to prove CE(j, t) can be

either greater or less than NI(j, t).

3.1.5 Theoretical Study of DOT-SPI vs. Approximations

We define POI(j, t) as the expected travel time from node j at departure time t when

the optimal routing policy obtained from Algorithm DOT-SPI is applied. Any routing

policy generated by CE, NI, OLFCE, or OLFNI is a feasible routing policy for the

perfect online information variants. For example, the routing policy generated by CE

can be viewed as a routing policy in the P01 variant, such that ,*f(j, t, EV) is constant

over all EV E EV(t), and all t E T. The routing policy generated by NI can also be

viewed as a routing policy in the POI variant, such that it*(J, t, EV) is constant over all

EV E EV(t). As Algorithm DOT-SPI solves the P01 variant, POI(j, t) is no greater

than any one of CE(j, t), NI(j, t), OLFCE(j, i), OLFNI(j, t), Vj E N, Vt E T.
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3.2 Computational Tests

There is a trade-off between effectiveness and efficiency for all approximations, i.e.

they could have satisfactory running times, but their results could be arbitrarily

worse in absolute value than those obtained by running the exact algorithm. The

effectiveness of approximations largely depends on specific applications.

In this section, computational tests are designed to study the effectiveness of the

four approximations presented in the previous subsection. Algorithms and approx-

imations are run on randomly generated networks. The optimal results from Algo-

rithm DOT-SPI are used as a benchmark. The percent relative difference between

approximation results and Algorithm DOT-SPI results is used as the measure of ef-

fectiveness. Various parameters that may affect the relative difference are checked.

Due to the tremendous computational burden, the results presented in this section

are only preliminary. Further tests would need to be done to test the approximations

in larger varieties of networks and with border ranges of parameters.

3.2.1 The Random Network Generator

The computational tests are conducted on randomly generated networks. A multi-

variate normal distribution is assumed for the joint distribution of all link travel time

random variable. The random network generator takes as input: 1) the number of

nodes, 2) the number of links, 3) the number of time periods, 4) the number of re-

alizations, 5) the homogeneous link travel time mean, 6) the homogeneous itandard

deviation of link travel times, 7) the homogeneous correlation coefficient of link travel

times, 8) the maximum in-degree, and 9) the maximum out-degree.

The topology of the network is randomly generated. The last node is the default

destination node. An in-tree rooted at the destination node is generated to ensure the

connectivity to the des'ination node. The remaining links are generated randomly,

respecting the maximum in-degree and out-degree.

The joint realizations of all link travel times are generated by a routine that can

generate samples from a multivariate normal distribution. The number of random
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variables is the number of links times the number of time periods. A homogeneous

mean travel time and a homogeneous standard deviation are used for every link travel

time random variable. A homogeneous correlation coefficient is used for every pair of

random variables. The standard deviation should be carefully chosen so that most

of the sample values are positive. In the case that a negative value is generated,

the absolute value is taken. When the link travel times are read by algorithms or

approximations, they are rounded to the nearest integers. The probability of each

joint realization is obtained by first generating R numbers between 0 and 1, and then

normalizing the R numbers by their sum.

Sampling from multivariate normal distribution is very time-consuming, so our

network sizes are restricted. Despite the limited sizes, these tests can provide insights

into the performance of approximations.

3.2.2 The Measure of Effectiveness

We study the percent relative difference between results from Algorithm DOT-SPI

and results from the four approximations. The definition of the percent relative

difference is as follows:

Aapproximation = - IZ[ Z1(POI(j,t) - approximation(,t))
2

K -I Ely(POI (j, t)) 2

where approximetion can take the value CE, NI, OLFCE, or OLFNI. In the compu-

tation of percent relative differences, the weight of each (j, t) pair is the same. This

implies that we assume the demand to the destination node is distributed evenly

across both space and time.

We study the magnitude of the percent relative differences as a function of four

different parameters: the homogeneous standard deviation of link travel times, the

homogeneous correlation coefficient of link travel times, the number of realizations,

and the average in- and out-degrees.

The implemented approximations are just proxy of their real-life counterparts.

For example, the expected link travel times for CE or OLFCE should come directly
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from observation or other estimation methods, not from taking expectation over the

joint realizations. Similarly, the marginal distributions of link travel times for NI

or OLFNI should also come directly from observation or other estimation methods,

rather than from aggregating joint realizations. The possible bias between the ob-

served expected link travel times (marginal distributions) and the computed ones

from the joint realizations may further complicate the assessment of performance of

approximations.

3.2.3 Tests Design and Results

Algorithm DOT-SPI and approximations CE, NI, OLFCE, OLFNI are implemented

in C++ and run on a Dell OptiPlex GX110 workstation with 933 MHz CPU speed

and 256 megabytes RAM and under Red Hat Linux 7.0. A test is defined as obtaining

results from the five implemented algorithm/approximations for a given combination

of the input data to the random network generator. Each test is composed of ten

identical runs. The average over the ten runs are taken as the result of this particular

test.

The results of the tests are shown in Figure 3-2 through Figure 3-5. The upper

graph in each figure shows the results for all the four approximations. The lower graph

in each figure shows the results for only the two open loop feedback approximations, as

they are different in scale from the other two. There are some general observatins for

all the tests. The magnitude of the percent relative difference for CE and NI is around

10, and that for OLFCE and OLFNI is very close to zero. This supports the arguments

that OLFCE always performs better than CE and OLFNI always performs better than

NI. The performance of the two open loop feedback approximations are very close

to that of Algorithm DOT-SPI, partly due to the small number of joint realizations.

When the number of joint realizations is small, the value of the online information is

large and the network becomes deterministic very soon after the starting time point.

Since in a deterministic network, CE, NI and Algorithm DOT-SPI give the same

expected travel times, it is not surprising that OLFCE and OLFNI have very close

results as Algorithm DOT-SPI in this situation. Another interesting observation is
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that generally NI performs better than CE and OLFNI better than OLFCE, although

the theoretical study shows that CE could perform better than NI and OLFCE could

perform better than OLFNI. This is not surprising, as NI outputs routing policies that

make use of the information on arrival times, while CE outputs paths that totally

ignore any information one may obtain online. It is conjectured that when the average

number of possible next nodes is small, the performance of CE and NI is close, as

shown in the example of Figure 3-1, since routing policies would nearly reduce to

paths in this situation.

Figure 3-2 shows the percent relative difference as an increasing function of the

homogeneous standard deviation of link travel times. Note the mean link travel time

is also homogeneous across time and space. When the standard deviation is large, the

link travel times are more dispersed, and thus the expected travel times of different

paths (routing policies) are more likely to be apart from each other. This magnifies the

difference between optimal and sub-optimal solutions. Figure 3-3 shows the percent

relative difference as a decreasing function of the homogeneous correlation coefficient

of link travel times. This phenomenon can be explained by the same logic used in

Figure 3-2. A positive correlation coefficient of random variables X and Y provides a

measure of extent to which the signs of x - E[X] and y - E[Y] "tend" to be positive.

As we have a homogeneous mean for all link travel times, the positive correlation

coefficient actually indicates how close x and y are. When link travel times are close,

the difference between optimal and sub-optimal solutions is reduced. Figure 3-4

shows the percent relative difference as a function of the number of realizations. The

number of realizations represents, among others, the extent of discretization. There is

no defiuifte relationship shown in the figure. Further computational tests are needed

to study the effect of discretization in a larger range. Figure 3-5 shows the percent

relative difference as an increasing function of average in-degree and out-degree. The

two degrees are set to be equal in the tests. As the average degree increases, the

travelers have more choices of the next node. Therefore more paths are involved in

an optimal routing policy, and the optimal routing solutions have more chance to

achieve lower travel times than the sub-optimal solutions.
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Relative Difference as a Function of STh (r.-10, m=30, K=20, R=100,mean tt=5, p=0.5)
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Figure 3-2: Percent Relative Difference as a Function of the Homogeneous Standard
Deviation of Link Travel Times (with 10 nodes, 30 links, 20 t me periods, 100 joint
realizations, 10 as the homogeneous mean link travel time, and 0.5 as the homogeneous
correlation coefficient of link travel times
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Relative Difference as a Function of p (n=10, m-30, K=10, R=100,mean tt=5, STD=2)
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Figure 3-3: Percent Relative Difference as a Function of the Homogeneous Correlation
Coefficient of Link Travel Times (with 10 nodes, 30 links, 10 time periods, 100 joint
realizations, 5 as the homogeneous mean iink travel time, and 1 as the homogeneous
standard deviation of link travel times
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Relative Difference as a Function of R (n=10, m=30. K=10, mean tt=S, STD=2, p=0.5)
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Figure 3-4: Percent Relative Difference as a Function of the Number of Joint Real-
izations (with 10 nodes, 30 links, 10 time periods, 5 as the homogeneous mean link
travel time, 2 as the homogeneous standard deviation of link travel times, and 0.5 as
the homogeneous correlation coefficient of link travel times
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Relative Difference as a Function of D (n=15, K=10, R=100,mean tt=5, STD=2, p=0.5)
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Figure 3-5: Percent Relative Difference as a Function of the Average In-Degree and
Out-Degree (with 15 nodes, 10 time periods, 100 joint realizations, 5 as the homoge-
neous mean link travel time, 2 as the homogeneous standard deviation of link travel
times, 0.5 as the homogeneous correlation coefficient of link travel times, and 2 times
the average in- and out-degree as the maximum in- and out-derree
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Chapter 4

A Policy-Based Stochastic

Dynamic Traffic Assignment Model

4.1 Introduction

Dynamic Traffic Assignment (DTA) methods constitute parts in the intelligent core of

Intelligent Transportation Systems (ITS). They provide support to the design, eval-

uation, operation of Advanced Traffic Information Systems (ATIS) and Advanced

Traffic Management Systems (ATMS). A DTA model captures the interaction be-

tween traffic demand and network supply in a time-dependent context and aims to

estimate and/or predict network conditions, such as link travel times, O-D travel

times, and link volumes, to support traffic management decision making and trav-

elers' information provision. It is natural that one of the critical requirements of a

DTA model is its accuracy in estimating/predicting traffic conditions.

Stochasticity in transportation systems is both intuitively prevalent and experi-

mentally proven, as discussed in 1.1. Therefore there is a need to capture stochasticity

in DTA models and to study its implications and significance of stochasticity in DTA

methods.

Over the years, there have been various approaches to introduce stochasticity in

traffic assignment models. Early developments addressed by stochasticity in static

traffic assignment methods. Daganzo and Sheffi [151 established the Stochastic User
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Equilibrium (SUE), where users have random perception errors of the true travel costs.

The resulting path choices are therefore naturally random, in the form of path choice

probability. Equilibrium path flows, however, are not presented as distributions.

Instead, a "large sample" approximation is used, such that the proportion of travelers

that take a given path "equals" its probability to be chosen by an individual traveler.

Consequently, an "average" deterministic flow pattern is obtained.

Two later papers extended Daganzo and Sheffi's work in two different directions

of considering stochasticity. Mirchandani and Soroush [22] considered the case where

stochasticity comes from both traveler perception errors and link travel costs them-

selves. A model is developed to consider the travelers' risk taking behavior, which

is an important factor to take into account in the presence of stochasticity. The

"large sample" approximation is also used in their work. The other extension is

described in Hazelton [18], which addressed stochasticity emanating from the same

source as in [15]. The key new idea developed in [18] is the representation of SUE

route choice conditions as a joint probability distribution, defined as the conditional

route choice of each individual given the choices of other travelers. The equilibrium

conditions are presented using what Hazelton [18] terms as the Conditional Stochas-

tic User (CSU) behavior conditions. A numerical example is used to show that the

equilibrium expressed by CSU gives different results from the equilibrium as a "large

sample" approximation developed in [15]. The CSU and SUE tend towards each other

as teh demand increases, as is expected.

Cantarella and Cascetta[7] [8] studied traffic equilibrium from the point view of

fixed point attractors. The stochasticity considered comes from traveler perception

errors. The process of achieving equilibrium is viewed as a continuous interplay be-

tween demand and supply, which can be modeled as a deterministic or as a stochastic

process. Both a day-to-day and a with-in day contexts are considered. In particular,

the conditions for the existence and uniqueness of a stationary stochastic process are

provided and their relationship to an equilibrium state is studied.

The differences between Hazelton[18] model and Cantarella and Cascetta [7] [8]

model are mainly the following: 1) Hazelton's model is expressed in an atemporal
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framework, thus the Conditional Stochastic User Behavior was devised to solve the

paradox in defining the conditional distribution of route choices. Carterella and

Casetta's model actually has a temporal dimension and thus is not subject to the

paradox. 2) Hazelton's CSUE model is obtained by solving a system of equations that

represent the equilibrium conditions, while Canterella and Casetta's model suggests

an iterative algorithm that simulate the convergence to a fixed-point in the form of a

stationary distribution.

All the above papers dealt with static traffic assignment. In the research body

on dynamic traffic assignment, stochasticity is usually incorporated through a direct

extension of SUE of Daganzo and Sheffi [15]. That is, the proportion of travelers that

choose a certain path between a given O-D pair at each time interval is deemed as

the probability that the path is chosen by an individual traveler for the corresponding

time interval. Peeta and Zhou [23] proposed a hybrid framework for on-line dynamic

traffic assignment in consideration of demand/supply stochasticity. The framework

is composed of DTA solutions generated off-line and then adjustmented on-line. The

demand stochasticity is taken account of at the off-line stage. A set of realizations of

time-dependent O-D trips is generated from the historical database, and a traditional

DTA algorithm is run for each realization to obtain path flow assignments for that

realization. The expected path flow assignments are calculated by computing the

expectation of results obtained over all the O-D realizations. The online component

then uses the expected path flows as an initial solution and make adjustment according

to unfolding conditions, e.g. actual O-D trips and/or incidents. Robustness of the

off-line solutions are then studied.

In summary, stochasticity in dynamic traffic assignment models is mostly consid-

ered as from traveler perception errors. No papers in the literature have considered

DTA models that work with general time-dependent link travel time distributions.

On the other hand, outputs from DTA models in the literature are "average" values

of network variables rather than their distributions. Furthermore, all DTA models are

based on paths. However, as we have studied in the previous two chapters, routing

policies can lead to less expected travel times in STD networks.
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In this chapter, we aim to build a dynamic traffic assignment model that works

with general link travel time distributions. This approach allows for a better rep-

resentation of stochasticity in traffic modeling. Our model is policy-based, with the

expectation that it can give different results from those of path-based models. The

outputs are link travel time distributions, which allows for a richer richer represen-

tation of traffic. Better traffic managment decisions are then possible based on this

richer representation.

This chapter is organized as follows. In Section 4.2, a conceptual framework for

the policy-based stochastic DTA model is introduced. In Section 4.3, the conditions

for a policy-based stochastic DTA model are presented. In Section 4.4, we give an

illustrative example to show how the policy-based DTA model can work and to explore

some unique properties of the model. This is to provide the reader with intuitive

understanding of a policy-based model. More rigorous developement are given in

Section 4.6 through Section 4.8. In Section 4.5, we provide all the notation needed

for the development of the model. In Section 4.6, the users' routing choice model is

established. The dynamic network loading model is developed with the consideration

of queues in Section 4.7. Finally we propose in Section 4.8 the solution algorithms for

the users' policy choice model, the dynamic network loading model and a heuristic

DTA algorithm is proposed.

4.2 A Conceptual Framework for the Policy-Based

Stochastic DTA Model

A conceptual framework for this model is shown in Figure 4-1. The input is the

time-dependent O-D trips and the stochastic dynamic supply, such as the probability

of incidents, the random length of the duration of an incident, or the probability of

bad weather. The output is sample distributions from link travel times and other

measures of effectiveness of interest (such as the link volume and O-D travel times)

and the corresponding routing policy flows. There are three major components of the
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stochastic DTA model:

* the users' policy choice model,

* the dynamic network loading model,

* and the routing policy generation model.

Time-Dependent
OD Trips

f----------------- ------------------------ 1I
I !iI

a User's Policy Choice Model Routing Policies

Routing Policy Routing Policy I
Flows Link Generation Model: i

Link Travel Time BRP Problems i
Dynamic Network Distributions

Loading Model

Stochastic Dynamic Distributions of Link Travel Times
Supply (incidents, etc) Equilibrium Routing Policy Flows

Figure 4-1: A Conceptual Framework of Stochastic Dynamic Traffic Assignment
Model

The users' policy choice model takes routing policies and the time-dependent

demand as input. In discrete time representation, the demand is given as a matrix of

time-dependent number of O-D trips during all time intervals. Note the OD matrix

is deterministic as in traditional DTA models. For each output from the policy choice

model are flows assigned to all routing policies. The policy flows are then loaded to the

network by the dynamic network loading model, with stochastic dynamic supplies.

The stochastic supplies can be in many forms depending on the application. For

example, if we are to do rerouting after an incident occurs, the joint distribution of

the duration and the severity of the incident is the stochastic part of the supply. The

network loading model is deterministic in itself, as it works with a single realization
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of network supplies. Multiple loadings are performed with samples from the dynamic

stochastic supplies to obtain link travel time sample distributions. The routing policy

generation model then takes as input the link travel time sample distributions and

produces optimal routing policies. We have studied in details the routing policy

generation model, i.e. the best routing policy problem in a stochastic time-dependent

network, in Chapter 2 and Chapter 3. In the rest of the chapter, we elaborate on the

other two components and build a stochastic DTA model based on these development.

4.3 A Policy-Based Stochastic Dynamic Traffic As-

signment Model

According to the modeling framework, the policy-based DTA model contains a users'

policy choice model, a dynamic network loading model, and a routing policy gener-

ation model, along with the interaction between them. The equilibrium condition

generalized from the conventional path-based user-optimal condition is as follows:

For each O-D pair at each instant of time, the expected travel time of

the used policies by the users departing at the same time are equal and

minimal.

4.4 An Illustrative Example of the Policy-Based

DTA

In this section, we use an example to show how the policy-based DTA assignment

can work and to show some properties of policy-based DTA results. This example is

not aimed to be a realistic representation of actual traffic applications. Rather the

data is designed to show key properties of policy-based DTA models.
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a

44

b

Figure 4-2: An Illustrative Example for DTA

4.4.1 Example Description

The network in Figure 4-2 has a single O-D pair connected by two parallel links.

An incident could happen on link a. If no incidents have occurred yet, there is a

probability p that the incident will happen in the next time interval. If an incident

has happened and the link capacity has been reduced, it will continue with the reduced

capacity at the next time interval. In fact, the first time interval k that the incident

happens takes a geometric distribution of parameter p. The volume-delay function of

link a is accordingly defined as follows.

I ga(k ), w.p. 1 - p , if no incident happened in the past

Ca (k)(ga (k)) = 59a(k), w.p. p

59a(k), if an incident happend at time k

The volume-delay function of link b is defined as follows:

Cb(k)(gb(k)) = 2gb(k) + 4

where Ca(k)(ga(k))/Cb(k)(gb(k)) denote link travel time of link a/b at time k as a

function of link flow rate Ya/b at time k.

The time intervals in interest are only time 1 and time 2. The O-D trip rate

for both time intervals is 4. All users are risk neutral. Users have information on

whether an incident happened in the past, but not at the current time. For example,

105



at time 2, users know whether the incident happened at time 1. Here is a summary

of possible policies at time 1 and time 2:

Policy Time 1 Time 2

Pi link a link a

A2 link b link b

link a, if incident does not happen at time 0;
13 link b, otherwise

link b, if incident does not happen at time 0;
/14 link a, otherwise

Table 4.1: Possible Policies

4.4.2 A Solution to the DTA Problem

The policy-based DTA equilibrium conditions can be expressed by a system of equa-

tions and inequalities, as in traditional DTA. In order to obtain a solution to the

example problem by solving the system, we need an approach to compute the ex-

pected travel time of a routing policy. We obtain the expressions of expected travel

times for policies by enumerating all possible situations at a given time. The detailed

description is as follows.

The state of link a at time 1 has the following distributions in terms of capacities,

along with the relationship between link flows and policy flows at time 1:

Realization Time 1 Probability ga(1) 9b(1)

1 reduced capacity p f1(1) f2(1)
2 normal capacity 1 - p fh(1) f2(1)

Table 4.2: States of Link a at Time 1

The decisions at Time 2 requires the knowledge of the state of link a at Time

1. Therefore we have the distribution of states of link a at time 1 AND time 2 as

follows, in terms of capacities. The specific forms of policy 3 and policy 4 and the

relationship between link flows and policy flows at time 2 are also shown.
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Realization Time 1 Time 2 Probability A3 p4

1 reduced reduced p link b link a
2 normal reduced p(l - p) link a link b
3 normal normal (1 - p)2  link a link b

Table 4.3: States of Link a at Time 2 (Part 1)

Realization Time 1 Time 2 ga(2) gb(2)
1 reduced reduced fI(2) + f4(2) f2(2) + f3(2)
2 normal reduced fl(2) + f3(2) f2(2) + f4(2)
3 normal normal fl(2) + f3(2) f2(2)+ f4(2)

Table 4.4: States of Link a and at Time 2 (Part 2)

There is some additional notation. fi(k) denote the policy flow of policy i at time

k. gj(k) denote link flow of link j at time k in the rth realization, r = 1,72, when

k = 1, and r = 1,2,3, when k = 2. Ci(k) denotes the expected travel time of policy

i at time k.

We solve the system of equations and inequalities by trial-and-error. We first

assume all policies are used. If the resulting system has a solution, it is the equilibrium

solution. If not, we can assume only some of the policies are used. If a solution is

obtained, we can continue to check if the unused policies have expected travel times

no less than the used ones. If the answer is yes, we can claim that the solution is the

equilibrium solution. The following is the system when all policies are used.

At time 1:

Flow conservation

fl(1) + f2(1) = 4

Equilibriu m condition

C1(1) = C2 (1)
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Expression of expected travel times of p1 and P2

C1(1) = p x 59(1) + (1 -p) x g2(1)

C2(1) = p x (2y(1) + 4)+ (1 - p) x (2g2(1)+4)

Relationship between link flows and

g9 (1)

g!( 1)

gl(1)

9(1)

policy flows

= f1(1)

= fi(1)

= f2(1)

= f2(1)

Nonnegativity constraints

f (1)
f2 (1)

0

0

At time 2:

Flow conservation

L=1 fi (2) = 4

Equilibrium condition

C,(2) = C2(2)

C2(2) = C3(2)

C3(2) = C4(2)

Expression of expected travel times of p, P2, P3, P4

C1(2) = p x 5g.(2) +p(l -p) x 5g2(2) + (1-p)2 x gi(2)

C2(2) = p x (2y(2)+ 4) + p(1 - p) x (2g(2) + 4) + (1 -p) 2 x (2g(2)+4)

C3(2) = p x (2g(2)+ 4) + p(1 - p) x 5g2(2) + (1 - p)2 x ga(2)

C4(2) = p x 594(2) + p(1 - p) x (4g(2) + 4) + (1- p)2 x (49g(2) + 4)
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Relationship between link flows and policy flows

9(2) = f,(2) + f4(2)

g(2) = f 1 (2) + f 3(2)

9(2) = fi(2) + f3(2)

g9(2) = f2(2)+ f3(2)

g2(2) = f2(2)+ f4(2)

gg(2) = f2(2)+ f4(2)

Nonnegativity constraints

fi(1) 0

f2(1) > 0

fh(1) > 0

f4(1) > 0

The equations corresponding to time 1 and time 2 are actually decoupled, so we

can solve them separately. An Excel solver is used to solve the system and a solution is

found. The solution includes the policy flows (fi(1), f2(1), f,(2), f2(2), f3(2), f4(2)),

the link flow distributions (g(1), g2(1), gJ(1), g(1), g(2), g(2), g3(2), g (2), g(2),

gg(2)), and the equilibrium (minimum) expected policy travel times (C1 (1) = C2(1),

C1 (2) = C2 (2) = C3 (2) = C4 (2)). We can obtain link travel time distributions from

the link flow distributions using the expressions of expected travel times of policies.

We should not conclude that the assignment policy flows are unique. If we set

one or more of the policy flows to be zero and eliminate corresponding equations, we

obtain another system of equations that could also possibly satisfy the equilibrium

condition and that can have solutions. Our computation shows that there are indeed

multiple solutions for this example. For example; when p = 0.1, the equilibirium is

attained both when all policies are used or only Pi, pA, /4 are used.
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4.4.3 Solve the Problem with MSA

For realistic applications, it might be very time-consuming to solve directly the system

of equilibrium conditions. We use the MSA method [27] to solve this example. The

convergence resuls are shown below for p = 0.1.

4

-6- Poicyl
-0- Policy2
-A- Poicy3

3.51 --v- Po y4

3-

2.5

Policy 3

Policy I

i.5

0.5 P0142

0,, Policy 4

50 100 150 200 250 300
Number of Iterations

Figure 4-3: Convergence Results (p = 0.1)

We see that the policy flows tend towards the equilibrium solution very fast, after

about 100 iterations. We see similar convergence results for other values of p. However

this conclusion about the convergence rate cannot be generalized. Convergence rates

may depend on specific applications.

4.4.4 Solution Discussion

We have already shown that the policy-based DTA model can be solved, with the

desired outputs, including the policy flows and link travel time distributions. Another

aim of the example is to show some features of a policy-based DTA model.
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Path vs. Policy

Traditional DTA models work with paths. There are two ways of performing path-

based traffic assignment when stochasticity exists. The first is the analog to the CE

approximation presented in Chapter 3. One can take the mean value of any stochastic

factor and thus transform the traffic network into a deterministic one. Then the

deterministic path-based traffic assignment can be performed. In our example, this

leads to the following. The volume-delay function of link a at time k can be replaced

by an expected link performance function Ca(k) = (1lx (1-p)k+5x (1-(1-p)k))fa(k).

The first method is just an approximation, as there is no guarantee of any equilibrium

conditions satisfied.

The second approach to path-based stochastic traffic assignment is to use our

policy-based DTA model, but restrict the policies considered to paths only. The

second is an exact model with the equilibrium condition that all used paths have

the same and minimal expected travel times. In the following, we use "path-based"

assignment to denote this method.

In our example, the two method happen to give the same path flows. This is

due to the linear form of the volume-delay function, as the mean of a linear function

of a random variable equals the linear function of the mean of the random variable.

Generally we expect that the exact method will lead to less expected travel time than

the approximation method.

We now study the difference between policy-based assignment and path-based

assignment by comparing results from assigning flows to Policy 1 to 4 and from

assigning flows only to Policy 1 and 2 (which are actually paths). See Table 4.4.4 for

a summary of the equilibrium expected OD travel times obtained for the path-based

assignment and the policy-based assignment.

We see that for p E (0,1), the policy-based assignment gives less expected OD

travel times, compared to the path-based assignment. Furthermore, for p E (0,1),

the relative difference between them suggests a decreasing function of p. This is

intuitively correct. The information is useful only when an incident happens in time

1, for then we can conclude that the link has a reduced capacity in time 1. When
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p Policy-based Path-based

0 4.00 4.00
0.1 5.30 5.62
0.2 6.25 6.59
0.3 6.97 7.24
0.4 7.48 7.68
0.5 7.88 8.00
0.6 8.16 8.22
0.7 8.35 8.38
0.8 8.47 8.49
0.9 8.54 8.55

1 8.57 8.57

Table 4.5: Equilibrium Expected OD Travel Times as Functions of p

no incident happens in time 1, the knowledge we have about time 1 is no more than

the a priori one. Consequently if the incident is less likely, the fact of knowing its

actual occurrence is more valuable. Thinking about it from another perspective, if

the incident is very likely to happen, we already have the tendency to avoid it, and

thus knowing its actual occurrence does not help us significantly.

For p = 0 or p = 1, the network changes to a deterministic one. In this case, all

policies collapse to paths. Therefore it is intuitively correct that the policy-based and

path-based assignment give the same results.

Collaboration can benefit everyone

We observe interesting phenomenon in the example results. For p = 0.1, we can

see from Table 4.4.4, the equilibrium expected travel time is 5.30. If we assign flows

only to true policies (i.e. Policy 3 and 4), we obtain an expected travel time of 5.21

for both policies. Under these flows, link a actually has a even lower expected travel

time of 4.51. Therefore all users are actually better off under the non-equilibrium

condition. However, as Policy 1 (link a) has less expected travel time, users will

shift to Policy 1. The resulted equilibrium expected travel time, however, is higher.

This situation is actually also present in the user optimal assignment in traditional

deterministic assignment. This shows that if the users can collaborate, all of them
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can obtain less expected travel times.

4.5 Notation for a General Model

The physical traffic network is represented by a conceptual directed network as de-

scribed in Subsection 2.2.1. In the following, the index g denotes a user group defined

by risk taking behavior, the pair (r, s) denotes an O-D pair, the subscript p denote

a policy between (r, s), and K,, is the set of policies between (r, s). We divide a

link into two parts: the moving part and the queuing part. For a given link a, am

denotes its moving part and aq denotes its queuing part. t is the index for continuous

time. All other notations are grouped into policy variables, link variables, link-policy

variables, and time variables.

Policy variables:

f4,g(t) : Departure flow rate on policy p for user group g

from origin r to destination s at time t

frs(t) : Departure flow rate for user group g for O-D pair (r, s)

Link variables:

Uam (t)(Uaq(t))

Uam(t)(uaq(t))

Van (t)(Vaq(t))

Xam (t)(Xaq(t))

Ta(t)

Tam (t)(Taq(t)

Cumulative entrance flow on the moving (queuing) part

of link a during interval [0, t]

Entrance flow rate of the moving (queuing) part

of link a at time t

Cumulative exit flow on the moving (queuing) part of link a

during interval [0, t]

Exit flow rate of the moving (queuing) part of link a

at time t

Load (Number of vehicles) of moving (queuing) part

of link a at time t

Travel time on link a for flows entering the link at time t

Travel time on the moving (queuing) part of link a

for flows entering the moving (queuing) part at time t
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L. : Length of link a

Leq(t) : Queue length of link a at time t

kam(t) Density of the moving part of link a at time t

kay :Jam density of link a

Wam(t) Travel speed on the moving part of link a

for flows entering the link at time t

w"(wae) minimum (free-flow) travel speed on link a

Xa(t) Maximal allowable number of vehicles on link a at time t

uc(t) Maximal allowable inflow rate of link a at time t

u'(t) Upper-bound of the inflow rate of link a at time t

v(t) Maximal allowable out-flow rate that can leave link a at time t

Link-policy flow variables:

Ua's, (t) (U1(t)) : Cumulative entrance flow of the moving (queuing) part

Vrs(

am,( )

X 's,()

of link a along policy p during interval [0, t]

(ug,(t)) : Entrance flow rate of the moving (queuing) part

of link a along policy p at time t

(V,"99(t)) : Cumulative exit flow of the moving (queuing)

part of link a along policy p during interval [0, t]

(vi,9(t)): Exit flow rate of the moving (queuing) part

of link a along link pair p at time t

Xa 9A(t)) : Load of the moving (queuing) part of link a

along policy p at time t

uc',7(t) : Maximal allowable inflow rate of policy p

that can be accepted by link a at time t

VaCIA(t): Maximal allowable out-flow rate of policy p

that can leave link a at time t

Time Variables:

Index for continuous time

Minimum possible free flow link travel time over all links
A M is the number of small interval with length J within a A interval
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4.6 Users' Policy Choice Model

Users of the traffic system are heterogeneous, and there are many ways to group users

depending on applications. In the presence of stochasticity, the risk taking behavior

is of importance. Therefore in this section, we introduce the risk taking behavior

modeling and the corresponding "best" routing policy algorithms. We then divide

travelers into three groups according their risk-taking behavior. We do not divide

users according to their information access. Instead we assume that all users have

access to the most updated online information provided by ATIS.

4.6.1 Risks in Routing Decision Making

In our earlier discussion of the routing model, the routing policies with minimal

expected O-D travel times are found. In fact, when travelers are faced with uncertain

travel times, they are concerned with not only the expected travel time of a routing

choice, but also with the reliability of that choice. If one is sensitive to the loss a

longer travel time would cause, one may prefer a routing policy with less variability.

Similarly, if one is sensitive to the gain a shorter travel time would cause, he/she may

prefer a routing policy with larger variability. Modeling risk taking behavior is an

important part in routing decision making in practice. The following two subsections

show how risk can be modeled under the framework of best routing policy problem.

This involves a direct extension.

The extension is based on derivations in Mirchandani and Soroush [22], where

disutility functions are used to model travelers' risk taking behavior. A disutility

function f(z) is a monotonically increasing function of traxel time z. Assume travelers

prefer a choice with less expected disutility, all other conditions of available choices

equal. In this context, a linear disutility function models risk neutral behavior, and

the best routing policy problem discussed in the previous two chapters can be viewed

as a minimization problem over expected disutility functions with a special form of

linear disutility function where f(z) = z.

An exponential disutility function, on the other hand, models risk taking behavior
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with constant risk averseness or proneness [19]. Assume the exponential disutility

function is given by

g(z) = a + /sgn(y)exp(-yz) (4.1)

where a, #, and y are constants, such that # is positive and

sgn(-y) = 1 if-Y >0

-1 if-Y <0

When y is positive, the disutility function is convex and the travelers are risk

averse. When -y is negative, the disutility function is concave and the travelers are

risk prone [19]. a, P, and y are to be calibrated. The best routing policy problem in a

stochastic time-dependent network as stated in subsection 2.2.1 then can be extended

as to find

I* = arg min{EtxOx ,...2,}E Mze, , -- .. E)]}

= arg min/{Ef(l,X1 ,...,XSEM(XZ,A)[a + /sgn(y)exp(y(txs -- t))]} for a given

= arg minP{E{XO,?1,-...,s}EM(xo,js)[sgn(y)exp(y(t., -- #T.))}

initial state xO. We see that the constants a and / have no effect on the minimization

of expected utility of a routing policy. We thus redefine the exponential disutility

function as

f(t) = sgn(y)exp(yt) (4.2)

without loss of generality, in the sense of obtaining the right optimal policy.

Define d(xo) as the expected disutility of routing policy p from initial state xO,

i.e. dA(j, t, I) = E{xO,±I,...,xs}EM(Xo,)[f (tzs -- Go)]. A recurrent expression of d,(xo)

which is convenient for stating optimality conditions, can be developed as follows.
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= Exo,x,...,xs}EM(xos)[sgn(y)exp(y(tx 5 - tx.))]

= E{xo,xl,...,Xs}EM(xo,P)[sgn()exp(y(tx -- t)exp(y(t, - t. ))]

= EXIA(X,)Exl[exp(y(tz, - tXO))E{,X,...,XSEM(Xi,p) [sgn(y)exp(y(txs - t 1 ))I

= E jp(.To)Ex[exp(-(tx - tx.))d(xi)]

Define xO = {j, t, I} and x1 = {k, t + Cpk,, I'} , where k = p(xo) , then the above

expression of d,(xo) can be written as

d( j,t, I) = Ect,r[exP(-YCJk,t)dM(k, t + Ct, I')jI]

= EcJk,,[exp(tCJk,t)Ev [dP(k,)t + Ck,, I')II]
Therefore Vj E N\{d}, Vt E T, VI that is possible at node j and at time t, d,.(x)

and p* are solutions of the following system of equations:

d,.(j, t, I) = min {Ec,,t[exp(7Cjk,t)Ev [d4.(k, t + Cjk,t, I')]II} (4.3)
kEA(j)

p* (j, t, I) = arg min {Ecj,,[exp(YCk,t)Ei [d. (k, t + Cjk,, ItI')] I} (4.4)
kEA(j)

with the boundary conditions: d.(d, t, I) = sgn(y), p*(d, t, I) = d, Vt E T, VI that is

possible at node d and at time t.

We note that the optimality conditions for the BRP problem aiming at mini-

mizing expected travel time and that aiming at minimizing expected exponential

disutility function have the same structure. Therefore algorithms developed for BRP

variants that minimize expected travel times could be used, with minor changes, to

determine solutions minimizing exponential disutility functions incorporating risk be-

havior. Note that d,.(j, t, I) is derived based on the definition of disutility function

as in Equation 4.2. The true expected disutility as defined in Equation 4.1 can be

obtained by applying a linear transformation: a + /d3,.(j, t, I).

4.6.2 Classification of Users

We assume that ATIS provides perfect online information (see definition in Sub-

section 2.2.2) and all users have access to the global network conditions through

communications with the ATIS. Users could have perception errors in obtaining the
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information from ATIS. For the sake of ease in presenting the model, we assume that

there are no perception errors. This is to say, that all users have perfect online infor-

mation. As we discussed before, even with the same information, the same time and

the same current node, users with different risk-taking behavior will make different

routing decisions. Therefore we classify users into three types accordingly:

type 1: users who are risk neutral

Users who are risk neutral have disutility functions g(z) = z, i.e. they consider

only the expected value of O-D travel time, not the variability. Therefore they will

follow the routing policy that minimizes the expected travel time to the destination

node. Specifically, routing policies generated by Algorithm DOT-SPI from the routing

model will be followed by this type of users.

type 2: users who are risk averse

Users who are risk averse have disutility functions g(z) = a+exp(yz). Therefore

they will follow the routing policy that minimizes the expected disutility as defined

to the destination node. The optimality conditions presented in Equation (4.4) can

be used to obtain the routing policy that minimizes the expected disutility to the

destination node.

type 3: users who are risk prone

The processing of users who are risk prone are conceptually the same as that for

the users who are risk averse. The only difference lies on the sign of the constant y.

4.7 The Dynamic Network Loading Model

In this section, we develop a flow-based policy-based dynamic network loading model.

This work is built upon previous works by Chabini and He [11] and Chabini and

Lan [12]. The common feature of these works is that the network loading model is

expressed through a system of flow equations. Specifically the work by Chabini and
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Lan [12] considers the spill-back of queues which is - desirable feature in modeling

congested networks. The modeling of queues is done by enforcing the limit on maximal

inflow rate, maximal out-flow rate and storage capacity of any link. We will take the

same approach to model queues.

Numerous random factors in the supply side can be captured as a change in

capacities. For example, an incident generally blocks several lanes, and thus reduces

the storage capacity of the link. Red lights can be viewed as a device to reduce the

maximal outflow rate to zero, while green lights recover the maximal outflow rate to

the normal value. The model presented in this section is not claimed to be the best

network loading model in terms of modeling traffic phenomena. It is adopted instead

as it is relatively realistic and suffices to illustrate the implications of policy-based

network loading.

4.7.1 Travel Times on Links with Queue and Varied Out-flow

Rates

We divide a link into two parts in the presence of queue: a moving part and a queuing

part. Assume that vehicles in a queuing part move in jam density. See Figure 4-4.

Moving Part Queuing Part

Lam(t) Laq(t)

Figure 4-4: Moving Part and Queuing Part of a Link

We also make the following two assumptions about link travel times:

1. link travel times are bounded from below by a positive number, and

2. the travel time of a link depends only on the current and/or past traffic condi-

tions on the link.

These two assumptions are realistic because (1) a link has a minimum length and the

travel speed is finite and is no greater than the free flow travel time of that link and
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(2) the travel time for a user entering the link usually depends only on the number

of vehicles that entered the link earlier.

The travel speed on the moving part warn(t) can be determined by the modified

Greenshields' model as follows:

Wa.n(t) = wW"" + (wwax" - )[1- (km(t) )a (4.5)

where karnm(t) = Xan , and the parameters a and 6 need to be calibrated for eachLa-L.q (t)'

link.

The travel time on the moving part, Tarn(t) can be determined approximated as

the follows:

Tarn (t)W= L. x kaj - X.(t) (4.6)
Warn (t) x kaj+ (ua,(t) - Va, (t))

If the FIFO condition is satisfied on queuing part (one cannot possibly pass others

in a queue), all flows enter the queuing part at time interval [0, t] will exit the queuing

part at time interval [0, t + ra,,(t)]. If we assume FIFO is satisfied for the queuing

part, the travel time on the queuing part can determined by the following equation

of ra, (t), assuming cumulative inflows and outflows have been determined:

Ua.,(t) = Va,,(t +Ira, (t)) (4.7)

We do not actually enforce FIFO in the queuing part in the formulation. The above

equation can be used as an approximation to determine queuing travel times.

4.7.2 A Moving-Queuing Model for Policy-Based Dynamic

Network Loading

We develop a moving-queuing model for the policy-based dynamic network loading,

based on the work by Chabini and Lan [12]. Basically we assume that the queue can

only occur starting from the tail of a link, and it can propagate to the head of the link.

A general depiction of a link with the flow variables are shown in Figure 4-5. This
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am is WX am M am/A(t(t) a, 9XMX,*q9 (t) a vi,*,

U **,g M Vrsg (t ) Urg (t ) V*g (f
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Figure 4-5: Moving-Queuing Model with Variables

model is suitable for queues with fixed front end. It models adequately the formation

of queues, because generally the formation of a queue is due to a bottleneck with

reduced capacity which is the front end of the queue. The bottleneck is generally

fixed, for example, an incident, the narrowing of a road, a red light, etc. However,

this moving-queuing model cannot model the dissipation of a queue adequately, where

both the front end and the back end of the queue are moving. Chabini and Lan [12]

has also proposed a moving-queuing-moving model which can consider the dissipation

of queues. In our DTA model, only the moving-queuing model is adapted to show the

idea, but the adaptation of the moving-queuing-moving model can be done similarly.

Augmentation of the Network and Spillback of Queues at Origin Nodes

Before presenting the network loading formulations, we augment the network to

consider the case where the spillback of queues reaches the origins. For each origin

node r, a virtual origin r' and a virtual link (r', r) is added to the network. Link

(r', r) has infinite maximal inflow rate, infinite maximal out-flow rate, and infinite

storage capacity. It could have a moving part and a queuing part as a regular link,

to model the spillback to the origin. However, travel times on both parts are always

zero, i.e. Equation 4.6 and Equation 4.7 are not applicable here.

Queuing States of Link a and Adjacent Link Pair (a', a)

Link a could be in three states at time t as shown in Figure 4-6.

Link a is in state 1 if the partial load of queue, Xq(t), is equal to zero. Link a is

in state 2 if Xaq(t) = Xg(t). Link a is in state 3 if 0 < X,(t) < X(t).
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C moigeigmoving queuing

Li L2 L3

Figure 4-6: States of a Link

Accordingly, adjacent link pair (a', a) could be in four states at time t in terms of

queuing status of the downstream end of link a' and the upstream end of a. The four

states are depicted in Figure 4-7.

moving moving moving yueuing
ala a a

Pi P2

queuing moving Boh queuing queuing

ai4p - a a a
P3 P4

Figure 4-7: Status of a Link Pair

The formulation of the dynamic network loading (DNL) problem can be different

for different link queuing states and link pair queuing states. In the rest of the

subsection, we present a dynamic network loading model for all the cases. Most of

the differences are trivial, with only changes in notations. We use L1, L2, L3 to denote

the three queuing states for a given link, and P1, P2, P, P4 to denote the four queuing

states of a given adjacent link pair.

Determining the Next Link of Policy y at time t

A routing policy is a decision rule based on on-line information. It maps link travel

time realizations to routing decisions, i.e. the next node (link) to take. Therefore

one cannot know which link he/she should enter after traversing a until he/she is

at the end of that link. As we have assumed, the input routing policy is based on

the assumption of perfect online information, i.e. the users know all link travel time

realizations up to the current time k. To determine the next link of policy p at

time t, we must translate the current available link travel times -r(t'),Vt' < t to an

event set at time t in the definition of policy p. However as we have pointed out
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in the discussion of Equation 4.7, if queues exist, we are not able to obtain all the

link travel times up to time t. Furthermore, even if we have all the link travel time

realizations, they might not be exactly the same as any event set of the routing policy

p at time t. We solve this problem by using a weighted least-square method. First we

approximate all unavailable link travel time realizations up to time t with their latest

available realizations respectively: ra(t') = Ta (to),Vto < t' < t, where to is the largest

time index with known queuing travel time for link a. Next we find an event set

closest to the approximated link travel time realizations, in terms that the weighted

second-order norm between the approximated link travel time realizations and the

event set is the smallest among all possible event sets at time t. The weights can be

customized, and intuitively link travel time realizations of a larger time index have

larger weight than those with smaller time indexes. We denote by p(a, t) the next

link of link a along policy p at time t. The link travel time realizations ra(t'), V' < t

are omitted, since they are unique during a single loading process.

Modeling the Moving Part of Link a

The DNL model for the moving part of link a is formulated as the following system

of equations. All link states are per to link a, and all adjacent link pair states are per

to link pair (a', a).

Link Dynamics Equations

dX'j,,jt)- r 9 (
d t a(t) - v,(t) V(r, s), Vg, Vp E K , Va (4.8)

Flow Conservation Equations

If link a is not a virtual link:

P1 (moving-moving):

uj',r(9) = ",(t) V(r, s), Vg, Vp E K,.,,a = p(a',t), Va (4.9)
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P 3 (queuing-moving):

ur$L (t) = va(t) V(r, s),Vg, V E Kr, a = g(a,t),Va (4.10)

If link a is a virtual link:

uamp(t) = f,"(t) V(r, s), Vg, Va = (r', r)Vp E K,, (4.11)

Flow Propagation Equations

=wEzz+ -re(z)4}mla.(w)dw V(r, s), Vg, V E KraVa (4.12)

Initial Conditions

ULt,(0)-= 0 ,V,'rg(0) = 0, x", =0,V(r, s),VgVpEKr,Va (4.13)

Modeling the Queuing Part of Link a

The hard part of modeling the queuing part lies in the computation of travel time

on queuing part ra(t). It can be obtained by solving Equation 4.7. However, the

solution depends on flow variable values at future times and thus cannot be obtained

when vehicles just join the queue. Without queuing travel times, the out-flow rate

then cannot be determined using flow propagation equations similar to Equation 4.12.

We resort to the maximal inflow rate and out-flow rate to determine out-flow rate for

the queuing part.

The outflow rate of any link is constrained by v(t), the maximal allowable out-

flow rate of the link and u (t), the maximal allowable inflow rate of the next link. We

assume va(t) is mainly determined by infrastructure profile and is given for a single

loading process. For example, if an incident occurs from 9am to 11am and blocks

half the lanes, v.(t) can be cut in half for 9am '< t < 11am. The determination of
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Ut is more involved, as it depends not only on infrastructure profile, i.e. the upper-

bound of inflow rate '" but also on the queuing states of link a. If link a is

all queuing, i.e. the storage capacity of link a is reached, and if the speed of wave

propagation is infinite, the number of vehicles that can be accepted by link a during

a time interval is at most the number of vehicles that exit link a during that time

interval. Mathematically speaking, we have:

Umax( ) if a is in L, or L3
ua(t) = Wa ' iVa (4.14)

min(uma'(t), va,(t)), if a is in L2

Note that by assuming the speed of wave propagation is infinite, the queue is like a

train: whenever the head of the train moves, the tail of the train moves at the same

time. This is an approximation to the realistic situation.

We then have to allocate the maximal allowable outflow rate and maximal al-

lowable inflow rate to users in different groups with different O-D pairs and routing

policies. The allocation is based on flow ratios:

Ju(t) x fi(u's%(t), Uam(t)), if a is in L1 or L3
U c,,-sg(a) 1 M 4(t) x fi(urs:(t), uam(f)), if a is in L2 (4.15)

V(r, s),VgVp E K 7 ,Va

vg(t) x hi(v;f(t), Vam(t)), if a is in L1

vg(t) x hi(vgsg(t),vam(t)), if a is in L2 or L (4.16)

V(r, s), Vg,Vp E K,.,, Va

Functions f 1 (.),f 2 (.),hi(.), h2 (.) can be defined by users.

The formulation of the DNL problem for the queuing part is expressed by the

following system of equations:

Link Dynamics Equations

dX"(t)-

7'4(t) ,() -v" (t) V(r, s),Vg,Vp E Kr ,Va (4.17)
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Flow Conservation Equations

L2 (queuing) and P2 (moving-queuing):

uVa(t) - i4'%(t) V(r, 8),Vg, Vp E K, a = p(a', k),Va

L2 (queuing) and P4 (queuing-queuing):

ur,(t) = _ r (t) V(r, s), Vg, Vp E K,.,,a = g(a',k),Va

L (moving-queuing):

V(r, s), Vg, Vp E K, Va

Flow Propagation Equations

If link a is not the last link for destination s:

v :,(t) = min(v s9(t), u5j7"(t)) V(r, s), Vp, V E K,,, a" = p(at),Va (4.21)

If link a is the last link for destination s:

4 14(t) - v.CI 9 (t) V(r,s), Vg,Vp E Kr, Va

Initial Conditions

U.' 9(0) = 0, VQ, (0) = 0, XZ'',g (0) = 0,V(r, s), Vg, Vg E K,,, Va (4.23)

4.8 Solution Algorithms

We descretize the continuous time into small intervals. For each interval k, the

continuous variables are assumed to be constants within that interval. These variables

include the O-D trips, various variables in the dynamic network loading problem, and
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the link travel times in a STD network as an input to the BRP problem.

4.8.1 User's Policy Choice Algorithm

The users' policy choice algorithm takes as input the the dynamic O-D trips and the

best routing policies for all O-D pairs and all user groups. It produces policy flows

f;'9 ,V(r, s), Vg, Vp E K,.,. We assign all flows to their corresponding best routing

policies.

{Wfrs(t), if policy p is a best routing policy for user group g, (4.24)

0, otherwise.

In case that more than one policies are optimal, we can assign users equally to these

optimal policies. Denote by Nmin(k) the number of optimal policies for user group g

of O-D pair (r, s) at time k. Therefore f,89(k) is giren by:

- () f s(t)/Nmin(k), if policy p is a best routing policy for user group g,

01, otherwise.
(4.25)

The method of the policy choice model is as follows: for all O-D pair (r, s), p E

K,-s, g E {1, 2, 3}, compute f,89 using (4.24) or (4.25).

4.8.2 Algorithm of Dynamic Network Loading Model

In this subsection, we present a solution algorithm for the policy-based dynamic

network loading model. The input to this model is the policy flows for each O-D pair

and each user group f,'s), and the stochastic and dynamic supply. The output of

the model is the sample distribution of link travel times of all links at all times. The

algorithm is an adaptation of C-load algorithm developed by Chabini and He [11]

which was used to solve a path-based DNL problem with no queues.

The development of the solution algorithm to the dynamic network loading model
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is based on a discretized version of the system of equations. Denote A as the minimum

link travel time over all links and all realizations. We choose the interval length

6 = A/M, where M is a positive integer. Each interval is indexed by an integer

k, and the kth interval represents [kS, (k + 1)3). For each interval k, the continuous

variables are assumed to be constants within that interval. We present a discretized

DNL model as follows:

Moving Part of Link a

Link Dynamics Equations

x;:; "(k) - U",(k) - Vl'I (k) V(r, s),Vg,Vp E K.,,7Va

Flow Conservation Equations

If link a is not a virtual link:

P1 (moving-moving):

u rgp(k) = vZi-,(k) V(r, s),V g,Vg yE K7 ,,,a = (aIIt),,Va

P3 (queuing-moving):

V(r, s), Vg, Vp E K,a = p(a, t), Va

If link a is a virtual link:

a9 p(k) = fl"(k), V(r, s), Vg, Va = (r', r)Vp E Kr,

Flow Propagation Equations

z u ",(k)6
jE{j:Osj6+ram(j)<kJ}

V(r, s),Vg,Vp E KrsVa
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"'rsg,(k) = Vr i (k)



r.9',(k) can be calculated approximately as follows:

v'k=V"(k) -V",(k -1)
(k=A6m V(r, s),Vg,Vp E K,., Va

Initial Conditions

u::;(0) -0, vz'p(O) = 0, X",(0) = 0

Uam89(k)can be calculated as follows:

k-i

U;'I(t) = x uam (j)6
j=O

V(r, s),VgVp E K, Va

Queuing Part of Link a

Link Dynamics Equations

Xrg (k) = UZq,9,(k) - V4r89(k)

Flow Conservation Equations

L2 (queuing) and P2 (moving-queuing):

V(r, s),Vg.Vp E KVa

V(r, s), Vg,Vp E Kra, a = p(a', k), Va

L2 (queuing) and P4 (queuing-queuing):

V(r, s),Vg,Vp E K, a = p(a', k), Va

L3 (moving-queuing):

u"9,(k) - va'rg(k) V(r, s), Vg,Vp E K78,Va
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V(r, s),Vg,Vp E K,.,,Va (4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

u;',g,(k) = vrisgA(k)

u rag = Vrsgagi.i(k) at kk)
q A



Flow Propagation Equations

If link a is not the last link for destination s:

v4'(k) = min(v 79 (k), g(t)) V(r,

If link a is the last link for destination s:

r (k) = var(k)

s),VgVp E K, 87 a" = p(a,t),Va (4.38)

V(r, s),Vg, Vp E K,.,, Va (4.39)

Please refer to Equation 4.41 through Equation 4.43 for the formula of determining

vtsg(k), uc',''9 (k), and v'7 8 9 (k).

Initial Conditions

U'g(a ) = 0, V4 f (0) = 0,Xa',gu(0) = 0,V(r, s), Vg, Vp E K,Va (4.40)

The allocation of capacities for time interval k is straightforward at the first look.

However, we do not know the flow values at time k before determining the capacities

at time k. Thus we have to approximate the flow values at time k by their values at

time k - 1. Specifically we have the following:

uu'"=W(k), if a is in L1 or LaU",(k) a3Va
min(u' t*(k), v.,(k - 1)), if a is in L2

uc#(k) -=f uc(k) x f,(Urs'.9(k - 1), tam(k - 1)), if a is in L, or L
uca, (k ) m

u(k) x f2(u'ag,(k - 1), Uam(k - 1)), if a is in L2

V(r, s),Vg,Vg E K,.,,Va

(4.41)

(4.42)
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C13(k) =
vc(k) x hI(va'1,(k - 1),vam(k - 1)), if a is in L1

vc(k) x h2(Va',(k- 1)-vam(k-1)), if a is in L2 or L3

V(r,83),Vg,Vp E Kra,Va

U,9Z(k) can be calculated as follows:

k-i

UZg(k) = Z u(j)
j=O

V(r, s),Vg, Vp E K,,IVa

V4-9(k) can be calculated as follows:

v ra(k) - V4',(k - 1)+ vog,(k)6

Travel Times on Moving and Queuing Part

Wam(k) = w"tih + (Wmax _wn)[1 (kam(kc)
kaj

'arn(k) = La x k - Xaq(k)
Warn(k) x kaj+ (Ua,(k) - va,(k))

Ua,(k) = V,(k + ra(k))

It is obvious that we cannot solve for Ta,(k) at time interval k. However we have a

procedure to determine raq(j), j < k as follows:

Procedure.QueuingTime(a, k): Searching r, at Time k

1. Let k' be the largest time index with known -r,

2. k" = k' 4 1

3. If Uaq(k") = Vaq(k), then k' = k'+ 1,r.,(k") = k - ki"
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Total travel time on link a if entering the link at time interval k:

ra(k) = ram(k) + ra,(k + [Ta m(k)J) (4.48)

We use the following conditions to determine the status of link a at time k:

Procedure..Link.State(a, k): Determining the State of Link a at Time k

1. Approximate X%,(k) by setting it equal to X,(k-1) +(ua,q(k -1) -va,(k - 1))6

2. If link a is in status L1 at time k - 1, then go to Step 6

3. If Xa,(k) <0, then L,

4. If Xaq(k) ;> X(k), then L3

5. If 0 < Xa,(k) < Xg(k), then L2

6. If vrs% (k) > min(v '9(k), ucif(k)), 3(r, s), 3g, 3p E K, then L3 , else L1

We use an algorithm adapted from C-load [11] [12] to solve the DNL prob-

lem in a chronological order. The DNL problem takes as input the policy flows

fpSg, V(r, s), Vg, Vp E K,.,, and produces link travel time sample distributions with a

pre-specified sample size R. The statement of the algorithm is as follows:

C-Load for the Policy-Based Dynamic Network Loading Model

Step 0 (Initialization)

0.1 Determine A by A = mina,,,a
war

0.2 Determine M = A/

0.3 R: the number of joint realizations of link travel times

0.4 i = 0 (the counter for number of realizations)

0.5 j = 0 (the counter for time indexes)

Step 1 (Loading)

1.1 Sample from stochastic dynamic supplies

to obtain v (k), urn ax(k), Va, Vk
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1.2 (A Single Process of Loading)

1.2.1 Initialization (4.32)(4.40)

1.2.2 (Loading of the j' A interval. See "1.2.2 of C-Load")

1.2.3 If network is empty, go to Step 2

otherwise j = j + 1, go to Step 1.2.2

1.3 (Stopping Criterion)

Ci, = r(t), p, = 1/R

Ifi = R, STOP

Otherwise i = i + 1, and go to Step 1.1

Step 1.2.2 of C-Load

1.3.2 For k = jM to (j + 1)M - 1 do:

1.3.2.1 Determine a" = p(a, k), Va

1.3.2.2 For a E A, p E K,,,g, do:

Compute Vc',(k) (4.30)

Compute v,%(k) (4.31)

Determine the state of link a by calling Procedure.LinkJState(a, k)

If L1: do nothing

If L2 or L3 : Compute vg(k) (4.38)(4.39)

Compute V{Z,(k) (4.45)

1.3.2.3 For a E A,g pE K,g, do:

Determine the state of (a', a) by calling ProcedureLink..State(a', k)

For moving part:

Compute u;9, (4.27)(4.28)(4.29)

Compute U,'9, (4.33)

Compute XZY,% (4.26)

For queuing part:

Compute zu'4 (4.35)(4.36)(4.37)

Compute U4,9A (4.44)
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Compute XZ (4.34)

1.3.2.4 Compute rm (k) (4.46)

Compute r,(j), j < k by calling Procedure-Queuing..Time(a, k)

1.3.2.4 Compute u!';(k) and vg 9 (k) (4.41)(4.42)(4.43)

4.8.3 The Stochastic Policy-based DTA Heuristic

The idea of the solution algorithm is to find a solution to the policy-based DTA model

by an iterative process on path flows. At each iteration, the policy flows are updated

by combining the results from the current iteration and the previous iteration. We

use MSA [27] to update policy flows. Since no proof of convergence is available at this

moment, the method is heuristic for the DTA problem. The algorithm is presented

as follows:

Policy-Based Stochastic DTA Heuristic

Step 0 (Initialization)

0.1: N = maximal number of iterations;

0.2: R = number of realizations of link travel times

0.3: Augment the network by adding virtual nodes and links for origins

(See Subsection 4.7.2);

0.4: Compute initial policy flows {ff7g9()(k)}

from free-flow link travel times (NOTE: a path is a policy);

0.5: n = 0 (the counter of iteration);

Step 1 (Main Loop)

1.1: Run the dynamic network loading model using C-load

to obtain {cjk,t, r = 1, ... , R}

1.2: Run the BRP algorithm to obtain optimal routing policies

for all (r, s), all 9, based on {ck,,,r = 1, ..., R};

1.3: Compute f,8 9(k) by the policy choice algorithm;

1.4: Update policy flows:
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fr;g'+l)(k) = fr g(k) + a(r)[f '(k)- (k)],

where a) = 1/(n + 1),g = 1,2,3.

Step 2 (Stopping Criterion)

If n = N, STOP

Otherwise, n = n+ 1, and go to Step 1

4.9 Concluding Remarks

In this chapter, we studied the policy-based stochastic dynamic traffic assignment.

We gave a conceptual framework for this model, composed of three models: the rout-

ing policy generation model, the users' policy choice model, and the dynamic network

loading model. We have already studied the routing policy generation model in Chap-

ter 2 and Chapter 3. We gave the policy-based stochastic DTA equilibrium condition.

An illustrative example is given to show the process of policy-based assignment and

study the characteristics of a policy-based assignment. We then studied the users'

policy choice model. We modeled the users' risk taking behavior by using disutility

functions and showed that a straighforward extension of the BRP algorithm can be

used to solve the minimum expected disutility problem. We then classified users into

three groups based on the risk taking behavior. The dynamic network loading model

is formulated based on the work by Chabini and Lan [12]. Solution algorithms are

then presented.
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Chapter 5

Conclusions and Future Directions

We studied the best routing policy problems in stochastic time-dependent networks.

This problem is a fundamental research problem with a wider application domain in

traffic. This includes traffic networks where this problem arises in the development of

dynamic traffic assignment methods. There are many variants of the BRP problem

in STD networks, however they can be integrated in a framework. We established

such a framework, including a general description of the STD network, the decision

process, the problem statement, and the optimality conditions. We provided a com-

prehensive taxonomy of the BRP problem, based on network statistical dependency

and information access. These two factors determine the current-information based

on which the routing decisions are made. Numerous variants exist according to the

taxonomy, and we provided insights into most of them, focusing on the specification

of current-information. We then studied in details a variant (termed the POI variant)

which is needed in dynamic traffic assignment models. The POI variant takes into ac-

count the statistical dependency among link travel times and the role of information

in routing decision making, which is a realistic depiction of traffic systems equipped

with ATIS and/or ATMS. An exact algorithm (Algorithm DOT-SPI) was designed

and implemented for this variant.

The complexity analysis of Algorithm DOT-SPI revealed the need to design good

approximations for the BRP problem. Four approximations were presented. Their

properties were studied both theoretically and computationally. There is a trade-off
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between effectiveness and efficiency for all approximations, i.e. they could have sat-

isfactory running times, but their results could be arbitrarily worse in absolute value

than those obtained by running the exact algorithm. The computational tests studied

the relationship between some parameters and the performance of approximations.

We studied for the first time a policy-based dynamic traffic assignment model.

This DTA model outputs sample distribution of link travel times and other measures

of effectiveness in interest. We proposed a conceptual framework and stated the

equilibrium condition for the policy-based user optimal dynamic traffic assignment.

We revealed the difference between policy-based and traditional path-based DTA

models through an illustrative example. We developed a users' policy choice model

and a dynamic network loading model. Solution algorithms were designed for both

models. A DTA heuristic was developed based on the work on the routing model and

the users' policy choice model and dynamic network loading model.

Future research in the BRP problem can be in the following directions:

1. Identify the variants with realistic assumptions on network statistical depen-

dency and information access that are suitable for traffic applications. Intu-

itively local information access and partial statistical dependency is the correct

choice, but further research work is required to obtain the specific form that

trades off realism and model tractability.

2. The mechanism to deploy the BRP algorithms and approximations in actual

traffic applications. For example, how to obtain the joint realizations of link

travel times needed for Algorithm DOT-SPI? What if the observed link travel

time realizations do not comply with the a priori distributions? For the two

open-loop approximations, how to obtain a new estimate of link travel time

marginal distributions at each decision point? The computational tests derive

the marginal distributions from the joint distribution, but this is not the case

in reality.

3. Conduct more extensive computational tests to study the performance of the

four approximations presented in this paper. The computational bottleneck
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of the current computational tests is the generation of samples from the joint

realization of all link travel times at all times. More efficient way is desired so

that tests on larger network can be carried out.

4. Design approximations that are both realistic in traffic settings and computa-

tionally feasible. Test algorithms with real-world data. One possible approx-

imation is the aggregate states approximation. It is also referred as feature

extraction in dynamic programming. So far our network conditions have been

in a very disaggregate level, i.e. each possible link travel time realization can

possibly change the state. Sometimes, however, aggregate states could be used

to reduce the dimension of the state space while still give a satisfactory rep-

resentation of the network conditions. One possible aggregate state in traffic

applications is the level of service, A, B, C, D, E, or F.

5. More comprehensive and rigorous analysis regarding the risk taking behavior

is desired. The current discussion in Section 4.6 is based on the assumption of

exponential disutility function. There are other forms of disutility functions that

can be explored. Furthermore, there are other approaches other than disutility

(utility) functions to take capture risk in the modeling of decision making under

uncertainty.

Future research in the policy-based stochastic dynamic traffic assignment can be

in the following directions:

1. In our current stochastic DTA model, the O-D trips are deterministic. However

demand is one of the major sources of stochasticity in traffic systems. We need

to extend our work to consider the demand stochasticity. Peeta and Zhou [23]

proposed a way of considering demand stochasticity. We might develop our

methods based on their work.

2. A more realistic dynamic network loading model is needed. Basically there

are three types of dynamic network loading models. The first is the analytical

model. This kind of models is able to provide mathematical properties of the
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modeling system, but is generally not so realistic. The second is the simulation

model. Realism is the outstanding characteristic of a simulation model, but it

is usually very time-consuming. The third is the cell transmission model. This

model is a combination of the previous two. It is relatively realistic, requires

less computing resources and is suitable for implementing routing policies. We

propose to use a cell transmission model in the future.

3. Efficient implementations of the policy-based stochastic DTA model are required

to study the significance of stochasticity in a real network. High-performance

computing implementations are considered.

4. DTA models with various assumptions on perception errors, risk taking behav-

ior, information access, and network statistical dependency are to be developed.

Our current model is a relatively simple one, as the main purpose is to show the

concept. However, in order for the DTA model to be applicable, more realistic

assumptions have to be made.

5. Traffic management is one of the primary application area of DTA models.

Research on the design of traffic management schemes based on the developed

DTA methods is essential for the application of DTA models. If implemented,

the management scheme can provide a real world test bed for the DTA methods.

This opportunity is invaluable.

6. Congestion has been our only target. However in an environmentally con-

strained world, traffic emission should be a problem as serious as congestion.

DTA models considering both travel times and emissions are to be developed.
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Appendix A

An Illustrative Example for

Algorithm DOT-SPI

We use an example to illustrate how Algorithm DOT-SPI works. The small network

in Figure A-1 has three nodes, three links and the number of time periods is 3. The

values of the travel time realizations are in Table A.1. Each of the eight realizations

has a probability of 0.125. The network is designed to be very small to make the

understanding of the algorithm easier. Note that travelers starting from node 2 or

node 3 have no choice but to take node 3 as the next node. It is suggested that

the reader pay attention to how routing decision at node 1 is affected by time and

information.

Step 0: Construct EV(t), t = 0, ... , 2

Th2
2

1 3

Figure A-1: Algorithm DOT-SPI: A Small Network
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Time Link v, v2  v3  v4  v5  v6  v7  v8
1 TT1TTYWTY33
2 TYT1TYT11

__3 TTTTTTT44T3
1 TYTTYTYT 1

33 3 2 2 2 1 3 2
1 2 1 1 1 2 2

t>2 2 1j2 1 1 1 1 2 1
3 3 12 4 3 5 2

Table A.1: Joint Realizations for the Small Network

Call Generate.Event-Collection

D = {{v1,... , vs}}

t = 0

(j, k) = 1

S = {VI, ... 81s

w=1

si = S

(j, k) =2

w = 1

w =

(j, k) = 3

W= 3

Sl'= {v1, v2 ,v 3 }, S2 = {v 4 ,v 5, V6 }, S' = {V7, V8 }

D'= {{v 1 , v2, v3}, {v4, V5, v6}, {v7, v8 }}
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D = {{V1, V2,V3}, {V4, VS, V6}, {V7, Vg}}

EV(O) = {{v1, v2, v3}, {v4, V5, V6}, {V7, V8}}

t=1

(j, k) = 1

S = {VIsV27,V3}

W = I

si = s

D'= {{Vi, V2, V3}, {V4, V5, V6 }, {V7, V8}}

s={V4,1V5,V6 }

w = I

D'= {{I, v2, v3}, {v4, v, v6}, {v7, v8}}

S = {V7, V8}

w=2

s={V7},S2= {V8}

D'I= {{1i, V2, V3}, {V4, V5, V6}, {V7}, {VS}}

D = {{VI, V2,V3}, { V4, VS, V6}, {V7}, {V8}}

(j, k) = 2

s = VI 7V2 iV3}

w=2

s={ v1,Vv2},S ={V3}

D'= {{V1, V2}, {V3}, {V4, V5, V6},{V71}, {V8}}

s =IVt4, v5 , V6}

w=2

s={v4,Vs},s'= {V6}

D = {{1, V2}, {V3}, {V4, Vs}, {V6}, {V7}, {Vs}}

S =Vy
w=1

D'= {{Vi, V2}, {V3}, {V4, V&}, {t7e}, {V7}, {738}}
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s ={v8}

w=1

si= s
D'= {{Vi, V2}, {V3 }, {V4, V5}, {V6},{V7r}, {V8}}

D = {{vl, V2}, {V3 }, {V4, V5}, {V6}, {V7}, {V8}}

(j, k) = 3

S = {vi,v2}

w=1

si= s
'= {{vI,v 2}, {v3}, {v4,V5}, {v6 }, {v7 },{'81}}

s= {V3}
w =1

si=s
'=I{{VIVV 2 }, {V3},{V4,V51}, {V6 }, {V?},{V8 }}

S = {v4, V5}

w =1

si = s

D' = {{vI, v2}, {va}, {v4,V5}, {v&}, {v7},{v8}}

s ={v6}

w =1

Si = s

D' = {{vI, v2}, {v3 }, {V4, V5}, {V6 }, {V7},{V81}}

S={V7}

w =1

si= s
D' = {{v1, v2}, {v3}, {v4, V5}, {v6}, {v7}, {v8 }}

s={v8}

w =1

si = s

D'I= {{V1, V2}, {V3 }, {V4, V5}, {2V6}, {V7},{VS}}
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D = {{v1, v2}, {v3}, {v4, V5}, {v6}, {v7}, {v8}}

EV(1) = {{VI, v2}, {v3}, {V4, VS}, {V6}, {V1},{V8}}

t =2

(j, k) = 1

S = {vi,v2}

w = 1

si= s
D' = {{v1, v2 },{v3}, {V4, V5}, {V6}, {V7}, {V8 }}

S = {v3}

w =1

Si= s

D' = {{v1, v2}, {v3 }, {V4, V5 }, {V6 },{V71}, {7V8}}

S = {V4, V5 }

w =1

si = s

D'= {{Vi, V2 }, {V3}, {V4, V6 }, {Ve}, {V7}, {V8}}

S={v6}

w =1

Si= s
D= {{Vi, V2 }, {V3}, {VI4, V5}, {V6}, {V7}, {V8 }}

S={v}

w =1

si=s

D = {{i, v2},f{v3},{v4, V5},f{v6}, {v7}, {v8 }}

s={v8}

w =1

si= s

D'= {{Vi, V 2}, {V3}, {V4, V5 }, {V6},{V7}, {Va}}

D = {{v1, V2}, {V3 }, {V, tt5}, { V { V,8VS}}

(j, k) = 2
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S = PVi, v2}

w=2

sl= 5V,},S2'= {v2 }

D'= {{V}, {V2},{V3 }, {V4 , V5}, {V8}, {V7 }, {V8 }}

S={v3}

w =1

Si=S

DI= {{v 1}, {v2},1{v3}, {v4, V5}, {v6},{v7}, {v8}}
S = {v4,v5}

w =1

Si=s

D'I= {{v1},I{v2}, {v3}, {v4, V5}, {v6}, {v7}, {v8}}
S={v6}

w =1

si = s

D' = {{v1}, {v2}, {v3}, {v4, V,5 }, {V6}, {V?}, {V8 }}

S= {v7}

w =1

si=s

'= {{v1}, {v2}, {v3}, {v4, V5}, {v6}, {v7}, {v8}}

s5= {v8}

w =1

s =s

D'= {{v 1}, {v2}, {v3}, {v4, V5 },I{v6}, {v7}, {v8}}

D = {{v1}, {v2}, {v3},{v4,v5}, {v6},{v7}, {v8}}

(j, k) = 3

S={i}

w =1

Si= s
D'= {{V}, {V2 }, {V 3 }, {V4, Vs}, {V6}, {tV}, {VS}}
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s={v2}

W = 1

si= s
D'= {{v1}, {v2}, {v3}, {V4, V5 }, {V6 }, {V7}, {V8}}

S = {v3}

w =1

si= s
D'I= {{v 1 }, {v 2 }, {V3}, {V4, V5}, {V6}, {V7}, {V8}}

S = {v 4 , V5 }

w=2

S,= {v 4},S2'= {v5}

D'= {{V}, {V2}, {V}, {V4}, {V5}, {V6 }, {V7 }, {V8 }}

S = {v6}

w =1

Si=S

D' = {{v 1}, {v2}, {v3}, {v4},{v5}, {v6}, {v7}, {v8}}

S = {v7}

w =1

Si=S

D= {{vi}, {v 2 }, {v3 }, {V4}, {V&}, {V6 }, {V7 }, {V8 }}

s={v8 }

w =1

S', = S

D'= {{V1 }, {V2 }, {V3 }, {V4}, {VS}, {Vg}, {V7}, {V8 }}

D = {{V1}, {V2 },{V3}, {V4}, {V&}, {V6}, {V7}, {V8 }}

EV(2) = {{vi}, {V2},{v3}, {V4},{V5}, {V6},{V7},{V8}}

A summary of the results of constructing event collections is as follows.

EV(O) = {{v1, v2,v3}, {v4,V57,V61},{V7,V81}}

EV(1) = {{v 1, v2}, {v3}, {v4, vS}, {v6}, {v7}, {v8}}

EV(2) = {{Vi}, {V2}, {V3}, {V4}, {V5}, {V6}, {V7}, {VS}}
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Step 1: (Initialization)

1.1 Compute e(j, 2, EV), Vj E N, VEV E EV(2)

This step involves solving deterministic static shortest path problems with each

single joint realization v,, r = 1, .., 8. Any classical shortest path algorithm can be

used. In our small network, this can be done by observation. The results are listed

in Table A.2. In each result cell, the minimum expected travel time is given and the

corresponding next node is in the parenthesis. We use "n3" to denote Node 3 and

this rule of notation applies to all other nodes.

{V1} {V2} {V3} {V4} {V5} {V6} {V7} {V8}

t=3 0 0 0 0 0 0 0 0
(n3) (n3) (n3) (n3) (n3) (n3) (n3) (n3)

t=2 1 2 1 1 1 1 2 1
(n3) (n3) (n3) (n3) (n3) (n3) (n3) (n3)

t=1 2 2 2 2 2 2 4 2
1(n2) (n3) (n3) (n2) (n2) (n2) (n2) (n3)

Table A.2: Results in the Static Deterministic Period

1.2 e(j, t, EV) +- +oo,Vj E N\{d},

e(d, t, EV) +- 0,

Vt < K - 1,VEV E EV(t)

Step 2: (Main Loop)

t =1

EV = {v1 , v2 }

EVj' = {v 1 }, Pr(EV{jEV) = 0.5

EV = {v 2}, Pr(EVflEV) = 0.5

(j,k) = (1,2)

temp = 1 + e(2, 1 + 1, EV1 )Pr(EVflEV)

+e(2, 1+ 1, EV)Pr(EVjflEV)
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= 1+1 x 0.5+2 x 0.5 = 2.5 < +oo

e(1, 1, {v 1, V2}) = 2.5, p*(1, 1, {v 1, v2}) = n2

(j,k) = (2,3)

temp = 2 + e(3, 1 + 2, EV)Pr(EVflEV)

+e(3,11+2, EV)Pr(EV2flEV)

= 2+0 x 0.5+0 x 0.5 = 2 < +oo

e(2,1, {vl, v2}) = 2,p*(2,1, {vi, v2}) = n3

(j,k) = (1,3)

temp = 3+ e(3, 1+ 3, EV)Pr(EVflEV)

+e(3, 1+3, EV )Pr(EVflEV)

=3+0 x 0.5 + 0 x 0.5 = 3 > 2.5 = e(1,1,,{v,v 2 })

EV = {v3}

EVj = {va},Pr(EVflEV) = 1

(j,k) = (1,2)

temp = 1 + e(2, 1+ 1, EV)Pr(EVflEV)

= 1 + 1 x 1 = 2 < +oo

e(1, 1, {v 3}) = 2, g*(1, 1, {v3 }) = n2

(j, k) = (2,3)

temp = 1 + e(3, 1+1, EV,')Pr(EV7IEV)

= 1 + 0 x1 = 1 < +0o

e(2, 1, {v3 }) = 1, A*(2, 1, {v3 }) = n3

(j,k) = (1,3)

temp = 2 + e(3,11+2, EV)Pr(EV|EV)

= 2+0 x 1 = 2 = e(,1,,{v3 })

EV = {v 4 , vs}

EV? = {v 4 }, Pr(EV'IEV) = 0.5

EV = {v5 }, Pr(EVIEV) = 0.5
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(j, k) = (1,2)

temp = 1+ e(2,1+ 1, EVf)Pr(EVflEV)

+e(2, 1+ 1, EV2')Pr(EVIEV)

= 1+1 x0.5+1 x0.5= 2 <+oo

e(1, 1, {v4 , v5 }) = 2, p*(l, 1, {v4, V5}) = n2

(j, k) = (2,3)

temp = 2+ e(3, 1 + 2, EVf)Pr(EVj|EV)

+e(3, 1+ 2, EVf)Pr(EVjflEV)

= 2+0 x 0.5+0 x 0.5 = 2 < +oo

e(2, 1, {v4, vs}) = 2, *(2, 1, {v4, vs}) = n3

(j,k) = (1, 3)

temp = 2+ e(3, 1+ 2, EV')Pr(EVflEV)

+e(3,11+2, EV )Pr(EVIEV)

= 2+0 x 0.5+0 x 0.5 = 2 = e(1,1, {v4 , v5 })

EV = {v6}

EV' = {v6 }, Pr(EV'|EV) = 1

(jk) = (1, 2)

temp = 1 + e(2, 1+ 1, EV1)Pr(EV(IEV)

=1+1 x 1=2<+oo

e(1, 1, {v6 }) = 2, 1*(i, 1, {v6 }) = n2

(j,k) = (2,3)

temp = 1+ e(3,1+1, EVf)Pr(EV'EV)

= 1 + 0 x1 = 1< +00

e(2, 1, {v6 }) = 1, M*(2, 1, {v6}) = n3

(j, k) = (1,3)

temp = 1+ e(3, 1+ 1, EV)Pr(EVflEV)

= 1 + 0 x1 = 1< 2 = e(,1,,{v6})
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e(1, 1,{v6 }) = 1, p*(1, 1, {v6 }) =n3

EV = {v7}

EV( = {v7 }, Pr(EVI7IEV) = 1

(j, k) = (1,2)

temp = 1 + e(2, 1+ 1, EVf)Pr(EVIEV)

=1+2x 1=3c<+oo

e(l, 1, {v7 }) = 3, p*(1, 1, {v 7}) = n2

(j,k) = (2,3)

temp = 2 + e(3, 1+ 2, EV)Pr(EV'IEV)

=2+0 x 1=2<+oo

e(2, 1, {v 7}) = 2, j*(2, 1, {v7 }) = n3

(j,k) = (1,3)

temp = 3+ e(3, 1+ 3, EVf)Pr(EVfl EV)

= 3+0 x 1 = 3=e(,1,,{v7 })

EV = {v8 }

EV'j = {vs},Pr(EVUIEV) =1

(j,k) = (1,2)

temp = 1 + e(2, 1+ 1, EVj')Pr(EV'IEV)

= 1 + 1 x 1 = 2 < +oo

e(1, 1, {v8 }) = 2, p*(1, 1, {v8 }) = n2

(j,k) = (2,3)

temp = 1 + e(3, 1+ 1, EV)Pr(EVIEV)

= 1 + 0 x 1 = 1 < +0o

e(2, 1, {v8}) = 1, ( 1, {v8 }) = n3

(jk) = (1,3)

EV' = {vs}, Pr(EV|'IEV) = I
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temp = 2+ e(3,11+2, EVf)Pr(EVflEV)

=2+0 x 1 = 2 = e(1,1,{v})

The summary of results at time 1 is in Table A.3.

{vI, v2 } {V3} {V4, V5} {V6} {V7 } {VS}
t = 3 0(n3) 0(n3) 0(n3) 0(n3) O(n3) 0(n3)
t = 2 2(n3) 1(n3) 2(n3) 1(n3) 2(n3) 1(n3)
t = 1 2.5(n2) 2(n2) 2(n2) (n)I3(n2)I 2(n2)

Table A.3: Results at Time 1

t =0

EV = {v1,v2, v3}

EVl = {v 1, v2 }, Pr(EVflEV) = 2/3

EV = {v3 }, Pr(EVflEV) = 1/3

(j,k) = (1,2)

temp = 1+ e(2,0 + 1, EV,')Pr(EVIEV)

+e(2,0 + 1, EV)Pr(EVIEV)

= 1+2 x 2/3+1 x 1/3=8/3 < +oo

e(1, 0, {v1, v2, v3 }) = 8/3, p*(1, 0, {v1, v2, v}) = n2

(j,k) = (2,3)

temp = 1 + e(3, 0 + 1, EV)Pr(EVIEV)

+e(3, 0 + 1, EV)Pr(EVIEV)

= 1+ 0 x 2/3+ 0 x 1/3 = 1 < +oo

e(2, 0, {vI,v 2,v3 }) = 1,gu*(2,0, {vi, v2, v3 }) = n3

(j,k) = (1,3)

temp = 1 + e(3,0 +1, EV,')Pr(EVflEV)

+e(3,0 + 1, EVf)Pr(EVJEV)

= 1+0 x 2/3+ 0 x 1/3 = 1 < 8/3 = e(1, 0, {vIv2, v 3 })
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e(1, 0, {vi, v2, v3 }) = 1, *(1, 0, {vI, V2, v3 }) = n3

EV = {v4 , v5 , v6 }

EV = {V4,, v5 }, Pr(EVflEV) = 2/3

EV = {v6 }, Pr(EV2'IEV) = 1/3

(j,k) = (1,2)

temp = 1 + e(2,0 +1, EV)Pr(EV('IEV)

+e(2,0 + 1, EV)Pr(EV2'jEV)

= 1 + 2 x 2/3+ 1 x 1/3 = 8/3 < +oo

e(1, 0, {v4, V5, v6}) = 8/3, p*(1,0, {v4, v5, v6 }) = n2

(j, k) = (2,3)

temp = 1 + e(3, 0+1, EV)Pr(EVflEV)

+e(3, 0 + 1, EVf)Pr(EVIEV)

= 1 + 0 x 2/3 + 0 x 1/3 = 1 < +oo

e(2, 0, {v4, v5, v6}) = 1, p*(2, 0, {v4, v5 , v6 }) = n3

(j,k) = (1,3)

temp = 4 + e(3,0 + 4, EV )Pr(EV |EV)

+e(3, 0 + 4, EV )Pr(EV'lEV)

= 4 + 0 x 2/3+0 x 1/3 = 4 > 8/3 = e(1, 0, {v4 , v5,6 v 6 })

EV = {v7,v8}

EV' = {v 7}, Pr(EVflEV) = 0.5

EVj = {v8}, Pr(EV IEV) = 0.5

(jk) = (1,2)

temp = 1 + e(2,0 + 1, EV)Pr(EVflEV)

+e(2, 0 + 1, EV)Pr(EVjEV)

= 1 + 2 x 0.5+1 x0.5 = 2.5 < +oo

e(1, 0, {v7, V}) = 2.5, p*(1, 0, {V7, v8 }) = n2
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(j, k) = (2,3)

temp = 1 + e(3, 0 +1, EV)Pr(EVflEV)

+e(2, 0 +1, EV2')Pr(EV2'EV)

= 1+ 0 x 0.5+ 0 x 0.5 =1 < +oo

e(2,0,{v 77 V8 }) = 1,p*(2,0,{v7, Vs}) = 3

(j,k) = (1,3)

temp = 3+ e(3,0 + 3, EVj')Pr(EVj|EV)

+e(3, 0 +3, EV)Pr(EVf|EV)

=3+ 0 x0.5 + 0 x 0.5 =3 > 2.5 = e(1,0, {v7 ,V8 })

The summary of results at time 0 is in Table A.4.

{vI, v2,v3} {v 4 , V5 ,V6 } {v 7,Vs}
t = 3 0(n3) 0(n3) 0(n3)
t = 2 1(n3) 1(n3) 1(n3)
t = 1 1(n3) 8/3(n2) 2.5(n2)

Table A.4: Results at Time 2
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