Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis

by

Laura Claire Heidkamp Gerber

B.A./M.S. in Chemistry (2007) Brandeis University, Waltham, MA

Submitted to the Department of Chemistry in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

at the Massachusetts Institute of Technology September 2013

© 2013 Massachusetts Institute of Technology. All rights reserved

1.

Department of Chemistry
August 12, 2013
Richard R. Schrock
Frederick G. Keves Professor of Chemistry
Thesis Supervisor
Robert W. Field
Haslam and Dewey Professor of Chemistry
Chairman, Departmental Committee on Graduate Students

-

This doctoral thesis has been examined by a Committee of the Department of Chemistry as follows

> Professor Christopher C. Cummins Chairman \sim

 \sim

50 Professor Richard R. Schrock Thesis Supervisor 1

 \sim

Professor Yogesh Surendranath

.

Investigations of Sterically Demanding Ligands in Molybdenum and Tungsten Monopyrrolide Monoalkoxide Catalysts for Olefin Metathesis

by

Laura Claire Heidkamp Gerber

Submitted to the Department of Chemistry on August 12, 2013 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry

ABSTRACT

Chapter 2 investigates the mechanism of the temperature-controlled polymerization of 3methyl-3-phenylcyclopropene (MPCP) by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) (Ar = 2,6diisopropylphenyl, Pyr = pyrrolide, OTPP = 2,3,5,6-tetraphenylphenoxide). *Cis,syndiotactic* poly(MPCP) is obtained at -78 °C, while atactic poly(MPCP) is obtained at ambient temperature. The *syn* initiator (*syn* refers to the isomer in which the substituent on the alkylidene points towards the imido ligand and *anti* where the substituent points away) reacts with MPCP to form an *anti* first-insertion product at low temperatures, which continues to propagate to give *cis,syndiotactic* polymer. At higher temperatures, the *anti* alkylidenes that form initially upon reaction with MPCP rotate thermally to *syn* alkylidenes on a similar timescale as polymer propagation, giving rise to an irregular polymer structure. In this system *cis,syndiotactic* polymer is obtained through propagation of *anti* alkylidene species.

Chapters 3 - 5 detail the synthesis and reactivity of compounds containing a 2,6dimesitylphenylimido (NAr*) ligand in order to provide a better understanding of the role of steric hindrance in olefin metathesis catalysts. A new synthetic route to imido alkylidene complexes of Mo and W, which proceeds through mixed-imido compounds containing both NAr* and N^tBu ligands, was developed to incorporate the NAr* ligand. Alkylidene formation is addition equivalents of pyridine•HCl accomplished by the of 3 to Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ or the addition of 1 equivalent of pyridine followed by 3 $W(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ solution provide equivalents of HC1 to to $M(NAr^*)(CHCMe_2Ph)Cl_2(py)$ (py = pyridine). Monoalkoxide monochloride, bispyrrolide, and monoalkoxide monopyrrolide (MAP) compounds are isolated upon substitution of the chloride ligands. Reaction of W MAP complexes (W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OR)) with ethylene allows for the isolation of unsubstituted metallacycle complexes $W(N Ar^*)(C_3H_6)(Me_2Pyr)(OR)$ $(R = CMe(CF_3)_2, 2, 6-Me_2C_6H_3, and SiPh_3)$. By application of vacuum to solutions of unsubstituted metallacyclebutane species, methylidene complexes W(NAr*)(CH₂)(Me₂Pyr)(OR) $(R = {}^{t}Bu, 2.6-Me_2C_6H_3, and SiPh_3)$ are isolated. Addition of one equivalent of 2.3dicarbomethoxynorbornadiene to methylidene species allows for the observation of firstinsertion products by NMR spectroscopy. Investigations of NAr* MAP compounds as catalysts for olefin metathesis reactions show that they are active catalysts, but not E or Z selective for

ring-opening metathesis polymerization the homocoupling of 1-octene or 1,3-dienes. Methylidene species $W(NAr^*)(CH_2)(Me_2Pyr)(OR)$ (R = 2,6-Me_2C_6H_3 or SiPh_3) catalyze the ring-opening metathesis or substituted norbornenes and norbornadienes with ethylene.

Thesis Supervisor: Richard R. Schrock Title: Frederick G. Keyes Professor of Chemistry

Table of Contents

Title Page	1
Signature Page	3
Abstract	5
Table of Contents	7
List of Figures	10
List of Schemes	12
List of Tables	14
List of Abbreviations	16
Chapter 1: General Introduction	19
Chapter 2: Mechanistic Studies of a Temperature-Controlled Polymerization Reaction	35
INTRODUCTION	36
RESULTS AND DISCUSSION	38
I. Mechanism of ROMP of MPCP initiated by Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	38
A. Polymerization of MPCP by Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	38
B. Kinetic Studies of Alkylidene Rotation for Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	40
C. Stoichiometric reactions of MPCP with Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	43
D. Proposed mechanism for the formation of poly(MPCP) by	
Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	46
II. Reaction of Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP) with Norbornadienes	50
A. Polymerization of DCMNBD by Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	50
B. Polymerization of NBDF6 by Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP)	52
CONCLUSIONS	52
EXPERIMENTAL	53
REFERENCES	57
Chapter 3: Synthesis of Molybdenum and Tungsten Alkylidene Compounds Containing a	2,6-
Dimesitylphenylimido Ligand	59
INTRODUCTION	60

RESULTS AND DISCUSSION	63
I. Mixed-Imido Route for the Synthesis of 2,6-Dimesitylphenylimido Compounds	63
A. Synthesis of M(NAr*)(N ^t Bu)Cl(NH ^t Bu)	63
B. Synthesis of M(NAr*)(N ^t Bu)(CH ₂ CMe ₂ Ph) ₂	66
II. Synthesis of Alkylidene Dichloride Compounds Containing the 2,6-	
Dimesitylphenylimido Ligand	68
A. Synthesis of Molybdenum Alkylidene Complexes	68
B. Synthesis of Tungsten Alkylidene Complexes	71
III. Substitution of Chloride Ligands in 2,6-Dimesitylphenylimido Alkylidene Comple	exes74
A. Synthesis of Monochloride Monoalkoxide Complexes	74
B. Synthesis of Bispyrrolide Complexes	77
C. Synthesis of Bisalkoxide Complexes	80
IV. Synthesis of MonoAlkoxide Pyrrolide (MAP) Complexes	83
A. Synthesis of MAP Complexes Containing an Unsubstituted Pyrrolide Ligand	83
B. Synthesis of MAP Complexes Containing a 2,5-Dimethylpyrrolide Ligand	85
CONCLUSIONS	87
EXPERIMENTAL	88
REFERENCES	132
Chapter 4: Fundamental Reactivity of Alkylidene Complexes Containing a 2,6-	
Dimesitylphenylimido Ligand	135
INTRODUCTION	136
RESULTS AND DISCUSSION	137
I. Study of Alkylidene Isomers	137
II. Reaction of NAr* Alkylidene Complexes with Ethylene	140
III. Stoichiometric Reactions of NAr* Complexes with Cyclic Olefins	152
CONCLUSIONS	158
EXPERIMENTAL	159
REFERENCES	174
Chapter 5: Alkylidene Compounds Containing the 2,6-Dimesitylphenylimido Ligand as	
Catalysts for Olefin Metathesis	177
INTRODUCTION	178

RESULTS AND DISCUSSION	180
I. Ring-Opening Metathesis Polymerization	180
A. Polymerization of 2,3-Dicarbomethoxynorbornadiene by Five-Coordinate Compo	ounds
	180
B. Polymerization of 2,3-Dicarbomethoxynorbornadiene and by Four-Coordinate	
Compounds	182
C. Polymerization of Other Monomers	183
II. Homocoupling of Terminal Olefins	185
A. Homocoupling of 1-Octene	185
B. Homocoupling of 1,3-Dienes	187
III. Ring-Opening Metathesis	191
CONCLUSIONS	197
EXPERIMENTAL	198
REFERENCES	209
Curriculum Vitae	213
Acknowledgements	217

List of Figures

Figure 1.1. Types of metal-carbon double bonds; Fischer and Schrock carbenes.	23
Figure 1.2. Examples of metathesis catalysts.	23
Figure 1.3. Structure of (S)-1. OTBS = $OSi(^{t}Bu)Me_{2}$.	25
Figure 1.4. The four regular structures for poly(norbornadienes).	29
Figure 2.1. The four possible regular polymer structures for substituted poly(norbornenes).	36
Figure 2.2. <i>Cis,syndio</i> selective catalyst, Mo(NAd)(CHCMe ₂ Ph)(pyr)(OHIPT) (1).	37
Figure 2.3. Monomers for which 1 gives cis, syndiotactic polymer.	37
Figure 2.4. Structure of compound 2 .	39
Figure 2.5. Selected regions of the ${}^{13}C{}^{1}H$ NMR spectra of poly(MPCP) (CD ₂ Cl ₂ , 125 MHz synthesized at various temperatures with 2 as initiator.	:) 39
Figure 2.6. Anti and syn alkylidene isomers.	40
Figure 2.7. Decay of anti-2 to syn-2 at various temperatures.	41
Figure 2.8. Eyring plot for 2. $\Delta H^{\ddagger} = 20 \pm 2 \text{ kcal/mol}$ and $\Delta S^{\ddagger} = 7 \pm 1 \text{ eu}$.	42
Figure 2.9. First-order plot for the conversion of <i>anti</i> - $2+1_{MPCP}$ to <i>syn</i> - $2+1_{MPCP}$ at -30 °C.	45
Figure 2.10. ¹ H NMR spectra at -60 °C of (top) the mixture of <i>syn-2</i> and <i>anti-2</i> generated by irradiation and (bottom) after addition of ~0.1 molar equivalents of MPCP to the mixture	. 46
Figure 2.11. Space-filling diagrams of W(NAr)(C ₃ H ₆)(pyr)(OHIPT) and W(NAr)(C ₃ H ₆)(Me ₂ pyr)(OTPP).	48
Figure 2.12. Reaction of DCMNBD with 2 and ¹ H NMR spectrum of $2+1_{DCMNBD}$.	51
Figure 3.1. Examples of Z-selective olefin metathesis catalysts containing sterically demandin aryloxide ligands (left, middle) and targeted compounds (right).	.g 60
Figure 3.2. ¹ H NMR spectra of Mo(N ^t Bu) ₂ Cl(NHAr [*]) and Mo(NAr [*])(N ^t Bu)Cl(NH ^t Bu) (1_{Mo}).	. 64
Figure 3.3. Thermal ellipsoid (50 %) drawing of Mo(NAr*)(N ^t Bu)Cl(NH ^t Bu), 1_{Mo} .	65
Figure 3.4. Thermal ellipsoid (50 %) drawing of Mo(NAr*)(N ^t Bu)(CH ₂ CMe ₂ Ph) ₂ (3_{M_0}).	67
Figure 3.5. Thermal ellipsoid (50 %) drawing of the two components of disordered alkylidene ligand for Mo(NAr*)(CHCMe ₂ Ph)Cl ₂ (Py), 4 _{M0} .	, 70
Figure 3.6. Crystal structure of [W(NAr*)(CHCMe ₂ Ph)Cl(bipy)][Zn ₂ Cl ₆] _{0.5} in thermal ellipsoir representation at the 50% probability level.	id 73

Figure 3.7.Thermal ellipsoid (50 %) drawing of 12_{Mo} .	76
Figure 3.8. ¹ H NMR spectra of Mo(NAr*)(CHCMe ₂ Ph)Cl(OAr*)(py) in toluene- <i>d</i> ₈ at variou temperatures.	ıs 77
Figure 3.9. Variable temperature ¹ H NMR spectra of Mo(NAr*)(CHCMe ₂ Ph)(Me ₂ Pyr) ₂ , 14 _N	Mo. 79
Figure 3.10. Variable temperature ¹ H NMR spectra of W(NAr*)(CHCMe ₂ Ph)(Me ₂ Pyr) ₂ , 14	w. 80
Figure 3.11. Thermal ellipsoid (50 %) representation of Mo(NAr*)(CHCMe ₂ Ph)(OAr') ₂ (15)	м₀). 81
Figure 3.12. [BiphentBu] H_2 and [BiphenCF ₃] H_2 ligands.	82
Figure 3.13. Crystal structure of W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(O ^t Bu), 23 _w	86
Figure 4.1. Labeling scheme for MAP complexes.	137
Figure 4.2. Previously isolated four-coordinate methylidenes of W or Mo.	142
Figure 4.3. Crystal structure of 5_W .	144
Figure 4.4. Thermal ellipsoid (50 %) representation of 6_w .	145
Figure 4.5. Methylidene region of the ¹ H NMR spectrum of W(NAr*)(CH ₂)(Me ₂ Pyr)(O ^t Bu)	, 7 w. 148
Figure 4.6. Alkylidene region of the ¹ H NMR spectra 11_W in various solvents.	149
Figure 4.7. Vertically expanded alkylidene region of the ¹ H NMR spectrum of 11_{W} .	150
Figure 4.8. ¹ H NMR spectrum of 12_W with proton assignments.	153
Figure 4.9. gCOSY of 12_W .	154
Figure 4.10. X-ray crystal structure of 13_W	155
Figure 4.11. gCOSY of 13_W .	157
Figure 5.1. Examples of Z-selective catalysts for olefin metathesis reactions.	178
Figure 5.2. Five-coordinate compounds employed for the polymerization of DCMNBD.	181
Figure 5.3. Labeling scheme for olefin metathesis catalysts.	183
Figure 5.4. Monomers utilized for ROMP reactions catalyzed by 3_W .	185
Figure 5.5. Tungsten methylidene compounds.	193

.

List of Schemes

Scheme 1.1. Olefin metathesis is a process that rearranges the substituents on carbon-carbon double bonds in the presence of a catalyst.	20
Scheme 1.2. Mechanism for olefin metathesis	21
Scheme 1.3. Examples of olefin metathesis reactions.	22
Scheme 1.4. Inversion of configuration at the metal of a MAP catalyst by ethylene metathesis.	25
Scheme 1.5. Enyne metathesis with MAP catalysts form the β regioisomer.	26
Scheme 1.6. Enantioselective synthesis of (+)-quebrachamine using a MAP catalyst.	26
Scheme 1.7. Mechanism by which MAP catalysts form Z olefins	27
Scheme 1.8. Z- and enantioselective ring-opening cross metathesis using a MAP catalyst.	27
Scheme 1.9. Cis selective homocoupling of terminal olefins using MAP catalysts.	28
Scheme 1.10. Purification of a mixture of <i>cis</i> and <i>trans</i> olefins by selective ethenolysis of the <i>c</i> olefin.	cis 28
Scheme 1.11. The proposed mechanism by which <i>cis,syndiotactic</i> polymer forms using a MAI catalyst	P 29
Scheme 1.12. Anti and syn isomers of metathesis catalysts.	30
Scheme 2.1. Proposed mechanism by which 1 gives cis, syndiotactic polymers.	38
Scheme 2.2. Reaction of one molar equivalent of MPCP with 2.	44
Scheme 2.3. Proposed mechanism by which Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP) forms <i>cis,syndiotactic</i> poly(MPCP) at -78 °C.	47
Scheme 2.4. The two distinct mechanisms by which 1 and 2 give <i>cis</i> poly(MPCP)	49
Scheme 3.1. Previous attempts towards installing the Ar* imido ligand at Mo or W.	61
Scheme 3.2. Mixed-imido synthetic route to imido alkylidene compounds starting from Mo(N ^t Bu) ₂ Cl ₂ (DME).	62
Scheme 3.3. Synthesis of M(NAr*)(N ^t Bu)Cl(NH ^t Bu) (1_{Mo} and 1_W).	63
Scheme 3.4. Synthesis of M(NAr*)(N ^t Bu)(CH ₂ CMe ₂ Ph) ₂ .	66
Scheme 3.5. Synthesis of Mo(NAr*)(CHCMe ₂ Ph)Cl ₂ (py) and Mo(NAr*)(CHCMe ₂ Ph)Cl ₂ (3,5 Lut).	;- 68

Scheme 3.6. Synthesis of $W(NAr^*)(CHCMe_2Ph)Cl_2(py)$, 4_w .	72
Scheme 3.7. Synthesis of W(NAr*)(CHCMe ₂ Ph)Cl ₂ (bipy), 6 _w , and [W(NAr*)(CHCMe ₂ Ph) [Zn ₂ Cl ₆] _{0.5} , 7 _w .)Cl] 72
Scheme 3.8. Substitution of a chloride ligand in Mo(NAr*)(CHCMe ₂ Ph)Cl ₂ (py) to form monoalkoxide monochloride complexes.	74
Scheme 3.9. Synthesis of Mo(NAr*)(CHCMe ₂ Ph)Cl(OAr*)(Py), 12 _{Mo} .	75
Scheme 3.10. Synthesis of $M(NAr^*)(CHCMe_2Ph)(Pyr)_2(Py)$, 13_{Mo} and 13_W .	78
Scheme 3.11. Synthesis of $M(NAr^*)(CHCMe_2Ph)(Me_2Pyr)$, 14_{Mo} and 14_W .	78
Scheme 3.12. Synthesis of MAP complexes with unsubstituted pyrrolide ligands.	83
Scheme 3.13. Synthesis of MAP complexes with 2,5-dimethylpyrrolide ligands.	86
Scheme 4.1. Syn and anti alkylidene species.	138
Scheme 4.2. Catalytic cycle for the homocoupling of terminal olefins.	141
Scheme 4.3 Synthesis of metallacycle 5_W and methylidene 6_W .	143
Scheme 4.4. Reaction of 1_W with ethylene.	146
Scheme 4.5. Synthesis of W(NAr*)(CH ₂)(Me ₂ Pyr)(O ^t Bu), 7_{W} .	147
Scheme 4.6. Synthesis of Mo(NAr*)(C ₃ H ₆)(Me ₂ Pyr)(OAr') (10_W) and Mo(NAr*)(CH ₂)(Me ₂ Pyr)(OAr') (11_w).	148
Scheme 4.7. Synthesis of $W(NAr^*)(C_3H_6)(Me_2Pyr)[OCMe(CF_3)_2]$ (12 _w).	151
Scheme 4.8. Reaction of W(NAr*)(CH ₂)(Me ₂ Pyr)(OSiPh ₃) (6_W) with DCMNBD to form 12	2w. 153
Scheme 4.9. Alternate synthesis of 13_W .	156
Scheme 4.10. Synthesis of 14_W .	157
Scheme 4.11. Synthesis of 15_W .	158
Scheme 5.1. Proposed route to <i>E</i> -selective catalysts.	179
Scheme 5.2. Homocoupling of 1-octene with NAr* catalysts.	185
Scheme 5.3. Homocoupling of 1,3-dienes with NAr* catalysts.	187
Scheme 5.4. Ring-opening metathesis <i>versus</i> ring-opening metathesis polymerization for substituted norbornadienes.	192

List of Tables

Table 2.1. Rate constants $(k_{a/s})$ for 2 .	42
Table 2.2. Rate and equilibrium constant data for 2 and other catalysts.	43
Table 3.1. Crystal data and structure refinement for $Mo(NAr^*)(N^tBu)Cl(NH^tBu)$, (1 _{M0}).	125
Table 3.2. Crystal data and structure refinement for $Mo(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ (3 _W).	126
Table 3.3. Crystal data and structure refinement for $Mo(NAr^*)(CHCMe_2Ph)Cl_2(py)$, (4 _{M0}).	127
Table 3.4. Crystal data and structure refinement for [W(NAr*)(CHCMe2Ph)Cl(bpy)][Zn2Cl6]0.5 (7w).	128
Table 3.5. Crystal data and structure refinement for Mo(NAr*)(CHCMe ₂ Ph)Cl(OAr*)(py) (1	l 2_{Mo}). 129
Table 3.6. Crystal data and Structure refinement for $Mo(NAr^*)(CHCMe_2Ph)(OAr')_2$ (15 _{M0}).	130
Table 3.7. Crystal data and structure refinement for W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(O ^t Bu),	23_W 131
Table 4.1. Rate and equilibrium constants for 4-coordinate Mo and W MAP species measure 21 °C.	d at 138
Table 4.2. Crystal data and structure refinement for 5_W .	171
Table 4.3. Crystal data and structure refinement for 6_W .	172
Table 4.4. Crystal data and structure refinement for 13_W .	173
Table 5.1. Polymerization of DCMNBD by $Mo(NAr^*)(CHCMe_2Ph)(L_1)(L_2)(pyridine)$.	182
Table 5.2. Structures of poly(DCMNBD) obtained with catalysts $1 - 4$.	183
Table 5.3. Structures of poly(DCMNBE) obtained with catalysts $1 - 4$.	184
Table 5.4. Results for the homocoupling of 1-octene by MAP catalysts.	186
Table 5.5. Results for the homocoupling of 1,3-decadiene after 24 h.	188
Table 5.6. Homocoupling of 1,3-decadiene by 3_W .	188
Table 5.7. Results for the homocoupling of <i>E</i> -buta-1,3-dienylbenzene after 24 h.	189
Table 5.8. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 3_W .	189
Table 5.9. Ring-opening metathesis results for DCMNBD.	194

Table 5.10. Ring-opening metathesis of norbornenes by 2 % of catalyst 6 at 60 °C and 1 atm ethylene.	195
Table 5.11. Homocoupling of 1,3-decadiene by 1_{Mo} .	200
Table 5.12. Homocoupling of 1,3-decadiene by $1_{\mathbf{W}}$.	200
Table 5.13. Homocoupling of 1,3-decadiene by 2_{Mo} .	200
Table 5.14. Homocoupling of 1,3-decadiene by 2_W .	201
Table 5.15. Homocoupling of 1,3-decadiene by 3_{Mo} .	201
Table 5.16. Homocoupling of 1,3-decadiene by 4_{Mo} .	201
Table 5.17. Homocoupling of 1,3-decadiene by 4_W .	201
Table 5.18. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 1_{Mo} .	202
Table 5.19. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by $1_{\mathbf{W}}$.	202
Table 5.20. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 2_{Mo} .	202
Table 5.21. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 2_W .	203
Table 5.22. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 3_{Mo} .	203
Table 5.23. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 4_{Mo} .	203
Table 5.24. Homocoupling of <i>E</i> -buta-1,3-dienylbenzene by 4_W .	203

List of Abbreviations

°C	degrees Celsius
Ad	1-adamantyl
anti	the alkylidene isomer in which the substituent points away from the
	imido ligand
Ar	2,6-diisopropylphenyl
Ar'	2,6-dimethylphenyl
Ar*	2,6-(2,4,6-trimethylphenyl)C ₆ H ₃
atm	atmospheres
COSY	Correlation SpectroscopY
d	days or doublet
DCMNBD	2,3-dicarbomethoxynorbornadiene
DCMNBE	rac-2,3-dicarbomethoxynorbornene
DFT	Density Functional Theory
DME	dimethoxyethane
e	electron
Et	ethyl
EXSY	EXchange SpectroscopY
GC-MS	gas chromatography – mass spectrometry
h	hours
HIPT	2,6-(2,4,6-triisopropylphenyl)C ₆ H ₃
HMT	2,6-(2,4,6-trimethylphenyl)C ₆ H ₃
HRMS	high-resolution mass spectrometry
Hz	hertz, s ⁻¹
ⁱ Pr	isopropyl
k	rate constant
Κ	Kelvin
kcal	kilocalories
m	minutes or multiplet
М	molar

MAP	MonoAlkoxide Pyrrolide or MonoAryloxide Pyrrolide
Me	methyl
Me ₂ Pyr	2,5-dimethylpyrrolide
mesityl	2,4,6-trimethylphenyl
mL	milliliter
mmol	millimolar
MPCP	3-methyl-3-phenylcyclopropene
neophyl	2-methyl-2-phenylpropyl
$^{n}J_{\mathrm{AB}}$	the coupling constant between atoms A and B through n bonds
NMR	nuclear magnetic resonance
OTf	triflate, trifluoromethanesulfonate
ру	pyridine
Pyr	pyrrolide
rac	racemic
RCM	ring-closing metathesis
ROCM	ring-opening cross metathesis
ROMP	ring-opening metathesis polymerization
s	seconds or singlet
syn	the alkylidene isomer in which the substituent points towards the imido
	ligand
t	triplet
TBS	dimethyl-tert-butylsilyl
^t Bu	tertiarybutyl, 2,2-dimethylethyl
THF	tetrahydrofuran
TMS	trimethylsilyl
TPP	2,3,5,6-tetrapheylphenyl
TRIP	2,4,6-triisopropylphenyl
VT	variable temperature
δ	chemical shift
μL	microliter
μmol	micromolar

Chapter 1

General Introduction

Formation of carbon-carbon bonds is one of the most synthetically useful processes in chemistry. Olefin metathesis has emerged over the last 50 years as a practical and versatile method for the formation of carbon-carbon double bonds. It is used for polymerization as well as synthetic organic chemistry, giving rise to applications in fields such as material science, pharmaceuticals, and medicinal chemistry. Due to the utility of olefin metathesis, the 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin, Robert H. Grubbs and Richard R. Schrock *"for the development of the metathesis method in organic synthesis"*.¹

Scheme 1.1. Olefin metathesis is a process that rearranges the substituents on carbon-carbon double bonds in the presence of a catalyst.

Olefin metathesis is the process by which the substituents on carbon-carbon double bonds are rearranged (Scheme 1.1). Olefin metathesis activity was first reported in a German patent in 1960 by Dupont chemist H. S. Eleuterio.² Later accounts indicate that the research group of Prof. Karl Zeigler and chemists at Dupont were aware of olefin metathesis reactivity as early as 1956.² "Olefin disproportionation" was first reported in the chemical literature by Banks and Bailey in 1964, where the rearrangement of propylene to ethylene and butene was observed in the presence of heterogeneous molybdenum or tungsten catalysts.³ The mechanism by which olefin metathesis proceeds was first proposed by Hérrison and Chauvin (Scheme 1.2).⁴ A catalyst containing a metal-carbon double bond reacts with an alkene through a [2+2] cycloaddition to form a metallacyclobutane as an intermediate. When the metallacycle ring undergoes cycloreversion in the opposite way than it formed, a new olefin product forms, as well as a new metal-carbon double bond that can continue in the catalytic cycle.

Scheme 1.2. Mechanism for olefin metathesis

Olefin metathesis has been developed into a versatile reaction that can be used for many different purposes.⁵ Some examples are shown in Scheme 1.3. Cross metathesis refers to the intermolecular exchange of substituents to form a new olefin product. Ethenolysis is a reaction where ethylene is used to cleave an internal olefin to form two terminal olefins. Ethenolysis can be viewed as a subset of cross metathesis where an internal olefin is crossed with ethylene. Ring-closing metathesis is an intramolecular process where two terminal olefin moieties form a ring with ethylene as a byproduct. Ring-opening cross metathesis is where one of the partners of a cross metathesis reaction is contained in a ring, incorporating all parts of the substrates into one product. Ring-opening metathesis polymerization (ROMP) is a process by which a cyclic olefin is polymerized.

Scheme 1.3. Examples of olefin metathesis reactions.

A metal alkylidene complex, Ta(CHCMe₃)(CH₂CMe₃)₃ was isolated by Schrock in 1975.⁶ This was the first example of a triplet carbene that is electrophilic at the metal and nucleophilic at the α -carbon, a distinct class of compounds from Fischer carbenes that are singlet carbenes, nucleophilic at the metal, and electrophilic at the α -carbon (Figure 1.1). The first examples of metal alkylidenes were not active as catalysts for olefin metathesis, but an alkylidene compound active for olefin metathesis was discovered with the synthesis of W(O)(CHCMe₃)Cl₂(PEt₃)₂.⁷ Since that point, many catalysts have been developed for olefin metathesis, most of which are based on Mo, W, Re, and Ru.

Figure 1.1. Types of metal-carbon double bonds; Fischer and Schrock carbenes.

The olefin metathesis catalysts based on Mo, W, and Ru that have proven to be most successful are of the general format shown in Figure 1.2. Ru catalysts tend to be stable to water and acidic functionalities such as carboxylates and amides, while Group 6 catalysts are stable to basic functionalities such as phosphines and amines, which provides for complimentary reactivity. For Group 6 catalysts, the initial alkylidene ligand is generally a neophylidene or a neopentylidene. The imido ligand is typically a substituted phenyl imido ligand or tertiary alkyl imido ligands. The two X-type ligands were traditionally two alkoxide ligands (Figure 1.2, **B**), with fluorinated alkoxide ligands providing for the highest activity. A second generation of catalysts was developed that contain axially chiral chelating diolate ligands for the performance of enantioselective reactions (Figure 1.2, **C**). Over the past 5 years, emphasis has been towards the development of catalysts that contain two different X-type ligands, especially catalysts that contain one pyrrolide or one alkoxide ligand (Figure 1.2, **D**).

Figure 1.2. Examples of metathesis catalysts. A: Ruthenium catalysts, NHC = N-heterocyclic carbene. B: Bisalkoxide catalysts, R is typically a fluorinated alkyl group. C: Enantioselective catalysts that contain chiral, chelating diolate ligands. D: MonoAlkoxide Pyrrolide (MAP) catalysts.

A third generation of group 6 olefin metathesis catalysts, <u>MonoAlkoxide Pyrrolide</u> or <u>MonoAryloxide Pyrrolide</u> (MAP) catalysts (Figure 1.2, **D**), have been studied extensively over the past five years. MAP catalysts are typically synthesized from bispyrrolide complexes, which

were developed as precursors for the *in situ* generation of catalysts.⁸ By the addition of one equivalent of an alcohol to bispyrrolide complexes, MAP catalysts are isolated.⁹ Rather than showing intermediate reactivity between the inactive bispyrrolide complexes and the active bisalkoxide catalysts, the MAP catalysts showed greater catalyst efficiency in some cases as well as new types of reactivity for olefin metathesis catalysts. Group 6 olefin metathesis catalysts with two different X-type ligands have been studied computationally as well, and results indicate that two different X-type ligands provide for higher activity compared with catalysts containing two of the same X-type ligands.¹⁰ According to these computational studies, the unsymmetrical catalysts have lower energy barriers for coordination of an olefin when compared to symmetrical catalysts, and the lower energy transition state shows olefin binding *trans* to the less electron-withdrawing ligand.

Due to the metal binding to four different ligands, MAP catalysts are chiral at the metal center. The properties of the two enantiomers have been studied by using a chiral alkoxide ligand to form diastereomers. Mo(NAr)(CHCMe₂Ph)(Me₂Pyr)(OBr₂Bitet) (1, Figure 1.3) forms as a 7:1 mixture of S:R diastereomers, each of which have been isolated and structurally characterized.¹¹ Solutions of pure (S)-1 or (R)-1 both remain unchanged over a week in C_6D_6 or THF- d_8 , indicating that the two diastereomers do not interconvert under these conditions. Addition of PMe₃, PPhMe₂, pyridine- d_5 , and acetonitrile- d_3 to (R)-1 show conversion to an equilibrium mixture of (S)-1 and (R)-1, which is first order in base (measured for PMe_3).¹² Structural characterization of a PMe₃ adduct of 1 shows that PMe₃ binds *trans* to the pyrrolide ligand.¹² Rearrangement of the five-coordinate species through Barry pseudo-rotations or turnstile rearrangements was proposed since the lack of a solvent effect argues against ionization and the variety of bases that promote the rearrangement suggests that formation of an intermediate ylide is unlikely. Addition of ethylene to (S)-1 or (R)-1 provides a mixture of metallacyclobutane and (R)- and (S)- methylidene species.¹² In this case, the authors propose interconversion of the diastereomers through ethylene metathesis since formation of the metallacycle is fast and an intermediate alkylidene olefin-complex is unlikely. If ethylene both approaches and leaves trans to the pyrrolide (consistent with both computational studies¹⁰ and the X-ray structure of 1(PMe₃)), then the metal inverts its configuration, as shown in Scheme 1.4.

Figure 1.3. Structure of (S)-1. OTBS = OSi(^tBu)Me₂.

Scheme 1.4. Inversion of configuration at the metal of a MAP catalyst by ethylene metathesis. The first coordination sphere of the metal is shown.

The discovery of MAP catalysts has given rise to a great deal of new olefin metathesis activity. MAP catalysts provide new regioselectivity for intramolecular enyne metathesis reactions, forming the β isomer in several cases (Scheme 1.5).⁹ Additionally, MAP catalysts containing a chiral aryloxide were used for enantioselective ring-closing metathesis reactions and applied to the synthesis of quebrachamine (Scheme 1.6), a compound that possesses adrenergic blocking activity.^{11a, 13, 14} Previous enantioselective metathesis catalysts were not able to perform this reaction well.

Scheme 1.5. Envne metathesis with MAP catalysts form the β regioisomer.

Scheme 1.6. Enantioselective synthesis of (+)-quebrachamine using a MAP catalyst.

Especially important has been the development of Z-selective MAP catalysts by incorporation of a sterically demanding aryloxide ligand. Typically, olefin metathesis catalysts give a thermodynamic ratio of E and Z products, which are difficult to separate. Ways to form the E or Z isomer exclusively as a kinetic product have been long sought in order to obtain higher yields of desired products and avoid difficult purification procedures. The proposed mechanism by which Z olefins form using MAP catalysts is shown in Scheme 1.7. The steric hindrance of the aryloxide ligand promotes the formation of an intermediate metallacyclebutane in which all substituents point away from the aryloxide. When this metallacycle opens, a *cis* olefin is formed.

Scheme 1.7. Mechanism by which MAP catalysts form Z olefins

Z-selectivity was first demonstrated for ring-opening cross metathesis (ROCM). As shown in Scheme 1.8, an oxabicycle is crossed with styrene using a MAP catalyst containing an axially chiral aryloxide ligand to provide both enantio- and *Z*-selectivity.^{15 a} *Z*- and enantioselective ROCM has been expanded to a variety of cyclic olefins and the scope of cross partners has been expanded to include enol ethers as well as substituted styrenes.^{15b} *Z*-selectivity has been achieved for the homocoupling of terminal olefins using W-based MAP catalysts with substituted terphenoxide ligands (Scheme 1.9).¹⁶ Ethenolysis of a mixture of *E* and *Z* olefins with *Z* selective catalyst **1**, provides the unreacted *E* olefin along with terminal olefins formed from the *Z* olefin and ethylene, which can be easily separated (Scheme 1.10).¹⁷ This process provides a convenient way to obtain pure *E* olefin. MAP catalysts have also been used for *Z*-selective ring-closing metathesis (RCM) forming important *Z* macrocyclic intermediates in natural product synthesis.¹⁸

Scheme 1.8. Z- and enantioselective ring-opening cross metathesis using a MAP catalyst.

Scheme 1.9. Cis selective homocoupling of terminal olefins using MAP catalysts.

E:Z mixture

Ring-opening metathesis polymerization (ROMP) is another area to which Z-selective MAP catalysts have been applied successfully. For substituted cyclic olefins, there are four possible regular structures of their polymers, illustrated in Figure 1.4 for substituted poly(norbornadienes). Bisalkoxide catalyst $Mo(NAr)(CHCMe_2Ph)(O^tBu)_2$ (Ar = 2,6diisopropylphenyl) gives trans, syndiotactic substituted poly(norbornadienes).¹⁹ Chelating diolate catalyst, $Mo(NAr')(CHCMe_2Ph)[(\pm)-BINO(SiMe_2Ph)]$ (Ar' = 2,6-dimethylphenyl, (\pm) - $BINO(SiMe_2Ph) = 3,3'-bis(dimethyl(phenyl)silyl)-[1,1'-binaphthalene]-2,2'-diolate),$ gives cis, isotactic poly(norbornadiene)s, with the tacticity controlled by the chiral ligand.²⁰ A new cis, syndiotactic, with MAP is observed catalyst structure, polymer OHIPT = 2.6-bis(2.4.6-(Ad =1-adamantyl, Mo(NAd)(CHCMe₂Ph)(pyr)(OHIPT) triisopropylphenyl)phenoxide) for the polymerization of substituted norbornadienes or 3-methyl-3-phenylcyclopropene.²¹ Polymerization of a racemic mixture of substituted norbornenes provides a regular *cis,syndiotactic* polymer structure of alternating enantiomers.²² The proposed mechanism by which cis, syndiotactic polymer forms is shown in Scheme 1.11. The large aryloxide ligand forces all substituents to be on one side of the intermediate metallacyclebutane providing *cis* linkages, while the inversion of chirality at the metal with each forward metathesis step provides *syndiotacticity*.

Figure 1.4. The four regular structures for poly(norbornadienes).

Scheme 1.11. The proposed mechanism by which cis, syndiotactic polymer forms using a MAP catalyst

Another important factor in olefin metathesis catalysts is created by the position of the alkylidene ligand. For Group 6 imido alkylidene metathesis catalysts, the *d*-orbital forming the

M-C π -bond is perpendicular to the imido ligand, which means the substituent on the alkylidene can point towards the imido group (*syn* alkylidene) or away from the imido group (*anti* alkylidene), as shown in Scheme 1.12. The *syn* alkylidene has an α -agostic interaction, while the *anti* alkylidene does not. Therefore, the two isomers can be distinguished by NMR spectroscopy by measurement of the α C-H coupling constants. Due to stabilization by the agostic interaction for the *syn* isomer, the equilibrium between *syn* and *anti* alkylidenes typically lies towards the *syn*, with K_{eq} values typically >10².²³ The *anti* alkylidene isomer can be generated by photolysis at low temperatures. Subsequently raising the temperature to a range where bond rotation can be observed allows rates of conversion of the *anti* alkylidene to the *syn* to be obtained.

Scheme 1.12. Anti and syn isomers of metathesis catalysts.

Rotation of the alkylidene ligands in Group 6 imido alkylidene complexes has been studied computationally.²⁴ The alkylidene ligand is rotated by 90° in the transition state. At that point, a *p*-orbital of the α C and a *p*-orbital of N compete for the same metal d-orbital. Carbon being less electronegative than nitrogen, the metal preferentially forms a π -bond with the carbon. The loss of the triple bond character causes bending of the imido ligand at nitrogen, with bond angles calculated to be 140 – 150°, as opposed to 165 – 175° in the ground state. The ability of the metal to form a π bond with the 90° rotated alkylidene ligand causes relatively low barriers to alkylidene rotation: ΔG^{\ddagger} is measured experimentally to be 16 – 21 kcal/mol for compounds with two fluorinated alkoxide ligands,²³ and calculated to be 11 – 14 kcal/mol for dimethoxide or diethyl compounds²⁴. Consistent with this theory, isolobal Re alkylidyne alkylidene complexes with a less polarizable M-C triple bond compared to the imido ligand in Mo and W imido alkylidene complexes show higher barriers to alkylidene rotation compared with analogous

Group 6 compounds (22 - 25 kcal/mol for dimethoxide or diethyl compounds calculated computationally).²⁴

The recent development of Z-selective MAP catalysts prompted an interest in a more detailed mechanistic understanding of how MAP catalysts provide selectivity, as well as an interest in expanding the types of selective catalysts available.

Towards gaining a mechanistic understanding of *cis* selective polymerization, Chapter 2 details a mechanistic investigation into a temperature-controlled polymerization reaction. *Cis,syndiotactic* poly(3-methyl-3-phenylcyclopropene) (poly(MPCP)) is obtained at -78 °C, while atactic poly(MPCP) is obtained at ambient temperature with a Mo MAP catalyst. The *syn* initiator reacts with MPCP to form an *anti* first-insertion product at low temperatures, which continues to propagate to give *cis,syndiotactic* polymer. At higher temperatures, the *anti* alkylidenes that form initially upon reaction with MPCP rotate thermally to *syn* alkylidenes on a similar timescale as polymer propagation, giving rise to an irregular polymer structure. In this system *cis,syndiotactic* polymer is obtained through propagation of *anti* alkylidene species.

Towards the goal of developing a greater variety of selective catalysts, and gaining a better understanding of the role of steric hindrance in olefin metathesis catalysts, compounds containing a 2,6-dimesitylphenylimido (NAr*) ligand are synthesized. Chapter 3 explains the synthesis of MAP compounds containing the NAr* ligand, for which a new synthetic route was developed. Chapter 4 delves into the study of the alkylidene isomers of the NAr* MAP compounds, as well as their basic reactivity towards simple olefins, especially ethylene. Chapter 5 explores the ability of NAr* MAP compounds as catalysts for olefin metathesis.

REFERENCES

¹ Nobelprize.org. The Nobel Prize in Chemistry 2005.

http://www.nobelprize.org/nobel prizes/chemistry/laureates/2005/ (accessed May 17, 2013).

² Eleuterio, H. S. J. Molec. Catal. 1991, 65, 55.

- ³ Banks, R. L; Bailey, G. C. I & EC Product Research and Development 1964, 3 (3), 170.
- ⁴ Hérrison, J. L.; Chauvin, Y. Makromol. Chem. 1971, 141, 161.
- ⁵ Grubbs, R. H. Handbook of Metathesis, Volumes 2 and 3; Wiley-VCH, Weinheim, 2003.
- ⁶ Schrock, R. R. J. Am. Chem. Soc., 1974, 96 (21), 6796.
- ⁷ Wengrovius, J. H.; Schrock, R. R.; Churchill, M. R.; Missert, J. R.; Youngs, W. J. J. Am. Chem. Soc. **1980**, 102 (13), 4515.
- ⁸ Hock, A. S.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128, 16373.
- ⁹ Singh, R.; Schrock, R. R.; Müller, P; Hoveyda, A. H. J. Am. Chem. Soc. 2007, 129, 12654.
- ¹⁰ Poater, A.; Monfort-Solans, X.; Clot, E.; Copéret, C.; Eisenstein, O. J. Am. Chem. Soc. 2007, 8207.
- ¹¹ (a) Malcolmson, S. J.; Meek, S. J.; Sattely, E. S.; Schrock, R. R.; Hoveyda, A. H. Nature 2008,
- 933. (b) Meek, S. J.; Malcolmson, S. J.; Li, B.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 16407.
- ¹² Marinescu, S. C.; Schrock, R. R.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 58.

¹³ Sattely, E. S.; Meek, S. J.; Malcolmson, S. J.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, *131*, 943.

¹⁴ Deutsch, H. F.; Evenson, M. A.; Drescher, P.; Sparwasser, C.; Madsen, P. O. J. Pharm. Biomed. Anal. 1994, 12, 1283.

¹⁵ (a) Ibrahem, I; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844.
(b) Yu, M.; Ibrahem, I.; Hasegawa, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 2788.

¹⁶ (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
(b) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780. (c) Townsend, E. M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 11334. (d) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.

¹⁷ Marinescu, S. C.; Levine, D.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2011**, 133, 11512.

¹⁸ (a) Wang, C.; Haeffner, F.; Schrock, R. R.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2013, 52, 1939. (b) Wang, C.; Yu, M.; Kyle, A. F.; Jacubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. Chem. Eur. J. 2013, 19, 2726.

¹⁹ Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V. C.; O'Regan, M. B.; Thomas, J. K.; Davis, W. M. J. Am. Chem. Soc. **1990**, 112, 8378.

²⁰ McConville, D. H.; Wolf, J. R.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 4413.

²¹ (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 7962. (b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules **2010**, 43, 7515.

²² (a) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. 2011, 133, 1784. (b) Flook,
M. M.; Börner, J.; Kilyanek, S.; Gerber, L. C. H.; Schrock, R. R. Organometallics 2012, 31, 6231.

²³ (a) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1992**, 114, 7588. (b) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1993**, 115, 11831.

²⁴ Poater, A.; Monfort-Solans, X.; Clot, E.; Copéret, C.; Eisenstein, O. Dalton Trans. 2006, 3077.

Chapter 2

Mechanistic Studies of a Temperature-Controlled Polymerization Reaction

Portions of this chapter have appeared in print:

Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by Monoaryloxidepyrrolide (MAP) Catalysts. *Macromolecules* **2010**, *43* (18), 7515 – 7522.

INTRODUCTION

Ring-opening metathesis polymerization (ROMP) is an important application of olefin metathesis. ROMP can useful for controlling polymer structures and providing narrow molecular weight distributions.^{1,2,3} In order to provide the greatest utility to material scientists, controlling polymer structure is a goal in the development of new olefin metathesis catalysts for ROMP since polymer structure can have a large effect on polymer properties.^{1,2} When substituted cyclic olefins are used as monomers for ROMP, four regular polymer structures are possible. The four regular structures are due to the configuration of the C=C double bonds, which can be cis or trans, and the relationship of the monomer units to one another, which can either all have the same stereochemistry (isotactic) or alternating stereochemistry (syndiotactic), as illustrated in Figure 2.1 for substituted norbornenes. Trans, syndiotactic poly(norbornadienes) are obtained by using $Mo(NAr)(CHCMe_2Ph)(O^tBu)_2$ (Ar = 2,6-diisopropylphenyl) as a catalyst. ⁴Cis, isotactic chiral diolate-based poly(norbornadienes) are obtained with a catalyst, $Mo(NAr')(CHCMe_2Ph)[(\pm)-BINO(SiMe_2Ph)]_2(Ar' = 2,6-dimethylphenyl, (\pm)-BINO(SiMe_2Ph) =$ 3.3'-bis(dimethyl(phenyl)silyl)-[1,1'-binaphthalene]-2,2'-diolate).⁵

Figure 2.1. The four possible regular polymer structures for substituted poly(norbornenes).
The development of MAP catalysts led to the discovery that a new polymer structure, *cis,syndiotactic*, can be obtained in several cases. When polymerization is performed with $Mo(NAd)(CHCMe_2Ph)(Pyr)(OHIPT)$ (1, Figure 2.2) as the catalyst, *cis,syndiotactic* polymers of 3-methyl-3-phenylcyclopropene (**MPCP**), 2,3-dicarbomethoxynorbornadiene (**DCMNBD**), 2,3-dicarbomethoxynorbornadiene (**DCMenthNBD**), 2,3-dicarbomethoxynorbornadiene (**NBDF6**) are obtained (Figure 2.3).^{6, 7} Tacticity can be determined directly by NMR spectroscopy for poly(**DCMenthNBD**) that contains chiral substituents,⁸ and the other polymers by analogy to poly(**DCMenthNBD**). Additionally, *cis,syndiotactic* polymers of alternating enantiomers are obtained from a racemic mixture of substituted norbornenes, using a similar catalyst to 1: Mo(NAd)(CHCMe_2Ph)(pyr)(OHMT) (HMT = 2,6-dimesitylphenyl).⁹

Figure 2.2. Cis, syndio selective catalyst, Mo(NAd)(CHCMe₂Ph)(pyr)(OHIPT) (1).

Figure 2.3. Monomers for which 1 gives cis, syndiotactic polymer.

The proposed mechanism by which 1 controls the formation of *cis,syndiotactic* polymer is shown in Scheme 2.1.⁶ The sterically demanding aryloxide, OHIPT, forces all substituents on the metallacycle intermediates to point towards the imido ligand, which causes a *cis* double bond to be formed when the metallacycle opens. Syndiotacticity arises because of the inversion of configuration at the metal center with each metathesis step.¹⁰

Scheme 2.1. Proposed mechanism by which 1 gives *cis,syndiotactic* polymers. R = 1-adamantyl, Pyr = pyrrolide, OR' = HIPTO, P = propagating polymer chain, $X = CO_2Me$, $CO_2Menthyl$, or CF_3

In order to better understand the formation of *cis,syndiotactic* polymer by MAP catalysts, we were interested in exploring which MAP catalysts give *cis,syndiotactic* polymer. Additionally, we wanted to perform mechanistic studies to assess the validity of the proposed mechanism shown in Scheme 2.1.

RESULTS AND DISCUSSION

I. Mechanism of ROMP of MPCP initiated by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

A. Polymerization of MPCP by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

When $Mo(NAr)(CHCMe_2Ph)(Pyr)(OTPP)$ (2, Ar = 2,6-diisopropylphenyl, Pyr = pyrrolide, OTPP = 2,3,5,6-tetraphenylphenoxide, Figure 2.4) is used as a ROMP initiator for

MPCP the *cis/trans* content of the polymer depends on the reaction temperature (Figure 2.5). Regular *cis,syndiotactic* polymer is obtained when the polymerization reaction is conducted at -78 °C. As the reaction temperature is increased, in separate experiments, the regularity of the polymer structure decreases, with increasing *trans* content at higher temperatures. By 20 °C, no regular structure is observed.

Figure 2.4. Structure of compound 2.

Figure 2.5. Selected regions of the ¹³C{¹H} NMR spectra of poly(MPCP) (CD₂Cl₂, 125 MHz) synthesized at various temperatures with 2 as initiator. * = residual toluene.

A similar temperature dependence of the *cis/trans* ratio was observed for the ROMP of **DCMNBD** and **NBDF6** with various bisalkoxide initiators, with higher *trans* content at higher reaction temperatures.¹¹ Schrock *et al.* proposed that higher *trans* content is observed at higher temperatures due to faster interconversion of *anti* and *syn* alkylidene isomers at higher temperatures. Specifically, it was proposed that the monomer approaches consistently with its substituents pointing towards the imido ligand (ene_{*syn*}). Thus, if the monomer reacts with a *syn* alkylidene a *cis* double bond results, and if the monomer reacts with an *anti* alkylidene a *trans* double bond results. The higher the reaction temperature, the faster the *syn* to *anti* alkylidene rotation, which gives rise to more propagating *anti* species, and thus more *trans* linkages.

Since the factors controlling the formation of *cis,syndiotactic* poly(**MPCP**) become active during a temperature range that can be studied easily, this system seemed ideal for mechanistic studies directed towards understanding how MAP catalysts provide *cis,syndiotactic* polymer.

B. Kinetic Studies of Alkylidene Rotation for Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

It has been proposed that the rate of alkylidene rotation can affect polymer structure,¹¹ and it has been shown that the different alkylidene isomers can have different reactivity towards monomer.^{12,13} Therefore, study of the kinetics of alkylidene rotation is important to understanding this system.

Figure 2.6. Anti and syn alkylidene isomers.

Syn and anti alkylidene isomers are usually characterized by the ${}^{1}J_{CH}$ for the alkylidene resonance, where 115 – 125 Hz is characteristic of syn alkylidenes and 145 – 155 Hz is typical for anti alkylidenes.¹² The lower coupling constant for the syn alkylidenes is due to an α -agostic interaction that is present in the syn alkylidene and not the anti. The equilibrium constant for **2** is 400 at 298 K. By exposing **2** to 366 or 350 nm light at –78 °C for 3 h, up to 23 % anti alkylidene is generated. The NMR spectrum observed at –70 °C in toluene-*d*₈ after photolysis at –78 °C shows a new resonance at 13.6 ppm with a ${}^{1}J_{CH}$ value of 143 Hz, which is downfield of syn-**2** (syn-**2**: 12.1 ppm, ${}^{1}J_{CH} = 122$ Hz). This resonance is assigned as anti-**2**, which decays to syn-**2** upon warming. The decay back to equilibrium was followed at several temperatures over a 20 °C range. The decay fits a first-order plot, consistent with an intramolecular process. Rate constants (k_{a/s} as defined in Figure 2.6) are obtained from the slope of the linear regression in accordance with $\ln(c_0/c) = kt$ (where $c_0 =$ initial concentration, c = concentration, t = time in seconds), Table 2.1.¹⁴

Figure 2.7. Decay of anti-2 to syn-2 at various temperatures.

Table 2.1. Rate constants (k_{a/s}) for 2.

T (°C)	$k_{a/s} (s^{-1})$
-15	$(5.2 \pm 0.5) \ge 10^{-3}$
-20	$(2.1 \pm 0.1) \ge 10^{-3}$
-25	$(5.6 \pm 0.2) \ge 10^{-4}$
-30	$(4.1 \pm 0.1) \ge 10^{-4}$
-35	$(1.9 \pm 0.1) \ge 10^{-4}$

Figure 2.8. Eyring plot for 2. $\Delta H^{\ddagger} = 20 \pm 2$ kcal/mol and $\Delta S^{\ddagger} = 7 \pm 1$ eu.

Values for ΔH^{\ddagger} and ΔS^{\ddagger} were determined by constructing an Eyring plot (Figure 2.8). $\Delta H^{\ddagger} = 20 \pm 2$ kcal/mol and $\Delta S^{\ddagger} = 7 \pm 1$ eu. At 298 K, ΔG^{\ddagger} is calculated to be 2 ± 2 kcal/mol, which is consistent with the observed fast decay of *anti-2* to *syn-2* at room temperature. Extrapolation of the rate constant data to room temperature gives $k_{a/s}$ as 3 s^{-1} at 298 K. With $k_{a/s}$ in hand, $k_{s/a}$ is calculated to be $8 \times 10^{-3} \text{ s}^{-1}$ at 298 K.

Catalyst	$k_{a/s}$ (s ⁻¹ , 298 K)	Keq (298 K)	$k_{s/a} (s^{-1}, 298 \text{ K})$	Reference
Mo(NAr)(CHCMe ₂ Ph)(Pyr)(OTPP) (2)	3	400	$8 \ge 10^{-3}$	This work
Mo(NAd)(CHCMe ₂ Ph)(Pyr)(OHIPT) (1)	0.96	> 4000	$< 2.5 \text{ x } 10^{-4}$	15
Mo(NAr)(CHCMe ₂ Ph)(OCMe ₃) ₂	~ 500	1200	~ 0.4	12
Mo(NAr)(CHCMe ₂ Ph)(OR _{F3}) ₂	6.8	1800	$4 \ge 10^{-3}$	12
Mo(NAr)(CHCMe ₂ Ph)(OR _{F6}) ₂	0.10	1400	$7 \ge 10^{-5}$	12
Mo(NAr)(CHCMe ₂ Ph)(OR _{F9}) ₂	$1.5 \ge 10^{-3}$	190	8 x 10 ⁻⁶	12
Mo(NAr)(CHCMe ₂ Ph)(OR _{F13}) ₂	$3.4 \ge 10^{-3}$	600	$6 \ge 10^{-6}$	12

Table 2.2. Rate and equilibrium constant data for 2 and other catalysts. $R_{F3} = CMe_2(CF_3)$, $R_{F6} = CMe(CF_3)_2$, $R_{F9} = C(CF_3)_3$, and $R_{F13} = C(CF_3)_2(CF_2CF_2CF_3)$, Ar = 2,6-diisopropylphenyl

The data for **2** can be compared with data previously obtained for other Mo alkylidene complexes (Table 2.2). Although K_{eq} for **2** is similar to Mo(NAr)(CHCMe₂Ph)(OR_{F9})₂ and Mo(NAr)(CHCMe₂Ph)(OR_{F13})₂ (where $R_{F9} = C(CF_3)_3$ and $R_{F13} = C(CF_3)_2(CF_2CF_2CF_3)$), both $k_{a/s}$ and $k_{s/a}$ are both about 3 orders of magnitude larger for **2**, indicating much faster alkylidene rotation for **2**. The rates of alkylidene interconversion are similar for **2** and Mo(NAr)(CHCMe₂Ph)(OR_{F3})₂ (where $R_{F3} = CMe_2(CF_3)$). Comparing with the other MAP complex, **1**, the rates of *anti*-to-*syn* alkylidene rotation are similar, but the K_{eq} for **1** is at least an order of magnitude larger and the *syn*-to-*anti* alkylidene rotation is at least an order of magnitude larger and the greater steric hindrance of OHIPT compared to OTPP.

C. Stoichiometric reactions of MPCP with Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

Reaction of **2** with one equivalent of **MPCP** (added at -78 °C followed by warming the sample to ambient temperature) results in the formation of a first-insertion product, *syn-***2**+1_{MPCP}, that can be observed by NMR spectroscopy (Scheme 2.2). The coupling constants of the olefinic and alkylidene resonances, ${}^{3}J_{HH} = 16$ Hz and ${}^{1}J_{CH} = 124$ Hz, respectively, determined with 1 H NMR spectroscopy, indicate that the C=C bond is *trans* and that the alkylidene is in the *syn* orientation. Unfortunately, **2**+1_{MPCP} cannot be isolated as a pure compound because k_p/k_i is large enough that a small percentage of **2** propagates beyond the first-insertion product, and starting material remains even with the addition of excess monomer. Observation of a *trans* double bond is surprising, since under the same conditions for polymerization, a *cis* polymer is obtained. This result indicates that even though *cis* polymer is obtained upon propagation, a *trans* double bond forms upon initiation.

Scheme 2.2. Reaction of one molar equivalent of MPCP with 2.

When 0.8 molar equivalents of **MPCP** is added to 2 at -78 °C and the sample is not warmed, then *anti*-2+1_{MPCP} is observed by ¹H NMR spectroscopy at -70 °C. The ¹H NMR spectrum of *anti*-2+1_{MPCP} displays an alkylidene resonance at 14.1 ppm with a ¹J_{CH} value of 144 Hz and olefinic resonances that both have a ³J_{HH} value of 16 Hz, indicating a *trans* double bond. The ¹J_{CH} value for the alkylidene resonance was determined by employing partially ¹³C-labeled **MPCP**. Upon raising the temperature of the NMR spectrometer to -30 °C, *anti*-2+1_{MPCP} decays to *syn*-2+1_{MPCP} with first-order kinetics (Figure 2.9) and the rate constant was determined to be 2.9 x 10⁻⁴ s⁻¹.

Figure 2.9. First-order plot for the conversion of anti-2+1_{MPCP} to syn-2+1_{MPCP} at -30 °C.

Upon addition of 3 molar equivalents of MPCP to 2 at -70 °C, several new resonances are observed in the *anti* region of the NMR spectrum (13.6 – 14.3 ppm), but none in the *syn* region (11.3 – 12.2 ppm). This result indicates that at -70 °C, further *anti* insertion products are formed, but *syn* species are not formed, neither directly nor through alkylidene rotation of the *anti* products. Raising the temperature of the sample to 20 °C results in disappearance of the resonances in the *anti* region and appearance of several resonances in the *syn* region. The *anti* insertion products likely decay through alkylidene rotation to the *syn* products. The olefinic region was too complicated to determine if the coupling constants indicated *cis* or *trans* double bonds in the multiple insertion products.

To determine the relative reactivity of *syn*-2 and *anti*-2, a mixture of *syn*-2 and *anti*-2 was generated by irradiation at -78 °C. To this mixture ~0.1 equivalents of **MPCP** was added to form *anti*-2+1_{MPCP}. Figure 2.10 shows the ¹H NMR spectrum at -60 °C of the mixture of *syn*-2 and *anti*-2 generated by irradiation as well as the spectrum after the addition of ~0.1 equivalents of **MPCP**. *Anti*-2 persists in the presence of **MPCP**, indicating that *syn*-2 reacts with **MPCP** to form *anti*-2+1_{MPCP}. This result is contrary to previous results where 5 equivalents of **NBDF6** was added to a mixture of *syn* and *anti* Mo(NAr)(CHCMe₂Ph)(OR_{F6}); at -30 °C, only the *anti* alkylidene reacted with **NBDF6**, and not until the temperature was raised to 0 °C did the *syn* reactant or the *syn* product react with excess **NBDF6**.¹²

Figure 2.10. ¹H NMR spectra at -60 °C of (top) the mixture of *syn-2* and *anti-2* generated by irradiation and (bottom) after addition of ~0.1 molar equivalents of MPCP to the mixture.

D. Proposed mechanism for the formation of poly(MPCP) by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

At low temperatures, the *anti* species are relatively stable (the calculated half-life of *anti*-**2** is 5 x 10⁶ s at -78 °C). It is only upon warming the sample that their decay to *syn* species can be observed in a reasonable time frame. At -78 °C, *cis* polymer is obtained. It is proposed that polymerization initiation occurs when **MPCP** approaches *syn*-**2** in an ene_{*anti*} fashion to form *anti*-**2**+1_{MPCP}. The observation of further *anti* alkylidenes and no *syn* alkylidenes indicate that propagation occurs through all *anti* alkylidenes and **MPCP** continues to approach ene_{*anti*}, as shown in Scheme 2.3.

Scheme 2.3. Proposed mechanism by which Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) forms *cis,syndiotactic* poly(MPCP) at -78 °C.

As the temperature is raised from -78 °C, alkylidene rotation becomes more and more facile. Once the rate of alkylidene rotation becomes competitive with the rate of polymer propagation then both *anti* and *syn* alkylidene species are available to propagate. If **MPCP** continues to approach the catalyst ene_{anti}, both *cis* and *trans* double bonds will be obtained depending on if a *syn* or an *anti* alkylidene reacts. The higher *trans* content in poly(**MPCP**) observed with increasing temperatures, as well as the decay of *anti* propagating species to *syn* propagating species by raising the temperature, are consistent with this proposal.

The mechanism proposed for the formation of *cis,syndiotactic* poly(**MPCP**) by **2** through all *anti* alkylidenes based on these mechanistic studies is contrary to the mechanism proposed for the formation of *cis,syndiotactic* polymers with **1** through all *syn* alkylidenes. The question arises as to whether this mechanism applies to all MAP catalysts that yield *cis,syndiotactic* polymer, or if it only applies to the system studied here. Flook *et al.*'s studies of the polymerization of **DCMNBD** with various MAP catalysts show that **1** gives >99 % *cis* content. Changing the imido substituent to 2,6-diisopropylphenyl lowers the *cis* content to 70 % and changing the aryloxide to OTPP reduces the *cis* content to 83 %.⁶ This observation shows that these specific changes in the ligand set alter the system substantially.

X-ray crystal structures have previously been determined for tungsten metallacyclobutanes that contain OHIPT and OTPP ligands.^{6a, 16} Space-filling diagrams of

 $W(NAr)(C_3H_6)(Pyr)(OHIPT)$ and $W(NAr)(C_3H_6)(Pyr)(OTPP)$ are shown in Figure 2.11. Examination of these models shows the drastic difference in steric hindrance that these two terphenoxide ligands provide. HIPTO very effectively blocks the bottom side of the metallacycle; it seems unlikely that any substituent on a metallacycle would be able to point towards the OHIPT ligand. The W metallacycle containing the 2,6-diisopropylphenylimido ligand and the OTPP ligand (the ligands used in these mechanistic studies) shows a very different situation. Both sides of the metallacycle are relatively unhindered, so substitution would be possible on either side of the metallacyclebutane ring. Based on these observations, it does not seem prudent to extrapolate the mechanism observed for formation of *cis,syndiotactic* poly(**MPCP**) with **2** to other MAP catalysts.

Figure 2.11. Space-filling diagrams of $W(NAr)(C_3H_6)(pyr)(OHIPT)$ and $W(NAr)(C_3H_6)(Me_2pyr)(OTPP)$. The hydrogen atoms in the tungstacyclobutane are orange. The imido ligands are oriented up and the aryloxide ligands are oriented down.

Additionally, when comparing 1 to 2, the much lower K_{eq} and much faster rate of *anti*-tosyn alkylidene rotation indicate that the *anti* alkylidenes for 1 are much more destabilized. These factors also indicate that even though 2 polymerizes **MPCP** through all *anti* propagating species, it does not seem reasonable to extend this mechanism to polymerization initiated by 1.

It is interesting that two MAP catalysts give *cis,syndiotactic* polymer through two different mechanisms. When catalyst 1 with the bulky ligand OHIPT is used, it is proposed that the polymer is obtained through all *syn* alkylidenes, but when catalyst 2 with the smaller OTPP ligand is used, the polymer propagates through *anti* alkylidenes after the initiation step, shown in Scheme 2.4. These studies indicate that although catalyst sterics can successfully be used to control the polymer structure, the systems are extremely sensitive to even minor changes. Although it may seem intuitive that these two similar catalysts with terphenoxide ligands would provide both *cis* polymer through a similar mechanism, the changes in stability between the alkylidene isomers has a drastic affect on how these catalysts operate. Understanding alkylidene rotation has also been key to understanding how different bisalkoxide catalysts provide different polymer structures.^{11, 12}

Scheme 2.4. The two distinct mechanisms by which 1 and 2 give *cis* poly(MPCP)

II. Reaction of Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) with Norbornadienes

A. Polymerization of DCMNBD by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

Reaction of 2 with 100 molar equivalents of **DCMNBD** provided no poly(**DCMNBD**) at -78 °C or -20 °C over four hours. At 0 °C the yield of polymer is low after 4 h and the polymer structure is 70 % *cis*. At room temperature and at 45 °C, polymerization is complete after 4 hours, and the polymer structure is 37 % *cis* in both cases. Ring-opening metathesis polymerization is driven by the release of ring strain. **DCMNBD** is likely to be less reactive than **MPCP** because of its lower ring strain: cyclopropene has 55 kcal/mol of ring strain while norbornadiene has 33 kcal/mol.¹⁷ The higher *cis* content observed when polymerization is conducted at lower temperatures is consistent with **DCMNBD** reacting by a similar mechanism to **MPCP**.

Reaction of 2 with one equivalent of DCMNBD provided a first-insertion product (2+1_{DCMNBD}) at room temperature (Figure 2.12). All aliphatic and olefinic proton resonances in the ¹H NMR spectrum can be assigned by the aid of gCOSY NMR spectroscopy. The C=C bond is trans (${}^{3}J_{HH} = 16$ Hz) and the alkylidene is anti (${}^{1}J_{CH} = 152$ Hz). Monitoring 2+1_{DCMNBD} over 1 week at ambient temperature shows that $2+1_{DCMNBD}$ is stable as an *anti* alkylidene. After heating a sample of 2+1_{DCMNBD} overnight at 50 °C, significant decomposition to unidentifiable products is observed. Crystallization of $2+1_{DCMNBD}$ was unsuccessful, but it is possible that chelation of the carbonyl group stabilizes the anti alkylidene at room temperature. Chelation of a carbonyl stabilize alkvlidene has been observed for to an anti group $Re(C^{t}Bu)[OCMe(CF_{3})]_{2}[CH(N(CH_{2})_{3})CO]^{18}$ and $Mo(NAr)(Me_{2}Pyr)(OTPP)[CH(N(CH_{2})_{3})CO]^{19}$.

Figure 2.12. Reaction of DCMNBD with 2 and ¹H NMR spectrum of 2+1_{DCMNBD}.

When one equivalent of **DCMNBD** is added at -70 °C to a mixture of *syn-2* and *anti-2* formed by irradiation, *syn-2* reacts cleanly to form $2+1_{DCMNBD}$ while *anti-2* does not react with **DCMNBD**, similar to the reactivity with **MPCP**.

Reaction of 2 with two equivalents of **DCMNBD**, either sequentially (second equivalent added at ambient temperature or -78 °C) or concurrently, leads to a large mixture of products. Once the second-insertion product forms, propagation occurs rapidly, preventing the isolation or observation of a second-insertion product.

These results are consistent with the mechanism of polymerization of **DCMNBD** by **2** being similar to the polymerization of **MPCP** by **2**. The higher *trans* content in the polymer at lower temperatures and the reaction of *syn-2* to form *anti-2*+1_{DCMNBD} is consistent with initiation occurring through the *syn* alkylidene to form an *anti* alkylidene, which is the species that propagates at low temperatures until bond rotation is competitive at higher temperatures.

B. Polymerization of NBDF6 by Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP)

Polymerizations of **NBDF6** were carried out at -78 °C, -20 °C, 0 °C, and 22 °C. Polymers synthesized at -78 °C, -20 °C and 0 °C were insoluble in dichloromethane or chloroform. The polymer synthesized at 22 °C is partially soluble in chloroform, and is 38 % *cis*.²⁰ Insoluble poly(**NBDF6**) is also synthesized with **1** as initiator, which gives *cis,syndiotactic* poly(**DCMenthoxyNBD**). IR, solid state NMR, and solubility studies indicate that the insoluble poly(**NBDF6**) is highly *cis,syndiotactic*.⁷ Based on this theory, if the poly(**NBDF6**) synthesized with **2** at lower temperatures has more *cis,syndiotactic* linkages, as with poly(**MPCP**), then it would be expected to be insoluble in common organic solvents, as observed. IR spectra of the poly(**NBDF6**) show an absorption at 970 cm⁻¹ which is stronger in the polymers synthesized at the higher temperatures than in the polymer synthesized at -78 °C. Although the *cis* or *trans* content of the polymer cannot be quantified by IR spectroscopy, the spectra are consistent with higher *trans* content at higher temperatures.

Reaction of 2 with one molar equivalent of NBDF6 added at -78 °C produced several new alkylidene peaks. There are 2 major resonances in addition to 2, which are assigned as the first and second-insertion products. Two resonances are observed for the olefinic protons of these species, and they are *trans* in both cases, based on the ${}^{1}J_{CH}$ values of 16 Hz. The observation of the *trans* terminal olefins in the first- and second-insertion products despite obtaining a *cis* polymer structure is consistent with the polymerization of NBDF6 by 2 operating in a similar mechanism to polymerization of MPCP by 2.

CONCLUSIONS

Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) provides *cis,syndiotactic* polymer when the reaction is conducted at -78 °C, and higher *trans* content at when the reaction is conducted at higher temperatures. Mechanistic studies indicate that the *syn* initiator reacts with monomer to give an *anti* first-insertion product that then continues to propagate through *anti* alkylidenes. At higher temperatures, *anti*-to-*syn* bond rotation becomes competitive with polymerization to give more *trans* content. This mechanism of polymerization is likely distinct from the mechanism by which Mo(NAd)(CHCMe₂Ph)(Pyr)(OHIPT) provides *cis,syndiotactic* polymer, which is proposed to propagate through all *syn* alkylidenes. These studies show that alkylidene bond rotation is extremely important in the determination of the structure of the product during olefin metathesis. Controlling alkylidene rotation is key to controlling selectivity in olefin metathesis. In the system studied here, which propagates through all *anti* alkylidenes, the alkylidene rotation is controlled by the reaction temperature. The low temperatures render the *anti* alkylidenes stable and allow *cis,syndiotactic* polymer to form. Control of alkylidene rotation in Mo(NAd)(CHCMe₂Ph)(Pyr)(OHIPT) is achieved by steric control: the sterically demanding terphenoxide ligand destabilizes the *anti* alkylidene even further and allows for propagation through all *syn* alkylidenes. Interestingly, these two different mechanisms of control of the rate of alkylidene rotation can be utilized to give *cis,syndiotactic* polymer through two different mechanisms.

EXPERIMENTAL

General Considerations

All air-sensitive manipulations were performed under nitrogen atmosphere in a drybox or an airfree dual-manifold Schlenk line. All glassware was oven-dried and allowed to cool under vacuum before use. NMR spectra were obtained on Varian 500, Bruker 400 MHz, or Bruker 600 MHz spectrometers, reported in δ (parts per million) relative to tetramethylsilane, and referenced directly to a tetramethylsilane internal standard or to residual ¹H/¹³C signals of the deuterated solvent (¹H (δ): benzene 7.16, chloroform 7.27, methylene chloride 5.32, toluene 2.09. ¹³C (δ): benzene 128.39, chloroform 77.23, methylene chloride 54.00, toluene 20.40). Diethyl ether, toluene, tetrahydrofuran, pentane, and dichloromethane were sparged with nitrogen and passed through activated alumina. All solvents were stored over 4 Å molecular sieves. Benzaldehyde was distilled and stored under nitrogen. All other reagents were used as received. HOTPP,²¹ 3-Methyl-3-Phenyl-cyclopropene (**MPCP**),²² and Mo(NAr)(CHCMe₂Ph)(Pyr)₂²³ were prepared according to literature procedures.

Mo(NAr)(Pyr)(OTPP)(CHCMe₂Ph) (2). Mo(NAr)(CHCMe₂Ph)(Pyr)₂ (0.489 g, 0.913 mmol) was dissolved in 8 mL of diethyl ether in a scintillation vial. TPPOH (0.364 g, 0.913 mmol) was added as a solid and a yellow precipitate formed. The mixture was stirred for 1.5 h and the yellow solid was collected on a frit and dried *in vacuo*. The filtrate was concentrated and chilled

to -25° C overnight and a second crop was collected; total yield 0.668 g (84 %). ¹H NMR (benzene- d_6) δ 11.96 (s, 1H, ¹J_{CH} = 125 Hz, MoC*H*), 7.32 – 6.89 (overlapping, Ar-*H*), 6.84 (t, J_{HH} = 7.5 Hz, 2H, Ar-H_{para}), 6.44 (d, J_{HH} = 2Hz, 2H, pyr), 6.42 (d, J_{HH} = 2Hz, 2H, pyr), 3.25 (septet, J_{HH} = 7Hz, 2H, C*H*Me₂), 1.48 (s, 3H, C(C*H*₃)₂(Ph)), 1.31 (s, 3H, C(C*H*₃)₂(Ph)), 1.06 (d, J_{HH} = 7Hz, 6H, CH(C*H*₃)₂), 1.02 (d, J_{HH} = 7Hz, 6H, CH(C*H*₃)₂); ¹³C{¹H} NMR (benzene- d_6) δ 291.6, 159.4, 153.8, 148.5, 146.9, 142.7, 142.2, 138.3, 133.0, 131.9, 131.3, 130.4, 129.1, 128.9, 128.4, 127.5, 127.1, 126.9, 126.8, 126.6, 123.5, 110.6, 55.6, 31.8, 30.9, 29.1, 24.9, 23.7. Anal. Calcd for C₅₆H₅₄MoN₂O: C, 77.38; H, 6.27; N, 3.20. Found: C, 77.58; H, 6.28; N, 3.23.

Representative polymerization reaction. This procedure is representative for ROMP reactions with other monomers and other temperatures. Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) (6.7 mg, 7.7 μ mol) was dissolved in 2 mL toluene and cooled to 0° C. A solution of MPCP (0.1 g, 0.78 mmol) in 0.3 mL toluene was added by syringe. The reaction was stirred 2 hr at 0° C and then 0.1 mL benzaldehyde was added and stirred 1 hr. Solution was concentrated *in vacuo*. MeOH was added and a white precipitate formed immediately. The solid was collected on a frit, washed with MeOH, and dried *in vacuo*.

Kinetic Studies of Conversion of *anti-2* to *syn-2*. Samples were irradiated at 350 nm at -78 °C for 3 h in a Rayonet RPR-200 Photoreactor in teflon-stoppered NMR tubes. The samples were kept at -78 °C until being placed in the preequilibrated 500-MHz ¹H NMR probe. Data were collected over at least 2 half-lives by observing the disappearance of the *anti-2* resonance with respect to an internal standard (anthracene, poly(dimethylsiloxane), or tetramethylsilane).

Observation of Mo(NAr)[CHC(Me)(Ph)(CH)₂CMe₂Ph](OTPP)(Pyr) (*syn*-2+1_{MPCP}). Mo(NAr)(CHCMe₂Ph)(OTPP)(pyr) (0.188 g, 0.217 mmol) was dissolved in 4 mL toluene in a 10 mL Schlenk tube and the solution was cooled to -78 °C. A solution of MPCP (27.7 µL, 0.217 mmol) in 0.5 mL toluene was added. The yellow solution turned dark orange. The reaction was stirred 15 min at -78 °C and 2 h at room temperature. The volatiles were removed *in vacuo*: ¹H NMR (benzene-*d*₆, 293 K) δ 12.14 (s, 1H, MoC*H*), 7.35 – 6.72 (overlapping Ar-H, pyr), 6.55 (t, *J*_{HH} = 2Hz, 2H, pyr), 5.65 (d, *J*_{HH} = 16 Hz, 1H, olefinic C*H*), 5.43 (d, *J*_{HH} = 16 Hz, 1H, olefinic C*H*), 3.25 (septet, *J*_{HH} = 6.5 Hz, C*H*Me₂), 1.89 (s, 3H, MoCHC(CH₃)), 1.31 (d, *J*_{HH} = 12 Hz, 6H, terminal C(Ph)(CH₃)₂), 0.99 (d, $J_{\text{HH}} = 6.5$ Hz, 6H, CHC(CH₃)₂), 0.96 (d, $J_{\text{HH}} = 6.5$ Hz, 6H, CHC(CH₃)₂).

Observation of Mo(NAr)[¹³CHC(Me)(Ph)¹³CH₂CH₂CMe₂Ph](OTPP)(Pyr) (*syn*-2+1_{MPCP}). A solution of MPCP (66 % ¹³C labeled at one olefinic position) in 0.3 mL toluene was added to a -78 °C solution of **2** in 2 mL of toluene. The mixture was stirred 1.5 h at -78 °C and then 1 h at RT. The volatiles were removed *in vacuo*. ¹H NMR (benzene-*d*₆, 293 K) δ 12.14 (1/3 d, ¹J_{CH} = 124 Hz, Mo=¹³CH), 5.43 (1/3 dd, ¹J_{CH} = 154 Hz, ³J_{HH} = 16 Hz, ¹³CH=CH), all other resonances are the same as in the unlabeled species; ¹³C NMR (benzene-*d*₆, 293 K) δ 290.4 (d, ¹J_{CH} = 125 Hz, Mo=¹³CH), 133.2 (d, ¹J_{CH} = 154 Hz, ¹³CH=CH).

Observation of *anti*-(Mo)(NAr)(CHC(Me)(Ph)(CH)₂CMe₂Ph)(OTPP)(Pyr) (*anti*-2+1_{MPCP}). An NMR sample of **2** (20.5 mg, 22.6 µmol) in toluene-d₈ in a screw-capped NMR tube with a septum top was cooled to -70 °C in the NMR probe. ¹³C-labeled (33 %) MPCP (3 µL, 23 µmol) was added by syringe, the tube inverted once to mix and returned to the probe. ¹H NMR (toluene-*d*₈, characteristic resonances, 203 K) δ 14.15 (¹J_{CH} = 144 Hz, Mo=CH), 6.29 (d, ³J_{HH} = 16 Hz, CH=CH).

Observation of Labeled syn-2+1_{MPCP} at 203 K generated from anti-2+1_{MPCP}. After observation of anti-2+1_{MPCP} by ¹H NMR spectroscopy (see above), the sample was removed from the probe and allowed to warm to room temperature before being reinserted into the cold probe: ¹H NMR (toluene- d_8 , characteristic peaks, 203 K) δ 12.55 (¹ J_{CH} = 124 Hz, Mo=CH), 5.66 (d, ³ J_{HH} = 16 Hz, CH=CH), 5.38 (d, ³ J_{HH} = 16 Hz, CH=CH).

Observation of 2+1_{DCMNBD}. **DCMNBD** (37.3 mg, 0.179 mmol) was added as a solution in 1 mL toluene to a stirring solution of 2 (155.4 mg, 0.179 mmol) in 4 mL toluene. The solution immediately changed from yellow to wine red. The reaction was stirred for 3 h at RT and the volatiles removed *in vacuo*. The red oil was triturated with pentane to provide a red powder. ¹H NMR (benzene- d_6 , 293 K, protons labeled in Figure 2.12) δ 11.99 (d, 3JHH = 3 Hz, ¹ J_{CH} = 152 Hz, 1H, Mo=CH), 7.44 (br s, Ar-H), 7.26 – 6.97 (overlapping Ar-H), 6.48 (t, J_{HH} = 2Hz, 2H, pyr-H), 6.37 (t, J_{HH} = 2 Hz, 2H, pyr-H), 5.75 (d, 1H, J_{HH} = 16 Hz, H_G), 5.27 (dd, J_{HH} = 16 Hz, J_{HH} =

9 Hz, 1H, H_F), 3.70 (septet, $J_{HH} = 7$ Hz, 2H, CHMe₂) 3.64 (m, 1H, H_B), 3.52 (m, 1H, H_E), 3.39 (s, 3H, CO₂CH₃), 3.06 (s, 3H, CO₂CH₃), 1.79 (m, 1H, H_C), 1.21 (s, 6H, CMe₂Ph), 1.19 (dd, $J_{HH} = 3$ Hz, $J_{HH} = 7$ Hz, 12H, CH(CH₃)₂), 1.06 (m, 1H, H_D); ¹³C{¹H} NMR (benzene- d^{6} , 293 K): δ 280.2 (Mo=C), 171.1, 165.9, 161.8, 152.0, 151.4, 150.6, 150.5, 149.0, 144.5, 143.2, 142.5, 142.3, 142.1, 139.3, 136.8, 135.6, 132.9, 131.9, 130.7, 129.7, 129.3, 127.8, 127.1, 126.6, 126.0, 125.4, 125.2, 124.7, 123.5, 109.0, 55.4, 55.0, 52.0, 51.5, 40.9, 40.6, 29.1, 29.0, 28.8, 25.1, 24.8.

Observation of First- and Second-Insertion Products of NBDF6.

Mo(NAr)(CHCMe₂Ph)(Pyr)(OTPP) (**2**) (20 mg, 0.023 mmol) was dissolved in 2 mL of toluene and cooled to -78 °C. **NBDF6** (between 0.5 and 2 equivalents) were added as a solution in 0.3 mL of toluene. The mixtures were stirred for 30 min at -78 °C, warmed to 22 °C, and stirred for 2 h. The volatiles were removed *in vacuo* and ¹H NMR was used to assign the first and secondinsertion products based on the relative ratios. First-insertion product, ¹H NMR (benzene- d_{6} , 294 K) δ 12.06 (d, J_{HH} = 8 Hz, 1H, Mo=CH), 5.61 (d, J_{HH} = 16 Hz, 1H, CHCMe₂Ph), 5.24 (dd, J_{HH} = 16 Hz, J_{HH} = 9 Hz, 1H, CHCHCMe₂Ph); Second-insertion product, ¹H NMR (benzene- d_{6} , 294 K) δ 11.81 (d, J_{HH} = 8 Hz, Mo=CH), 5.66 (d, J_{HH} = 16 Hz, CHCMe₂Ph), 5.31 (dd, J_{HH} = 16 Hz, J_{HH} = 9 Hz, CHCHCMe₂Ph).

REFERENCES

¹ Khosravi, E.; Szymanska-Buzar, T. *Ring Opening Metathesis Polymerisation and Related Chemistry*; Kluwer Academic Publishers: Dordrecht, 2002.

² Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565.

³ Schrock, R. R. Acc. Chem. Res. 1990, 23, 158.

⁴ Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V. C.; O'Regan, M. B.;

Thomas, J. K.; Davis, W. M. J. Am. Chem. Soc. 1990, 112, 8378.

⁵ McConville, D. H.; Wolf, J. R.; Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 4413.

⁶ Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 7962.

⁷ Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. *Macromolecules* **2010**, *43*, 7515.

⁸ O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. J. Am. Chem. Soc. **1994**, 116, 3414.

⁹ (a) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. 2011, 133, 1784. (b) Flook,

M. M.; Börner, J.; Kilyanek, S.; Gerber, L. C. H.; Schrock, R. R. Organometallics 2012, 31, 6231.

¹⁰ (a) Marinescu, S. C.; Schrock, R. R.; Li, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 58.

(b) Poater, A.; Monfort-Solans, X.; Clot, E.; Copéret, C.; Eisenstein, O. J. Am. Chem. Soc. 2007, 8207.

¹¹ Schrock, R. R.; Lee, J.-K.; O'Dell, R.; Oskam, J. H. *Macromolecules* 1995, 28, 5933.

¹² (a) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. 1992, 114, 7588. (b) Oskam, J. H.;
Schrock, R. R. J. Am. Chem. Soc. 1993, 115, 11831.

¹³ Feast, W. J.; Gibson, V. C.; Ivin, K. J.; Kenwright, A. M.; Khosravi, E. J. Mol. Cat. **1994**, 90, 87.

¹⁴ Moore, J. W.; Pearson, R. G. Kinetics and Mechanism; John Wiley & Sons: New York, 1981.

¹⁵ Flook, M. M.; Börner, J.; Kilyanek, S. M.; Gerber, L. C. H.; Schrock, R. R. Organometallics, **2012**, *31*, 6231.

¹⁶ Jiang, A. J.; Simpson, J. H.; Müller, P.; Schrock, R. R. J. Am. Chem. Soc. 2009, 131, 7770.
¹⁷ Khoury, P. R.; Goddard, J. D.; Tam, W. Tetrahedron 2004, 60, 8103.

¹⁸ Toreki, R.; Vaughan, G. A.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1993, 115, 127.

¹⁹ Townsend, E. M., Kilyanek, S. M.; Schrock, R. R.; Müller, P.; Smith, S. J.; Hoveyda, A. H. *Organometallics* **2013**, ASAP August 7, 2013.

²⁰ ¹³C NMR resonances assigned for *cis* and *trans* poly(**NBDF6**) in Feast, W. J.; Gibson, V. C.; Marshall, E. L. J. Chem. Soc., Chem. Commun. **1992**, 1157.

²¹ Yates, P.; Hyre, J. E. J. Org. Chem. **1962**, 27, 4101.

²² Rubin, M.; Gevorgyan, V. Synthesis 2004, 796.

²³ Hock, A. S.; Schrock, R. R. J. Am. Chem. Soc. 2006, 128, 16373.

Chapter 3

Synthesis of Molybdenum and Tungsten Alkylidene Compounds Containing a 2,6-Dimesitylphenylimido Ligand

Portions of this chapter have appeared in print:

Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. Synthesis of Molybdenum Alkylidene Complexes That Contain the 2,6-Dimesitylphenylimido Ligand. J. Am. Chem. Soc. 2011, 133, 18142.

Gerber, L. C. H.; Schrock, R. R.; Müller, P. Molybdenum and Tungsten Monoalkoxide Pyrrolide (MAP) Alkylidene Complexes That Contain a 2,6-Dimesitylphenylimido Ligand. *Organometallics* **2013**, *32*, 2373.

INTRODUCTION

Recently, much effort has focused on the development of olefin metathesis catalysts with bulky aryloxide ligands. Sterically demanding ligands such as mono-protected bitet ligands and substituted *ortho*-terphenols (Figure 3.1) have been particularly successful in promoting *Z*-selective olefin metathesis reactions including ring-opening metathesis polymerization (ROMP),¹ homocoupling,² ring-opening cross-metathesis,³ ethenolysis,⁴ and formation of natural products through ring-closing reactions.⁵ The utility of bulky aryloxides led us to investigate the effect that bulky arylimido ligands would have on olefin metathesis catalysts. We were interested in exploring the effect of placing sterically demanding ligands at other positions in metathesis catalysts and studying the changes in selectivity and reactivity.

Figure 3.1. Examples of Z-selective olefin metathesis catalysts containing sterically demanding aryloxide ligands (left, middle) and targeted compounds (right).

Exploration of new imido ligands for group 6 metathesis catalysts is a greater undertaking than new aryloxide ligands since imido ligands are typically installed during the first step of a several step synthesis, while alcohols can easily be added to a catalyst precursor *in situ*. 2,6-Dimesitylphenyl (Ar*) was chosen as the target imido substituent because the same substituent at the aryloxide ligand is a successful *Z*-selective catalyst (Figure 3.1). Additionally, despite the steric hindrance imposed by the Ar* substituent, Ar* substituted imido moieties have been installed previously at main group metals⁶ as well as Ni⁷ and Ta⁸. Attempts to install an Ar*

imido group on Mo or W via synthetic routes that are typically used in the synthesis of imido alkylidene complexes had previously been unsuccessful (Scheme 3.1), and thus a new synthetic route to imido alkylidenes needed to be developed.⁹ Mo(NAr)₂Cl₂(DME) compounds are typically synthesized by addition of ArNH₂, Et₃N, and TMSCl to Na₂MoO₄. Attempts to synthesize Mo(NAr*)₂Cl₂(DME) via a similar synthetic route were not successful as a consequence of no reaction occurring. Reaction of MCl₄L₂ (M = Mo, L = THF; M = W, L₂ = DME) with Ar*N₃, reaction of Ar*NCO with W(O)Cl₄, or reaction of W(C^tBu)Cl₃(DME) with Ar*NH(Li) either led to decomposition or gave no reaction.

Scheme 3.1. Previous attempts towards installing the Ar* imido ligand at Mo or W.

However, Mo imido alkylidene complexes can be synthesized starting from $Mo(N^{t}Bu)_{2}Cl_{2}(DME)$, as shown in Scheme 3.2.¹⁰ Reaction of $Mo(N^{t}Bu)_{2}Cl_{2}(DME)$ with H₂NAr (Ar = 2,6-diisopropylphenyl) leads to protonation of the ^tBuN ligand to give the mixed-imido species $Mo(NAr)(N^{t}Bu)Cl_{2}(DME)$. This mixed-imido species can then be alkylated to give $Mo(NAr)(N^{t}Bu)(CH_{2}CMe_{2}R)_{2}$ (R = Me or Ph). Using pentafluorophenol to protonate

 $Mo(NAr)(N^{t}Bu)(CH_{2}CMe_{2}R)_{2}$ gives $Mo(NAr)(CHCMe_{2}R)(OC_{6}F_{5})_{2}$ exclusively with no evidence for protonation of the 2,6-diisopropylphenylimido ligand. Inspired by Gibson *et al.*'s work, a similar route of synthesis was targeted to install the NAr* ligand on Mo and W. This synthetic route has several advantages for the NAr* ligand over the traditional synthetic route to imido alkylidene complexes: first, one equivalent of the non-commercially available H₂NAr* is not sacrificed during synthesis; second, sterically congested intermediates with two NAr* ligands are avoided; and third, employing a more basic t-butylimido ligand allows a weaker acid source to be used.

Scheme 3.2. Mixed-imido synthetic route to imido alkylidene compounds starting from Mo(N^tBu)₂Cl₂(DME).

This chapter details the synthesis of Mo and W alkylidene MonoAryloxide Pyrrolide (MAP) complexes containing the 2,6-dimesitylphenylimido ligand through a mixed-imido synthetic route.

RESULTS AND DISCUSSION

I. Mixed-Imido Route for the Synthesis of 2,6-Dimesitylphenylimido Compounds

A. Synthesis of M(NAr*)(N^tBu)Cl(NH^tBu)

 $Mo(N^tBu)_2Cl_2(DME)$ did not react with Ar*NH₂ at ambient temperature. Upon heating solutions of $Mo(N^tBu)_2Cl_2(DME)$ and Ar*NH₂ to 80 °C, the yellow solution became red after several hours. The solution returned to yellow when the temperature was returned to 22 °C. ¹H NMR spectra of the solution showed only starting materials. To preclude the possibility of an equilibrium that lies towards the desired product at higher temperatures, the reaction mixture was heated to 80 °C under vacuum in attempt to drive the equilibrium by removing ^tBuNH₂ (bp 46 °C). The product remained red at room temperature. The product mixture was separated with pentane to provide an insoluble yellow powder, which was $Mo(^tBu)_2Cl_2$ (solvent free), confirmed by its conversion to $Mo(N^tBu)_2Cl_2(DME)$ upon addition of DME. A pentane soluble red oil was also isolated, which contained Ar*NH₂ and minor highly-colored impurities.

Since a method directly analogous to the synthesis of $Mo(NAr)(N^{t}Bu)Cl_{2}(DME)$ from $Mo(N^{t}Bu)_{2}Cl_{2}(DME)^{10}$ was unsuccessful, an anionic route was targeted (Scheme 3.3). Addition of Ar*NHLi(Et₂O) to a solution of $Mo(N^{t}Bu)_{2}Cl_{2}(DME)$ in Et₂O at -25 °C provided $Mo(N^{t}Bu)_{2}Cl(NHAr^{*})$. Addition of NEt₃ to $Mo(N^{t}Bu)_{2}Cl(NHAr^{*})$ gave $Mo(NAr^{*})(N^{t}Bu)Cl(NH^{t}Bu)$ (1_{M0}). After optimization, 1_{M0} was obtained in 69 % isolated yield in one step from $Mo(N^{t}Bu)_{2}Cl_{2}(DME)$ with Ar*NH₂ by *in situ* preparation of Ar*NHLi.

Scheme 3.3. Synthesis of M(NAr*)(N^tBu)Cl(NH^tBu) (1_{M0} and 1_W).

 $Mo(N^tBu)_2Cl(NHAr^*)$ and 1_{Mo} can be distinguished by their ¹H NMR spectra, which are shown in Figure 3.2. The spectrum of $Mo(N^tBu)_2Cl(NHAr^*)$ displays one t-butyl resonance, while the spectrum of 1_{Mo} displays two t-butyl resonances, indicative of the two different t-BuN moieties. Additionally, the NH resonance in the spectrum of 1_{Mo} is upfield of that in the spectrum of $Mo(N^tBu)_2Cl(NHAr^*)$.

Figure 3.2. ¹H NMR spectra of Mo(N^tBu)₂Cl(NHAr^{*}) and Mo(NAr^{*})(N^tBu)Cl(NH^tBu) (1_{Mo}). Bottom: ¹H NMR spectrum of Mo(N^tBu)₂Cl(NHAr^{*}) obtained *in situ*. Top: ¹H NMR spectrum of Mo(NAr^{*})(N^tBu)Cl(NH^tBu) (1_{Mo}).

An X-ray diffraction study confirmed that 1_{M0} contains an Ar*N imido moiety and both an amide and imido t-BuN moiety (structure shown in Figure 3.3). The Mo1-N1 bond length of 1.7545(8) and the Mo1-N3 distance of 1.7425(9) are typical for a Mo=N distances in diimdo complexes. The Mo1-N1-C1 and the Mo1-N3-C29 angles of 165.16(7) and 157.39(8), respectively, are also typical for Mo diimido complexes. N2 is identified as an amide due to the longer Mo1-N2 bond length of 1.9403(9) and the smaller Mo1-N2-C25 angle of 135.53(7). Additionally, the hydrogen atom bonded to N2 was located in the difference map.

Figure 3.3. Thermal ellipsoid (50 %) drawing of Mo(NAr*)(N^tBu)Cl(NH^tBu), 1_{Mo} . Hydrogen atoms are omitted for clarity except for the hydrogen atom attached to N2. Selected lengths (Å) and angles (°): Mo1-N3 = 1.7425(9), Mo1-N1 = 1.7545(8), Mo1-N2 = 1.9403(9), Mo1-Cl1 = 2.3308(3), N1-C1 = 1.3874(13), N2-C25 = 1.4763(13), N3-C29 = 1.4602(13); N3-Mo1-N1 = 111.90(4), N3-Mo1-N2 = 107.89(4) N1-Mo1-N2 = 103.69(4), N3-Mo1-Cl1 = 108.87(3), N1-Mo1-Cl1 = 110.50(3), N2-Mo1-Cl1 = 113.94(3), C1-N1-Mo1 = 165.16(7), C25-N2-Mo1 = 130.53(7), C29-N3-Mo1 = 157.38(8).

 $W(N^{t}Bu)(NAr^{*})Cl(NH^{t}Bu)$ (1_W) was isolated by a procedure similar to the Mo analog. The tungsten starting material $W(N^{t}Bu)_{2}Cl_{2}(py)_{2}$ was utilized since $W(N^{t}Bu)Cl_{2}(DME)$ has not been previously reported. Upon addition of LiNHAr* to $W(N^{t}Bu)_{2}Cl_{2}(py)_{2}$, intermediate $W(N^{t}Bu)_{2}Cl(NHAr^{*})$ is formed *in situ* and can be observed by ¹H NMR spectroscopy. After addition of NEt₃, $W(NAr^{*})(N^{t}Bu)Cl(NH^{t}Bu)$ was isolated in 74 % yield. Attempts to use aniline $Ar^{*}NH_{2}$ directly in a method analogous to Gibson *et al.*'s (as opposed to anilide LiNHAr*) were unsuccessful: $W(N^{t}Bu)_{2}Cl_{2}(py)_{2}$ does not react with H₂NAr* with after 16 h at 80 °C.

Attempts were made to use $[({}^{t}BuN)_{2}WCl_{2}(NH_{2}{}^{t}Bu)]_{2}$ as a starting material since it is an intermediate in the synthesis of $W(N{}^{t}Bu)_{2}Cl_{2}(py)_{2}$, and its use would eliminate one synthetic step. Use of $[({}^{t}BuN)_{2}WCl_{2}(NH_{2}{}^{t}Bu)]_{2}$ as a starting material was unsuccessful. After addition of LiNHAr* and NEt₃, H₂NAr* was the major product observed in the ${}^{1}H$ NMR spectrum.

Additionally, no reaction took place between $[({}^{t}BuN)_{2}WCl_{2}(NH_{2}{}^{t}Bu)]_{2}$ and $H_{2}NAr^{*}$, even after heating the reaction mixture to 80 °C for 5 d, likely due to the stable dimeric structure of $[({}^{t}BuN)_{2}WCl_{2}(NH_{2}{}^{t}Bu)]_{2}$.

B. Synthesis of M(NAr*)(N^tBu)(CH₂CMe₂Ph)₂

Addition of 2,6-lutidine•HCl to 1_{M_0} gives $Mo(NAr^*)(N^tBu)Cl_2(NH_2^tBu)$ (2_{M_0}) in quantitative yield. The t-butylamino ligand remains bound, which initially caused concern about its deprotonation upon addition of a Grignard reagent to 2_{M_0} , so attempts to replace ^tBuNH₂ with another donor ligand were undertaken. Reaction of 2_{M_0} with one equivalent or excess pyridine or trimethylphosphine provided inseparable mixtures of $Mo(NAr^*)(N^tBu)Cl_2(L)_n$ and $Mo(N^tBu)_2Cl_2(L)_n$ (L = pyridine or trimethylphosphine, n = 1 or 2). Presence of $Mo(N^tBu)_2Cl_2(L)_n$ was confirmed by independent synthesis from $Mo(N^tBu)_2Cl_2(DME)$. Despite initial worry about the H₂N^tBu ligand, reaction of 2_{M_0} with two equivalents of Grignard reagent $ClMgCH_2CMe_2Ph$ went smoothly to provide $Mo(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ (3_{M_0}).

Scheme 3.4. Synthesis of M(NAr*)(N^tBu)(CH₂CMe₂Ph)₂.

Compound 3_{M_0} crystallizes in the monoclinic space group P2₁/c. Analysis of the crystal structure (Figure 3.4) shows the presence of the two different imido ligands. The Mo1–N1 distance of 1.7577(15) and the Mo1–N2 distance of 1.7437(15) are similar to the equivalent distances in 1_{M_0} . The C1–N1–Mo1 angle of 164.47(13) and the C25–N2–Mo1 angle of 154.65(13) are also similar to the angles in 1_{M_0} . Both 1_{M_0} and 3_{M_0} show slightly distorted tetrahedral geometry at Mo.

Figure 3.4. Thermal ellipsoid (50 %) drawing of Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (3_{Mo}). Hydrogen atoms are omitted for clarity. Selected lengths (Å) and angles (°): Mo1-N2 = 1.7437(15), Mo1-N1 = 1.7577(15), Mo1-C29 = 2.1326(18), Mo1-C39 = 2.1410(17), N1-C1 = 1.389(2); N2-Mo1-N1 = 112.84(7), N2-Mo1-C29 = 111.14(7), N1-Mo1-C29 = 102.14(7), N2-Mo1-C39 = 109.20(7), N1-Mo1-C39 = 108.05(7), C29-Mo1-C39 = 113.35(7), C1-N1-Mo1 = 164.47(13), C25-N2-Mo1 = 154.65(13).

Starting from $\mathbf{1}_{W}$, W(NAr*)(N^tBu)Cl₂(NH₂^tBu) ($\mathbf{2}_{W}$) can be synthesized by addition of 2,6-lutidine•HCl. For the Mo analog, this reaction is quantitative, and requires no additional purification beyond filtration of the reaction mixture and removal of the volatiles *in vacuo* to obtain analytically pure product. In the case of W, this reaction is not as clean and even when excess lutidine•HCl is utilized, some $\mathbf{1}_{W}$ can still be observed in the ¹H NMR spectrum of the reaction mixture. Rather than reduce the yield of $\mathbf{2}_{W}$ during an extensive purification process ($\mathbf{1}_{W}$ and $\mathbf{2}_{W}$ have very similar solubilities), the reaction mixture was filtered, the volatiles removed *in vacuo*, and the crude product was used directly for the next reaction step.

 $W(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ (**3**_W) is synthesized by the addition of two equivalents of MgClCH_2CMe_2Ph to **2**_W. Despite the impurities in the starting material, $W(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ was recrystallized from pentane and isolated in pure form.

II. Synthesis of Alkylidene Dichloride Compounds Containing the 2,6-Dimesitylphenylimido Ligand

A. Synthesis of Molybdenum Alkylidene Complexes

Using Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (3_{Mo}) as a starting point, alkylidene synthesis was attempted using a variety of acids. Previously, alkylidene compounds have been synthesized from bisimido species upon treatment with triflic acid.¹¹ Gibson et al. showed that starting from a mixed-imido species they were able to use a much weaker acid, pentafluorophenol, to protonate the t-butylimido ligand and provide an alkylidene species.¹⁰ Reaction of 3_{Mo} with triflic acid showed the presence of five major alkylidene resonances in the ¹H NMR spectra, suggesting that triflic acid did not exclusively protonate the t-butylimido ligand of 3_{M_0} . A variety of HCl derived acids were then explored, including HCl, pyridine hydrochloride, 2,6-lutidine hydrochloride, 2,4-lutidine hydrochloride, and 3,5-lutidine hydrochloride. Addition of 3 equivalents of pyridine hydrochloride or 3,5-lutidine hydrochloride to 3_{M0} yields $Mo(NAr^*)(CHCMe_2Ph)Cl_2(L)$ (4_{Mo}, L = pyridine; 5_{Mo}, L = 3,5-lutidine), as shown in Scheme 3.5. No reaction was observed with the 2-substituted lutidine hydrochlorides: the steric hindrance located closer to the binding nitrogen atom in the 2-substituted lutidine hydrochlorides may prevent coordination of the lutidine and thus prevent protonation. The reaction of 3_{M0} with three molar equivalents of HCl solution in diethyl ether showed Ar*NH2 as the only benzene-soluble, non-volatile product by ¹H NMR spectroscopy.

Scheme 3.5. Synthesis of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) and Mo(NAr*)(CHCMe₂Ph)Cl₂(3,5-Lut).

The best results for the synthesis of 4_{Mo} were obtained using a pentane/DME mixture as solvent and conducting the reaction at room temperature. Synthesis of 5_{Mo} with a slightly larger coordinating ligand showed the best results when the reaction was conducted in benzene at 75 °C. Without heating, the reaction took several days to go to completion over which time decomposition to unidentified products was also observed.

An X-ray diffraction study of 4_{M0} was used to determine its crystal structure (Figure 3.5). Compound 4_{M0} crystallizes in the triclinic space group PT. The Mo atom is five-coordinate, with the pyridine ligand coordinated opposite one of the chloride ligands. For this compound, $\tau = 0.41$ (where $\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid),¹² indicating it is about midway between square pyramidal (SP) and trigonal bipyramidal (TBP) geometry. Bond lengths and angles are as expected for Mo imido alkylidene species, and are given in Figure 3.5. The alkylidene ligand was disordered over two positions, between an *anti* and *syn* orientation with 87 % in the *anti* orientation. Interestingly, the only atoms to be in a significantly different position between the two components of the disorder were the α -carbon, C25, and the methyl groups. The phenyl group and β -carbon, C26, are located in essentially the same place in both the *syn* and *anti* structure. The Mo=C25 bond length for the *anti* alkylidene is 1.932(2), while the Mo=C25A bond length for the *syn* alkylidene is 1.847(13). This is consistent with the *syn* alkylidene having an agostic interaction between the α -hydrogen and Mo, while *anti* alkylidene does not. Only the *anti* alkylidene is observed in the ¹H NMR spectrum of 4_{M0} in C₆D₆ or CD₂Cl₂ (12.61 ppm in CD₂Cl₂, ¹J_{CH} = 151 Hz).

Figure 3.5. Thermal ellipsoid (50 %) drawing of the two components of disordered alkylidene ligand for $Mo(NAr^*)(CHCMe_2Ph)Cl_2(Py)$, 4_{Mo} . The predominant *anti* alkylidene isomer (87 %) is pictured on the top and the *syn* alkylidene isomer is pictured on the bottom. Selected bond lengths (Å) and angles (°) for both: Mo1-N1 = 1.7277(15), Mo1-N2 = 2.2280(15), Mo1-Cl1 = 2.4128(5), Mo1-Cl2 = 2.4177(5), N1-Mo1-N2 = 87.95(6), N1-Mo1-Cl1 = 141.70(5), N2-Mo1-Cl1 = 83.10(4), N1-Mo1-Cl2 = 97.42(5), N2-Mo1-Cl2 = 166.01(4), Cl1-Mo1-Cl2 = 84.731(19), C1-N1-Mo1 = 170.90(13). Selected bond lengths and angles for *anti*: Lengths (Å): Mo1-C25 = 1.932(2); Angles (°): N1-Mo1-C25 = 95.47(8), C25-Mo1-N2 = 95.16(7), C25-Mo1-Cl1 = 122.32(6), C25-Mo1-Cl2 = 97.15(6), C26-C25-Mo1 = 129.0(3). Selected bond lengths and angles for *syn*: Lengths (Å) Mo1-C25A = 1.847(13); Angles (°) N1-Mo1-C25A = 128.1(4), C25A-Mo1-N2 = 96.0(4), C25A-Mo1-Cl1 = 89.9(4), C25A-Mo1-Cl2 = 90.9(4), C26A-C25A-Mo1 = 151(2).

To the best of our knowledge, this is the first time that HCl-based acids have been employed in order to prepare Mo or W imido alkylidene complexes. Pyridine hydrochloride provides several advantages over triflic acid that has been used primarily for previous alkylidene syntheses. Pyridine hydrochloride is a solid and non-volatile, which makes it more convenient to manipulate and cause less damage in a dry box. Additionally, because triflic acid is such a strong acid, it can cause unpredictable side reactions during alkylidene synthesis, leading to failed reaction or difficult purification.

After the application of pyridine hydrochloride to alkylidene synthesis in the NAr^{*} system, it was found that similar conditions can be employed for the synthesis of other alkylidene species that were not available using triflic acid. Specifically, other Schrock group members found that the long sought after W t-butylimido and adamantylimido alkylidene species can be synthesized by employing pyridine hydrochloride to form W(NR)(CHCMe₃)Cl₂(py)₂ (R = t-butyl, 1-adamantyl) from W(NR)₂(CH₂CMe₃)₂.¹³

B. Synthesis of Tungsten Alkylidene Complexes

With $\mathbf{3}_{\mathbf{w}}$ as a starting point, a variety of acid sources were tested for the synthesis of a W NAr* alkylidene species. PyridineHCl, HCl solution in Et₂O, or triflic acid resulted in decomposition with little or no identifiable alkylidene species as determined by ¹H NMR spectroscopy. (CF₃)₂CHOH, pyridine•HOTf, F₅C₆OH, and [HNEt₃][OTf] provided no reaction at ambient temperature in DME or at 80 °C in C₆D₆. Although use of pyridineHCl was unsuccessful, reaction of $\mathbf{3}_{\mathbf{w}}$ with one molar equivalent of pyridine followed by addition of three equivalents of HCl in Et₂O gives W(NAr*)(CHCMe₂Ph)Cl₂(py) ($\mathbf{4}_{\mathbf{w}}$) which was isolated in 69 % yield. Only the *anti* alkylidene isomer is visible in the ¹H NMR spectrum of $\mathbf{4}_{\mathbf{w}}$ (¹*J*_{CH} = 144 Hz).

Scheme 3.6. Synthesis of W(NAr*)(CHCMe₂Ph)Cl₂(py), 4_w.

An alkylidene species was also synthesized by treating 3_w with three equivalents of HCl in the presence of 2,2'-bipyridine (bipy) to form W(NAr*)(CHCMe₂Ph)Cl₂(bipy) (6_w , Scheme 3.7). W(NAr*)(CHCMe₂Ph)Cl₂(bipy) is insoluble in pentane, Et₂O, benzene, and toluene. Its low solubility in CH₂Cl₂ can be used to extract 6_w from [^tBuNH₃][Cl].

Scheme 3.7. Synthesis of W(NAr*)(CHCMe₂Ph)Cl₂(bipy), 6_w, and [W(NAr*)(CHCMe₂Ph)Cl] [Zn₂Cl₆]_{0.5}, 7_w.

ZnCl₂ or ZnCl₂(1,4-dioxane) has been used to remove 2,2'-bipyridine or 1,10phenanthroline from Mo imido alkylidene complexes.^{13, 14, 15} When ZnCl₂(1,4-dioxane) is added to W(NAr*)(CHCMe₂Ph)Cl₂(bipy) in CD₂Cl₂, the orange suspension becomes a clear orange solution. A new product and free 1,4-dioxane are observed by ¹H NMR spectroscopy, but resonances indicative of metal-bound bipyridine are visible, indicating that ZnCl₂(1,4-dioxane) did not remove bipyridine from the W coordination sphere. An X-ray structure of the product showed that [W(NAr*)(CHCMe₂Ph)Cl(bipy)][Zn₂Cl₆]_{0.5} (**7**_w) had formed as the reaction
product: $ZnCl_2$ abstracted a chloride ligand to form a cationic W bipyridine complex (Figure 3.6).

 $[W(NAr^*)(CHCMe_2Ph)Cl(bipy)][Zn_2Cl_6]_{0.5}$ crystallizes in the space group Pī with one $[W(NAr^*)(CHCMe_2Ph)Cl(bipy)][Zn_2Cl_6]_{0.5}$ unit and one toluene molecule per asymmetric unit (Figure 3.6). The alkylidene ligand is in the *syn* orientation. The bipyridine ligand is disordered over two positions. The τ value is 0.34 (Where $\tau = 1$ for a perfect trigonal bipyramid and $\tau = 0$ for a perfect square pyramid),¹² indicating that the geometry about W is best described as a distorted square pyramid with the alkylidene ligand at the apical site. The W1-N1-C11 angle of 153.52(18) is relatively small compared to many other imido alkylidene complexes, possibly due to some π interactions between the mesityl ring and one of the bipy ring system. Otherwise, the bond lengths and angles are fairly typical for W imido alkylidene complexes. The Zn atoms in the Zn₂Cl₆²⁻ anion are slightly distorted tetrahedra.

Figure 3.6. Crystal structure of $[W(NAr^*)(CHCMe_2Ph)Cl(bipy)][Zn_2Cl_6]_{0.5}$ in thermal ellipsoid representation at the 50% probability level. Only one half of the $Zn_2Cl_6^{2^-}$ anion is present in the asymmetric unit, but the whole unit is pictured. Hydrogen atoms, toluene solvent molecule and minor component of disorder are omitted for clarity. Selected bond angles: C11-N1-W1 = 153.03(15), C2-C1-W1 = 148.42(17).

III. Substitution of Chloride Ligands in 2,6-Dimesitylphenylimido Alkylidene Complexes

A. Synthesis of Monochloride Monoalkoxide Complexes

In order to gauge the effects of the NAr* ligand on alkylidene complexes a small library of compounds was synthesized. The first class of complexes that was targeted were monochloride monoalkoxide complexes (Scheme 3.8), which are possible precursors to the target MAP complexes.

Scheme 3.8. Substitution of a chloride ligand in Mo(NAr*)(CHCMe₂Ph)Cl₂(py) to form monoalkoxide monochloride complexes.

Reaction of 4_{Mo} with one equivalent of LiO^tBu, LiOCMe(CF₃)₂, LiO(2,6-Me₂C₆H₃) or LiOⁱPr in diethyl ether at ambient temperature yields Mo(NAr*)(CHCMe₂Ph)Cl(O^tBu)(Py) (8_{Mo}), Mo(NAr*)(CHCMe₂Ph)Cl[OCMe(CF₃)₂](Py) (9_{Mo}), Mo(NAr*)(CHCMe₂Ph)Cl[O(2,6-Me₂C₆H₃)](Py) (10_{Mo}), and Mo(NAr*)(CHCMe₂Ph)Cl(OⁱPr)(Py) (11_{Mo}), respectively. These reactions are more facile in diethyl ether than benzene-d₆ as solvent, likely because the lithium alkoxide reagents are more soluble in diethyl ether. Despite the greater steric demand of the alkoxide ligands compared with chloride, pyridine remains bound in all cases. In solution, 8_{Mo} , 9_{Mo} , and 10_{Mo} are observed as *anti* alkylidenes with ${}^{1}J_{CH}$ values of 148 Hz, 150 Hz, and 151 Hz, respectively, all typical ${}^{1}J_{CH}$ values for *anti* alkylidenes.

Compound 5_{M_0} was used as a starting material with the idea that a bulkier donor ligand in the starting material may dissociate more easily upon substitution of the chloride ligands. Reaction of 5_{M_0} with LiO^tBu and LiOAr* were monitored *in situ*. In both of these reactions, no free 3,5-lutidine was observed in the ¹H NMR spectra; these reactions were not pursued further.

Reactions with large alkoxide ligands were explored as well. Reaction of 4_{Mo} with one molar equivalent of LiOAr* in benzene at 80 °C for 16 h provides $Mo(NAr^*)(CHCMe_2Ph)Cl(OAr^*)(Py)$ (Scheme 3.9). Despite the steric demands about Mo by two terphenyl-substituted ligands, pyridine remains bound to molybdenum.

Scheme 3.9. Synthesis of Mo(NAr*)(CHCMe2Ph)Cl(OAr*)(Py), 12_{Mo}.

Crystals of 12_{Mo} were obtained by chilling a concentrated Et₂O solution. During data collection, ice accumulated on the crystal, interfering with crystal diffraction, so multiple reflections were omitted in order to find a suitable model for the data. Compound 12_{Mo} crystallized in triclinic space group Pī with two independent molecules in the asymmetric unit. There was much disorder in the structure, including in mesityl groups, the pyridine ligands, and parts of the alkylidene ligand (although neither of the α -carbon atoms was disordered).

Figure 3.7 shows one molecule of Mo(NAr*)(CHCMe₂Ph)Cl(OAr*)(py) (12_{Mo}) with the disorder omitted for clarity. The geometry at Mo is a distorted square pyramid, $\tau = 0.10$ (where $\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid), with the alkylidene ligand at the apical site. The two terphenyl-substituted ligands are located opposite one another on the base of

the square pyramid (150.95(7)°) and pyridine is opposite the chloride ligand (157.1(3) °). Mo1 sits 0.383 Å above the basal plane of the square pyramid (least squares plane of Cl11, N11, N12, and O11). Bond lengths and angles of the two independent molecules of **12**_{Mo} are similar, but the two molecules are opposite hands: the ordering of equivalent ligands about the basal plane of the square pyramid is clockwise in one and counterclockwise in the other. Although the Mo1=N11 bond is 1.7442(19) Å and the Mo1 – O11 bond length is 1.992(15) Å, the differing bond angles (C125-O11-Mo1 = 139.43(13) and C101-N11-Mo1 = 173.93(17)) mean that the NAr* and the OAr* ligand provide about similar steric protection based on the Mo – C_{ipso} distances (Mo1 – C101 and Mo1 – C125 are both 3.140 Å). The alkylidene ligands are in the *syn* orientation in both independent molecules with no disorder between *syn* and *anti*. In solution, only the *syn* isomer is observed by ¹H NMR spectroscopy (¹J_{CH} = 127 Hz) as well.

Figure 3.7.Thermal ellipsoid (50 %) drawing of 12_{Mo} . One independent molecule is shown with one component of each disorder. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Mo1-N11 = 1.7442(19), Mo1-C149 = 1.874(3), Mo1-O11 = 1.992(15), Mo1-N12 = 2.267(7), Mo1-Cl11 = 2.3731(6), N11-Mo1-C149 = 102.45(10), N11-Mo1-O11 = 148.55(8), C149-Mo1-O11 = 108.32(9), N11-Mo1-N12 = 94.9(3), C149-Mo1-N12 = 98.5(2), O11-Mo1-N12 = 74.6(3), N11-Mo1-N32 = 96.6(4), N11-Mo1-Cl11 = 98.10(6), C149-Mo1-Cl11 = 99.45(8), O11-Mo1-Cl11 = 83.31(5), N12-Mo1-Cl11 = 155.0(3), C125-O11-Mo1 = 139.43(13), C150-C149-Mo1 = 146.4(3), C101-N11-Mo1 = 173.93(17).

The ¹H NMR spectrum of 12_{M_0} is broad at room temperature, so a variable temperature NMR study in toluene- d_8 was conducted in order to observe coalescence and decoalescence (Figure 3.8). At -10 °C, the peaks were sharp and resonances could be observed for each methyl group. At higher temperatures, as bond rotation becomes faster, coalescence of several aromatic and methyl groups can be observed.

Figure 3.8. ¹H NMR spectra of Mo(NAr*)(CHCMe₂Ph)Cl(OAr*)(py) in toluene-d₈ at various temperatures.

B. Synthesis of Bispyrrolide Complexes

Bispyrrolide complexes are useful precursors for olefin metathesis catalysts. Upon addition of an alcohol, bisalkoxide or MAP complexes are synthesized. Bispyrrolide precursors are particularly useful because the byproduct of the reaction with an alcohol, pyrrole, does not interfere with olefin metathesis, thus catalysts for olefin metathesis can be synthesized *in situ*.

Another advantage is that (depending on the substituents on the pyrrolide ligand) the pyrrole byproduct can be readily removed *in vacuo*.

Scheme 3.10. Synthesis of M(NAr*)(CHCMe₂Ph)(Pyr)₂(Py), 13_{Mo} and 13_W.

Upon addition of two equivalents of LiPyr (Pyr = pyrrolide = LiNC₄H₄) to 4_{Mo} or 4_W in Et₂O, M(NAr*)(CHCMe₂Ph)(Pyr)₂(Py) (M = Mo, 13_{Mo} ; M = W, 13_W) is formed. Compounds 13_{Mo} and 13_W are both pyridine adducts (Scheme 3.10).

Scheme 3.11. Synthesis of M(NAr*)(CHCMe₂Ph)(Me₂Pyr), 14_{Mo} and 14_W.

Addition of LiMe₂Pyr (Me₂Pyr = 2,5-dimethylpyrrolide = 2,5-Me₂NC₄H₂) to 4_{M_0} or 4_W in Et₂O gives M(NAr*)(CHCMe₂Ph)(Me₂Pyr) (M = Mo, 14_{M_0} ; M = W, 14_W) (Scheme 3.11). Compounds 14_{M_0} and 14_W are not a pyridine adducts: ¹H NMR spectra of 14_{M_0} and 14_W show free pyridine unless they are thoroughly dried under vacuum. The ¹H NMR spectra of 14_{M_0} and

 14_W are broad at standard temperature. Variable temperature NMR studies show that at -40 °C the spectrum of 14_{Mo} and 14_W are sharp and all methyl and pyrrolide resonances are independent (Figure 3.9 and Figure 3.10). It is not possible to distinguish from these spectra whether the observed functionality is due to rotation about Mo-N_{pyr} bonds or the pyrrolide ligands switching between η^1 or η^5 binding modes. The ${}^1J_{CH}$ value for 14_{Mo} is 130 Hz and for 14_W is 126 Hz, which are observed at -40 °C. These values are typical for *syn* alkylidenes.

Figure 3.9. Variable temperature ¹H NMR spectra of Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_{Mo}.

Figure 3.10. Variable temperature ¹H NMR spectra of W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_w.

C. Synthesis of Bisalkoxide Complexes

Synthesis of several types of bisalkoxide complexes was investigated. $Mo(NAr^*)(CHCMe_2Ph)(OAr')_2(15_{Mo}, Ar' = 2,6-Me_2C_6H_3)$ was first identified as an impurity in the reaction of one equivalent of HOAr' with $Mo(NAr^*)(CHCMe_2Ph)(Me_2pyr)_2$ (14_{Mo}). An Xray diffraction study was conducted on crystals obtained from the reaction mixture, and it was found that the crystal was 15_{Mo}. Compound 15_{Mo} can be synthesized by reaction of $Mo(NAr^*)(CHCMe_2Ph)Cl_2(py)$ and two equivalents of LiOAr'. Notably, this compound is not a pyridine adduct.

The crystal structure of Mo(NAr*)(CHCMe₂Ph)(OAr')₂ is typical for four-coordinate Mo alkylidene species (Figure 3.11). The alkylidene ligand is disordered over two positions, with 75 % in the *anti* configuration and 25 % in the *syn* configuration. The Mo=C25 bond length in the *anti* isomer is 1.950(3) while the Mo=C25a bond length of the *syn* isomer is 1.752(8). The shorter bond length of the *syn* isomer is indicative of the agostic interaction that is present in the

syn isomer, but not the *anti*. In solution, only the *anti* isomer is visible (${}^{1}J_{CH} = 155$ Hz). The geometry about Mo is distorted tetrahedral. Otherwise, the bond lengths and angles are typical for four-coordinate imido alkylidene complexes.

Figure 3.11. Thermal ellipsoid (50 %) representation of $Mo(NAr^*)(CHCMe_2Ph)(OAr')_2$ (15_{Mo}). The alkylidene ligand is disordered with 75 % in the anti configuration (pictured), and 25 % in the syn configuration. Hydrogen atoms and minor component of the disorder are omitted for clarity. Selected bond lengths: Mo1-N1 = 1.7329(16), Mo1-O1 = 1.9118(15), Mo1-O2 = 1.9332(14), Mo1-C25 = 1.950(3) (*anti*), Mo1-C25A = 1.752(8) (*syn*). Selected bond angles (both): N1-Mo1-O1 = 116.90(7), N1-Mo1-O2 = 111.53(7), O1-Mo1-O2 = 114.60(6), C1-N1-Mo1 = 164.43(14), C43-O2-Mo1 = 137.26(14), C35-O1-Mo1 = 147.73(15). Selected bond angles (*anti*): N1-Mo1-C25 = 95.49(10), O1-Mo1-C25 = 110.13(9), O2-Mo1-C25 = 105.95(9), O2-Mo1-C25 = 105.95(9), C26-C25-Mo1 = 126.7(2), O2-Mo1-C25 = 105.95(9). Selected bond angles (*syn*): N1-Mo1-C25 = 120.5(3), C25A-Mo1-O1 = 95.8(3), C25A-Mo1-O2 = 95.0(3), C26A-C25A-Mo1 = 146.5(8), C26A-C25A-Mo1 = 146.5(8).

Attempts to isolate other bisalkoxide species have been unsuccessful. Reaction of $Mo(NAr^*)(CHCMe_2Ph)Cl_2(py)$ with excess LiO^tBu showed formation a new product by ¹H NMR spectroscopy, but it could not be isolated. Multiple attempts have been made towards the synthesis bisalkoxide compounds containing fluorinated alkoxide ligands. Reaction of $Mo(NAr^*)(CHCMe_2Ph)Cl_2(py)$ with excess $LiOCMe(CF_3)_2$ or $LiOCMe_2(CF_3)$ showed

Mo(NAr*)(CHCMe₂Ph)Cl(OR)(py) (R = CMe₂(CF₃) or CMe(CF₃)₂) as the major product, even with excess alkoxide or heating to 80 °C. This could be due to either steric or electronic reasons: either the crowded environment about Mo does not allow a second chloride substitution or once intermediate Mo(NAr*)(CHCMe₂Ph)Cl(OR)(py) (R = CMe₂(CF₃) or CMe(CF₃)₂) is formed, substitution of the alkoxide ligand is favored over the chloride ligand, making the process degenerate. Reaction of Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂ with two equivalents of HOCMe(CF₃)₂ show a mixture of 3 alkylidene products after 16 h. Reaction of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py) with two equivalents of HOCMe(CF₃)₂ show a mixture of the MAP species and a new product (65 % new species) even after 4 d at 80 °C. The new species looks to be a pyridine adduct as well, as determined by pyridine resonances shifted from that free pyridine in the ¹H NMR spectrum.

Figure 3.12. [BiphentBu]H₂ and [BiphenCF₃]H₂ ligands.

Isolation of compounds containing chelating diolates has been attempted. Biphen_{CF3} and biphen_{tBu} were chosen as diolate ligands (Figure 3.12). Reaction of [biphen_{tBu}]H₂ or [biphen_{CF3}]H₂ with excess NEt₃ and one equivalent of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) in THF showed mostly free diol after 16 h. A stronger base was then employed to deprotonate the ligand. Reaction of [biphen_{tBu}]H₂ with two equivalents of n-butyllithium in C₆D₆ shows clean conversion to [biphen_{tBu}]Li₂. Addition of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) followed by heating to 80 °C for 16 h, shows complete conversion of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) and the presence of one new alkylidene. Pyridine appears to be bound in the product, as determined by resonances

shifted from that of free pyridine in the ¹H NMR spectrum, but attempts towards isolating the product were unsuccessful. When n-Butyllithium was added to $[Biphen_{CF3}]H_2$ in C₆D₆, no alcohol signal remained by ¹H NMR spectroscopy, upon which Mo(NAr*)(CHCMe₂Ph)Cl₂(py) was added. Only starting material was observed in the ¹H NMR spectrum after 16 h at 80 °C. [Biphen_{CF3}]H₂ likely decomposed before addition of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) since it has been reported that [Biphen_{CF3}]H₂ is unstable in the presence of n-butyllithium.¹⁶

IV. Synthesis of MonoAlkoxide Pyrrolide (MAP) Complexes

A. Synthesis of MAP Complexes Containing an Unsubstituted Pyrrolide Ligand

MonoAlkoxide Pyrrolide (MAP) catalysts have provided many interesting results in the past few years, especially in the area of Z selectivity.¹⁻⁵ We were interested in synthesizing MAP complexes with the NAr* ligand as well.

Scheme 3.12. Synthesis of MAP complexes with unsubstituted pyrrolide ligands.

MAP complexes are formed upon addition of one molar equivalent of an alcohol to $Mo(NAr^*)(CHCMe_2Ph)(Pyr)(OR)(Py)$ (16_{Mo} , $R = CMe(CF_3)_2$; 17_{Mo} , $R = {}^{i}Pr$; 18_{Mo} , $R = CH(CF_3)_2$; 19_{Mo} , $R = 2,6-Me_2C_6H_3$; 20_{Mo} , $R = Si^iPr_3$; 21_{Mo} , $R = SiPh_3$; 22_{Mo} , $R = Si(SiMe_3)_3$). The pyridine ligand remains bound in all cases. Compounds $16_{Mo} - 20_{Mo}$ all show *anti* alkylidenes in solution, as determined by observation of the ${}^{1}J_{CH}$ value by ${}^{1}H$ NMR spectroscopy. Although it is unusual for the *anti* alkylidene isomer to the major isomer in 4-coordinate group 6 imido alkylidene complexes it has been observed previously for other 5-coordinate, base-stabilized species.¹⁷

Synthesis of MAP complexes that contain more sterically demanding alkoxide ligands was attempted as well. Although reaction of HOAr^{*} with 13_{Mo} showed a new alkylidene species in the ¹H NMR spectrum, both starting materials remained in solution after heating to 80 °C for 5 d. Reaction of one equivalent of Ph₃COH with 13_{Mo} provides Mo(NAr*)(CHCMe₂Ph)(Pyr)(OCPh₃), which can be observed by ¹H NMR spectroscopy, but attempts to isolate it were unsuccessful. Mo(NAr*)(CHCMe2Ph)(Pyr)(OCPh3) is not a pyridine adduct. It is interesting to compare 21_{M_0} , which is a pyridine adduct, and Mo(NAr*)(CHCMe₂Ph)(Pyr)(OCPh₃) since the only difference between the two is the atom bonded to oxygen. The pK_a of HOCPh₃ is 12.7 and the pK_a of HOSiPh₃ is 10.8.¹⁸ Based on these values, the OSiPh₃ ligand should be more electron-withdrawing than the OCPh₃ ligand, making it more favorable for pyridine to bind to the complex. The O-C bond length in HOCPh₃ is 1.437 Å,¹⁹ while the O-Si bond length is 1.640 Å,²⁰ making the metal in 21_{M_0} more sterically accessible for pyridine to bind. Thus, both steric and electron influences facilitate the binding of pyridine to 21_{Mo} over Mo(NAr*)(CHCMe₂Ph)(Pyr)(OCPh₃).

The pyridine ligand stabilizes the alkylidene complexes and brings the electron count to 16. Thus, in pyridine adducts the electrophilicity of the metal is decreased and an open coordination site is blocked, which hinders the reactivity toward olefins both for electronic and steric reasons. Therefore, pyridine-bound compounds are not desirable as olefin metathesis catalysts (unless pyridine dissociates). Lewis acids were employed towards the goal of removing pyridine and isolating base-free alkylidene complexes. Of Lewis acids BF₃, BPh₃, and B(C₆F₅)₃, it was found that although BF₃ and BPh₃ sometimes cause decomposition, B(C₆F₅)₃ could be used to abstract pyridine with causing further decomposition. Because of this, B(C₆F₅)₃ was employed generally towards the removal of pyridine. Upon addition of one equivalent of

B(C₆F₅)₃ to pyridine adducts, the Lewis pair B(C₆F₅)₃NC₅H₅ formed immediately, which can be identified by its ¹H and ¹⁹F NMR spectrum. Unfortunately, the similar solubilities of the pyridine-free 14e species and B(C₆F₅)₃NC₅H₅ prevented separation and isolation of pyridine-free alkylidene complexes. Clean conversion to one pyridine-free alkylidene species was not observed when B(C₆F₅)₃ was added to $16_{Mo} - 20_{Mo}$, so further characterization of the target MAP species *in situ* was not feasible. However, there were only two alkylidene resonances in ¹H NMR spectra of base-free 21_{Mo} and 22_{Mo} (21_{Mo} ' and 22_{Mo} ', respectively). In each case the two resonances were confirmed as being those of *syn* and *anti* alkylidenes on the basis of the ¹J_{CH} values. For 21_{Mo} ' K_{eq} = 2.0 and for 22_{Mo} ' K_{eq} = 2.3 (K_{eq} = [*syn*]/[*anti*]).

B. Synthesis of MAP Complexes Containing a 2,5-Dimethylpyrrolide Ligand

Since pyridine is not bound to 14_{Mo} and 14_{W} , focus shifted towards their use as a starting material for the synthesis of four-coordinate MAP complexes. MAP complexes $M(NAr^*)(CHCMe_2Ph)(Me_2pyr)(O^tBu)$ (23_{Mo}, 23_w, Μ Mo; Μ W) $M(NAr^*)(CHCMe_2Ph)(Me_2pyr)[OCMe(CF_3)_2]$ (24_{Mo}, Μ Mo; 24_w, W), Μ == $M(NAr^*)(CHCMe_2Ph)(Me_2pyr)(OSiPh_3) \quad (25_{Mo}, M = Mo; 25_W, M = W),$ and $M(NAr^*)(CHCMe_2Ph)(Me_2pyr)(OAr')$ (26_{Mo}, M = Mo; 26_W, M = W) were synthesized by addition of one equivalent of alcohol to 14_{M0} or 14_{W} . Compounds 23 - 26 were extremely soluble in non-polar organic solvents, but could be recrystallized from MeCN. There is no evidence for any reaction or coordination of MeCN with compounds 23 - 26 at ambient temperature. Compounds 23 - 26 are all mixtures of syn and anti alkylidene isomers in solution at ambient temperature: both isomers are detected in ¹H NMR spectra.

W(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu) (**23**_W) has been studied by X-ray crystallography (Figure 3.13). The crystal exhibited whole molecule disorder, with the major component representing 90 % of the electron density. Discussion of the structure will refer to only the major component. The alkylidene ligand is in the *syn* orientation with the substituents pointed toward the imido ligand. The W1-C1 bond length is 1.875(2) Å, the W1-N1-C21 angle is 173.4(3) °, and the C2-C1-W1 angle is 147.33(19) °, all typical of Group 6 MAP complexes. When viewed along the C21-N1-W1 axis, one mesityl group covers the alkoxide and one mesityl group falls between the pyrrolide and alkylidene ligands. The N1-W1-C1-C2 torsion angle is 12.25 °.

Scheme 3.13. Synthesis of MAP complexes with 2,5-dimethylpyrrolide ligands.

Figure 3.13. Crystal structure of W(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu), 23_w, in thermal ellipsoid representation at the 50 % probability level. Hydrogen atoms and minor disorder component are omitted for clarity. Selected bond lengths (Å): C1-W1 = 1.875(2), W1-N1 = 1.750(2), W1-O1 = 1.8682(19), W1-N2 = 2.033(2). Selected bond angles (°): C2-C1-W1 = 147.33(19), N1-W1-O1 = 115.59(14), N1-W1-C1 = 106.04(16), O1-W1-C1 = 109.35(10), N1-W1-N2 = 111.05(13), O1-W1-N2 = 110.03(10), C1-W1-N2 = 104.07(11), C21-N1-W1 = 173.4(3).

CONCLUSIONS

A new synthetic route was developed in order to install the NAr* ligand at Mo and W. This strategy takes advantage of mixed-imido compounds that contain both t-butylimido and Ar* imido ligands. The more basic t-butylimido ligand can be selectively protonated with HCl-based acids during the alkylidene formation synthetic step, which avoids sacrificing an NAr* ligand and the difficult purification from triflate salts that are characteristic of the traditional route to alkylidene complexes. Use of HCl-based acids, especially pyridine hydrochloride, is more economical, and more convenient for dry box use. Use of pyridine hydrochloride as an acid source for alkylidene synthesis has been expanded by other Schrock group members to allow the synthesis of long-sought tungsten alkyl imido alkylidene complexes.

Many types of alkylidene complexes containing the Ar*imido ligand have been synthesized including dichlorides, monoalkoxide monochlorides, bispyrrolides, and MAP complexes. Complexes containing chloride ligands or unsubstituted pyrrolides are pyridine adducts. Attempts towards removing pyridine with a Lewis acid were unsuccessful. Complexes containing the 2,5-dimethylpyrrolide ligand are pyridine-free and a variety of MAP complexes were synthesized.

These compounds provide a starting point to understanding how steric hindrance at different places in the molecule affect olefin metathesis catalysts. Understanding how steric hindrance at the imido ligand contrasts to steric hindering ligands at the alkoxide in terms of catalyst structure, reactivity, and selectivity is important to the development of new olefin metathesis catalysts. Deeper understanding of structure-function relationships is key to expanding the boundaries of what is possible with olefin metathesis catalysis.

EXPERIMENTAL

General Considerations

All air-sensitive manipulations were performed under nitrogen atmosphere in a drybox or an airfree dual-manifold Schlenk line. All glassware was oven-dried and allowed to cool under vacuum before use. NMR spectra were obtained on Varian 300 MHz, Varian 500 MHz, Bruker 400 MHz, or Bruker 600 MHz spectrometers. ¹H and ¹³C NMR spectra are reported in ppm (parts per million) relative to tetramethylsilane, and referenced to residual ¹H/¹³C signals of the deuterated solvent (¹H, benzene 7.16, dichloromethane 5.32; ¹³C, benzene 128.39, dichloromethane 54.00). ¹⁹F NMR spectra are reported in ppm relative to trichlorofluoromethane and referenced using an external standard of fluorobenzene (-113.15 ppm). Diethyl ether, toluene, tetrahydrofuran, pentane, benzene, MeCN, DME, and dichloromethane were sparged with nitrogen and passed through activated alumina. Alternatively, dimethoxyethane was dried over Na/benzophenone. All solvents were stored over 4 Å molecular sieves. Pyridiniumchloride derivatives were prepared by addition of excess 2.0 M HCl in diethyl ether to a hexane solution of the pyridine derivative, followed by isolation of the precipitate on a fritted filter. HCl solution in Et₂O was prepared by bubbling gaseous HCl through Et₂O at atmospheric pressure. LiPyr and LiMe₂Pvr were prepared by addition of one equivalent of n-Butyllithium to a cold pentane solution of pyrrole or 2,5-dimethylpyrrole, and the solids were collected on a frit, washed with pentane and dried in vacuo. HOAr*, ²¹ 2,6-dimesitylaniline,^{8b} Mo(N^tBu)₂Cl₂(DME), ²² and W(N^tBu)₂Cl₂(py)₂²³ were prepared according to literature procedures. All other reagents were used as received.

Mo(NAr*)(N^tBu)Cl(NH^tBu) (1_{Mo}). A 1.6 M n-Butyllithium solution (2.7 mL, 4.4 mmol) was added to a solution of Ar*NH₂ (1.45 g, 4.41 mmol) in 15 mL pentane. The mixture was stirred for 45 m after which time it was added to a -20 °C solution of Mo(N-t-Bu)₂Cl₂(DME) (1.76 g, 4.42 mmol) in 50 mL of 2:1 Et₂O/pentane and the mixture was stirred for 30 m. The mixture became yellow and precipitate formed. Triethylamine (2 mL, 14 mmol) was added and the mixture stirred for 14 h. The volatiles were removed *in vacuo* and the solid was extracted with pentane. The extract was filtered through a glass-frit covered with a pad of Celite. The volatiles

were removed from the filtrate *in vacuo* and the yellow solid was washed with cold pentane and collected on a filter. The filtrate was concentrated and stored at -20 °C to afford a second crop; total yield 1.83 g (69 %): ¹H NMR (C₆D₆) δ 7.274 (s, 1H, N*H*), 6.916 – 6.899 (overlapping signals, 7H, Ar*H*), 2.267 (s, 6H, MesC*H*₃), 2.258 (s, 6H, MesC*H*₃), 2.188 (s, 6H, MesC*H*₃), 1.075 (s, 9H, C(C*H*₃)), 1.052 (s, 9H, C(C*H*₃)); ¹³C{¹H} NMR (C₆D₆) δ 154.7, 137.6, 137.4, 137.0, 136.8, 136.4, 129.8, 129.6, 129.1, 128.7, 125.8 (Ar*C*), 71.2 (Mo=NCMe₃), 57.6 (Mo-NHCMe₃), 32.3, 31.8, 21.59, 21.56, 21.3 (*C*H₃). Anal. Calcd for C₃₂H₄₄ClMoN₃: C, 63.83; H, 7.37; N, 6.98. Found: C, 63.56; H, 7.11; N, 6.61.

W(NAr*)(N^tBu)Cl(NH^tBu) (1_w). A solution of n-butyllithium in hexane (2.8 M, 4.5 mL, 12.6 mmol) was added to a stirred solution of H₂NAr* (4.16 g, 12.6 mmol) in 15 mL Et₂O; the resulting solution immediately became yellow. After 15 minutes, the solution of LiNHAr* was added to a stirred solution of W(N^tBu)₂Cl₂(py)₂ (7.01 g, 12.6 mmol) in 100 mL Et₂O at -25 °C. After 30 m, NEt₃ was added (10 mL, 70 mmol). After stirring the mixture for 16 h, the volatiles were removed in vacuo. The resulting solid was extracted with pentane and the mixture was filtered through a frit containing a layer of Celite. The volume of the filtrate was reduced in vacuo and a beige precipitate formed. The beige solid was collected on a frit and washed with 3 x 1 mL cold pentane. The filtrate was concentrated, cooled to -25 °C, a second crop of beige precipitate formed and was collected in the same manner. Four crops of beige solid were collected for a total yield of 6.701 g, 77 %: ¹H NMR (C₆D₆) δ 6.992 (d, 2H, J_{HH} = 7.5 Hz, meta aniline), 6.919 – 6.890 (overlapping signals, 5H, para aniline and aromatic mesityl), 6.299 (s, 1H, NH^tBu), 2.254 (s, 12H, MesMe-ortho), 2.194 (s, 6H, MesMe-para), 1.113 (s, 9H, N^tBu), 1.038 (s, 9H, N^tBu); ${}^{13}C$ { ${}^{1}H$ } NMR (C₆D₆) δ 137.7, 137.5, 136.7, 136.6, 129.4, 129.3, 128.9, 125.1 (Aromatic), 68.3, 56.6 (tertiary), 33.0, 32.6 (tBu), 21.6, 21.2 (Mesityl Me). Anal. Calcd for C₃₂H₄₄ClN₃W: C, 55.70; H, 6.43; N, 6.09. Experimental: C, 55.78; H, 6.42; N, 6.08.

¹H NMR spectrum of $\mathbf{1}_{\mathbf{W}}$ in C₆D₆:

Mo(NAr*)(N^tBu)Cl₂(NH₂^tBu) (2_{Mo}). Solid 2,6-lutidinium chloride (0.485 g, 3.38 mmol), was added to a -20 °C solution Mo(NAr*)(N^tBu)Cl(NH^tBu) (561 mg, 0.931 mmol) in 60 mL of a 3:1 pentane:toluene solution. The mixture was stirred 16 h and became orange. The reaction mixture was filtered through a fritted glass filter with a pad of Celite. The volatiles were removed *in vacuo* to leave an analytically pure orange powder; yield 1.746 g (90 %): ¹H NMR (C₆D₆) δ 6.940 – 6.874 (overlapping signals, 7H, Ar*H*), 2.690 (s, 2H, N*H*₂), 2.326 (s, 12H, C_{ortho}(C*H*₃)), 2.171 (s, 6H, C_{para}(C*H*₃)), 1.209 (s, 9H, C(C*H*)₃), 0.993 (s, 9H, C(C*H*)₃); ¹³C{¹H} NMR (C₆D₆) δ 155.3, 143.0, 138.2, 136.9, 130.2, 129.0, 128.7 (Ar-*C*), 52.9 (Mo=NCMe₃), 31.6 (Ar-*C*H₃), 30.4 (NH₂CMe₃), 29.7 (Ar-CH₃), 22.4 (C(CH₃)₃), 21.1 (C(CH₃)₃). Anal. Calcd for C₃₂H₄₅Cl₂MoN₃: C, 60.19; H, 7.10; N, 6.58. Found: C, 60.06; H, 6.92; N, 6.49.

 $W(NAr^*)(N^tBu)Cl_2(NH_2^tBu)$ (2_w). 2,6-LutidineHCl (0.427 g, 2.97 mmol) was added in one portion to a -25 °C solution of W(NAr*)(N^tBu)Cl(NH-t-Bu), 5 (2.035 g, 2.95 mmol), in 50 mL Et₂O. The mixture was stirred 16 h, and the volatiles were removed *in vacuo*. The residue was

extracted with benzene and filtered through a layer of Celite on a frit. The volatiles were removed *in vacuo* from the filtrate. The remaining solid was used directly for the synthesis of $W(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$ without further purification (2.110 g): ¹H NMR (C₆D₆) δ 7.010 – 6.995 (overlapping signals, 3H), 2.652 (br s, 2H, NH₂^tBu), 2.328 (s, 12H, mesityl ortho CH₃), 2.182 (s, 6H, mesityl para, CH₃), 1.146 (s, 9H, CMe₃), 1.018 (s, 9H, CMe₃).

Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (3_{Mo}). A 0.5 M solution Me₂PhCCH₂MgCl in diethylether (11 mL, 5.5 mmol) was added to a -20 °C solution of Mo(NAr*)(N^tBu)Cl₂(NH₂^tBu) (1.76 g, 2.75 mmol) in 100 mL Et₂O. Over a period of 16 h, a precipitate formed and the orange solution became yellow. The volatiles were removed *in vacuo*. The solids were extracted with pentane and filtered through a glass-fritted filter with a pad of Celite. The filtrate volume was reduced *in vacuo* and put into a freezer at -20 °C. Four crops of yellow microcrystalline product were collected; total yield 2.31 g (81 %): ¹H NMR (C₆D₆) δ 7.229, 7.222 (overlapping s, 8H, Ar-H), 7.097 (sextet, 2H, *J*_{HH} = 4Hz, Ar-H), 6.916 (s, 3H, Ar-H), 6.872 (s, 4H, Ar-H), 3.306 (d, ²*J*_{HH} = 13 Hz, 2H, MoC*H*₂), 2.277 (s, 12H, C_{ortho}(C*H*₃)), 2.189 (s, 6H, C_{para}(C*H*₃)), 1.307 (s, 6H, C*Me*₂Ph), 1.156 (s, 9H, C(C*H*₃)₃), 1.095 (s, 6H, C*Me*₂Ph), 0.578 (d, ²*J*_{HH} = 13 Hz, 2H, MoC*H*₂); ¹³C{¹H} NMR (C₆D₆) δ 155.4, 153.9, 138.3, 136.9, 136.7, 136.5, 130.4, 129.2, 128.7, 128.6, 126.3, 125.9, 124.9 (Ar), 79.8, 70.0, 40.1, 33.7, 32.6, 32.5, 21.7, 21.5. Anal. Calcd for C₄₈H₆₀MoN₂: C, 75.76; H, 7.95; N, 3.68. Found: C, 75.38; H, 7.73; N, 3.70.

W(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (3_w). A 0.5 M solution of ClMgCH₂CMe₂Ph in hexane (11.6 mL, 5.80 mmol) was added to a stirring solution of W(NAr*)(N^tBu)Cl₂(NH₂^tBu), 2_w (2.110 g, 2.90 mmol), in 100 mL Et₂O at -25 °C. The mixture was warmed to room temperature and stirred for 16 h. The volatiles were removed *in vacuo*. The remaining solids were extracted with pentane and filtered through Celite on a frit. The filtrate volume was reduce *in vacuo* and cooled to -25 °C. A yellow precipitate formed and was collected on a frit. The filtrate volume was reduced *in vacuo* to collect three crops in a similar manner; total yield 1.666 mg, 68 %: ¹H NMR (C₆D₆) δ 7.238 - 7.185 (overlapping signals, 8H), 7.103 - 7.069 (m, 2H), 6.983 - 6.966 (overlapping signals, 2H), 6.931 - 6.902 (overlapping signals, 1H), 6.877 (s, 4H, mesityl ArH), 2.267 (s, 12H, mesityl ortho CH₃), 2.187 (s, mesityl para, CH₃) and 2.159 (one half a doublet visible, MoCH₂, 8H integrated together with previous signal), 1.281 (s, 6H, MoCH₂CMe₂Ph),

1.192 (s, 9H, NC*Me*₃), 1.085 (s, 6H, MoCH₂C*Me*₂Ph), 0.332 (d, 2H, MoC*H*₂); ¹³C {¹H} NMR (CD₂Cl₂) δ 125.2, 138.2, 137.1, 136.6, 136.4, 129.9, 128.7, 128.4, 126.1, 125.7, 123.8, 89.5, 68.2, 40.4, 33.9, 33.2, 32.4, 21.4, 21.3. Anal. Calcd for C₄₈H₆₀WN₂: C, 67.92; H, 7.12; N, 3.30. Found: C, 68.22; H, 7.06; N, 3.21.

¹H NMR spectrum of 3_{W} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (4_{Mo}). PyridineHCl (500 mg, 3.08 mmol) was added as a solid to a cold (-20 °C) suspension of Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (483 mg, 0.635 mmol) in 30 mL of a 2:1 mixture of pentane:dimethoxyethane. The mixture was stirred 16 h at room temperature over which time a light yellow precipitate formed. The volatiles were removed *in vacuo*. The mixture was extracted with benzene and filtered through a pad of Celite on a glass-fritted filter. The benzene was removed *in vacuo* from the filtrate. The yellow solid was washed with cold pentane and collected on a frit; yield 775 mg (78 %). Crystals for X-ray diffraction were grown by slow diffusion of pentane into a toluene solution: ¹H NMR (CD₂Cl₂, 20 °C) δ 12.606 (s, 1H, Mo=CH, ¹J_{CH}=151 Hz), 8.149 (d, 2H, J_{HH} = 5 Hz, py-H(2,6)), 7.749 (t, 1H, J_{HH} = 7.5 Hz), 7.348 (t, 1H, J_{HH} = 7.5 Hz, Ar—H), 7.150 – 7.085 (overlapping signals, 6H, Ar-H),

7.009 (s, 2H, MesAr-H), 6.960 – 6.944 (overlapping signals, 3H, Ar-H), 6.755 (s, 2H, MesAr-H), 2.281 (s, 6H, MesCH₃), 2.055 (s, 6H, MesCH₃), 1.663 (br s, 6H, MesCH₃), 1.443 (s, 3H, MoCHC*Me*₂Ph), 1.357 (s, 3H, MoCHC*Me*₂Ph); $^{13}C{^{1}H}$ NMR (CD₂Cl₂, 20 °C) δ 329.4 (Mo=C), 154.8, 148.3, 139.6, 138.2, 137.4, 136.7, 136.2, 129.5, 129.4, 129.1, 129.1, 128.8, 128.5, 126.6, 126.3, 125.1, 118.5 (Aryl), 51.7 (MoCHCMe₂Ph), 27.8, 27.0 (MoCHC*Me*₂Ph), 21.5, 21.4, 20.7, 20.3 (MesMe). Anal. Calcd for C₃₉H₄₂Cl₂MoN₂: C, 66.38; H, 6.00; N, 3.97. Found: C, 66.08; H, 5.96; N, 3.85.

Mo(NAr*)(CHCMe₂Ph)Cl₂(3,5-Lut) (5_{Mo}). Solid 3,5-Lutidinium chloride (57 mg, 0.40 mmol) was added to a solution of Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (99 mg, 0.13 mmol) in 8 mL benzene in a 50 mL Schlenk bomb. The mixture was heated to 75 °C for 16 h. The reaction mixture was cooled to room temperature and filtered through a fritted filter with a pad of Celite. The volatiles were removed *in vacuo* from the filtrate to leave a yellow oil. The oil was stirred with 5 mL pentane for 4 h over which time a yellow solid formed. The pentane volume was reduced in vacuo and the suspension was cooled to -20 °C. The yellow solid was collected on a frit and washed with cold pentane. The filtrate was concentrated and returned to the freezer and a second crop was collected; total yield 59 mg (61 %): ¹H NMR (CD₂Cl₂, 20 °C) δ 12.582 (s, 1H, Mo=CH), 6.674 (s, 2H), 7.355 – 7.324 (m, 2H), 7.170 – 7.122 (m, 3H), 7.075 (d, 2H, $J_{\text{HH}} = 8$ Hz) 7.021(s, 2H), 6.965 (d, 2H, J_{HH} = 7Hz), 6.825 (s, 2H), 2.346 (s, 6H), 2.112 (s, 6H), 2.026 (s, 6H), 1.689 (br s, 6H), 1.595 (s, 3H), 1.294 (s, 3H); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 328.4 (d, J = 13 Hz, Mo=C), 155.0, 152.4, 150.8, 147.8, 140.6, 137.8, 136.8, 136.6, 136.1, 134.2, 130.3, 129.7, 129.3, 129.1, 128.9, 128.5, 128.2, 126.4, 126.2, 125.8, 51.3 (Mo=CHCMe₂Ph), 26.89, 26.85, 21.3, 21.2, 20.5, 18.5. Anal. Calcd for C41H46Cl2MoN2: C, 67.12; H, 6.32; N, 3.82. Found: C, 66.81; H, 6.15; N, 3.63.

W(NAr*)(CHCMe₂Ph)Cl₂(py) (4_w). A solution of pyridine (0.227 g, 2,87 mmol) in 2 mL Et₂O was added to a solution of W(NAr*)(N^tBu)(CH₂CMe₂Ph)₂, 3_w (2.418 g, 2.85 mmol), in 50 mL Et₂O and a pale yellow precipitate formed. The mixture was chilled to -25 °C and HCl (1.1 M in Et₂O, 7.8 mL) was added and the mixture was stirred for 16 h over which time it became orange. The volatiles were removed *in vacuo*. The residue was washed with pentane and then extracted with toluene and benzene and filtered through a pad of Celite on a frit. The volatiles were

removed *in vacuo* to give a yellow powder. The pentane wash was concentrated and cooled to -25 °C. A yellow precipitate formed which was collected on a frit and washed with cold pentane to give a combined yield of 1.565 g (69 %): ¹H NMR (C₆D₆) δ 10.732 (s, 1H, ¹J_{CH} = 144 Hz, W=C*H*), 8.379 (d, 2H, J_{HH} = 5 Hz), 7.123 (d, 2H, J_{HH} = 8 Hz), 7.075 (t, 2H, J_{HH} = 8 Hz), 7.016 – 6.988 (overlapping signals, 3H), 6.770 (s, 2H), 6.649 (t, 1H, J_{HH} = 8 Hz), 6.282 (t, 2H, J_{HH} = 7 Hz), 2.245 (s, 6H, Mes C*H*₃), 2.191 (s, 6H, Mes C*H*₃), 1.861 (br s, 6H, Mes C*H*₃), 1.662 (s, 3H, Mo=CHC*Me*₂Ph), 1.603 (s, 3H, Mo=CHC*Me*₂Ph); ¹³C NMR (C₆D₆) δ 298.0 (Mo=CH), 155.6, 154.4, 152.9, 139.9, 138.6, 137.8, 137.0, 136.9, 129.5, 129.2, 128.9, 128.7, 128.5, 127.7, 126.6, 126.2, 124.7, 47.7 (Mo=CHCMe₂Ph), 30.8, 29.5, 21.9, 21.6, 21.2. Anal. Calcd for C₃₉H₄₂Cl₂N₂W: C, 59.03; H, 5.33; N, 3.53. Found: C, 58.92; H, 5.38; N, 3.47.

 $W(NAr^*)(CHCMe_2Ph)Cl_2(bipy)$ (6_w). Method A: A 1.1 M solution of HCl in Et₂O (0.324 mL, 0.356 mmol) was added to a -25 °C solution of bipyridine (19.1 mg, 0.122 mmol) and $W(NAr^*)(N^tBu)(CH_2CMe_2Ph)_2$, 3_w (101 mg, 0.119 mmol), in 4 mL Et₂O. A precipitate formed

immediately and the yellow mixture became orange. After stirring 16 h at room temperature, the volatiles were removed *in vacuo* and the orange solid was extracted with 30 mL CH_2Cl_2 and filtered through a pad of Celite on a frit. The volatiles were removed *in vacuo* from the filtrate to leave 85 mg (82 %) of orange solid.

Method B: Solid 2,2'-bipyridine (25.7 mg, 0.165 mmol) was added to a stirring solution of W(NAr*)(CHCMe₂Ph)Cl₂(py) (129.8 mg, 0.164 mmol) in 4 mL toluene. The yellow solution became orange and orange precipitate formed. After 1.5 h, the orange solid was collected on a frit, washed with 5 x 1 mL toluene, and dried *in vacuo* to give 110 mg (77 %). ¹H NMR (CD₂Cl₂) δ 10.164 (s, 1H, Mo=CH), 8.428 (d, 1H, J_{HH} = 4 Hz), 8.043 (s, 3H), 7.973 (m, 2H), 7.338 – 7.220 (overlapping signals, 5H), 7.162 and 7.121 (overlapping br s, 2H), 6.991 (t, 1H, J_{HH} = 7 Hz), 6.756 (s, 4H), 6.396 (s, 2H), 2.309 (s, 6H, mesitylCH₃), 1.774 (s, 6H, mesitylCH₃), 1.654 (s, 3H, Mo=CHC*Me*₂Ph), 1.609 (s, 6H, mesitylCH₃), 1.548 (s, 3H, Mo=CHC*Me*₂Ph). Anal. Calcd for C₄₄H₄₅Cl₂N₃W: C, 60.70; H, 5.21; N, 4.83. Found: C, 60.91; H, 5.24; N, 4.62. ¹H NMR spectrum of **6**_w in CD₂Cl₂:

 $[W(NAr^*)(CHCMe_2Ph)Cl(bipy)][Zn_2Cl_6]_{0.5}$ (7_w). Solid ZnCl₂(1,4-dioxane) (12.6 mg, 51.6 µmol) was added to a suspension of W(NAr*)(CHCMe₂Ph)Cl₂(bipy) (44.2 mg, 50.8 µmol) in 4 mL CH₂Cl₂ in a 20 mL scintillation vial. The orange suspension became a clear orange solution. After stirring 1.5 h the volatiles were removed in vacuo, and orange solid was extracted with benzene and filtered through a pipette filter. The volatiles were removed *in vacuo*. The orange oil was dissolved in minimal toluene and cooled to -25 °C and orange crystals formed. The mother liquor was removed by pipette, the crystals were washed with cold toluene, and dried in vacuo to give 22.8 mg (45 % yield). ¹H NMR (CD₂Cl₂) δ 10.707 (s, 1H, Mo=CH), 8.890 – 8.852 (overlapping signals, 2H, bpyH), 8.699 (d, 1H, $J_{HH} = 8$ Hz, bpyH), 8.583 (t, 1H, $J_{HH} = 8$ Hz, bpyH), 8.479 - 8.434 (overlapping signals, 2H bpyH), 7.581 (q, 2H, $J_{HH} = 8$ Hz), 7.330 (t, 1H, $J_{\rm HH} = 8$ Hz), 7.129 (d, 2H, $J_{\rm HH} = 8$ Hz), 6.973 (d, 2H, $J_{\rm HH} = 8$ Hz), 6.760 (s, 2H, mes*H*), 6.670 (t, 2H, $J_{\rm HH}$ = 8 Hz), 6.612 (s, 2H, mesH), 6.417 (t, 1H, $J_{\rm HH}$ = 8 Hz), 2.078 (s, 6H, mesitylCH₃), 2.031 (s, 6H, mesitylCH₃), 1.601 (s, 6H, mesitylCH₃), 1.296 (s, 3H, Mo=CHCMe₂Ph), 0.979 (s, 3H, Mo=CHCMe₂Ph); ¹³C NMR (CD₂Cl₂) δ 297.1 (Mo=CH), 156.7, 154.3, 153.4, 151.5, 145.3, 144.9, 140.7, 140.4, 139.9, 137.8, 137.4, 137.2, 136.7, 136.7, 136.4, 136.2, 130.4, 129.7, 129.7, 129.4, 129.1, 129.0, 128.9, 128.8, 128.7, 128.1, 127.6, 127.5, 126.8, 126.6, 126.2, 125.0, 47.6, 30.4, 26.6, 21.7, 21.2, 20.4.

¹H NMR spectrum of 7_{W} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)Cl(O'Bu)(py) (8_{Mo}). A solution of LiO'Bu (12.0 mg, 150 µmol) in 1 mL Et₂O was added to a suspension of Mo(NAr*)(CHCMe₂Ph)Cl₂(py), **4**_{Mo} (106 mg, 150 µmol), in 5 mL Et₂O at -25 °C. The mixture became green and then yellow. After 2 h, the volatiles were removed *in vacuo*. The remaining solids were extracted with a 1:1 pentane:toluene mixture and filtered through a pipette filter. The solvent volume was removed *in vacuo*, 1 mL pentane was added, and the mixture was cooled to -25 °C. A yellow precipitate formed and was collected on a frit. The solvent was removed from the filtrate, pentane added, and the mixture was cooled to -25 °C to collect two more crops; total yield 84.0 mg (75%): ¹H NMR (CD₂Cl₂, 20 °C) δ 12.677 (s, 1H, ¹*J*_{CH} = 148 Hz, Mo=C*H*), 8.10 (d, 2H, *J*_{HH} = 5Hz), 7.71 (t, 1H, *J*_{HH} = 7.5 Hz), 7.17 – 7.07 (overlapping m, 6H), 6.96 - 6.95 (overlapping m, 4H), 6.88 (s, 2H, Mesityl-Ar*H*), 6.58 (s, 2H, Mesityl-Ar*H*), 2.16 – 2.12 (overlapping br s, 18 H, MesitylC*H*₃), 1.37 (s, 3H, MoCHC*Me*₂Ph), 1.23 (s, 3H, MoCHC*Me*₂Ph), 1.20 (s, 9H, ¹Bu); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 323.2 (Mo=CH), 153.8, 152.6, 150.4, 138.9, 137.6, 137.0, 129.2, 128.8 (br s), 128.1, 126.4, 126.3, 125.9, 124.6, 80.9 (OCMe₃), 51.3 (MoCHC*Me*₂Ph), 32.9, 30.9, 28.2, 21.6, 21.3, 20.6 (br s). Anal Calcd for C₄₃H₅₁ClMoN₂O: C, 69.48; H, 6.79; N, 3.77. Found: C, 69.21; H, 6.79; N, 3.77.

Mo(NAr*)(CHCMe₂Ph)Cl[OCMe(CF₃)₂](py) (9_{Mo}). Solid LiOCMe(CF₃)₂ (24.0 mg, 0.128 mmol) was added to a suspension of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (91.9 mg, 0.130 mmol) in 3 mL Et₂O and the mixture was stirred 1 h at room temperature. The volatiles were removed *in vacuo* and the yellow solid was extracted with a 1:1 pentane:benzene mixture and filtered through a pipette filter. The volatiles were removed *in vacuo* and the yellow solid was washed with cold pentane; yield 59.7 mg (73 %): ¹H NMR (C₆D₆, 20 °C) δ 12.782 (s, 1H, ¹*J*_{CH} = 150 Hz, Mo=CH), 8.121 (d, 2H, *J*_{HH} = 5 Hz), 7.108 – 7.050 (m, 4H), 7.022 – 6.994 (m 1H), 6.904 – 6.883 (m, 3H), 6.798 (d, 2H, *J*_{HH} = 8Hz), 6.711 (t, 1H, *J*_{HH} = 7 Hz) 6.635 (s, 2H), 6.377 (t, 2H, *J*_{HH} = 7 Hz), 2.234 (br s, 6H), 2.124 (s, 6H), 2.000 (br s, 6H), 1.836 (s, 3H), 1.617 (s, 3H), 1.526 (s, 3H); ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 326.6 (Mo=CH), 154.2, 152.1, 150.0, 138.3, 137.3, 136.6, 129.6, 129.2, 128.3, 126.2, 126.1, 124.0, 82.6 (q, ¹*J*_{CF} = 30 Hz), 52.4, 29.2, 27.4, 21.6, 21.1, 20.9, 18.3; ¹⁹F{¹H} NMR (C₆D₆, 20 °C) δ -76.79 (q, *J*_{FF} = 10 Hz), -77.46 (q, *J*_{FF} = 10 Hz). Anal. Calcd for C₄₃H₄₅ClF₆MoN₂O: C, 60.67; H, 5.33; N, 3.29. Found: C, 60.91; H, 5.47; N, 3.28.

Mo(NAr*)(CHCMe₂Ph)Cl[O(2,6-Me₂C₃H₆)](py) (10_{M0}). A solution of LiOAr' (13.8 mg, 108 a vial containing а suspension of µmol) in 2 mL Et₂O was added to Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (75 mg, 107 µmol) in 5 mL Et₂O. The reaction mixture was stirred at room temperature for 2 h. The volatiles were removed in vacuo and the remaining oil was extracted with benzene and the extract was filtered through a pipette filter. The volatiles were removed in vacuo from the filtrate. The remaining solid was dissolved in a minimal amount of a 1:1 pentane/toluene mixture and cooled to -20 °C. A yellow precipitate formed and was collected on a fritted filter by vacuum filtration. The solvent was removed in vacuo from the filtrate to which pentane was added and the mixture cooled to -20 °C. In this way, two more crops were collected; yield 60.0 mg (71 %). ¹H NMR (CD₂Cl₂, 20 °C) δ 12.762 (s, 1H, ¹J_{CH} = 151 Hz, Mo=C*H*), 7.714 (t, 1H, *J*_{HH} = 7.5 Hz), 7.555 (d, 2H, *J*_{HH} = 5 Hz), 7.256 (d, 2H, *J*_{HH} = 7.5 Hz), 7.216 - 7.179 (overlapping signals (4H), 7.081 (t, 2H, $J_{HH} = 7.0$ Hz), 6.696 (s, 2H, mesityl ArH), 6.935 (d, 2H, $J_{\rm HH}$ = 8.0 Hz), 6.761 (d, 2H, $J_{\rm HH}$ = 7.0 Hz), 6.554 – 6.519 (overlapping signals, 3H), 2.197 (s, 6H, mesitylCH₃), 2.074 (s, 6H, mesitylCH₃), 1.764 (s, 6H, mesitylCH₃), 1.607 (s, 6 H, OPh(CH₃)₂), 1.562 (s, 3H, MoCHCMe₂Ph) 1.444 (s, 3H, MoCHCMe₂Ph); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) δ 326.6 (Mo=CH), 160.8, 154.8, 154.1, 152.3, 151.3, 140.1, 139.2, 137.5, 137.3, 137.1, 129.9, 129.2, 129.1, 128.4, 128.4, 127.5, 127.3, 126.4, 126.3, 125.3, 119.3, 53.1, 30.5, 27.0, 21.7, 21.4, 21.0, 19.1. Anal. Calcd for C₄₇H₅₁ClMoN₂O: C, 71.34; H, 6.50; N, 3.54. Found: C, 71.06; H, 6.57; N, 3.43.

Mo(NAr*)(CHCMe₂Ph)Cl(OⁱPr)(py) (11_{Mo}). A 1.6 M solution of n-butyllithium in hexanes (18 μ L, 29 μ mol) was added to a solution of ⁱPrOH (2.7 μ L, 29 μ mol) in 1 mL Et₂O and stirred 1.5 h. The LiOⁱPr solution was added to a -20 °C suspension of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (20 mg, 28 μ mol) in 3 mL Et₂O. After 3.5 h the volatiles were removed *in vacuo*. The residue was extracted with pentane and filtered through a pipette filter. The volume of the filtrate was reduced *in vacuo* and cooled to -20 °C. The supernatant was removed from the yellow crystals by pipette and the crystals were dried *in vacuo* to give 18 mg, 87 %. ¹H NMR (C₆D₆) δ 12.943 (s, 1H, Mo=CH), 8.365 (m, 2H), 7.181 (m, 4H), 7.083 (t, J_{HH} = 8 Hz), 7.021 – 6.978 (overlapping signals, 4H), 6.946 – 6.898 (overlapping signals, 4H), 6.718 (t, J_{HH} = 8 Hz, 1H), 6.644 (br s, 2H), 6.393 (t, J_{HH} = 7 Hz, 2H), 5.182 (septet, 1H, J_{HH} = 6 Hz, OCHMe₂), 2.343 (br s), 2.166 (br s, 18 H integrated together with the previous signal, Mes C₆H₂Me₃), 1.693 (s, 3H, Mo=CHCMe₂Ph),

1.416 (d, 3H, J_{HH} = 6 Hz, OCH Me_2), 1.352 (s, 3H, Mo=CHC Me_2 Ph), 1.225 (d, 3H, J_{HH} = 6 Hz, OCH Me_2). Anal. Calcd for C₄₂H₄₉ClMoN₂O: C, 69.17; H, 6.77; N, 3.84. Found: C, 69.14; H, 6.90; N, 3.75.

Mo(NAr*)(CHCMe₂Ph)Cl(OAr*)(py) (12_{Mo}). A 1.6 M solution of n-Butyllithium in hexanes (56 µL, 90 µmol) was added to a stirring solution of Ar*OH in 2 mL pentane. White precipitate formed. Analysis of an aliquot by ¹H NMR after 1 h showed complete conversion to LiOAr*. The volatiles were removed in vacuo. The white solid was dissolved in benzene and added to a stirring solution of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) in 3 mL benzene in a 25 mL Teflonstoppered Schlenk tube. The mixture was heated to 80 °C for 16 h. The mixture was cooled to room temperature and the volatiles were removed in vacuo. The resulting brown oil was extracted with pentane and the extract was filtered through a frit with a pad of Celite. The volume of the filtrate was reduced in vacuo and stored in the freezer at -20 °C. The yellow precipitate was collected on a frit; total yield 47 mg (54 %). Crystals for X-ray diffraction were grown from a concentrated Et₂O solution at -20 °C: ¹H NMR (CD₂Cl₂, 20 °C) δ 11.308 (s, 1H, Mo=CH, ${}^{1}J_{CH} = 127$ Hz), 7.647 (t, 1H, $J_{HH} = 7.5$ Hz, Ar-H), 7.459 (d, 2H, $J_{HH} = 5$ Hz, Ar-H), 7.160 - 7.148 (overlapping signals, 3H, Ar-H), 7.071 - 6.975 (overlapping signals, 3H, Ar-H), 6.902 (t, 2H, $J_{\rm HH}$ = 7 Hz), 6.834 - 6.818 (overlapping signals, 5H, Ar-H), 6.756 - 6.728 (overlapping signals, 3H, Ar-H), 6.538 (br s, 1H), 6.389 (br s, 1H), 6.191 (br s, 1H), 6.082 (br s, 1H), 5.950 (br s, 1H), 2.447 and 2.419 (overlapping s, 6H), 2.341 - 2.276 (overlapping signals, 6H), 2.040 - 1.912 (overlapping signals, 12 H), 1.811 (br s, 6H), 1.623 (s, 6H), 1.126 (s, 6H); ¹³C{¹H} NMR (CD₂Cl₂, 20 °C) & 309.8 (Mo=C), 162.8, 154.5, 153.4, 148.5, 139.4, 138.9, 138.7, 138.4, 137.9, 137.6, 137.2, 137.0, 136.7, 136.5, 136.2, 135.4, 135.0, 132.1, 131.4, 130.7, 130.5, 130.0, 129.5, 129.3, 128.5, 127.9, 127.6, 127.5, 126.1, 125.6, 124.3, 118.5 (ArylC), 55.0 (Mo=CHCMe₂Ph), 33.3 (Mo=CHCMe₂Ph), 27.2 (Mo=CHCMe₂Ph), 22.5, 21.7, 21.4, 21.3, 20.4, 19.9(MesMe). Anal. Calcd for C₆₃H₆₇ClMoN₂O: C, 75.70; H, 6.76; N, 2.80. Found: C, 75.40; H, 6.84; N, 2.81.

 $Mo(NAr^*)(CHCMe_2Ph)(Pyr)_2(py)$ (13_{Mo}). Solid LiPyr (56 mg, 0.77 mmol) was added to a -25 °C stirred suspension of Mo(NAr^*)(CHCMe_2Ph)Cl_2(py) (269 mg, 0.38 mmol) in 8 ml Et₂O. The solution became brown and a yellow precipitate formed. After 2 h, the volatiles were

removed *in vacuo*. The yellow solid was extracted with benzene and the mixture was filtered through a pipette filter. The volatiles were removed from the filtrate to leave a brown oil. The oil was triturated by adding 3 mL pentane and stirring until a yellow powder formed. The mixture was chilled to -25 °C and then the yellow solid was collected on a frit and washed with 3 x 1 mL cold pentane and then dried *in vacuo*; yield 280 mg, 96 %: ¹H NMR (C₆D₆) δ 12.910 (s, 1H, ¹*J*_{CH} = 145 Hz, Mo=C*H*), 7.355 (d, 1H, J_{HH} = 5 Hz, py*H*), 6.946 – 6.826 (overlapping signals, 7H, Ar*H*), 6.714 – 6.664 (overlapping signals, 3H, Ar*H*), 6.628 (s, 2H), 6.584 (s, 2H), 6.517 (d, 2H, *J*_{HH} = 7 Hz), 6.471 (t, 1H, *J*_{HH} = 7 Hz), 6.423 (s, 2H), 6.204 (s, 2H), 5.977 (t, 2H, *J*_{HH} = 7 Hz) 2.255 (s, 6H, MesC*H*₃), 2.058 (br s, 6H, MesC*H*₃), 1.971 (br s, 6H, MesC*H*₃), 1.903 (s, 3H, Mo=CHC*Me*₂Ph), 1.223 (s, 3H, Mo=CHC*Me*₂Ph); ¹³C {¹H</sup> NMR (C₆D₆) δ 319.1 (Mo=*C*), 155.5, 152.5, 146.5, 138.0, 137.7, 137.2, 135.5, 130.1,129.8, 129.6, 128.9, 128.7, 128.5, 128.3, 128.0, 127.5, 125.9, 125.8, 124.1, 108.6, 108.1, 52.0 (Mo=CHC*Me*₂Ph), 32.0 (Mo=CHC*Me*₂Ph), 26.8 (Mo=CHC*Me*₂Ph), 21.7 (Mes*Me*), 21.6 (Mes*Me*), 21.5 (Mes*Me*). Anal. Calcd for C₄₇H₅₀MoN₄: C, 73.61; H, 6.57; N, 7.31. Found: C, 73.46; H, 6.52; N, 7.30.

W(NAr*)(CHCMe₂Ph)(Pyr)₂(py) (13_w). Solid LiPyr (49.3 mg, 0.675 mmol) was added to a solution of W(NAr*)(CHCMe₂Ph)Cl₂(py), 8, (90.0 mg, 0.113 mmol) in Et₂O and stirred 8 h at ambient temperature. The volatiles were removed *in vacuo*. The brown oil was extracted with toluene and benzene and filtered through a pipette filter. The volatiles were removed *in vacuo* from the filtrate to leave a yellow oil, which was triturated with pentane (2 mL) by stirring for 16 h. The mixture was cooled to -25 °C, and the yellow power was collected on a fritted filter and washed with cold pentane to give 75.3 mg, 78 %. ¹H NMR (C₆D₆) δ 10.579 (s, 1H, W=CH), 7.654 (s, 2H), 7.298 (d, 2H, *J*_{HH} = 8 Hz), 7.175 (t, 2H, *J*_{HH} = 8 Hz), 7.072 (t, 1H, *J*_{HH} = 8 Hz), 7.007 (s, 4H), 6.948 (s, 2H), 6.763 (t, 1H, *J*_{HH} = 8 Hz), 6.725 (s, 4H), 6.389 (t, 1H, *J*_{HH} = 6 Hz), 6.230 (s, 2H), 5.924 (s, 2H), 5.565 (s, 2H), 2.196 (18 H, C₆H₂*Me*₃), 1.656 (s, 6H, W=CHC*Me*₂Ph); ¹³C{¹H} NMR (CD₂Cl₂) δ 284.6 (W=CH), 154.6, 152.4, 149.6, 139.1, 137.9, 137.7, 137.1, 133.1, 129.6, 129.1, 128.3, 127.1, 126.0, 125.7, 125.6, 124.8, 107.9, 49.0, 31.8, 21.4, 20.8. Anal. calcd for C₄₇H₅₀N₄W: C, 66.04; H, 5.90; N, 6.55. Found: C, 66.14; H, 5.88; N, 6.22.

¹H NMR spectrum of 13_W in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂ (14_{Mo}). Et₂O (5 mL) was added to a vial containing solid Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (84.9 mg, 0.120 mmol) and LiMe₂Pyr (25.4 mg, 0.251 mmol). The mixture was stirred 16 h, over which time it became brown. The volatiles were removed in vacuo. The brown solid was extracted with pentane and the extract was filtered through a pipette filter. The volatiles were removed in vacuo from the filtrate to leave analytically pure brown solid; yield 68.6 mg, (77 %): ¹H NMR (C₆D₆, 20 °C) δ 13.58 (s, 1H, Mo=CH), 7.35 (d, 2H, J_{HH} = 8.0 Hz), 7.12 (d, 2H, $J_{\rm HH}$ = 7.5 Hz), 7.03 – 7.00 (m, 1H), 6.84 – 6.79 (overlapping signals, 4H), 6.70 (d, 2H, $J_{\text{HH}} = 7.5 \text{ Hz}$), 6.6 – 5.4 (br s, pyrH), 2.53 – 1.00 (overlapping broad signals), 2.12 (s), 1.94 (s); ¹H NMR (CD₂Cl₂, -40 °C): δ 13.15 (s, 1H, Mo=CH), 7.20 (s, 5H, ArH), 7.11 (s, 2H, Ar*H*), 7.01 (s, 1H, Ar*H*), 6.89 (d, 1H, J_{HH} = 7.5 Hz, Ar*H*), 6.86 (d, 1H, , J_{HH} = 7.5 Hz, Ar*H*), 6.82 (s, 1H, ArH), 6.65 (s, 1H, ArH), 5.79 (s, 1H, pyrH), 5.71 (s, 1H, pyrH), 5.40 (s, 1H, pyrH), 3.68 (s, 1H, pyrH), 2.29 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 2.15, 2.14 (overlapping s, 6H, CH₃), 2.02 (s, 3H, CH₃), 1.91 (s, 3H, CH₃), 1.77, 1.75 (overlapping s, 9H, CH₃), 1.49 (s, 3H, CH₃), 1.27 (s, 3H, CH₃), 0.58 (s, 3H, CH₃); ${}^{13}C{}^{1}H{}$ NMR (CD₂Cl₂, -40 °C) δ 317.0 (Mo=CH), 157.3, 152.6, 151.9, 139.8, 138.3, 138.0, 137.9, 137.7, 137.7, 137.4, 137.3, 137.0, 136.7, 136.5, 135.6, 135.0, 131.8, 130.6, 129.4, 128.4, 128.1, 127.4, 126.3, 126.0, 125.7, 125.6, 108.3, 108.2, 105.3, 100.2, 100.2, 53.4, 32.1, 31.3, 22.1, 21.1, 21.0, 20.7, 20.4, 20.0, 19.9, 18.9, 18.3, 13.4, 12.9. Anal. Calcd for C₄₆H₅₃MoN₃: C, 74.12; H, 7.18; N, 5.65. Found: C, 74.06; H, 7.06; N, 5.68.

W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂ (14_w). Solid LiMe₂Pyr (235 mg, 2.33 mmol) was added in one portion to a -25 °C, stirring solution of W(NAr*)(CHCMe₂Ph)Cl₂(py), 8 (922 mg, 1.16 mmol) in 25 mL Et₂O. The mixture was stirred 16 h at ambient temperature. The volatiles were removed *in vacuo*. The dark yellow oil was extracted with pentane and filtered through frit with a pad of Celite. The pentane volume was reduced *in vacuo*, and a yellow precipitate formed. The mixture was cooled to -25 °C for 2 h. The yellow solid was collected on a frit and washed with cold pentane (760 mg, 79 %). ¹H NMR (CD₂Cl₂, 20 °C) δ 10.528 (br s, 1H, W=C*H*), 7.222 – 7.189 (overlapping signals, Ar*H*, 5H), 7.104 (m, 1H, Ar*H*), 6.945 (d, *J*_{HH} = 8 Hz), 6.856 (br s, 4H, Ar*H*), 6.4 – 4.4 (br s, NC₄*H*₂Me₂), 2.227 (s, 6H, *p*-Mes C*H*₃), 2.008 (br s, 12H), 1.835 (br s, 12H), 1.5 – 0.9 (br s, 6H, CHC*Me*₂Ph); ¹H NMR (CD₂Cl₂, -40 °C) δ 10.799 (s, 1H, W=C*H*, ¹*J*_{CH} = 126 Hz), 7.179 (s, 5H, Ar*H*), 7.080 (s, 2H, Ar*H*), 6.906 (d, 1H, ¹*J*_{HH} = 8 Hz, Ar*H*), 6.868 (d, 1H, ¹*J*_{HH} = 8 Hz, Ar*H*), 6.774 (s, 1H, Ar*H*), 6.620 (s, 1H, Ar*H*), 5.797 (s, 1H, Me₂pyr*H*), 5.696 (s, 1H,

Me₂pyr*H*), 5.510 (s, 1H, Me₂pyr*H*), 3.558 (s, 1H, Me₂pyr*H*), 2.266 (s, 3H), 2.228 (s, 3H), 2.123 (s, 3H), 2.088 (s, 6H), 2.020 (s, 3H), 1.870 (s, 3H), 1.726 (s, 3H), 1.582 (s, 3H), 1.479 (s, 3H), 1.328 (s, 3H), 0.558 (s, 3H); $^{13}C{^{1}H}$ NMR (CD₂Cl₂, -40 °C) δ 285.3 (Mo=*C*H), 158.1, 153.6, 139.8, 138.3, 138.0, 137.9, 137.6, 137.6, 137.1, 136.8, 136.6, 136.5, 131.8, 130.3, 129.4, 128.4, 128.1, 128.0, 127.3, 125.7, 125.5, 125.4, 109.5, 108.6, 105.4, 99.4, 98.1 (Aromatic), 51.5 (W=CH*C*Me₂Ph), 33.9, 32.5, 22.2, 21.2, 21.0, 21.0, 20.8, 20.4, 20.1, 19.1, 19.0, 13.0 (*C*H₃). Anal. Calcd for C₄₆H₅₃N₃W C, 66.42; H, 6.42; N, 5.05; Found: C, 66.26; H, 6.47; N, 4.98.

Mo(NAr*)(CHCMe₂Ph)(OAr')₂ (15_{Mo}). Solid LiOAr' (8.4 mg, 66 µmol) was added to a stirring suspension of Mo(NAr*)(CHCMe₂Ph)Cl₂(py) (22 mg, 31 µmol) and the mixture was stirred for 16 h. The volatiles were removed *in vacuo*, and the remaining residue was extracted with pentane and filtered through a pipette filter with Celite. The volume of the filtrate was reduced *in vacuo* and then cooled to -25 °C. Crystals were collected by removing the supernatant by pipette and drying *in vacuo*, 12.5 mg, 51 %. ¹H NMR (C₆D₆) δ 11.430 (s, 1H, Mo=C*H*), 7.421 (s, 1H), 7.026 (s), 7.001 (s, 2H integrated with previous signal), 6.964 – 6.898 (overlapping signals, 8H), 6.859 – 6.793 (overlapping signals, 3H), 6.754 (s, 4H), 2.181 (s, 6H, ArCH₃), 2.079 and 2.070 (overlapping s, 24H, ArCH₃), 1.274 (s, 6H, Mo=CHC*Me*₂Ph); ¹³C{¹H} NMR (CD₂Cl₂) 291.4 (Mo=CH), 161.3, 155.8, 149.2, 137.4, 136.7, 136.3, 136.0, 129.4, 128.9, 128.6, 128.1, 126.3, 126.0, 126.0, 120.6, 50.5, 28.0, 21.4, 20.9, 17.8.

Mo(NAr*)(CHCMe₂Ph)(Pyr)[OCMe(CF₃)₂](py) (16_{Mo}). HOCMe(CF₃)₂ (6.4 µL, 0.052 mmol) was added to Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), **13**_{Mo}, (40 mg, 52 µmol) in 2 mL C₆H₆. After 45 m, the reaction mixture was filtered through a pipette filter. The volatiles were removed from the filtrate. To the resulting brown oil, 2 mL pentane was added and a yellow solid formed. The mixture was cooled to -25 °C, after which the yellow solid was collected on a frit and washed with 2 x 0.5 mL cold pentane, and dried *in vacuo*; yield 31 mg, 68 %: ¹H NMR (C₆D₆) δ 12.919 (s, 1H, Mo=C*H*) 7.767 (d, J_{HH} = 6 Hz, 2H, Pyridine), 7.060 (s, 2H), 6.923 – 6.619 (overlapping signals, 15H), 6.241 (t, J_{HH} = 6 Hz, 2H), 2.309 (s), 2.207 (br s), 2.002 (s), 1.882 (br s, 18 H integrated over previous 4 signals), 1.273 (s), 1.172 (s), 1.049 (br s, 9 H integrated over previous 3 signals); ¹H NMR (CD₂Cl₂, alkylidene) δ 12.739 (¹J_{CH} = 148 Hz); ¹³C NMR (CD₂Cl₂) δ 326.8 (Mo=*C*H), 153.8, 152.4, 146.4, 138.5, 132.1, 129.9, 128.4, 127.5, 126.4, 126.3, 124.4, 106.5,

82.9 (m, only 3 lines visible above baseline, $J_{CF} = 27$ Hz), 52.5, 31.1, 27.8, 21.5 (br s), 19.9, 16.0; ¹⁹F{¹H} NMR (C₆D₆) δ -76.12 (quartet, $J_{FF} = 9$ Hz), 77.06 (quartet, $J_{FF} = 9$ Hz). Anal. Calcd for C₄₇H₄₉F₆MoN₃O: C, 64.01; H, 5.60; N, 4.76. Found: C, 63.97; H, 5.63; N, 4.54.

¹H NMR spectrum of 16_{M0} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(pyr)(OⁱPr)(py) (17_{Mo}). HOⁱPr was added to a stirred solution of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), **13_{Mo}** (45.4 mg, 59.2 µmol), in 2 mL benzene. After 1.5 h, the reaction mixture was filtered through a pipette filter and the volatiles removed *in vacuo* from the filtrate. Pentane (1 mL) was added and the mixture was stirred at ambient temperature for 1 h and then cooled to -25 °C. The resulting yellow solid was collected on a frit and dried *in vacuo*; yield 24.2 mg, 70 %: ¹H NMR (C₆D₆) δ 12.996 (s, 1H), 8.090 (br s, 2H, pyridine), 7.060 (s, 2H), 6.889 – 6.573 (overlapping signals, 15 H), 6.270 (br s, 2H), 4.520 (septet, J_{HH} = 6 Hz, 1H, OC*H*Me₂), 2.292, 2.205, 2.144 (overlapping br s, 18H, Mes*Me*), 1.881 (s, 3H, Mo=CHC*Me*₂Ph), 1.375 (s, 3H, Mo=CHC*Me*₂Ph), 1.116 (d, J_{HH} = 6 Hz), 1.107 (d, J_{HH} = 6 Hz, 6H integrated together with previous signal); ¹³C{¹H} NMR (C₆D₆) δ 319.0 (Mo=CH), 153.9, 152.0, 147.8,

137.6, 132.1, 129.3, 128.9, 128.7, 128.1, 126.3, 126.3, 125.6, 123.8, 107.8, 74.3, 51.2, 31.3, 29.4,27.3, 21.7. Anal. Calcd for C₄₆H₅₃MoN₃O: C, 72.71; H, 7.03; N, 5.53. Found: C, 72.47; H, 6.91; N, 5.36.

¹H NMR spectrum of 17_{M0} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Pyr)[OCH(CF₃)₂](py) (18_{Mo}). Hexafluoroisopropanol (4.9 µL, 0.047 mmol) was added to a solution of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), **13_{Mo}** (35.6 mg, 0.051 mmol), in 1.5 mL benzene. The reaction mixture was stirred for 1.5 h and then filtered through a fritted filter. The volatiles were removed *in vacuo* from the filtrate. Pentane (2 mL) was added to the remaining oil. The mixture was cooled to -25 °C, and the yellow solid was collected on a fritted filter and dried *in vacuo*; yield 27 mg, 76 %: ¹H NMR (C₆D₆) δ 13.069 (s, 1H, Mo=CH), 7.888 (d, 2H, $J_{HH} = 5$ Hz), 7.021 (s, 2H, Mes C₆ H_2 Me₃), 6.897 – 6.754 (overlapping signals, 13 H), 6.655 (s, 2H, Mes C₆ H_2 Me₃), 6.200 (t, 2H, $J_{HH} = 7$ Hz), 4.220 (septet, $J_{CF} = 7$ Hz, 1H, OCH(CF₃)₂), 2.264 (s, 6H, MesCH₃), 2.219 (s, 6H, MesCH₃), 1.890 (s, 3H, Mo=CHC Me_2 Ph), 1.455 (br s, 6H, MesC H_3), 1.242 (s, 3H, Mo=CHC Me_2 Ph)); ¹H NMR (CD₂Cl₂, alkylidene) δ

12.887 (${}^{1}J_{CH} = 148$ Hz); ${}^{13}C$ NMR (CD₂Cl₂) δ 324.4 (Mo=*C*H), 153.8, 153.2, 152.3, 146.5, 139.0, 137.4, 136.3, 130.2, 129.9, 128.9, 127.9, 126.2, 124.8, 75.8 (m, 5 lines visible above baseline, $J_{CF} = 30$ Hz), 52.2, 30.8, 27.7, 21.4, 21.4, 20.0; ${}^{19}F{}^{1}H$ NMR (C₆D₆) δ -73.34 (apparent quintet, J = 9 Hz, 3F), -74.41 (apparent quintet, J = 9 Hz, 3F). Anal. Calcd for C₄₆H₄₇F₆MoN₃O: C, 63.66; H, 5.46; N, 4.84. Found: C, 63.46; H, 5.51; N, 4.72.

¹H NMR spectrum of 18_{M0} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Pyr)(O-2,6-Me₂C₆H₃)(py) (19_{Mo}). Solutions of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), 13_{Mo}, (34 mg, 0.044 mmol) and 2,6-Me₂C₆H₃OH (5.4 mg, 0.044 mmol) each in 0.5 mL C₆D₆ were combined in a Teflon-stoppered NMR tube. After 2 h, the reaction mixture was filtered through a pipette filter with Celite. The volatiles were removed *in vacuo* from the filtrate. Two mL of pentane were added to the residue and the mixture was cooled to -25 °C. A yellow solid formed and was collected on a frit and washed with cold pentane; yield 27 mg, 76 %: ¹H NMR (C₆D₆) δ 13.982 (s, 1H, Mo=CH), 8.026 (d, 2H, *J*_{HH} = 5 Hz), 6.955 (d, 2H, *J*_{HH} = 7 Hz), 6.901 – 6.873 (overlapping signals, 4H), 6.836 (s, 1H), 6.822 (s

1H), 6.787 – 6.763 (overlapping signals, 5H), 6.740 (s, 2H), 6.635 (s, 4H), 6.590 (t, $J_{HH} = 8$ Hz,1H), 6.143 (t, 2H, $J_{HH} = 7$ Hz), 2.133 (s, 6H, MesCH₃), 2.080 (s, 6H, MesCH₃), 2.010 (s, 6H, MesCH₃), 1.947 (s, 3H, Mo=CHC*Me*₂Ph), 1.627 (s, 6H, C₆H₃*Me*₂OH), 1.423 (s, 3H, Mo=CHC*Me*₂Ph); ¹H NMR (CD₂Cl₂, alkylidene) δ 12.768 (¹ $J_{CH} = 148$ Hz); ¹³C NMR (CD₂Cl₂) δ 321.2 (Mo=CH), 161.0, 154.2, 151.9, 149.3, 140.5, 139.0, 137.4, 137.4, 137.0, 131.4, 130.5, 129.3, 129.2, 128.3, 128.2, 127.5, 127.3, 126.1, 126.0, 124.9, 119.4, 106.5, 52.2, 31.5, 29.3, 21.4, 21.3, 21.2, 19.0. Anal. Calcd for C₅₁H₅₅MoN₃O: C, 74.52; H, 6.74; N, 5.11. Found: C, 74.22; H, 6.56; N, 4.97.

¹H NMR spectrum of 19_{M0} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Pyr)[OSi(ⁱPr)₃](py) (20_{Mo}). HOSi(i-Pr)₃ (8.8 μ L, 44 μ mol) was added to a suspension of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), **13**_{Mo}, (34 mg, 44 μ mol) in 0.7 mL C₆D₆ in a Telfon-stoppered NMR tube. A ¹H NMR spectrum obtained after 1 h shows complete consumption of starting materials. The reaction mixture was filtered through a pipette filter with Celite, and the volatiles removed *in vacuo* from the filtrate to leave a brown oil. Pentane (1 mL)

was added to the residue and the mixture was cooled to -25 °C. The orange solid was collected on a fritted filter and washed with cold pentane; yield 30 mg, 77 %: ¹H NMR (C₆D₆) δ 13.204 (br s, 1H, Mo=C*H*), 7.456 (br s, 2H), 7.094 (t, 2H, *J*_{HH} = 8 Hz), 7.019 (m, 4H), 6.774 (s, 3H), 6.727 (m, 2H), 6.623 (s, 2H), 6.373 (s, 2H), 6.332 (s, 2H), 6.253 (br s, 2H), 2.318 (s, 6H, MesC*H*₃), 2.131 (br s, MesC*H*₃), 1.900 (br s, MesC*H*₃, 12 H integrated with previous signal), 1.351 (s, 3H, Mo=CHC*Me*₂Ph), 1.298 – 1.137 (overlapping m, 3H, C*H*Me₂), 1.107 (s, 3H, Mo=CHC*Me*₂Ph), 0.995 (br m, CH*Me*₂), 0.969 (br m, CH*Me*₂, 18 H integrated together with previous signal); ¹³C{¹H} NMR (CD₂Cl₂, -30 °C) δ 321.5 (Mo=*C*H), 152.9, 151.6, 147.2, 139.4, 138.4, 138.3, 138.0, 137.8, 137.4, 136.7, 136.7, 136.2, 135.7, 135.1, 131.7, 129.7, 129.4, 129.2, 129.0, 128.5, 128.4, 128.1, 126.3, 126.1, 125.9, 124.1, 105.4, 51.1 (Mo=CHCMe₂Ph), 31.5, 28.3, 21.4, 21.4, 20.7, 20.6, 20.6, 20.4, 18.6, 18.6, 14.0. Anal. Calcd for C₅₂H₆₇MoN₃OSi: C, 71.45; H, 7.73; N, 4.81. Found: C, 71.19; H, 7.54; N, 4.86.

¹H NMR spectrum of 20_{M0} in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Pyr)(OSiPh₃)(py) (21_{Mo}). A solution of triphenylsilanol (14.8 mg, 0.054 mmol) in 1 mL toluene was added to a solution of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), 13_{M_0} (41 mg, 0.054 mmol), in 3 mL toluene and the reaction mixture was stirred for 5 h. The reaction mixture was filtered through a pipette filter with Celite, and the volatiles removed in vacuo from the filtrate. The residue was dissolved in a 1:1 toluene:pentane mixture and the solution was cooled to -25 °C. The solid was collected on a frit, washed with cold pentane, and dried in vacuo. The filtrate was concentrated to collect a second crop in the same manner; total yield 26.1 mg, 50 %: ¹H NMR (C₆D₆) δ 13.320 (s, 1H, ¹J_{CH} = 148 Hz, Mo=CH), 7.375 (dd, 6H, J_{HH} = 8 Hz, J_{HH} = 2 Hz), 7.290 (d, 2H, J_{HH} = 5 Hz), 7.197 and 7.183 (overlapping s, 7 H), 7.049 - 6.931 (overlapping signals, 9 H), 6.796 - 6.703 (overlapping signals, 7 H), 6.584 - 6.548 (overlapping signals, 3H), 6.021 (t, 2H, $J_{HH} = 7$ Hz), 2.246 (s, 6H, Mes C₆H₂Me₃), 2.045 (s, 6H Mes C₆H₂Me₃), 1.756 (s, 3H, Mo=CHCMe₂Ph), 2.0 – 1.4 (very br s, 6H, Mes C₆H₂Me₃), 1.250 (s, 3H, Mo=CHCMe₂Ph). ¹H NMR (CD₂Cl₂, alkylidene) δ 13.089 (¹J_{CH} = 147 Hz); ¹³C NMR (CD₂Cl₂) & 323.2, 152.6, 147.8, 138.8, 137.9, 137.0, 136.1, 132.2, 129.7, 129.3, 129.2, 128.8, 128.5, 127.8, 126.8, 126.7, 126.3, 124.3, 106.6, 52.5, 31.2, 28.8, 21.6, 21.1, 20.8. Anal. Calcd for C₅₂H₆₇MoN₃OSi: C, 75.05; H, 6.30; N, 4.30. Experimental: C, 74.64; H, 6.04; N, 4.34. ¹H NMR spectrum of 21_{M_0} in CD₂Cl₂:

Mo(NAr*)(CHCMe₂Ph)(Pyr)[OSi(SiMe₃)₃](py) (22_{M0}). A solution of HOSi(SiMe₃)₃ (14 mg, 0.053 mmol) in 0.3 mL C₆D₆ was added to a suspension of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py), 13_{Mo} (40 mg, 0.052 mmol), in 0.3 mL C₆D₆ in a Teflon-stoppered NMR tube. A ¹H NMR spectrum obtained after 1 h shows that consumption of starting materials was complete. The reaction mixture was filtered through a pipette filter with Celite, and the volatiles were removed in vacuo from the filtrate. Pentane (1 mL) was added to the residue and the mixture was cooled to -25 °C. The dark yellow crystals were collected by decantation of the supernatant, and dried *in vacuo*; yield 31 mg, 61 %: ¹H NMR (C₆D₆) δ 13.303 (s, 1H, Mo=CH), 7.371 (d, 2H, J_{HH} = 5 Hz), 7.250 (d, 2H, $J_{HH} = 8$ Hz), 7.135 (d, 2H, $J_{HH} = 8$ Hz), 7.053 (d, 1H, $J_{HH} = 7$ Hz), 7.023 (s, 2H), 6.866 - 6.691 (overlapping signals, 4H), 6.653 - 6.621 (overlapping signals, 4H), 6.576 (s, 2H), 6.352 (t, 2H, $J_{\text{HH}} = 7$ Hz), 2.322 (s, 6H, Mes C₆H₂Me₃), 2.072 (s, 9H), 1.3 – 2.0 (br s, 6H, Mes C₆H₂Me₃), 1.364 (s, 3H, Mo=CHCMe₂Ph), 0.209 (s, 27 H, OSi(SiMe₃)₃). ¹H NMR (CD₂Cl₂, alkylidene) δ 13.096 (¹*J*_{CH} = 147 Hz); ¹³C NMR (CD₂Cl₂) δ 322.5 (Mo=*C*H), 153.6, 152.5, 148.3, 138.1, 136.8, 131.3, 130.0, 129.3, 128.6, 126.9, 126.4, 126.2, 125.0, 106.8, 52.3, 31.4, 30.8, 21.7, 21.0, 20.9, 1.5. Anal. Calcd for C₅₂H₇₃MoN₃OSi₄: C, 64.76; H, 7.63; N, 4.36; Experimental: C, 64.84; H, 7.75; N, 4.32.

¹H NMR spectrum of 22_{Mo} in C₆D₆:

In situ observation of Mo(NAr*)(CHCMe₂Ph)(Pyr)(OCPh₃). A solution of Ph₃COH (12 mg, 0.046 mmol) in 0.3 mL C₆D₆ was added to a suspension of Mo(NAr*)(CHCMe₂Ph)(Pyr)₂(py) (35 mg, 0.047 mmol) in 0.3 mL C₆D₆ in a teflon stoppered NMR tube which was heated to 60 °C 2 h. The reaction mixture was filtered through a pipette filter with Celite. The volatiles were removed *in vacuo* from the filtrate. ¹H NMR (C₆D₆) δ 10.840 (s, 1H, Mo=CH), 7.304 (d), 7.090 – 6.862 (overlapping signals), 6.749 (s), 6.517 (s), 6.377 (s), 6.246 (s), 2.331 (s, 6H, Mes C₆H₂Me₃), 2.095 (s, 6H, Mes C₆H₂Me₃), 2.008 (s, 6H, Mes C₆H₂Me₃), 1.421 (s, 3H, Mo=CHCMe₂Ph), 1.351 (s, 3H, Mo=CHCMe₂Ph).

General procedure for addition of $B(C_6F_5)_3$ to 21_{M_0} and 22_{M_0} . A solution of $B(C_6F_5)_3$ in ~0.2 mL C_6D_6 was added to a solution of Mo complex in ~0.4 mL C_6D_6 in a teflon-stoppered NMR tube. The tube was inverted to mix and ¹H and ¹⁹F NMR spectra were obtained.

21_{Mo}': 14.3 mg (0.0146 mmol) **21**_{Mo} and 7.0 mg (0.0137 mmmol) B(C₆F₅)₃. ¹H NMR (C₆D₆, alkylidene resonances): δ 12.234 (W=C*H*, *anti*, ¹*J*_{CH} = 154 Hz, integration 51), 11.799 (W=C*H*, *syn*, ¹*J*_{CH} = 121 Hz, integration 100).

22_{Mo}': 21.2 mg (0.0220 mmol) 22_{Mo} and 11.0 mg (0.0215 mmol) B(C₆F₅)₃. ¹H NMR spectra were obtained at 400 MHz, 500 MHz, and 600 MHz to distinguish the ¹³C satellites from resonances due to trace impurities. ¹H NMR (C₆D₆, alkylidene resonances): δ 12.995 (W=C*H*, *anti*, ¹*J*_{CH} = 149 Hz, integration 44), 12.386 (W=C*H*, *syn*, ¹*J*_{CH} = 118 Hz, integration 100).

Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)(O'Bu) (23_{Mo}). From 8_{Mo}. A suspension of 8_{Mo} (31 mg, 42 μ mol) in 3 mL Et₂O was added to a vial containing solid LiMe₂Pyr (4.2 mg, 42 μ mol). The mixture was stirred 2h over which time the solution changed from yellow to orange. The volatiles were removed *in vacuo* and the resulting oil was extracted with pentane and the extract was filtered through a pipette filter. The pentane was removed *in vacuo* to leave a dark orange solid; yield 30 mg (99 %). Compound 23_{Mo} can be recrystallized from MeCN.

From 14_{Mo}. HO^tBu (7 μ L, 73 μ mol) was added to a solution of **12** (55 mg, 74 μ mol) in 3 mL Et₂O in a 20 mL vial and stirred 18 h. The volatiles were removed *in vacuo*, and the solid was extracted with pentane and filtered through a pipette filter. The volatiles were removed *in vacuo* from the filtrate to leave a dark orange solid; yield 41 mg (77 %).

Compound **23**_{Mo} was observed as a 1:1 mixture of *syn* and *anti* alkylidene species. The spectral features are reported together since they cannot be distinguished except the alkylidene resonances: ¹H NMR (C₆D₆, 20 °C) δ 11.861 (s, 1H, ¹J_{CH} = 118 Hz, Mo=CH, syn), 11.696 (s, 1H, ¹J_{CH} = 153 Hz, Mo=CH, anti), 7.174 – 7.099 (overlapping signals, ArH), 7.056 – 6.849 (overlapping signals, ArH), 6.730 (s, 2H, ArH), 6.259 (s, 2H, pyrH), 6.075 (s, 2H, pyrH), 2.279 (s, 6H, mesitylCH₃), 2.225 (s, 6H, mesitylCH₃), 2.186, 2.180 (overlapping s, 12H, mesitylCH₃), 2.088 (s, 6H, mesitylCH₃), 2.032 (s, 6H, mesitylCH₃), 1.904 (br s, 6H, pyrCH₃), 1.709 (s, 3H, MoCHCMe₂Ph), 1.563 (s, 3H, MoCHCMe₂Ph), 1.433 (s, 3H, MoCHCMe₂Ph), 1.270 (s, 3H, MoCHCMe₂Ph), 0.954 (s, 9H, OCMe₃), 0.845 (s, 9H, OCMe₃);); ¹³C{¹H} NMR (C₆D₆, 20 °C) δ 295.9, 283.4 (Mo=CH), 155.0, 154.9, 150.4, 149.4, 140.2, 138.1, 138.0, 137.4, 137.3, 137.3, 137.0, 136.9, 136.8, 136.5, 136.2, 136.1, 130.6, 130.0, 129.8, 129.4, 129.3, 129.3, 128.9, 128.9, 128.7, 128.4, 127.6, 127.3, 127.2, 126.7, 126.6, 126.6, 126.4, 126.4, 126.3, 126.3, 126.2, 124.1, 124.0, 119.0, 109.4, 109.1, 83.4, 80.9, 53.1, 51.9, 51.6, 50.9, 33.4, 33.1, 32.9, 31.8, 31.5, 31.2, 30.8, 30.1, 21.8, 21.8, 21.6, 21.4, 20.7, 20.6, 20 – 18 (br s). Anal. Calcd for C_{44H₃₄MoN₂O: C, 73.11; H, 7.53; N, 3.88. Found: C, 73.22; H, 7.58; N, 3.91.}

W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(O^tBu) (23_w) HO^tBu (6.4 μL, 66.9 μmol) was added to a -25 °C, stirring solution of W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, **14**_w (55.3 mg, 66.5 μmol), in 2 mL Et₂O. The solution was stirred at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The orange oil was extracted with pentane and the extract was filtered through a pipette filter. The volatiles were removed *in vacuo* from the filtrate. The orange oil was dissolved in minimal MeCN/Et₂O and stored at -25 °C for 16 h over which time crystals formed. The mother liquor was removed by pipette and the crystals were washed with cold MeCN and dried under vacuum to give 42.0 mg, 78 % yield. ¹H NMR (C₆D₆, *Anti* isomer, 38 %, selected resonances) *δ* 9.663 (s, ¹*J*_{CH} = 150 Hz, W=C*H*), 6.246 (s, 2H, pyr*H*), 2.203 (s, 6H, MesC*H*₃), 2.179 (s, 6H, MesC*H*₃), 2.046 (s, 6H, MesC*H*₃), 1.417 (s, 3H, W=CHC*Me*₂Ph), 1.297 (s, 3H, W=CHC*Me*₂Ph), 0.907 (s, 9H, OC*Me*₃); ¹H NMR (C₆D₆, *Syn* isomer, 62 %, selected resonances) *δ* 8.582 (s, ¹*J*_{CH} = 110 Hz, *J*_{HW} = 14 Hz, W=C*H*), 6.052 (s, 2H, Pyr*H*), 2.277 (s, 6H, MesC*H*₃), 2.228 (s, 6H, MesC*H*₃), 2.107 (s, 6H, MesC*H*₃), 1.685 (s, 3H, W=CHC*Me*₂Ph), 1.566 (s, 3H, W=CHC*Me*₂Ph), 0.823 (s, 9H, OC*Me*₃); ¹H NMR (C₆D₆, remaining resonances reported together) *δ* 7.224 (d, *J*_{HH} = 8 Hz), 7.174 - 7.132 (signals overlapping solvent), 7.034 (t, *J*_{HH} = 8 Hz), 6.997 (s), 6.931 (s),

6.873 (d, $J_{\text{HH}} = 4$ Hz), 6.844 (s), 6.737(s),1.937 (br s, Me_2 pyr); ${}^{13}C\{{}^{1}\text{H}\}$ NMR (C₆D₆) δ 265.0, 256.0 (W=*C*H), 154.0, 152.8, 152.0, 139.8, 137.2, 137.2, 137.1, 137.0, 136.6, 136.5, 136.3, 136.2, 130.3, 129.9, 129.6, 129.2, 128.8, 127.3, 126.6, 126.2, 126.1, 125.4, 110.1, 85.4, 82.0, 51.4, 47.7, 34.5, 33.7, 33.6, 32.7, 31.6, 31.6, 21.8, 21.7, 21.6, 21.6, 21.4, 20.6. Anal. calcd for C₄₄H₅₄N₂OW: C, 65.18; H, 6.71; N, 3.46. Found: C, 65.02; H, 6.76; N, 3.59.

¹H NMR spectrum of 23_W in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)[OCMe(CF₃)₂] (24_{Mo}) HOCMe(CF₃)₂ (9.8 μ L, 80 μ mol) was added by microsyringe to a -25 °C, stirred solution of Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_{Mo} (59.5 mg, 80.0 μ mol), in 2 mL Et₂O. The solution was stirred at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The oil was extracted with pentane and the extract was filtered through a pipette filter. The volatiles were removed *in vacuo* from the filtrate. The dark yellow oil was dissolved in minimal acetonitrile and the solution was stored at -25 °C for 16 h. The mother liquor was removed from the crystals by pipette and the crystals were washed with cold acetonitrile and dried under vacuum; yield 45 mg, 68 %; ¹H NMR (C₆D₆, *syn* isomer, 70 %,

selected resonances) δ 12.073 (s, 1H, Mo=CH, ${}^{1}J_{CH} = 120$ Hz), 5.910 (s, 1H, Me₂C₄H₂N), 5.786 (s, 1H, Me₂C₄H₂N), 2.251 (s, 6H, MesCH₃), 2.170 (s, 6H, MesCH₃), 1.948 (s, 3H, Methyl), 1.692 (s, 3H, Methyl), 1.566 (s, 3H, Methyl), 1.521 (s, 3H, Methyl), 0.678 (s, 3H, Methyl); 1 H NMR (C₆D₆, *anti* isomer, 30 %, selected resonances) δ 11.896 (s, 1H, Mo=CH), 6.143 (s, 2H, Me₂C₄H₂N), 2.369 (s, 6H, MesCH₃), 2.185 (s, 6H, MesCH₃), 1.718 (s, 6H, *Me*₂C₄H₂N), 1.390 (s, 3H, Methyl), 1.284 (s, 3H, Methyl), 1.089 (s, 3H, Methyl); 1 H NMR (C₆D₆, *remaining* resonances reported together) δ 7.143 – 7.206 (overlapping signals, ArH), 6.996 – 6.925 (overlapping signals, ArH), 6.883 (s, ArH), 6.868 (s, ArH), 6.804 (s, ArH), 6.776 (m, ArH), 6.706 (s, ArH), 2.108 (s, MesCH₃, coincident signal from both isomers; 13 C { 1 H} NMR (CD₂Cl₂, both isomers reported together) δ 293.0, 155.3, 148.0, 140.6, 137.8, 137.2, 136.5, 136.0, 135.9, 135.8, 135.7, 132.4, 130.9, 130.2, 129.6, 129.1, 128.8, 128.7, 128.6, 128.5, 128.3, 128.3, 128.2, 127.5, 126.8, 126.6, 126.5, 126.3, 108.9, 108.2, 54.8, 51.3, 31.7, 29.9, 29.2, 27.6, 21.7, 21.4, 21.3, 20.1, 18.8, 18.3, 15.8; {}^{19}F NMR (C₆D₆) δ -77.00 (quartet, $J_{FF} = 9$ Hz), -77.287 (quartet, $J_{FF} = 9$ Hz).

¹H NMR spectrum of 24_{Mo} in C₆D₆:

 $W(NAr^*)(CHCMe_2Ph)(Me_2Pyr)[OCMe(CF_3)_2]$ (24w) HOCMe(CF_3)_2 (8.5 µL, 69 µmol) was added by microsyringe to a -25 °C, stirring solution of W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_W (57.9 mg, 69.6 µmol), in 2 mL Et₂O. The solution was stirred at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The oil was extracted with pentane and the extract was filtered through a pipette filter. The volatiles were removed *in vacuo* from the filtrate. The dark yellow oil was dissolved in minimal MeCN and stored at -25 °C for 16 h over which time crystals formed. The mother liquor was removed by pipette and the crystals were washed with cold MeCN and dried under vacuum to give 43 mg, 68 % yield. ¹H NMR (C₆D₆) δ 8.846 (s, 1H, ${}^{1}J_{CH} = 113$ Hz, W=CH), 7.114 – 7.067 (overlapping signals, 4H, ArH), 6.999 (d, $J_{HH} = 7$ Hz, 1H), 6.964 (s, 3H), 6.764 (s, 2H), 6.724 (s, 2H), 5.927 (s, 1H, pyrH), 5.718 (s, 1H, pyrH), 2.315 (s, 3H, CH₃), 2.260 (s, 6H, MesCH₃), 2.171 (s, 6H, MesCH₃), 2.129 (s, 6H, MesCH₃), 1.727 (s, 3H, CH₃), 1.677 (s, 3H, CH₃), 1.522 (s, 3H, CH₃), 0.692 (s, 3H, OC(CF₃)₂CH₃); ${}^{13}C{}^{1}H{}$ NMR (C₆D₆) δ 263.1 (W=CH), 153.9, 150.9, 140.2, 137.0, 136.6, 136.2, 135.9, 130.6, 129.3, 128.9, 128.7, 128.7, 126.9, 126.7, 126.5, 111.1, 110.3 (ArC), 52.6 (W=CHCMe₂Ph), 33.1, 31.0, 22.0, 21.6, 21.5, 19.6, 18.6, 16.0, 1.8, 0.4. ¹⁹F NMR (C₆D₆) δ -76.98 (quartet, J_{FF} = 9 Hz), -77.22 (quartet, $J_{FF} = 9$ Hz). Anal. Calcd for C₄₄H₄₈F₆N₂OW: C, 57.52; H, 5.27; N, 3.05. Found: C, 57.34; H, 5.36; N, 3.22.

¹H NMR spectrum of 24_W in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OSiPh₃) (25_{Mo}). Solid HOSiPh₃ (18.9 mg, 68.4 µmol) was added to a -25 °C, stirred solution of Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, **14**_{Mo} (49.5 mg, 66.5 µmol), and the mixture was stirred at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The brown oil was extracted with pentane, the extract was filtered through a pipette filter, and the volatiles removed *in vacuo* from the filtrate. The brown oil was dissolved in minimal acetonitrile and the solution was stored at -25 °C for 16 h. The mother liquor was removed from the orange precipitate by pipette and the precipitate was washed with cold MeCN and dried under vacuum; yield 51 mg, 82 % yield: ¹H NMR (C₆D₆) δ 11.479 (s, 1H, Mo=C*H*), 7.357 (t, 3H, Ar*H*), 7.348 (d, 3H, Ar*H*), 7.212 – 7.17 (overlapping signals, 3H, Ar*H*), 7.158 (overlapping with solvent), 7.144 – 7.125 (overlapping signals, 4H), 7.049 – 6.945 (overlapping signals, 6H), 6.891 (m, 1H, Ar*H*), 6.877 (m, 1H), 6.858 (s, 2H, C₆H₂Me₃), 6.472 (s, 2H, C₆H₂Me₃), 5.990 and 5.905 (overlapping br s, 2H, Me₂*pyr*), 2.392 (br s, 3H, *Me*₂*pyr*), 2.274 (s, 6H, C₆H₂*Me*₃), 2.059 (s, 6H, C₆H₂*Me*₃), 2.007 (s, 6H, C₆H₂*Me*₃), 1.525 (s, Mo=CHC*Me*₂Ph),

1.481 (s, Mo=CHC Me_2 Ph), 1.203 (br s, 3H, Me_2 pyr); ¹³C{¹H} NMR (CD₂Cl₂) δ 288.0 (Mo=CH), 154.9, 148.4, 139.9, 137.1, 136.6, 136.3, 136.1, 135.9, 135.7, 130.6, 130.3, 129.0, 128.7, 128.5, 128.2, 127.4, 126.3, 126.0, 108.4, 53.0, 32.0, 30.7, 21.8, 21.2, 20.7. Anal. Calcd for C₅₈H₆₀MoN₂OSi: C, 75.30; H, 6.54; N, 3.03. Found: C, 75.09; H, 6.49; N, 3.07. ¹H NMR spectrum of **25**_{Mo} in C₆D₆:

W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OSiPh₃) (25_w) Solid HOSiPh₃ (22.7 mg, 82.1 μ mol) was added to a -25 °C, stirring solution of W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_w (75.7 mg, 91.0 μ mol), and the mixture was allowed to stir at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The yellow oil was extracted with pentane, the extract was filtered through a pipette filter, and the volatiles removed *in vacuo* from the filtrate. The yellow oil was dissolved in 1 mL MeCN/0.1 mL Et₂O and stored at -25 °C for 16 h over which time yellow precipitate formed. The mother liquor was removed by pipette and the solid was washed with cold MeCN and dried under vacuum. The mother liquor was concentrated and cooled to -25 °C to collect a second crop for a combined yield of 81.6 mg, 89 %. ¹H NMR (C₆D₆) δ 8.286 (s, 1H, W=CH,

¹*J*_{HW} = 15 Hz), 7.309 (dd, 4H, *J*_{HH} = 8 Hz, *J*_{HH} = 1 Hz), 7.204 – 7.172 (overlapping signals, 3H), 7.141 (s, 2H), 7.126 (s, 3H), 7.112 (m, 1H), 7.084 – 6.992 (overlapping signals, 6H), 6.955 (m, 1H), 6.940 (s, 1H), 6.875 (s, 2H, C₆*H*₂Me₃), 6.446 (s, 2H, C₆*H*₂Me₃), 6.023 and 5.844 (overlapping br s, 2H, Me₂C₄*H*₂N), 2.343 (br s, 3H, *Me*₂C₄H₂N), 2.282 (s, 6H, C₆H₂*Me*₃), 2.082 (s, 6H, C₆H₂*Me*₃), 2.011 (s, 6H, C₆H₂*Me*₃), 1.563 (s, 3H, Mo=CHC*Me*₂Ph), 1.431 (s, 3H, Mo=CHC*Me*₂Ph), 1.334 (br s, 3H, *Me*₂C₄H₂N). ¹³C{¹H} NMR (CD₂Cl₂) δ 258.0, 153.7, 151.0, 139.4, 136.8, 136.7, 136.6, 136.2, 136.0, 135.8, 135.4, 130.6, 130.2, 128.9, 128.6, 128.4, 128.3, 126.1, 126.0, 126.0, 109.6, 51.1, 33.8, 32.3, 21.8, 21.3, 20.7. Anal. Calcd for C₅₈H₆₀N₂OSiW: C, 68.77; H, 5.97; N, 2.77. Found: C, 68.48; H, 5.78; N, 2.86.

¹H NMR spectrum of 25_W in C₆D₆:

Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)(O-2,6-Me₂C₆H₃) (26_{Mo}). Solid 2,6-Me₂C₆H₃OH (6.9 mg, 56 μ mol) was added to a -25 °C stirred solution of Mo(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_{Mo} (40.9 mg, 55.0 μ mol), and the brown mixture was stirred 16 h at ambient temperature. The volatiles

were removed in vacuo and the brown oil was extracted with pentane and the extract was filtered through a pipette filter with Celite. The volatiles were removed under reduced pressure from the filtrate. The remaining oil was dissolved in 1 mL MeCN/0.1 mL Et₂O and the mixture was cooled to -25 °C. The supernatant was removed from the orange precipitate by pipette and the orange solid was washed with cold MeCN and dried in vacuo; yield 21.5 mg, 51 %: ¹H NMR (C₆D₆, syn and anti reported together with the anti alkylidene proton integrated as 1H) δ 12.191 (s, 1H, ${}^{1}J_{CH} = 155$ Hz, anti Mo=CH), 11.635 (s, 2H, ${}^{1}J_{CH} = 118$ Hz, syn Mo=CH), 7.004 – 6.860 (overlapping signals, ArH, 21H), 6.803 - 6.767 (overlapping signals, 16H, ArH), 6.723 - 6.665 (overlapping signals, 8H, ArH), 6.224 (s, 2H, anti NC₄ H_2 Me₂), 6.026 s, 4H, syn NC₄ H_2 Me₂), 2.291 (s, 12H, syn MesCH₃), 2.165 (s, 6H, anti MesCH₃), 2.110 (s, 18 H), 2.100 (s, 12H), 2.041 (br s, 12H), 2.013 (s, 6H), 1.903 (s, 6H), 1.871 (s, 6H), 1.695 (s, 6H), 1.613 (s, 12H), 1.561 (s, 3H, anti Mo=CHCMe₂Ph), 1.335 (s, 6H), 1.242 (s, 3H, anti Mo=CHCMe₂Ph); ¹³C {¹H} NMR (C₆D₆, syn and anti isomers reported together) δ 310.4 (Mo=CH), 291.2 (Mo=CH), 165.4, 160.8, 155.6, 148.7, 148.6, 140.6, 137.6, 137.4, 137.1, 136.8, 136.6, 136.5, 135.9, 134.3, 131.0, 130.0, 129.9, 129.5, 129.2, 129.0, 129.0, 128.8, 128.7, 127.9, 126.8, 126.6, 126.5, 126.4, 126.4, 125.9, 121.9, 121.5, 109.9, 109.6, 54.0, 51.9, 32.8, 30.9, 29.4, 22.0, 21.5, 21.5, 21.4, 21.4, 20.9, 18.4, 18.2, 17.9, 17.8, 17.2. Anal. Calcd for C₄₈H₅₄MoN₂O: C, 74.78; H, 7.06; N, 3.63. Found: C, 74.56; H, 6.78; N, 3.10.

¹H NMR spectrum of 26_{M0} in C₆D₆:

W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(O-2,6-Me₂C₆H₃) (26_W) Solid Ar'OH (13.2 mg, 0.108 mmol) was added to a -25 °C, stirring solution of W(NAr*)(CHCMe₂Ph)(Me₂Pyr)₂, 14_W (88.5 mg, 0.106 mmol), and allowed to stir at ambient temperature for 16 h. The volatiles were removed *in vacuo*. The yellow oil was extracted with pentane, the extract was filtered through a pipette filter, and the volatiles removed *in vacuo* from the filtrate. The yellow oil was dissolved in 1 mL MeCN and stored at -25 °C for 16 h over which time yellow precipitate formed. The mother liquor was removed by pipette and the solid was washed with cold MeCN and dried under vacuum. The mother liquor was concentrated and cooled to -25 °C to collect three crops in the same manner, 65.0 mg, 71 %. ¹H NMR (C₆D₆, resonances reported for major isomer, about 85 %) δ 8.501 (s, 1H, ¹J_{HW} = 14 Hz, W=CH), 7.030 – 6.961 (overlapping signals, ArH, 6H), 6.859 – 6.842 (overlapping signals, 2H, ArH), 6.796 – 6.768 (overlapping signals, 4H, ArH), 6.681 – 6.651 (overlapping signals, 3H, ArH), 6.007 (s, 2H, pyrH), 2.294 (s, 6H, MesCH₃), 2.127 (s, 6H, MesCH₃), 2.095 (s, 6H, MesCH₃), 1.682 (s, 3H, W=CHCMe₂Ph), 1.627(s, 6H), 1.342 (s, 3H, W=CHCMe₂Ph). ¹³C{¹H} NMR (CD₂Cl₂, all visible peaks (both isomers) reported)

 δ 261.5 (W=*C*H), 162.8, 153.9, 151.0, 139.8, 137.1, 136.9, 136.0, 130.6, 129.0, 128.6, 128.6, 128.4, 126.7, 126.4, 126.1, 125.8, 122.2, 110.3, 51.8, 34.0, 32.6, 21.7, 21.4, 21.2, 21.1, 20.6, 18.1, 16.6. Anal. Calcd for C₄₈H₅₄N₂OW: C, 67.13; H, 6.34; N, 3.26. Found: C, 66.99; H, 6.47; N, 3.51.

¹H NMR spectrum of 26_W in C₆D₆:

X-ray structure determination

Low-temperature diffraction data (φ - and ω -scans) were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart Apex2 CCD detector with Mo K_a radiation ($\lambda = 0.71073$ Å). Structures were solved by direct methods using SHELXS²⁴ and refined against F^2 on all data by full-matrix least squares with SHELXL-97,²⁵ following established refinement strategies.²⁶ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model unless specified below. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- and 1,3- distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters.

 $Mo(NAr^*)(N^tBu)Cl(NH^tBu)$ (1_{Mo}) crystallizes in the monoclinic space group *Cc* with one molecule per asymmetric unit. Coordinates for the hydrogen atom on N2 were taken from the difference Fourier synthesis and the hydrogen atom was subsequently refined semi-freely with the help of a distance restraint on the 1,2-distance.

 $Mo(NAr^*)(N^tBu)(CH_2CMe_2Ph)$ (3_{Mo}) crystallizes in the monoclinic space group P2₁/c with one target molecule of per asymmetric unit. The structure determination was straightforward and without complications.

 $Mo(NAr^*)(CHCMe_2Ph)Cl_2(py)$ (4_{Mo}) crystallizes in the triclinic space group P1 with one molecule per asymmetric unit. The alkylidene ligand (C25 to C34) is disordered over two positions. The ratio between the two components was refined freely and converged at 0.867(3). The coordinates for the hydrogen atom on alkylidene carbon, C25, were taken from the difference Fourier synthesis and the hydrogen atom was subsequently refined semi-freely with the help of a distance restraint.

 $[W(NAr^*)(CHCMe_2Ph)Cl(bipy)][Zn_2Cl_3]_{0.5}$ (7_w) crystallizes in the triclinic space group P1 with one molecule of 10, one molecule of toluene and one-half molecule of Zn_2Cl_6 per asymmetric unit. The second half of the Zn_2Cl_6 is generated by the crystallographic inversion

center. The tungsten-bound chlorine, the bipyridine ligand as well as the tungsten atom itself were treated as disordered over two positions. The ratio between the two components was refined freely and converged at 0.6824(15). The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters for all atoms. Coordinates for the hydrogen atom on C1, which is the carbon atom directly binding to the tungsten, were taken from the difference Fourier synthesis. The hydrogen atom was subsequently refined semi-freely with the help of a distance restraint on the C—H-distance (target 0.95(2) Å). All bond lengths and angles specified and discussed throughout this publication are those of the major component of the disorder.

Mo(NAr*)(CHCMe₂Ph)Cl(OAr*)(py) (12_{Mo}) crystallizes in the triclinic space group P1 with two molecules in the asymmetric unit along with two molecules of Et₂O, and half a molecule of benzene. One of the Et₂O molecules (C5 to C8, O2) is disordered over two mutually exclusive positions, and the occupancy ratio of the two components was refined freely and converged at 0.506(12). The benzene molecule is located near a crystallographic inversion center and disordered over four positions, two of which are pairwise related to the other two by the inversion center. The occupancy ratio of the two mutually exclusive components was refined freely and converged at 0.755(8). The first of the two crystallographically independent molecules of 12_{M_0} contains independent disorders over two positions for a mesityl group (C116 to C124), the alkylidene ligand (C150 to C158), and the pyridine ligand (N12, C159 to C163). The second independent molecule of 12_{Mo} contains independent disorders over two positions for a mesityl group (C216 to C224) and part of the alkylidene ligand (C253 to C258). The respective ratios between the two components for each disorder were refined freely and converged at 0.536(7). 0.552(6), and 0.545(11), respectively, for the first independent molecule and at 0.58(3) and 0.70(2), respectively, for the second one. The hydrogen atoms on the alkylidene carbons, C149 and C249, while visible in the difference Fourier synthesis, were included into the model at geometrically calculated positions and refined using a riding model because of the disorder of the alkylidene ligand. During data collection, ice formed on the crystal and affected several reflections, the worst twelve of which were omitted for refinement.

 $Mo(NAr^*)(CHCMe_2Ph)(OAr')_2 (15_{Mo})$ crystallizes in the space group $P2_1/c$ with one molecule per asymmetric unit. Alkylidene ligand (C25 to C34) is disordered over two positions. The ratio between the two components was refined freely and converged at 0.74846. The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters.

 $W(NAr^*)(CHCMe_2Ph)(Me_2Pyr)(O'Bu)$ (23_w) crystallizes in the monoclinic space group $P_{2_1/c}$ with one molecule per asymmetric unit and shows whole-molecule disorder. The ratio between the two components was refined freely and converged at 0.8979(13). The disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters for all atoms. The following pairs of almost overlapping atoms were constrained to show identical anisotropic displacement parameters: C1/C1A, C42/C42A, C43/C43A, C44/C44A, C33/C33A, C34/C34A, C35/C35A. Coordinates for the hydrogen atom on C1, which is the carbon atom directly binding to the tungsten, were taken from the difference Fourier synthesis. The hydrogen atom was subsequently refined semi-freely with the help of a distance restraint on the C–H-distance (target 0.95(2) Å). This approach did not work for the minor component of the whole-molecule disorder and H1A was introduced in its geometrically calculated position and refined using a riding model. All bond lengths and angles specified and discussed throughout this publication are those of the major component of the disorder.

Identification code	x10070		
Empirical formula	C ₃₂ H ₄₄ Cl Mo N ₃		
Formula weight	602.09		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	Cc		
Unit cell dimensions	a = 22.2063(11) Å	$\alpha = 90^{\circ}$	
	b = 8.6597(5) Å	$\beta = 112.9120(10)^{\circ}$	
	c = 17.7277(9) Å	$\gamma = 90^{\circ}$	
Volume	3140.1(3) Å ³		
Ζ	4		
Density (calculated)	1.274 Mg/m ³		
Absorption coefficient	0.526 mm ⁻¹		
<i>F</i> (000)	1264		
Crystal size	0.30 x 0.25 x 0.20 mm ³		
Theta range for data collection	2.49 to 32.91°		
Index ranges	-33<=h<=33, -13<=k<=13, -27<=l<=27		
Reflections collected	66929		
Independent reflections	11745 [$R_{int} = 0.0267$]		
Completeness to theta = 32.91°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9020 and 0.8581		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	11745 / 3 / 349		
Goodness-of-fit on F^2	1.051		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0169, wR2 = 0.0431		
R indices (all data)	R1 = 0.0175, wR2 = 0.0434		
Absolute structure parameter	-0.011(10)		
Largest diff. peak and hole	0.294 and -0.182 e.Å ⁻³		

Table 3.1. Crystal data and structure refinement for Mo(NAr*)(N^tBu)Cl(NH^tBu), (1_{M0}).

Identification code	10079	10079		
Empirical formula	C48 H60 Mo N2	C48 H60 Mo N2		
Formula weight	760.92	760.92		
Temperature	100(2) K	100(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions	$a = 16.1681(8) \text{ Å}$ $a = 90^{\circ}$			
	b = 12.1635(6) Å	b= 110.4790(10)°		
	c = 22.4671(11) Å	g = 90°		
Volume	4139.2(4) Å ³			
Z	4			
Density (calculated)	1.221 Mg/m ³	1.221 Mg/m ³		
Absorption coefficient	0.351 mm ⁻¹	0.351 mm ⁻¹		
F(000)	1616	1616		
Crystal size	0.15 x 0.10 x 0.05 mm ³			
Theta range for data collection	1.34 to 30.03°			
Index ranges	-22<=h<=22, -17<=k<=17, -31<=l<=31			
Reflections collected	120028			
Independent reflections	12105 [R(int) = 0.062	12105 [R(int) = 0.0621]		
Completeness to theta = 30.03°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.9827 and 0.9493	0.9827 and 0.9493		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²		
Data / restraints / parameters	12105 / 0 / 473	12105 / 0 / 473		
Goodness-of-fit on F^2	1.026	1.026		
Final R indices [I>2sigma(I)]	R1 = 0.0346, wR2 = 0.0346	R1 = 0.0346, wR2 = 0.0835		
R indices (all data)	R1 = 0.0496, wR2 = 0.0496	R1 = 0.0496, wR2 = 0.0913		
Largest diff. peak and hole	0.839 and -0.402 e.Å	0.839 and -0.402 e.Å ⁻³		

Table 3.2. Crystal data and structure refinement for Mo(NAr*)(N^tBu)(CH₂CMe₂Ph)₂ (3_w).

Identification code	x11036		
Empirical formula	C ₃₉ H ₄₂ Cl ₂ Mo N ₂		
Formula weight	705.59		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P1		
Unit cell dimensions	a = 8.5068(12) Å	$\alpha = 91.532(3)^{\circ}$	
	b = 10.2626(14) Å	$\beta = 96.714(3)^{\circ}$	
	c = 21.510(3) Å	$\gamma = 110.575(3)^{\circ}$	
Volume	1741.4(4) Å ³		
Ζ	2		
Density (calculated)	1.346 Mg/m ³		
Absorption coefficient	0.559 mm ⁻¹		
F(000)	732		
Crystal size	0.25 x 0.15 x 0.05 mm ³		
Theta range for data collection	1.91 to 30.31°		
Index ranges	-12<= <i>h</i> <=12, -14<= <i>k</i> <=14, -30<= <i>l</i> <=30		
Reflections collected	75423		
Independent reflections	10446 [$R_{int} = 0.0527$]		
Completeness to theta = 30.31°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9726 and 0.8728		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	10446 / 389 / 501		
Goodness-of-fit on F ²	1.069		
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0349, wR2 = 0.0791		
R indices (all data)	R1 = 0.0443, wR2 = 0.0837		
Largest diff. peak and hole	1.317 and -1.287 e.Å ⁻³		

Table 3.3. Crystal data and structure refinement for Mo(NAr*)(CHCMe₂Ph)Cl₂(py), (4_{Mo}).

Identification code	x12001	x12001		
Empirical formula	C ₅₁ H ₅₃ Cl ₄ N ₃ W Zn	C ₅₁ H ₅₃ Cl ₄ N ₃ W Zn		
Formula weight	1098.98	1098.98		
Temperature	100(2) K			
Wavelength	0.710 7 3 Å	0.71073 Å		
Crystal system	Triclinic	Triclinic		
Space group	P1			
Unit cell dimensions	a = 9.8830(7) Å	$a = 79.475(2)^{\circ}$		
	<i>b</i> = 11.6031(8) Å	$b = 83.2370(10)^{\circ}$		
	c = 20.9756(15) Å	<i>g</i> = 83.253(2)°		
Volume	2337.0(3) Å ³			
Ζ	2			
Density (calculated)	1.562 Mg/m ³	1.562 Mg/m ³		
Absorption coefficient	3.239 mm ⁻¹	3.239 mm ⁻¹		
<i>F</i> (000)	1104	1104		
Crystal size	0.10 x 0.10 x 0.05 mm	0.10 x 0.10 x 0.05 mm ³		
Theta range for data collection	1.79 to 30.31°	1.79 to 30.31°		
Index ranges	-14<=h<=14, -16<=k	-14<= <i>h</i> <=14, -16<= <i>k</i> <=16, -29<= <i>l</i> <=29		
Reflections collected	100713	100713		
Independent reflections	14002 [$R_{int} = 0.0518$]	14002 [$R_{int} = 0.0518$]		
Completeness to theta = 30.31°	99.8 %	99.8 %		
Absorption correction	Semi-empirical from	Semi-empirical from equivalents		
Max. and min. transmission	0.8548 and 0.7377	0.8548 and 0.7377		
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F^2		
Data / restraints / parameters	14002 / 552 / 680	14002 / 552 / 680		
Goodness-of-fit on F^2	1.039	1.039		
Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0261, wR2 = 0	R1 = 0.0261, wR2 = 0.0630		
R indices (all data)	R1 = 0.0307, wR2 = 0	R1 = 0.0307, wR2 = 0.0644		
Largest diff. peak and hole	0.911 and -0.869 e.Å ⁻	0.911 and -0.869 e.Å ⁻³		

Table 3.4. Crystal data and structure refinement for [W(NAr*)(CHCMe2Ph)Cl(bpy)][Zn2Cl6]_{0.5} (7w).

Identification code	X11073		
Empirical formula	C _{68.50} H _{78.50} Cl Mo N ₂ O ₂		
Formula weight	1093.22		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P1		
Unit cell dimensions	a = 16.251(3) Å	$\alpha = 71.259(5)^{\circ}$	
	b = 16.403(4) Å	$\beta = 87.158(5)^{\circ}$	
	c = 24.476(5) Å	$\gamma = 68.692(5)^{\circ}$	
Volume	5740(2) Å ³		
Z	4		
Density (calculated)	1.265 Mg/m ³		
Absorption coefficient	0.322 mm ⁻¹		
F(000)	2314		
Crystal size	0.15 x 0.10 x 0.10 mm ³		
Theta range for data collection	1.35 to 30.32°		
Index ranges	-23<=h<=23, -22<=k<=23, -34<=l<=34		
Reflections collected	248510		
Independent reflections	34398 [R(int) = 0.0783]		
Completeness to theta = 30.32°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9685 and 0.9533		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	34398 / 2819 / 1848		
Goodness-of-fit on F ²	1.016		
Final R indices [I>2sigma(I)]	R1 = 0.0445, wR2 = 0.0931		
R indices (all data)	R1 = 0.0803, wR2 = 0.1095		
Largest diff. peak and hole	0.956 and -0.912 e.Å ⁻³		

Table 3.5. Crystal data and structure refinement for Mo(NAr*)(CHCMe₂Ph)Cl(OAr*)(py) (12_{Mo}).

Identification code	11160	11160		
Empirical formula	C50H55MoNO2	C50H55MoNO2		
Formula weight	797.89			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2(1)/c			
Unit cell dimensions	a = 15.6872(19)	alpha = 90 °		
	b = 12.0416(14)	beta = 96.176(2) °		
	c = 22.224(3)	gamma = 90 °		
Volume	4173.7(9)			
Z	4			
Density (calculated)	1.270 Mg/m ³	1.270 Mg/m ³		
Absorption coefficient	0.354 mm ⁻¹	0.354 mm ⁻¹		
F(000)	1680	1680		
Crystal size	0.15 x 0.15 x 0.05	0.15 x 0.15 x 0.05 mm		
Theta range for data collection	1.84 to 30.03 °	1.84 to 30.03 °		
Limiting indices	-22 < h < 22, -16	-22 < h < 22, -16 < k < 16, -31 < 1 < 31		
Reflections collected	99345	99345		
Independent reflections	12201 ($R_{int} = 0.06$	12201 ($R_{int} = 0.0677$)		
Completeness to Theta = 30.03°	100.0 %	100.0 %		
Absorption correction	Semi-empirical fr	Semi-empirical from equivalents		
Max. and min. transmission	0.9825 and 0.948	0.9825 and 0.9488		
Refinement method	Full-matrix least-	Full-matrix least-squares on F ²		
Data / restraints / parameters	12201 / 348 / 592	12201 / 348 / 592		
Goodness-of-fit on F ²	1.084	1.084		
Final R indices [I>2o(I)]	R1 = 0.0412, WR2	R1 = 0.0412, wR2 = 0.0878		
R indices (all data)	R1 = 0.0521, wR2	R1 = 0.0521, $wR2 = 0.0921$		
Largest diff. peak and hole	1.000 and -1.297	1.000 and -1.297 e Å ⁻³		

Table 3.6. Crystal data and Structure refinement for Mo(NAr*)(CHCMe₂Ph)(OAr')₂ (15_{Mo}).

Identification code	x12104		
Empirical formula	C ₄₄ H ₅₄ N ₂ O W		
Formula weight	810.74		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	<i>a</i> = 11.6685(8) Å	$a = 90^{\circ}$	
	<i>b</i> = 14.3088(9) Å	$b = 91.113(2)^{\circ}$	
	c = 22.9645(16) Å	$g = 90^{\circ}$	
Volume	3833.5(4) Å ³		
Ζ	4		
Density (calculated)	1.405 Mg/m ³		
Absorption coefficient	3.048 mm ⁻¹		
<i>F</i> (000)	1656		
Crystal size	0.05 x 0.04 x 0.03 mm ³		
Theta range for data collection	1.68 to 31.51°		
Index ranges	-17<= <i>h</i> <=17, -21<= <i>k</i> <=21, -33<= <i>l</i> <=33		
Reflections collected	186081		
Independent reflections	12749 [$R_{int} = 0.0546$]		
Completeness to theta = 31.51°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9141 and 0.8625		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	12749 / 1946 / 840		
Goodness-of-fit on F^2	1.066		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0273, wR2 = 0.0597		
R indices (all data)	R1 = 0.0395, wR2 = 0.0640		
Largest diff. peak and hole	1.028 and -0.570 e.Å ⁻³		

Table 3.7. Crystal data and structure refinement for W(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu) (23_W).

REFERENCES

¹ (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2009**, *131*, 7962. (b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. *Macromolecules* **2010**, *43*, 7515. (c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. *J. Am. Chem. Soc.* **2011**, *133*, 1784. (d) Flook, M. M.; Börner, J.; Kilyanek, S.; Gerber, L. C. H.; Schrock, R. R. *Organometallics* **2012**, *31*, 6231.

² (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
(b) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780. (c) Townsend, E. M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 11334. (d) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.

³ (a) Ibrahem, I; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 3844. (b) Yu, M.; Ibrahem, I.; Hasegawa, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2012**, 134, 2788.

⁴ (a) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2009**, *131*, 10840. (b) Marinescu, S. C.; Levine, D.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2011**, *133*, 11512.

⁵ (a) Wang, C.; Yu, M.; Kyle, A. F.; Jacubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. *Chem. Eur. J.* **2013**, *19*, 2726. (b) Wang, C.; Haeffner, F.; Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **2013**, *52*, 1939.

⁶ For a terminal Ar*imido of Ga see (a) Wright, R. J.; Brynda, M.; Fettinger, J. C.; Betzer, A. R.; Power, P. P. J. Am. Chem. Soc. **2006**, 128, 12498. For bridging Ar* imido of Group 14 metals see: (b) Merrill, W. A.; Wright, R. J.; Stanciu, C. S.; Olmstead, M. M.; Fettinger, J. C.; Power, P. P. Inorg. Chem. **2010**, 49, 2010. For bridging Ar* imido of As and Bi see: (c) Schulz, A.; Villinger, A. Inorg. Chem. **2009**, 48, 7359. (d) Michalik, D.; Schulz, A.; Villinger, A. Angew. Chem., Int. Ed. **2010**, 49, 7575.

⁷ (a) Iluc, V. M.; Hillhouse, G. L. J. Am. Chem. Soc. 2010, 132, 15148. (b) Laskowski, C. A.;
Miller, A. J. M.; Hillhouse, G. L.; Cundari, T. R. J. Am. Chem. Soc. 2011, 133, 771. (c) Iluc, V.
M.; Miller, A. J. M.; Anderson, J. S.; Monreal, M. J.; Mehn, M. P.; Hillhouse, G. L. J. Am. Chem. Soc. 2011, 133, 13055.

⁸ (a) Gavenonis, J.; Tilley, T. D. J. Am. Chem. Soc. 2002, 124, 8536. (b) Gavenonis, J.; Tilley, T. D. Organometallics 2002, 21, 5549. (c) Gavenonis, J.; Tilley, T. D. Organometallics 2004, 23, 31.

⁹ Wampler, K. M.; Schrock, R. R. Unpublished results.

¹⁰ Bell, A.; Clegg, W.; Dyer, P. W.; Elsegood, M. R. J.; Gibson, V. C.; Marshall, E. L. J. Chem. Soc., Chem. Commun. **1994**, 2547.

¹¹ (a) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. **1990**, 112, 3875. (b) Oskam, J. H.; Fox, H. H.; Yap, K. B.; McConville, D. H.; O'Dell, R.; Lichtenstein, B. J.; Schrock, R. R. J. Organomet. Chem. **1993**, 459, 185.

¹² Addison, A. W.; Rao, T. N.; Van Rijn, J. J.; Veschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349.

¹³ Jeong, H.; Axtell, J. C.; Török, B.; Schrock, R. R.; Müller, P. Organometallics 2012, 31, 6522.
 ¹⁴ Heppekausen, J.; Fürstner, A.; Angew. Chem., Int. Ed. 2011, 50, 7829.

¹⁵ (a) Lichtscheidl, A. G.; Ng, V. W. L.; Müller, P.; Takase, M. K.; Schrock R. R.; Malcolmson,
S. J.; Meek, S. J.; Li. B.; Kiesewetter, E. T.; Hoveyda, A. H. Organometallics 2012, 31 (12),
4558.

¹⁶ Singh, R.; Czekelius, C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. Organometallics 2007, 26, 2528.

¹⁷ Schrock, R. R.; Crowe, W. E.; Bazan, G. C.; DiMare, M.; O'Regan, M. B.; Schofield, M. H. Organometallics **1991**, *10*, 1832.

¹⁸ Duchateau, R.; Cremer, U.; Harmsen, R. J.; Mohamud, S. I.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K.-H.; van Tol, M. F. J.; Kranenburg, M. Organometallics 1999, 18, 5447.

¹⁹ Fonari, M. S.; Simonov, Y. A.; Wang, W.-J.; Tang, S.-W.; Ganin, W. V. Cryst. Eng. Comm. **2009**, *11*, 94.

²⁰ Goeta, A. E.; Lawrence, S. E.; Meehan, M. M.; O'Dowd, A.; Spalding, T. R. *Polyhedron* **2002**, *21*, 1689.

²¹ Dickie, D. A.; MacIntosh, I. S.; Ino, D. D.; He, Q.; Labeodan, O. A.; Jennings, M. C.; Schatte, G.; Walsby, C. J.; Clyburne, J. A. C. *Can. J. Chem.* **2008**, *86*, 20.

²² Dyer, P. W.; Gibson, V. C.; Howard, J. A. K.; Whittle, B.; Wilson, C. J. Chem. Soc., Chem. Commun. 1992, 1666.

- 23 Rische, D.; Baunemann, A.; Winter, M.; Fischer, R. A. Inorg. Chem. 2006, 45, 269.
- ²⁴ Sheldrick, G. M. Acta Cryst. **1990**, A46, 467.
- ²⁵ Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
- ²⁶ Müller, P. Crystallography Reviews 2009, 15, 57.

Chapter 4

Fundamental Reactivity of Alkylidene Complexes Containing a 2,6-Dimesitylphenylimido Ligand

Portions of this chapter have appeared in print:

Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. Synthesis of Molybdenum Alkylidene Complexes That Contain the 2,6-Dimesitylphenylimido Ligand. J. Am. Chem. Soc. 2011, 133, 18142.

Gerber, L. C. H.; Schrock, R. R.; Müller, P. Molybdenum and Tungsten Monoalkoxide Pyrrolide (MAP) Alkylidene Complexes That Contain a 2,6-Dimesitylphenylimido Ligand. *Organometallics* **2013**, *32*, 2373.

INTRODUCTION

Molybdenum and tungsten alkylidene compounds containing a 2,6-dimesitylphenylimido (NAr*) ligand have been synthesized (Chapter 3). This work is motivated by the success of MAP (MonoAlkoxide Pyrrolide) complexes that contain a bulky alkoxide ligand, which have been successfully used for *Z*-selective olefin metathesis reactions including ring-opening metathesis polymerization (ROMP), ¹ homocoupling, ² ring-opening/cross-metathesis, ³ ethenolysis, ⁴ and formation of natural products through ring-closing reactions.⁵ Catalysts for these *Z*-selective reactions all contain a sterically demanding alkoxide ligand and a comparatively small imido ligand. We were interested in exploring the reactivity of compounds where this steric bias is reversed, specifically compounds that contain a bulky imido ligand and a comparatively small alkoxide ligand. A 2,6-dimesitylphenylimido ligand was chosen as the basis for these studies.

To fully understand the effects of the NAr* ligand, we were interested in studying NAr*bearing MAP complexes and their fundamental reactivity. Many complexes containing the NAr* ligand are a mixture of *syn* and *anti* alkylidenes in solution or the solid state (see Chapter 3; substituents point towards the imido ligand in the *syn* and away in the *anti* alkylidene isomer). Understanding the nature of this unusual isomerism is important to understanding the effects of the NAr* ligand. Kinetic studies were conducted to obtain the rates of interconversion between the two alkylidene isomers.

Reactions with ethylene are important, as ethylene is a byproduct of any reaction in which terminal olefins are metathesized. Understanding the identity and stability of compounds that form in the presence of ethylene is important to discovering how catalysts decompose and how to develop longer-lived catalysts. The NAr* ligand is able to stabilize several unsubstituted metallacycle complexes as well as methylidene complexes. Additionally, study of neophylidene and methylidene complexes with stoichiometric amounts of monomers provide a better understanding of polymerization initiation as well as a way to compare the differing reactivity between substituted and unsubstituted alkylidene species. This chapter explores these types of fundamental reactivity to provide a deeper understanding of the NAr* system and how its properties differ from those of other alkylidene complexes.

136

RESULTS AND DISCUSSION

I. Study of Alkylidene Isomers

Figure 4.1. Labeling scheme for MAP complexes.

The four-coordinate MAP species shown in Figure 4.1, 1 - 4, are a mixture of syn and anti alkylidene isomers in C₆D₆ solution as observed by ¹H NMR spectroscopy. In the syn alkylidene isomer the substituents on the alkylidene ligand point towards the imido ligand, whereas in the anti alkylidene ligand the substituents on the alkylidene ligand point away from the imido ligand (Scheme 4.1). The syn alkylidene isomer has an α -agostic interaction, while the anti alkylidene isomer does not, allowing these two species to be distinguished by the coupling constants between the α -carbon and proton (${}^{1}J_{CH}$), which are typically in the range of 110 – 125 Hz for syn alkylidenes and 140 - 155 Hz for anti alkylidenes.⁶ Equilibrium constants for compounds 1 - 4 were determined by integration of the alkylidene resonances in the ¹H NMR spectra (Table 4.1). This equilibrium typically lies heavily towards the syn alkylidene in 4coordinate Mo or W imido alkylidene species, and such low equilibrium constants have not been observed previously.⁶ Values observed previously are of the $10^2 - 10^3$ order of magnitude. We attribute the relative stability of the anti isomer to the presence of the bulky NAr* ligand since Mo(NAr)(CHCMe₂Ph)(Me₂pyr)(OCMe₃) and Mo(NAr)(CHCMe₂Ph)(Me₂pyr)[OCMe(CF₃)₂] (Ar = 2,6-dimesitylphenyl) only show the *syn* isomer in solution by ¹H NMR spectroscopy, and these compounds have the same ligand set (except for the imido substituent) as 1_{M_0} and 2_{M_0} . The significantly larger K_{eq} values for 3_{Mo} and 3_W , compared to compounds 1, 2, and 4, can be attributed to the greater steric demand of the triphenylsiloxide ligand. Equilibrium constants that

are orders of magnitude smaller than those observed previously signify only small changes in stability of the *anti* isomer relative to the *syn*. Analysis using the equation $\Delta G^{\circ} = -RTln(K_{eq})$ shows that when $K_{eq} = 1$, the *syn* and *anti* isomers are equal in free energy, but when $K_{eq} = 1000$ the *syn* is only 4.1 kcal mol⁻¹ more stable than the *anti* isomer. This relationship indicates how great of an effect even small changes in the dynamics of a system can have.

Scheme 4.1. Syn and anti alkylidene species.

Compound	K _{eq}	$k_{f}(s^{-1})$	$k_r(s^{-1})$
Mo(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(O ^t Bu), 1 _{Mo}	0.9	0.05 ± 0.01	0.06 ± 0.01
$Mo(NAr^*)(CHCMe_2Ph)(Me_2pyr)[OCMe(CF_3)_2],$	2.7	$(2.9 \pm 0.6) \ge 10^{-2}$	$(1.1 \pm 0.04) \ge 10^{-2}$
2 _{Mo}			
Mo(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(OSiPh ₃), 3 _{Mo}	26	~ 0.5	~ 0.02
Mo(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(OAr'), 4 _{Mo}	2.2	0.1 ± 0.02	0.05 ± 0.01
W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(O ^t Bu), 1_W	1.8	1.4 ± 0.6	0.8 ± 0.4
W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)[OCMe(CF ₃) ₂],	12	1.8 ± 1.1	0.15 ± 0.2
$2_{\rm W}$			
W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(OSiPh ₃), 3 _W	100	~ 50	~ 0.5
W(NAr*)(CHCMe ₂ Ph)(Me ₂ pyr)(OAr'), 4 _W	5.6	2 ± 2	0.4 ± 0.4

Table 4.1. Rate and equilibrium constants for 4-coordinate Mo and W MAP species measured at 21 °C.

2D ¹H-¹H EXSY was used to determine the kinetics of exchange between the two alkylidene isomers when K_{eq} was close to 1.⁸ From EXSY experiments, k can be determined by integration of the cross peaks, where $k = k_f + k_r$. With k in hand, k_f and k_r are determined by

using K_{eq} . Table 4.1 shows rate and equilibrium constants as determined from NMR spectroscopic studies. The rate constants for compounds 1, 2, and 4 were determined using EXSY. Due to higher equilibrium constants for compounds 3, rate constants for 3_{Mo} and 3_W were determined after generation of additional *anti* alkylidene isomer by irradiation at low temperature. The compounds were irradiated at 350 nm at -78 °C to generate additional *anti* alkylidene isomer, and the decay of the mixture back to equilibrium was followed at various temperatures. Rate constants k_f were determined at -20 °C, -30 °C, and -40 °C for 3_{Mo} , and -40 °C, -50 °C, and -60 °C for 3_W these values were used to extrapolate to 21 °C.

In all cases, the rate of rotation is at least an order of magnitude faster for W complexes than for their Mo congeners. These results are consistent with reported data for k_f for both W and Mo complexes of $M(NAr)(CHCMe_3)[OCMe(CF_3)_2]_2$, which also show that k_f is much faster for W than Mo: measured kf was over а range of temperatures for W(NAr)(CHCMe₃)[OCMe(CF₃)₂]₂ and when extrapolated to -27.4 °C, $k_f = 153 \times 10^{-4} \text{ s}^{-1}$ while k_f for Mo(NAr)(CHCMe_3)[OCMe(CF_3)_2]_2 was measured to be 2.26 x 10⁻⁴ s⁻¹ at -27.4 °C.⁶ Furthermore, for alkylidene rotation of MAP methylidene complexes studied by EXSY, the rate constants for the Mo complexes $Mo(NAr)(CH_2)(OHIPT)(Pyr)$ (k = $< 0.2 \text{ s}^{-1}$) and $Mo(NAr)(CH_2)(OBitet)(Pyr)$ (k = < 0.2 s⁻¹) are smaller than those for any of the W complexes $W(NAr)(CH_2)(OTPP)(Me_2Pyr) (k = 90 s^{-1}), R-W(NAr)(CH_2)(OBitet)(Me_2Pyr) (k = 3.6 s^{-1}), and$ $S-W(NAr)(CH_2)(OBitet)(Me_2Pyr)$ (k = s^{-1}) 5.1 (OHIPT 2,6-bis(2,4,6-= triisopropylphenyl)phenoxide, OTPP = 2,3,5,6-tetraphenylphenoxide, and OBitet = the phenoxide derived from the deprotonation of 3,3'-dibromo-2'-(t-butyldimethylsilyloxy)-5,5',6,6',7,7',8,8'-octahydro-[1,1'-binaphthalen]-2-ol).⁹

Interconversion of alkylidene isomers for W, Mo, and Re complexes has previously been studied computationally. ¹⁰ The ΔG^{\ddagger} of rotation has been calculated for the Mo and W complexes M(NMe)(CHCH₃)(OMe)₂, M(NPh)(CHCH₃)(OMe)₂, M(NMe)(CHCH₃)(OEt)₂, and M(NPh)(CHCH₃)(OEt)₂. For these compounds, the ΔG^{\ddagger} values for alkylidene rotation are about the same for equivalent Mo and W complexes, indicating that they would have similar rotation rates. The same study calculates that for the complexes M(NMe)(CHCH₃)(OMe)₂ and M(NMe)(CHCH₃)(OEt)₂ the more electropositive W (compared with Mo) increases the ionic character of the metal ligand bonds.¹⁰ More ionic character of the metal ligand bonds should make reaching the transition state easier, since rotation requires breaking the M–C π bond. If this

is the case, the more accessible transition state for W over Mo complexes should result in faster bond rotation.

II. Reaction of NAr* Alkylidene Complexes with Ethylene

Ethylene is the simplest olefin, and is also a product of metathesis reactions anytime a terminal olefin substrate is used (Scheme 4.2). Thus, the reaction of olefin metathesis catalysts with ethylene can provide important information about how a catalyst works and how it decomposes. Both methylidenes and unsubstituted metallacycles can form upon reaction of an alkylidene with ethylene. Methylidenes, although part of the catalytic cycle whenever terminal olefins are a substrate, can be unstable and have been shown to decompose bimolecularly,¹¹ which is a probable route of catalyst deactivation. Stabilization of methylidenes is a strategy to provide longer-lived metathesis catalysts. Unsubstituted metallacycles can form during catalysis through the reaction of a methylidene with ethylene and are not part of the productive catalytic cycle. An unsubstituted metallacycle that cannot readily lose ethylene to reform the methylidene can be a thermodynamic sink for the catalyst and slow the rate of reaction. Additionally, unsubstituted metallacycles have been shown to rearrange to give Mo(IV) or W(IV) olefin complexes.^{11, 12}

Scheme 4.2. Catalytic cycle for the homocoupling of terminal olefins.

There are only a few reported examples of four-coordinate methylidene compounds of group six metals that have been isolated,¹³ shown in Figure 4.2. All isolated methylidene compounds contain sterically demanding aryloxide ligands. Based on this precedent, the NAr* ligand seems well-poised as a supporting ligand for stable methylidene species.

Figure 4.2. Previously isolated four-coordinate methylidenes of W or Mo.

Addition of 1 ethylene degassed solution of atm to a $W(NAr^*)(CHCMe_2Ph)(Me_2Pyr)(OSiPh_3)$ (3_w) in C₆D₆ resulted in complete conversion of 3_w to metallacycle $W(NAr^*)(C_3H_6)(Me_2Pyr)(OSiPh_3)$ (5_W) (Scheme 4.3). Application of vacuum to 5_{W} of led methylidene the solution to the isolation of the compound, $W(NAr^*)(CH_2)(Me_2pyr)(OSiPh_3)$ (6_W). Compounds 5_W and 6_W were isolated by conducting the reaction in a pentane/Et₂O solvent mixture and cooling the reaction mixture to -25 °C overnight, upon which 5_W crystallizes. Compound 5_W was dissolved in excess toluene and the volatiles were removed in vacuo to isolate 6_W . Solutions of 5_W in C₆D₆ solution always show about 10 % $6_{\rm W}$ and ethylene in their ¹H NMR spectra. Application of vacuum to $5_{\rm W}$ in the solid state does not change the ratio of $5_{W}:6_{W}$, and dissolved ethylene is still observed by ¹H NMR spectroscopy upon dissolution in C₆D₆, indicating an equilibrium between 5_W and 6_W in solution.

Scheme 4.3 Synthesis of metallacycle 5_W and methylidene 6_W .

The structure of 5_w was determined by X-ray crystallography (Figure 4.3). Compound 5_w crystallizes in the space group P2₁/*n* with two independent molecules in the asymmetric unit. Compound 5_w is about midway between a trigonal bipyramid and a square pyramid: the τ value is 0.60 (where $\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid).¹⁴ Within the trigonal bipyramidal framework, the imido and siloxide ligands are in the apical sites, while the pyrrolide and metallacycle are in the equatorial plane. The N2 – W1 – C1 angle is 141.31(7)° and the N2 – W1 – C3 angle is 133.35(7)°, meaning the pyrrolide ligand is bent slightly towards C1. The space-filling model shows the steric protection of the metallacycle by the NAr* ligand.

Figure 4.3. Crystal structure of 5_W . The top picture shows the thermal ellipsoids drawn at the 50 % probability level with hydrogen atoms omitted for clarity. The bottom picture shows the space-filling diagram. Selected bond lengths (Å) and angles (°): W1-N1 = 1.7711(16), W1-O1 = 1.9613(13), W1-C3 = 2.0500(19), W1-N2 = 2.0597(17), W1-C1 = 2.0628(19), W1-C2 = 2.3658(19), C1-C2 = 1.593(3), C2-C3 = 1.600(3), N1-W1-O1 = 177.45(6), N1-W1-C3 = 94.93(8), O1-W1-C3 = 85.84(7), N1-W1-N2 = 95.78(7), O1-W1-N2 = 85.43(6), C3-W1-N2 = 133.35(7), N1-W1-C1 = 92.44(8), O1-W1-C1 = 85.23(7), C3-W1-C1 = 83.15(8), N2-W1-C1 = 141.31(7), C2-C1-W1 = 79.52(10), C2-C3-W1 = 79.77(10), C1-C2-C3 = 117.49(15), C4-N1-W1 = 177.10(15), Si1-O1-W1 = 165.48(8).

Figure 4.4. Thermal ellipsoid (50 %) representation of 6_w . The minor component of disorder and hydrogen atoms except those on C1 and are omitted for clarity. Selected bond lengths (Å) and angles (°): W1-N1 = 1.7404(15), W1-O1 = 1.853(4), W1-C1 = 1.892(2), W1-N2 = 2.0092(19), N1-C2 = 1.403(2), N1-W1-O1 = 118.41(17), N1-W1-C1 = 102.09(8), O1-W1-C1 = 111.66(17), N1-W1-N2 = 109.55(8), O1-W1-N2 = 111.15(18), C1-W1-N2 = 102.51(8), C2-N1-W1 = 175.38(14), Si1-O1-W1 = 147.9(3).

The structure of 6_W was determined by X-ray crystallography. Compound 6_W crystallizes in space group P2₁/*c* with one molecule per asymmetric unit. The tungsten atom, pyrrolide ligand, methylidene ligand, N1 and O1 are disordered over two positions with the major component representing 90 % of the electron density. The two components of the disorder are two different enantiomers at tungsten. The geometry at tungsten is distorted tetrahedral. When looking down the N1 – W1 axis, one mesityl group is above the siloxide ligand and the other is between the methylidene and pyrrolide ligands.

addition of ethylene Upon (1 degassed solution of atm) to а C_6D_6 W(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu) $(1_{W}),$ 1:1 mixture of methylidene а $W(NAr^*)(CH_2)(Me_2pyr)(O^tBu)$ (7_w) and metallacycle $W(NAr^*)(C_3H_6)(Me_2pyr)(O^tBu)$ (8_w) is generated (Scheme 4.4). When this mixture was allowed to sit for 2 h under an ethylene atmosphere, followed by removal of the volatiles *in vacuo*, the ¹H NMR spectrum in C₆D₆ under an N₂ atmosphere showed a 2:1 mixture of 7_W to the ethylene complex (9_W), and the ratio did not change over 24 h. When 1 atm ethylene is added to a degassed C₆D₆ solution of 1_W and the reaction monitored over time, complete conversion to the ethylene complex is observed, and propylene is observed in solution as well. These experiments indicate that there is an equilibrium in solution between metallacycle 8_W and methylidene 7_W , that metallacycle 8_W rearranges to the ethylene complex with concomitant extrusion of propylene, and that without ethylene present methylidene 7_W does not decompose to the ethylene complex.

Methylidene complex 7_{W} is isolated by exposure of a degassed solution of 1_{W} in toluene to 1 atm ethylene for 20 m, followed by removal of the volatiles *in vacuo* (Scheme 4.5). The short reaction time prevents any significant formation of the ethylene complex. Compound 7_{W} is recrystallized from a mixture of acetonitrile and diethyl ether. The ¹H NMR spectrum of 7_{W} in C_6D_6 shows two methylidene resonances at 9.60 and 9.51 ppm (${}^2J_{HH} = 9$ Hz). The downfield resonance shows a J_{WH} of 15 Hz and the upfield resonance shows a J_{WH} of 6 Hz (Figure 4.5). The two different coupling constants are indicative of an agostic interaction of one methylidene proton with tungsten.

Scheme 4.5. Synthesis of W(NAr*)(CH₂)(Me₂Pyr)(O^tBu), 7_W.

Figure 4.5. Methylidene region of the ¹H NMR spectrum of W(NAr*)(CH₂)(Me₂Pyr)(O^tBu), 7_W.

Addition of 1 atm ethylene to a degassed solution of 4_{W} in C₆D₆ results in complete conversion of 4_{W} to metallacycle complex W(NAr*)(C₃H₆)(Me₂Pyr)(OAr') (10_W) and a small amount of methylidene W(NAr*)(CH₂)(Me₂Pyr)(OAr') (11_W), shown in Scheme 4.6. Application of vacuum to the mixture completely converts 10_W to 11_W. Compound 10_W is isolated by performing the reaction in pentane and cooling to -25 °C upon which yellow crystals are isolated in 57 % yield. Dissolution of the crystals in toluene and removal of the volatiles *in vacuo* provides 11_W.

Scheme 4.6. Synthesis of Mo(NAr*)(C₃H₆)(Me₂Pyr)(OAr') (10_W) and Mo(NAr*)(CH₂)(Me₂Pyr)(OAr') (11_w).

Compound 11_W shows only one methylidene resonance in the ¹H NMR spectrum in C₆D₆. Initially, observation of one methylidene resonance was attributed to rapid rotation of the methylidene. In order to observe decoalescence at low temperature, a sample of 11_W was prepared in toluene- d_8 . The ¹H NMR spectrum in toluene- d_8 shows two methylidene resonances, which become even further separated in CD_2Cl_2 solution (Figure 4.6), indicating that the two resonances are coincident in C_6D_6 , rather than being equivalent through rapid rotation of the methylidene.

Figure 4.6. Alkylidene region of the ¹H NMR spectra 11_w in various solvents.

Figure 4.7. Vertically expanded alkylidene region of the ¹H NMR spectrum of 11_w.

The two methylidene resonances in the ¹H NMR spectrum of 11_{W} obtained in CD₂Cl₂ each show different coupling to tungsten and carbon (Figure 4.7). One methylidene proton couples to tungsten with a J_{WH} value of 17 Hz, while the other methylidene proton couples to tungsten with a J_{WH} value of 7 Hz (coupling is not visible in Figure 4.7, but is in Figure 4.6). The methylidene proton that gives rise to the upfield resonance couples to carbon with a ${}^{1}J_{CH}$ value of 166 Hz and the proton providing the downfield resonance has a ${}^{1}J_{CH}$ value of 131 Hz. These coupling constants allow the upfield resonance to be assigned as the *syn* proton and the downfield resonance as the *anti* proton. The larger proton-tungsten coupling of the *syn* proton is consistent with the higher s-character of the C–H bond due to the larger W–C–H angle because of the agostic interaction between H_{anti} and W.

The rate of methylidene rotation of 6_W and 11_W was studied by EXSY. The rate constant is 0.3 s⁻¹ for 6_W and 0.1 s⁻¹ for 11_W . In both cases, these are smaller than the rate constants for neophylidene compounds 3_W and 4_W . Additionally, the rate constants for 6_W and 11_W are smaller than observed previously for W methylidene compounds W(NAr)(CH₂)(OTPP)(Me₂Pyr) (k = 90 s⁻¹), *R*-W(NAr)(CH₂)(OBitet)(Me₂Pyr) (k = 3.6 s⁻¹), and *S*-W(NAr)(CH₂)(OBitet)(Me₂Pyr) (k = 5.1 s⁻¹), but possibly in the same range as Mo methylidene complexes $Mo(NAr)(CH_2)(OHIPT)(Pyr)$ (k = < 0.2 s⁻¹) and $Mo(NAr)(CH_2)(OBitet)(Pyr)$ (k = < 0.2 s⁻¹).⁹

Scheme 4.7. Synthesis of W(NAr*)(C₃H₆)(Me₂Pyr)[OCMe(CF₃)₂] (12_W).

Addition of 1 atm ethylene to a C_6D_6 solution of 2_w results in complete conversion to $W(NAr^*)(C_3H_6)(Me_2Pyr)[OCMe(CF_3)_2]$ (12_w). Compound 12_w can be isolated by performing the reaction in MeCN and cooling the solution to -25 °C, upon which 12_w crystallizes. When vacuum is applied to 12_w clean conversion to a methylidene species is not observed: several alkylidene resonances are observed in the ¹H NMR spectrum.

Addition of 1 atm of ethylene to a solution of 1_{Mo} results in complete consumption of 1_{Mo} after 10 m, as observed by ¹H NMR spectroscopy. A methylidene species is present, but a major component of the reaction mixture is an ethylene complex. After 16 h, complete conversion to $Mo(NAr^*)(CH_2CH_2)(Me_2Pyr)(O^tBu)$, propylene, and 3-methyl-3-phenyl-1-butene is observed. Attempts to isolate $Mo(NAr^*)(CH_2CH_2)(Me_2Pyr)(O^tBu)$ have been unsuccessful. Reaction of 2_{Mo} with 1 atm ethylene shows a mixture of metallacycle and methylidene species by ¹H NMR spectroscopy after 10 m. After application of vacuum, complete conversion to the methylidene is observed, but attempts to isolate the methylidene have been unsuccessful. After addition of 1 atm of ethylene to a degassed solution of 3_{Mo} , broad methylidene resonances are observed by ¹H NMR spectroscopy. This compound cannot be isolated though, because upon concentration of the solution, the methylidene reacts with the 3-methyl-3-phenyl-1-butene byproduct to regenerate 3_{Mo} . Reaction of 4_{Mo} with 1 atm ethylene led to no resonances consistent with formation of methylidene or metallacycle species in the ¹H NMR spectrum.

For NAr* compounds, isolation of Mo methylidene and metallacycle species has been much more difficult than isolation of the W congeners. For specific ligand sets, the W metallacycles are much more stable. Metallacycle complexes can be isolated for W with O[CMe(CF₃)₂], OSiPh₃, and OAr' ligands, while in the case of Mo clean conversion to the metallacycle is not observed without decomposition to the methylidene or olefin complex. In the case of the O^tBu ligand, decomposition of the unsubstituted metallacycle to the M(IV) ethylene complex is observed for both Mo and W. Since this rearrangement is proposed to be an intramolecular process, increased steric protection against bimolecular reaction is unlikely to prevent this process. The O^tBu ligand is much less electron-withdrawing than the other three alkoxide ligand that have been studied. The pK_a values of HO^tBu, HOCMe(CF₃)₂, HOSiPh₃, and 2,6-Me₂C₆H₃OH are 17.6,¹⁵ 9.6,¹⁵ 10.8,¹⁶ and 10.6,¹⁵ respectively. The more electron-rich metal center in the O^tBu complexes likely makes reductive processes more facile. Tungsten methylidene species can be isolated for O^tBu, OSiPh₃, and OAr' ligands. Although molybdenum methylidene species can be observed *in situ* for O^tBu, OCMe(CF₃)₂, and OSiPh₃, these compounds are not stable enough for isolation.

The steric protection of the NAr* ligand stabilizes methylidene and unsubstituted metallacycle complexes against bimolecular decomposition so that they can be isolated. Four-coordinate 14e⁻ methylidene complexes that have been isolated previously employ sterically demanding aryloxide ligands. The NAr* system takes advantage of the same strategy to isolate these typically unstable species, but adds diversity to the set of isolated methylidene complexes and expands its numbers greatly.

III. Stoichiometric Reactions of NAr* Complexes with Cyclic Olefins

Reaction of 3_W with one equivalent of 2,3-dicarbomethoxynorbornadiene (DCMNBD) shows slow consumption of DCMNBD at 50 °C along with appearance of several broad olefinic resonances and alkylidene resonances as well as much remaining 3_W in the ¹H NMR spectra. This result indicates that the rate of propagation is significantly faster than the rate of initiation for the polymerization of DCMNBD by 3_W .

Reaction of 6_W with **DCMNBD** results in clean conversion of 6_W to the first-insertion product, 12_W (Scheme 4.8). The resonances in the ¹H NMR spectrum can be assigned (Figure 4.8) with the help of a 2D gCOSY NMR spectrum (Figure 4.9).

Figure 4.8. ¹H NMR spectrum of 12_w with proton assignments.

Figure 4.9. gCOSY of 12w.

Attempts to recrystallize 12_w from acetonitrile at -25 °C led to the crystallization of a species that is an acetonitrile adduct and has also undergone a 1,3-hydrogen shift (13_w) , see Figure 4.10. Compound 13_w crystallizes in space group Pī along with disordered acetonitrile and diethyl ether solvent molecules. It is a distorted square pyramid with the alkylidene ligand at the apical site. The τ value is 0.22 (where $\tau = 0$ for a square pyramid and $\tau = 1$ for a trigonal bipyramid). The W1-N1-C13 bond angle is relatively bent, at 165.2(2)°. The shift of the hydrogen atom from C6 in 12_w to C4 in 13_w is evident by the essentially tetrahedral geometry at C4, and the planar geometry at C6. Additionally, the C4-C5 bond length is 1.519(4), which indicates a C-C single bond, while the C5-C6 bond length is 1.351(4), characteristic of a C=C double bond. Although similar hydrogen shifts have not been observed before in polymers of **DCMNBD**, this phenomenon is not surprising because H_E in 12_w is a doubly allylic position, rendering it more acidic.

Figure 4.10. X-ray crystal structure of 13_W shown with 50 % probability ellipsoids. Hydrogen atoms, solvent molecules, and minor components of disorder are omitted for clarity. The bottom shows the alkylidene ligand and first coordination sphere of W. Selected bond lengths (Å) and angles (°): W1-N1 = 1.769(2), W1-C1 = 1.895(3), W1-O1 = 1.942(6), W1-N2 = 2.088(2), W1-N3 = 2.189(2), C4-C5 = 1.519(4), C5-C6 = 1.351(4), N1-W1-C1 = 101.00(11), N1-W1-O1 = 147.7(4), C1-W1-O1 = 110.3(3), N1-W1-N2 = 97.39(9), C1-W1-N2 = 102.03(10), O1-W1-N2 = 84.0(4), N1-W1-N3 = 93.70(9), C1-W1-N3 = 90.81(10), O1-W1-N3 = 78.5(4), N2-W1-N3 = 161.05(9), C9-C4-C5 = 113.1(3), C9-C4-C2 = 114.0(3), C5-C6-C7 = 127.3(3), C7-C6-C3 = 122.2(3).

An independent synthesis of 13_W was sought. Dissolution of 12_W in CD₃CN, similar to crystallization conditions, did not induce the hydrogen shift. Addition of one equivalent of NEt₃ to a CD₃CN solution of 12_W provided a new species whose spectra are consistent with 13_W (Scheme 4.9). The gCOSY shows a different coupling pattern than 12_W and it is consistent with having undergone the 1,3-hydrogen shift (Figure 4.11). The compound observed by NMR is consistent with being a 5-coordinate MeCN adduct due to the downfield shift of the alkylidene proton compared to 12_W . Determination of the crystal structure of 13_W synthesized as shown in Scheme 4.9 confirms that the 13_W is the same species observed in the previous crystal structure determination.

Scheme 4.9. Alternate synthesis of 13_w.

Figure 4.11. gCOSY of 13_w.

Scheme 4.10. Synthesis of 14w.

Similar to the reaction of 6_w , reaction of 11_w with one equivalent of **DCMNBD** shows clean conversion to a first-insertion product (14_w) , indicating that the rate of initiation is much greater than the rate of polymer propagation of **DCMNBD** by 11_w .

Scheme 4.11. Synthesis of 15_w.

Clean conversion to a first-insertion product is observed in the reaction of 6_W with one equivalent of 3-methyl-3-phenylcyclopropene (MPCP), shown in Scheme 4.11. MPCP is a very strained olefin and thus more reactive than **DCMNBD**. The fact that clean initiation is observed even with this reactive substrate indicates how much more reactive the methylidene species is than a substituted alkylidene, since all methylidene is consumed before any 15_W continues to propagate.

These reactions indicate that the methylidene species are much more reactive with olefins than their neophylidene counterparts. In Chapter 5 this is used to develop new metathesis reactivity where norbornene and norbornadiene substrates are ring-opened using ethylene.

CONCLUSIONS

Kinetic studies of the alkylidene rotation were conducted. The equilibrium constants for the NAr* neophylidene complexes are much lower than those observed for previous fourcoordinate alkylidene complexes of Mo and W. The destabilization of the *syn* alkylidene and thus lower equilibrium constants are attributed to the steric hindrance of the NAr* ligand. Additionally, the W alkylidene isomers interconvert approximately an order of magnitude faster than the Mo congeners, consistent with what has been observed previously for methylidene complexes.

Reaction of NAr* complexes with ethylene produces unsubstituted metallacycle and methylidene complexes. Methylidene complexes can be isolated for W with O^tBu, OSiPh₃, and OAr' ligands. The steric protection afforded by the NAr* ligand prevents bimolecular

decomposition of the methylidene species, adding stability and allowing for isolation. Mo methylidene complexes can be observed *in situ* within mixture of products, but no Mo methylidene species were isolated. Unsubstituted metallacycles are isolated for W compounds with OCMe(CF₃)₂, OSiPh₃, and OAr' ligands. The unsubstituted metallacycle decomposes reductively to M(IV) ethylene complexes for both Mo and W, likely because of the less electronwithdrawing alkoxide ligand, which makes reduction more facile. The only Mo complex for which an unsubstituted metallacycle can be observed *in situ* is the complex with the OCMe(CF₃)₂ ligand; in this case the unsubstituted metallacycle is in equilibrium with the methylidene. These data indicate that the unsubstituted metallacycles are less stable for Mo than W (compared to the methylidenes). The stability provided by the NAr* ligand allows for the isolation of these types of species that are intermediates during olefin metathesis.

NAr* neophylidene complexes do not show clean conversion to first-insertion products upon reaction with strained olefins. However, the methylidene complexes are much more reactive, and clean conversion of these to first-insertion products is observed in several cases. The much lower reactivity of the neophylidene is likely exacerbated by the steric hindrance of the NAr* ligand. The disparate reactivity between substituted and unsubstituted alkylidene ligands is utilized to develop new catalytic activity in Chapter 5.

EXPERIMENTAL

General Considerations All air-sensitive manipulations were performed under nitrogen atmosphere in a glovebox or an air-free dual-manifold Schlenk line. All glassware was ovendried and allowed to cool under vacuum before use. NMR spectra were obtained on Varian 300 MHz, Varian 500 MHz, or Bruker 600 MHz spectrometers. ¹H and ¹³C NMR spectra are reported in δ (parts per million) relative to tetramethylsilane, and referenced to residual ${}^{1}\text{H}/{}^{13}\text{C}$ signals of the deuterated solvent (${}^{1}H(\delta)$ benzene 7.16, chloroform 7.27, methylene chloride 5.32, toluene 2.09, acetonitrile 1.94; ¹³C (δ) benzene 128.39, chloroform 77.23, methylene chloride 54.00, toluene 20.40). ¹⁹F NMR spectra are reported in δ (parts per million) relative to trichlorofluoromethane and referenced using an external standard of fluorobenzene (δ -113.15). tetrahydrofuran, pentane, Diethyl ether, toluene, benzene, dichloromethane, and dimethoxyethane were sparged with nitrogen and passed through activated alumina. All solvents

were stored over 4 Å molecular sieves. Liquid reagents were degassed, brought into the glovebox, and stored over 4 Å molecular sieves. Mo(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu) (1_{Mo}),¹⁷ W(NAr*)(CHCMe₂Ph)(Me₂pyr)(O^tBu) (1_W), ¹⁸ Mo(NAr*)(CHCMe₂Ph)(Me₂pyr)[OCMe(CF₃)₂] 18 W(NAr*)(CHCMe₂Ph)(Me₂pyr)[OCMe(CF₃)₂] $(2_{\rm W})$,¹⁸ $(2_{M_0}),$ $Mo(NAr^*)(CHCMe_2Ph)(Me_2pyr)(OSiPh_3)$ (3_{Mo}), ¹⁸ W(NAr^*)(CHCMe_2Ph)(Me_2pyr)(OSiPh_3) 18 18 Mo(NAr*)(CHCMe₂Ph)(Me₂pyr)(OAr') $(4_{M_0}),$ $(3_{\rm W}),$ and $W(NAr^*)(CHCMe_2Ph)(Me_2pyr)(OAr')$ (4_w)¹⁸ were prepared according to literature procedures. All other reagents were used as received.

EXSY experiments Samples were prepared in C_6D_6 in teflon-stoppered NMR tubes. EXSY experiments were run at 21 °C with a mixing time of 1 s.

Irradiation experiments Samples were prepared in toluene- d_8 in teflon-stoppered NMR tubes and irradiated at -78 °C in a Rayonet photolysis apparatus at 350 nm. The samples were kept at -78 °C until placed in a 500 MHz NMR spectrometer preequilibrated at the desired temperature. Data were collected over at least two half lives by observing the decay of the *anti* resonance with respect to an internal standard of poly(dimethylsiloxane).

W(NAr*)(C₃H₆)(Me₂Pyr)(OSiPh₃) (5_w). W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OSiPh₃) (3_w) (36.9 mg, 0.0364 mmol) was dissolved in 10 mL of 10:1 pentane:Et₂O in a 50 mL Schlenk bomb. The solution was degassed by applying vacuum for several seconds. The flask was refilled with 1 atm ethylene and the mixture was stirred for 2 h. The flask was brought into the dry box and cooled to -25 °C for 16 h over which time yellow crystals formed. The mother liquor was removed by pipette and the crystals were collected on a frit and washed with 0.5 mL cold pentane to yield 12.0 mg (36 %). ¹H NMR (C₆D₆): δ 7.389 (d, 6H, Ar*H*), 7.136 – 7.071 (overlapping signals, 9H, Ar*H*), 6.768 (s, 4H, Mes*H*), 6.742 – 6.701 (overlapping signals, 3H, Ar*H*), 6.082 (s, 2H, NMe₂C₄H₂), 3.998 (dt, *J*_{HH} (d) = 11 Hz, *J*_{HH} (t) = 4 Hz, 2H, C_αH), 3.999 (dt, *J*_{HH} (d) = 11 Hz, *J*_{HH} (t) = 4 Hz, 2H, C_αH), 2.158 (s, 6H, *Me*), 2.150 (s, 6H, *Me*), 1.990 (s, 12H, Mes*Me*), -1.117 (m, 1H, C_βH), -1.270 (m, 1H, C_βH); ¹³C NMR (C₆D₆): δ 142.3, 137.9, 137.4, 137.3, 136.6, 135.9, 135.8, 132.6, 129.9, 129.7, 129.2, 128.7, 128.3, 126.9, 108.9, 99.3 (*C*_α), 21.5, 21.4, 16.5, 4.4

(*C_β*). Anal. Calcd for C₅₁H₅₄N₂OSiW: C, 66.37; H, 5.90; N, 3.04; Experimental: C, 66.12; H, 6.10; N, 2.90.

W(NAr*)(CH₂)(Me₂Pyr)(OSiPh₃) (6_w). W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OSiPh₃) (3_w) (55.0 mg, 54.3 μmol) was suspended in 6 mL of 5:1 pentane:Et₂O. The solution was degassed by applying vacuum for several seconds. The flask was refilled with 1 atm ethylene and the mixture was stirred for 2 h. The flask was brought into the dry box and cooled to -25 °C for 16 h over which time yellow crystals formed. The mother liquor was removed by pipette and the crystals were washed with 3 x 0.5 mL cold pentane. The crystals were dissolved in 10 mL toluene and the volatiles were removed *in vacuo* to yield 30.4 mg of yellow powder (63 %). Crystals for X-ray diffraction were grown by slow diffusion of pentane into a concentrated benzene solution of **6**_w at ambient temperature. ¹H NMR (C₆D₆): δ 9.557 (d, 1H, W=CH₂, ²J_{HH} = 9 Hz), 8.998 (d, 1H, W=CH₂, ²J_{HH} = 9 Hz), 7.458 (d, 7Hz, Ar*H*), 7.189 – 7.175 (overlapping signals, 2H, Ar*H*), 7.152 – 7.123 (overlapping signals, 5H, Ar*H*), 6.988 (m, 4H, Ar*H*), 6.841 (s, 2H, Ar*H*), 6.530 (s, 2H, Ar*H*), 5.982 (s, 2H, Ar*H*), 2.209 (s, 6H, CH₃), 2.103 (s, 6H, CH₃), 1.998 (s, 6H, CH₃), 1.885 (s, 6H, CH₃); ¹³C NMR (C₆D₆): δ 237.8 (W=CH₂, ¹J_{CW} = 180 Hz), 154.0, 138.6, 137.0, 136.9, 136.5, 135.8, 135.7, 134.9, 130.9, 129.2, 129.1, 110.2, 21.7, 21.4, 20.7, 17.0. Anal. Calcd for C₄₉H₅₀N₂OSiW: C, 65.77; H, 5.63; N, 3.13; Experimental: C, 65.48; H, 5.48; N, 3.07.

W(NAr*)(CH₂)(Me₂Pyr)(O'Bu) (7_w). W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(O'Bu), **1**_w (51 mg, 73 µmol) was dissolved in 10 mL toluene in a 50 mL Schlenk bomb. The solution was degassed by applying vacuum for 5 s. The flask was filled with 1 atm ethylene and stirred for 10 m. The volatiles were removed *in vacuo* to leave an orange oil. The oil was extracted with pentane, filtered through a pipette filter, and the pentane removed *in vacuo*. The oil was dissolved in MeCN/Et₂O and cooled to -25 °C, and orange crystals formed. The mother liquor was removed by pipette, the crystals were washed with 3 x 0.3 mL cold MeCN and dried under vacuum; yield 30 mg, 68 %. ¹H NMR (C₆D₆): δ 9.601 (d, ²*J*_{HH} = 9 Hz, ¹*J*_{HW} = 15 Hz, 1H, W=CH₂), 9.510 (d, ²*J*_{HH} = 9 Hz, ¹*J*_{HW} = 6 Hz, 1H, W=CH₂), 6.964 (overlapping signals, 3H, Ar*H*), 6.843 (s, 2H, Mes*H*), 6.794 (s, 2H, Mes*H*), 6.083 (s, 2H, NMe₂C₄H₂), 2.204 (s, 6H, CH₃), 2.193 (s, 6H, CH₃), 2.121 (s, 6H, CH₃), 1.970 (s, 6H, CH₃), 0.934 (s, 9H, OC(CH₃); ¹³C{¹H} NMR (C₆D₆): δ 235.1 (W=CH₂), 157.9, 153.9, 138.2, 137.5, 137.5, 137.1, 136.8, 136.8, 136.6, 136.6, 136.3, 136.2,

134.8, 129.4, 129.2, 129.0, 128.8, 126.1, 124.8, 110.0, 109.8, 105.8, 83.5, 31.8, 31.7, 24.9, 21.6, 21.6, 21.4, 21.4, 21.3, 21.0, 17.8, 17.7.

Observation of W(NAr*)(C₃H₆)(Me₂Pyr)(O^tBu) *in situ* W(NAr*)(CH₂)(Me₂Pyr)(O^tBu), 1a_W (10.2 mg, 12.6 µmol), was dissolved in 0.5 mL C₆D₆ in a J.Young-style NMR tube. The solution was freeze-pump-thawed two times. The tube was refilled with ethylene and a ¹H NMR spectrum was obtained which showed a 1:1 mixture of W(NAr*)(C₃H₆)(Me₂Pyr)(O^tBu): W(NAr*)(CH₂)(Me₂pyr)(O^tBu) and 3-methyl-3-phenyl-1-butene. The resonances belonging to W(NAr*)(C₃H₆)(Me₂Pyr)(O^tBu) are reported. ¹H NMR (C₆D₆): δ 6.898 (overlapping signals, 3H, Ar*H*), 6.790 (s, 4H, Mes*H*), 6.050 (s, 2H, Pyr*H*), 3.826 (m, 4H, C_α*H*), 2.273 (s, 6H, CH₃), 2.127 (s, 6H, CH₃), 2.067 (s, 12H, Mes(CH₃)_{ortho}), 0.752 (s, 9H, OC(CH₃)₃), -1.110 (m, 2H, C_β*H*).

Observation of W(NAr*)(CH₂CH₂)(Me₂Pyr)(O^tBu) in situ W(NAr*)(CH₂)(Me₂Pyr)(O^tBu), 1aw (10.9 mg, 13.4 µmol), was dissolved in 0.5 mL C₆D₆ in a J.Young-style NMR tube. The solution was freeze-pump-thawed two times. The tube was refilled with ethylene and a ¹H NMR spectrum was obtained after 4 h. A 3:1:1 mixture of W(NAr*)(CH₂CH₂)(Me₂Pyr)(O^tBu): W(NAr*)(C₃H₆)(Me₂Pyr)(O^tBu): W(NAr*)(CH₂)(Me₂pyr)(O^tBu) along with 3-methyl-3-phenylpropylene observed. The resonances belonging 1-butene and was to W(NAr*)(CH₂CH₂)(Me₂Pyr)(O^tBu) are reported. ¹H NMR (C₆D₆): δ 6.882 (overlapping signals, ArH, 3H), 6.853 (s, 1H, ArH), 6.809 (s, 1H, ArH), 6.749 (s, 2H, ArH), 6.006 (s, 2H, PyrH), $3.514 \text{ (m, 1H, } H_2\text{C}=\text{C}H_2\text{)}, 3.452 \text{ (m, 1H, } H_2\text{C}=\text{C}H_2\text{)}, 3.046 \text{ (m, 1H, } H_2\text{C}=\text{C}H_2\text{)}, 3.526 \text{ (m, 1H, } H_2\text{C}=\text{C}H_2\text{)}, 3.52$ H₂C=CH₂), 2.297 (s, 6H, CH₃), 2.244 (s, 6H, CH₃), 2.210 (s, 6H, CH₃), 2.173 (s, 6H, CH₃), 0.846 (s, 9H, OC(CH₃)₃).

W(NAr*)(C₃H₆)(Me₂Pyr)(OAr') (10_w). W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OAr'), 4_w (78 mg, 0.091 mmol) was dissolved in pentane in Schlenk bomb. The solution was degassed by applying vacuum for a few seconds. The flask was refilled with 1 atm ethylene and stirred for 5 m. The flask was cooled to -25 °C and orange crystals formed over 16 h. The supernatant was removed by pipette and the crystals washed with cold pentane and dried *in vacuo*; yield 40 mg, 57 %. ¹H NMR (C₆D₆): δ 6.828 – 6.806 (overlapping signals, 9H, Ar*H*), 6.621 (t, *J*_{HH} = 7 Hz, 1H, Ar*H*_{para}), 5.901 (s, 2H, NMe₂C₄H₂), 3.920 (m, 4H, C_αH), 2.217 (s, 6H, CH₃), 2.210 (s, 6H, CH₃), 2.040 (s,

12H, Mes(*CH*₃)_{ortho}), 1.769 (s, 6H, *CH*₃), -1.219 (m, 2H, $C_{\alpha}H$). ¹³C NMR (C_6D_6): δ 160.2, 150.9, 142.4, 137.3, 137.0, 136.4, 132.8, 129.6, 129.1, 129.0, 127.5, 127.0, 120.3, 109.0, 99.1 (C_{α} , ¹ J_{CW} = 250 Hz), 21.5, 21.4, 18.7, 16.8, 3.6 (C_{β}). Anal. Calcd for $C_{41}H_{48}N_2OW$: C, 64.06; H, 6.29; N, 3.64; Experimental: C, 64.32; H, 6.46; N, 3.58.

W(NAr*)(CH₂)(Me₂Pyr)(OAr') (11_W). W(NAr*)(CHCMe₂Ph)(Me₂Pyr)(OAr'), 4_W (135 mg, 0.158 mmol), was dissolved in pentane in Schlenk bomb. The solution was degassed by reducing the pentane volume to ~ 3 mL under vacuum. The flask was refilled with 1 atm ethylene, stirred for 10 m, and orange precipitate formed. The flask was cooled to -25 °C for 16 h. The solid was collected on a frit and washed with cold pentane. The solid was dissolved in 10 mL toluene and the volatiles removed in vacuo. The resulting oil was stirred with pentane and the volatiles removed in vacuo to yield a yellow solid, 82 mg (70 %). ¹H NMR (C_6D_6): δ 9.693 (s, 2H, W=CH₂), 6.963 (s, 3H, ArH), 6.839 (d, 2H, ArH), 6.748 (overlapping signals, 3H, ArH), 6.562 (s, 2H, ArH), 6.602 (NMe₂C₄H₂), 2.157 (s, 6H, CH₃), 2.089 (s, 6H, CH₃), 2.044 (s, 6H, CH₃), 1.995 (s, 6H, CH₃), 1.922 (s, 6H, CH₃); ¹H NMR (C₇D₈, alkylidene resonance): δ 9.677 (d, ²J_{HH} = 9 Hz, W=CH₂), 9.644 (d, ${}^{2}J_{HH}$ = 9 Hz, W=CH₂); ¹H NMR (CD₂Cl₂, alkylidene resonance): δ 9.761 (d, ${}^{2}J_{HH} = 9$ Hz, $J_{HW} = 7$ Hz, ${}^{1}J_{CH} = 131$ Hz, W=CH₂), 9.550 (d, ${}^{2}J_{HH} = 9$ Hz, $J_{HW} = 17$ Hz, ${}^{1}J_{CH} = 166$ Hz, W=CH₂); ${}^{13}C$ NMR (C₆D₆): δ 241.4, 138.5, 137.2, 136.8, 136.7, 136.5, 135.2, 129.7, 129.4, 129.1, 129.0, 128.9, 127.6, 126.7, 126.0, 122.8, 110.4, 21.6, 21.4, 20.8, 17.8, 17.7. Anal. Calcd for C₃₉H₄₄N₂OW: C, 63.25; H, 5.99; N, 3.78; Experimental: C, 63.34; H, 6.10; N, 3.44.

$W(NAr^{*})(C_{3}H_{6})(Me_{2}Pyr)[OCMe(CF_{3})_{2}]$ (12_W).

W(NAr*)(CHCMe₂Ph)(Me₂Pyr)[OCMe(CF₃)₂] (**2**_w) (53.6 mg, 58.3 µmol) was dissolved in 3 mL of a 2:1 MeCN:Et₂O mixture in a 50 mL Schlenk bomb. The volume of the solution was reduced to 1 mL and the solution degassed by application of vacuum. The flask was refilled with 1 atm of ethylene and the solution stirred for 10 m before the flask was sealed, brought into the dry box, and cooled to -25 °C for 16 h over which time crystals formed. The mother liquor was removed by pipette. The crystals were dissolved in pentane, the solution transferred to a vial, and the volatiles removed *in vacuo* to leave a yellow solid, 26.0 mg (54 %). ¹H NMR (C₆D₆): δ 6.832 (s, 4H, Mes*H*), 6.750 (t, 1H, Ar*H*_{para}), 6.675 (d, 2H, Ar*H*_{meta}), 5.916 (s, 2H, Pyr*H*), 4.073 (dt, *J*_{HH}

= 12 Hz, J_{HH} = 4 Hz, 2H, WCH_α), 3.916 (dt, J_{HH} = 11 Hz, J_{HH} = 4 Hz, 2H, WCH_α), 2.214 (s, 6H, ArCH₃), 2.018 (s, 6H, ArCH₃), 1.958 (s, 12H, Mes(CH₃)_{meta}), 0.847 (s, 1H, OC(CH₃)(CF₃)₂), -0.763 (m, 1H, H_β), -1.169 (m, 1H, H_β); ¹³C NMR (C₆D₆): δ 142.2, 137.8, 137.4, 136.8, 132.0, 130.0, 129.7, 128.7, 127.5, 108.5 (Aryl), 99.6 (C_α, J_{CW} = 32 Hz), 28.7, 23.1, 21.5 (Mes*Me*), 21.2 (Mes*Me*), 15.7, 14.7, 3.8 (C_β); ¹⁹F NMR (C₆D₆): δ -77.81. Anal. Calcd for C₃₇H₄₂F₆N₂OW: C, 53.63; H, 5.11; N, 3.38; Experimental: C, 53.67; H, 5.04; N, 3.48.

Observation $Mo(NAr^*)(CH_2CH_2)(Me_2Pyr)(O^tBu)$ in solution of of situ. А $Mo(NAr^*)(CHCMe_2Ph)(Me_2Pyr)(O^tBu), 1_{Mo}$, in 0.5 mL C₆D₆ in a J.Young-style NMR tube was degassed by freeze-pump-thawing two times. The tube was refilled with 1 atm ethylene, sealed, and inverted to mix. After 16 h, a ¹H NMR spectrum shows conversion to Mo(NAr*)(CH₂CH₂)(Me₂Pyr)(O'Bu) as the only Mo-based product. ¹H NMR (C₆D₆): δ 6.896 (m, 1H, ArH), 6.833 - 6.808 (overlapping signals, 6H, ArH), 6.127 (s, 2H, pyrH), 2.448 - 2.358 (overlapping m, 2H, CH₂=CH₂), 2.297 (s, ArCH₃, 6H), 2.227 (s, ArCH₃, 6H), 2.074 (s, ArCH₃, 6H), 2.023 (s, ArCH₃, 6H), 1.921 (m, 1H, CH₂=CH₂), 1.752 (m, 1H, CH₂=CH₂), 0.880 (s, 9H, $OC(CH_3)_3).$

Observation of $Mo(NAr^*)(CH_2)(Me_2Pyr)[OCMe(CF_3)_2]$ in situ. A solution of $Mo(NAr^*)(CHCMe_2Ph)(Me_2Pyr)[OCMe(CF_3)_2]$, 2_{Mo} , in 0.5 mL C_6D_6 in a J.Young-style NMR tube was degassed by freeze-pump-thawing two times. The tube was refilled with 1 atm ethylene, sealed, and inverted to mix. After 20 m, the volatiles were removed *in vacuo*. The non-volatile components were dissolved in C_6D_6 and a ¹H NMR spectrum was obtained. ¹H NMR (C_6D_6) : δ 11.672 (d, 1H, $^2J_{HH} = 4$ Hz, $MoCH_2$), 11.603 (d, 1H, $^2J_{HH} = 4$ Hz, $MoCH_2$), 6.919 (s, 2H, ArH), 6.890 (s, 2H, ArH), 6.859 (d, 1H, ArH), 6.778 (d, 1H, ArH), 4.668 (br s, 2H, PyrH), 2.176 (s, 6H, ArCH_3), 2.156 (s, 6H, ArCH_3), 2.115 (s, 6H, ArCH_3), 2.073 (s, 6H, ArCH_3), 1.091 (s, 3H, OC(CF_3)_2(CH_3)).

Observation of First-Insertion Product 12_w. To a solution of W(NAr*)(CH₂)(Me₂pyr)(OSiPh₃), **6**_w (27 mg, 30 µmol) in 0.6 mL C₆D₆ in a teflon-stoppered NMR tube was added DCMNBD (5.0 µL, 29 µmol). ¹H NMR (C₆D₆): δ 8.988 (d, 1H, ³J_{HH} = 2 Hz, ¹J_{CH} = 154 Hz, W=CH), 7.757 (d, 6H, ArH), 7.222 and 7.215 (overlapping signals, 8H, ArH),

6.930 (s, 2H, Ar*H*), 8.898 – 8.868 (overlapping signals, 5H, Ar*H*), 6.130 (br s, 1H, (NMe₂C₄*H*₂), 5.918 (NMe₂C₄*H*₂), 5.619 (m, 1H, H_F), 5.085 (m, 1H, H_B), 5.008 (d, ${}^{3}J_{HH}$ = 17 Hz, H_I), 4.929 (d, ${}^{3}J_{HH}$ = 10 Hz, H_G), 3.310 (m, 1H, H_E), 3.239 (s, 3H, CO₂C*H*₃), 2.714 (s, 3H, CO₂C*H*₃), 2.297 (s, 6H, MesC*H*₃), 2.230 (s, 6H, MesC*H*₃), 2.119 (s, 6H, MesC*H*₃), 2.055 (br s, 3H, N*Me*₂C₄H₂), 1.848 (m, H_{C/D}), 1.778 (br s, N*Me*₂C₄H₂, 4H integrated with previous peak), 0.914 (m, 1H, H_{C/D}); 13 C NMR (C₆D₆): δ 251.9, 170.5, 166.1, 153.4, 150.2, 138.5, 138.1, 137.9, 137.7, 137.3, 136.7, 136.3, 135.5, 130.1, 129.8, 129.7, 128.9, 128.7, 128.2, 125.6, 117.7, 108.4 (br), 107.2 (br), 54.7, 52.5, 51.8, 50.7, 41.8, 21.8, 21.7, 21.1, 20.0 (br), 14.5 (br).

Crystallization of 13_w for X-ray diffraction. To a solution of W(NAr*)(CH₂)(Me₂pyr)(OSiPh₃), **6**_w (32.0 mg, 35.8 μ mol) in 0.5 mL C₆H₆ and 0.5 mL pentane in 20 mL vial was added DCMNBD (6.2 μ L, 35.4 μ mol) with stirring. The yellow solution immediately became orange. The volatiles were removed *in vacuo* after 20 m. The remaining oil was extracted with benzene, filtered through a pipette filter, and the volatiles removed under reduced pressure from the filtrate. The remaining orange oil was dissolved in toluene, Et₂O, and pentane and cooled to -25 °C. Crystals formed within 19 days (not quantitative).

Observation of 13_w.

DCMNBD (4.0)μL, 23 µmol) was added to a stirring solution of W(NAr*)(CH₂)(Me₂Pyr)(OSiPh₃) (6_w) (21.4 mg, 23.9 µmol) in 2 mL benzene. After 5 m, NEt₃ (3.3 µL, 24 µmol) was added. The volatiles were removed in vacuo and NMR spectra were obtained in CD₃CN. Crystals for diffraction were obtained from MeCN and Et₂O solution at -25 °C. A short X-ray diffraction data set was collected in order to determine the unit cell, atom connectivity, and geometry. This data confirmed it to be the same as the previous crystal

structure of 13_{W} . ¹H NMR (CD₃CN): δ 11.583 (br s, 1H, H_A), 7.559 (dd, 1H, $J_{HH} = 11$ Hz, $J_{HH} = 18$ Hz), 7.377 – 7.335 (overlapping m, 6H, Ar*H*), 7.285 (t, 6H, $J_{HH} = 7$ Hz, Ar*H*), 7.069 (dd, 6H, $J_{HH} = 1.5$ Hz, $J_{HH} = 8$ Hz), 6.897 – 6.883 (overlapping signals, 4H), 6.733 (s, 2H, pyr*H*), 5.605 (dd, 1H, , $J_{HH} = 11$ Hz, $J_{HH} = 1$ Hz, H_G), 5.554 (dd, 1H, $J_{HH} = 18$ Hz, $J_{HH} = 1$ Hz, H_I), 4.955 (pseudo quintet, 1H, $J_{HH} = 4$ Hz, H_B), 3.866 (dd, 1H, $J_{HH} = 9$ Hz, $J_{HH} = 1$ Hz, H_E), 3.683 (s, 3H, CO₂C*H*₃), 3.427 (s, 3H, CO₂C*H*₃), 2.360 (m, 1H, H_{C/D}), 2.252 (s, 6H, MesC*H*₃), 2.140 (m, 1H, H_{C/D}), 2.008 (s, 6H, MesC*H*₃), 1.679 (s, 6H, MesC*H*₃), 1.646 (br s, 6H, Pyr(C*H*₃)₂).

Observation of 14w.

 $X = CO_2Me$

W(NAr*)(CH₂)(Me₂Pyr)(OAr'), **11**_W (22.9 mg, 29.8 µmol), was dissolved in 0.5 mL C₆D₆ in a J.Young-style NMR tube, **DCMNBD** (4.2 µL, 24 µmol) was added, and NMR spectra were obtained after 15 m. ¹H NMR (C₆D₆): δ 9.394 (d, 1H, *J*_{HH} = 3 Hz, H_A), 7.010 (d, 2H, *J*_{HH} = 7 Hz, Ar*H*_{para}), 6.694 (s, 1H, Ar*H*), 6.925 (m, 1H, Ar*H*), 6.879 (s, 2H, Mes*H*), 6.771 (s, 2H, Mes*H*), 6.733 (t, 1H, *J*_{HH} = 7 Hz, Ar*H*_{meta}), 6.613 (m, 1H, Ar*H*), 6.162 (br s, 1H, Pyr*H*), 6.059 (br s, 1H, Pyr*H*), 5.640 (m, 1H, H_F), 5.472 (m, 1H, H_B), 5.030 (d, 1H, *J*_{HH} = 19 Hz, H_I), 4.970 (s, 1H, *J*_{HH} = 10 Hz, H_G), 3.403 (s, 3H, CO₂C*H*₃), 3.308 (m, 1H, H_E), 3.249 (s, 3H, CO₂C*H*₃), 2.719 (s, 3H, PyrC*H*₃), 2.242 (s, 6H, ArC*H*₃), 2.231 (s, 6H, ArC*H*₃), 2.181 (s, 6H, ArC*H*₃), 2.166 (s, 6H, ArC*H*₃), 1.823 (dt, 1H, *J*_{HH} = 13 Hz, *J*_{HH} = 8 Hz, H_{C/D}), 1.002 (pseudo q, *J*_{HH} = 11 Hz).

Observation of 15_w. MPCP (1.3 µL, 10 µmol) was added by syringe to a J.Young-style NMR tube containing a solution of W(NAr*)(CH₂)(Me₂Pyr)(OSiPh₃) (**6**_w) (9.7 mg, 11 µmol) in 0.5 mL C₆D₆. A ¹H NMR spectrum was obtained. ¹H NMR (C₆D₆): δ 8.320 (s, 1H, $J_{WH} = 7$ Hz, W=CH), 7.423 (d, 6H, ArH, $J_{WH} = 7$ Hz), 7.197 (m, 3H, ArH), 7.146 (t, 6H, $J_{WH} = 7$ Hz, ArH), 7.055 – 6.983 (overlapping signals, 6H, ArH), 6.874 (overlapping signals, 4H, ArH), 6.491 (s, 2H, MesH), 6.073 (dd, 1H, $J_{WH} = 11$ Hz, $J_{WH} = 18$ Hz, W=CHC(Me)(Ph)CHCH₂), 5.860 (br s, 2H, PyrH), 4.978 (d, 1H, $J_{WH} = 11$ Hz, W=CHC(Me)(Ph)CHC(H_{trans})(H_{cis})), 4.776 (d, 1H, $J_{WH} = 18$ Hz, W=CHC(Me)(Ph)CHC(H_{trans})(H_{cis})), 2.276 (s, 6H, ArCH₃), 2.091 (s, 6H, ArCH₃), 2.003 (s, 6H, ArCH₃), 1.768 (s, 3H, W=CHC(Me)(Ph)CHCH₂), 1.013 (br s, PyrCH₃).

Crystallographic details. Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker-AXS X8 Kappa Duo diffractometer coupled to a Smart Apex2 CCD detector with Mo K α radiation ($\lambda = 0.71073$ Å) from an Incoatec I μ S micro-source. The structures were solved by direct methods using SHELXS¹⁹ and refined against F2 on all data by full-matrix least squares with SHELXL-97²⁰ following established refinement strategies²¹. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model unless indicated below. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms

they are linked to (1.5 times for methyl groups). Details of the data quality, a summary of the residual values of the refinements as well as other pertinent parameters are listed in the following tables.

 $W(NAr^*)(C_3H_6)(Me_2Pyr)(OSiPh_3)$ (5_W) crystallizes in monoclinic space group P2₁/n with two molecules per asymmetric unit. The refinement was straightforward and without complications. All bond lengths and angles specified and discussed throughout this report are those of the molecule containing W1.

W(NAr*)(CH₂)(Me₂Pyr)(OSiPh₃) (**6**_W) crystallizes in monoclinic space group P2₁/n with one molecule per asymmetric unit. The tungsten atom, pyrrolide ligand, methylidene ligand, oxygen (O1), and imido nitrogen (N1) were disordered over two positions. The ratio between the two components was refined freely and converged at 0.9029(3). The disorder was refined with the help of similarity restraints on the 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic parameters for all atoms. Coordinates for the hydrogen atoms on C1, the carbon atom binding directly to tungsten, were taken from the difference Fourier synthesis. The hydrogen atoms were refined semi-freely with the help of distance restraints on the C-H distance (target 0.95(2) Å) while constraining the U_{iso} value of the hydrogen atoms to 1.2 the U_{eq} value of the carbon atom to which the hydrogen binds. All bond lengths and angles specified and discussed throughout this report are those of the major component of the disorder.

Compound 13_W crystallizes in triclinic space group Pī with one molecule 13_W , 1.5 molecules MeCN, and 1.5 molecules Et₂O per asymmetric unit. The siloxide ligand (O1, Si1, C43 – C60) was disordered over two positions. The ratio between the two components was refined freely and converged at 0.7722. One Et₂O molecule was disordered over three positions. The ratio between the three components was refined freely and converged at 0.4837:0.3041:0.2117. A remaining solvent molecule was modeled as a two-part disorder between a Et₂O and an MeCN molecule. The ratio between the two components was refined freely and converged at 0.5280 for MeCN. All disorder was refined with the help of similarity restraints on 1-2 and 1-3 distances and displacement parameters as well as rigid bond restraints for anisotropic displacement parameters for all atoms. The following pairs of nearly overlapping atoms were constrained to show

identical anisotropic displacement parameters: C49/C49a, C45/C45a, C44/C44a, C46/C46a. Coordinates for the hydrogen atom on C1 (the carbon atom that binds directly to the tungsten) were taken from the difference Fourier synthesis. The hydrogen atom was subsequently refined semi-freely with the help of a distance restraint on the C—H-distance (target 0.95(2) Å).

Table 4.2. Crystal data and structure refinement for 5_W .

Identification code	12191	
Empirical formula	C51 H54 N2 O Si W	
Formula weight	922.90	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	$a = 19.6235(16) \text{ Å} a = 90^{\circ}$	
	$b = 22.9245(19) \text{ Å}$ $b = 91.756(2)^{\circ}$	
	$c = 19.7261(17) \text{ Å} \qquad g = 90^{\circ}$	
Volume	8869.8(13) Å ³	
Z	8	
Density (calculated)	1.382 Mg/m ³	
Absorption coefficient	2.670 mm ⁻¹	
F(000)	3760	
Crystal size	0.35 x 0.30 x 0.30 mm ³	
Theta range for data collection	1.36 to 30.51°	
Index ranges	-28<=h<=28, -32<=k<=32, -28<=l<=28	
Reflections collected	385055	
Independent reflections	27055 [R(int) = 0.0396]	
Completeness to theta = 30.51°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.5014 and 0.4551	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	27055 / 6 / 1025	
Goodness-of-fit on F^2	1.023	
Final R indices [I>2sigma(I)]	R1 = 0.0220, wR2 = 0.0494	
R indices (all data)	R1 = 0.0421, wR2 = 0.0596	
Largest diff. peak and hole	1.081 and -0.737 e.Å ⁻³	

Table 4.3. Crystal data and structure refinement for 6_w .

Identification code	x13095a	x13095a	
Empirical formula	C49 H50 N2 O Si W	C49 H50 N2 O Si W	
Formula weight	894.85	894.85	
Temperature	100(2) K	100(2) K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic		
Space group	$P2_{1}/c$		
Unit cell dimensions	a = 10.6649(12) Å	a= 90°	
	b = 23.348(3) Å	b= 93.836(3)°	
	c = 16.8858(19) Å	g = 90°	
Volume	4195.2(8) Å ³		
Z	4		
Density (calculated)	1.417 Mg/m ³	1.417 Mg/m ³	
Absorption coefficient	2.820 mm ⁻¹	2.820 mm ⁻¹	
F(000)	1816	1816	
Crystal size	0.250 x 0.200 x 0.120	0.250 x 0.200 x 0.120 mm ³	
Theta range for data collection	1.490 to 30.999°	1.490 to 30.999°	
Index ranges	-15<=h<=15, -33<=k<	-15<=h<=15, -33<=k<=32, -24<=l<=24	
Reflections collected	145022	145022	
Independent reflections	13374 [R(int) = 0.043	13374 [R(int) = 0.0435]	
Completeness to theta = 25.242°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents	
Max. and min. transmission	0.4339 and 0.3390	0.4339 and 0.3390	
Refinement method	Full-matrix least-squa	Full-matrix least-squares on F ²	
Data / restraints / parameters	13374 / 365 / 550	13374 / 365 / 550	
Goodness-of-fit on F ²	1.058		
Final R indices [I>2sigma(I)]	R1 = 0.0216, wR2 = 0	R1 = 0.0216, $wR2 = 0.0451$	
R indices (all data)	R1 = 0.0268, wR2 = 0	R1 = 0.0268, wR2 = 0.0465	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	0.669 and -0.488 e.Å-	0.669 and -0.488 e.Å ⁻³	

`

-		
Identification code	12177p-1	
Empirical formula	C70.94 H85.30 N4.53 O6.47 Si W	
Formula weight	1316.90	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	Pī	
Unit cell dimensions	a = 12.0776(7) Å	a= 88.6940(10)°
	b = 12.8509(7) Å	b= 83.7240(10)°
	c = 22.2515(13) Å	g = 75.0450(10)°
Volume	3316.6(3) Å ³	
Z	2	
Density (calculated)	1.319 Mg/m ³	
Absorption coefficient	1.814 mm ⁻¹	
F(000)	1365	
Crystal size	0.25 x 0.15 x 0.07 mm ³	
Theta range for data collection	1.64 to 31.55°	
Index ranges	-17<=h<=17, -18<=k<=18, -32<=l<=32	
Reflections collected	229724	
Independent reflections	22121 [R(int) = 0.0401]	
Completeness to theta = 31.55°	99.8 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.8835 and 0.6598	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	22121 / 606 / 1068	
Goodness-of-fit on F ²	1.274	
Final R indices [I>2sigma(I)]	R1 = 0.0375, wR2 = 0.0870	
R indices (all data)	R1 = 0.0423, wR2 = 0.0887	
Largest diff. peak and hole	2.671 and -2.143 e.Å ⁻³	

Table 4.4. Crystal data and structure refinement for 13_W .

REFERENCES

¹ (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, *131*, 7962. (b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. Macromolecules **2010**, *43*, 7515. (c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. J. Am. Chem. Soc. **2011**, *133*, 1784. (d) Flook, M. M.; Börner, J.; Kilyanek, S.; Gerber, L. C. H.; Schrock, R. R. Organometallics **2012**, *31*, 6231.

² (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
(b) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780. (c) Townsend, E. M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 11334. (d) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.

³ (a) Ibrahem, I; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 3844. (b) Yu, M.; Ibrahem, I.; Hasegawa, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2012**, 134, 2788.

⁴ (a) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2009**, *131*, 10840. (b) Marinescu, S. C.; Levine, D.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2011**, *133*, 11512.

⁵ (a) Wang, C.; Yu, M.; Kyle, A. F.; Jacubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. *Chem. Eur. J.* **2013**, *19*, 2726. (b) Wang, C.; Haeffner, F.; Schrock, R. R.; Hoveyda, A. H. *Angew. Chem., Int. Ed.* **2013**, *52*, 1939.

⁶ (a) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1992**, 114, 7588. (b) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1993**, 115, 11831.

⁷ Singh, R.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2007, 129, 12654.

⁸ Perrin, C. L.; Dwyer, T. J. Chem. Rev. 1990, 90, 935.

⁹ Schrock, R. R., King, A. J.; Marinescu, S. C.; Simpson, J. H.; Müller, P. Organometallics 2010, 29, 5241.

¹⁰ Poater, A.; Monfort-Solans, X.; Clot, E.; Copéret, C.; Eisenstein, O. *Dalton Trans.* 2006, 3077.
¹¹ Arndt, S.; Schrock, R. R.; Müller, P *Organometallics* 2007, *26*, 1279.

¹² (a) Tsang, W. C. P.; Schrock, R. R.; Hoveyda, A. H. Organometallics **2001**, 20, 5658. (b) Tsang, W. C. P.; Hulzsch, K. C.; Alexander, J. B.; Bonitatebus, P. J, Jr.; Schrock, R. R.;

Hoveyda, A. H. J. Am. Chem. Soc. 2003, 125, 2652. (c) Tsang, W. C. P.; Jamieson, J. Y.; Aeilts, S. L.; Hultzsch, K. C.; Schrock, R. R.; Hoveyda, A. H. Organometallics, 2004, 23, 1997. (d) Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.; Robbins, J.; DiMare, M.; O'Regan, M. J. Am. Chem. Soc. 1990, 112, 3875.

¹³ (a) Kreickmann, T; Arndt, S.; Schrock, R. R.; Müller, P Organometallics 2007, 26, 5702. (b) Jiang, A. J.; Simpson, J. H.; Müller, P; Schrock, R. R. J. Am. Chem. Soc. 2009, 131, 7770. (c) Schrock, R. R.; Jiang, A. J.; Marinescu, S. C.; Simpson, J. H.; Müller, P Organometallics 2010, 29, 5241. (d) Townsend, E. M., Kilyanek, S. M.; Schrock, R. R.; Müller, P.; Smith, S. J.; Hoveyda, A. H. Organometallics 2013, ASAP August 7, 2013.

¹⁴ Addison, A. W.; Rao, T. N.; Van Rijn, J. J.; Veschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 1349.

¹⁵ Serjeant, E. P.; Dempsey, B. International Union of Pure and Applied Chemistry. Commission on Equilibrium Data. Ionisation Constants of Organic Acids in Aqueous Solution; Oxford; New York: Pergamon Press, 1979.

¹⁶ Duchateau, R.; Cremer, U.; Harmsen, R. J.; Mohamud, S. I.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K.-H.; van Tol, M. F. J.; Kranenburg, M. Organometallics, **1999**, *18*, 5447.

¹⁷ Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. J. Am. Chem. Soc., **2011**, 133, 18142.

¹⁸ Gerber, L. C. H.; Schrock, R. R.; Müller, P. Organometallics, 2013, 32, 2373.

¹⁹ Sheldrick, G. M., Acta Cryst. 1990, A46, 467.

²⁰ Sheldrick, G. M., Acta Cryst. **2008**, *A64*, 112.

²¹ Müller, P. Crystallography Reviews 2009, 15, 57.

Chapter 5

Alkylidene Compounds Containing the 2,6-Dimesitylphenylimido Ligand as Catalysts for Olefin Metathesis

INTRODUCTION

In order to provide greater utility for olefin metathesis in chemical synthesis, new catalysts that push the boundaries of current reactivity are sought. The development of olefin metathesis catalysts for selective metathesis has been an ongoing goal, and many important advances have been made over the years.

The emergence of compounds that are stereogenic at the metal center and contain sterically demanding spectator ligands has provided Z-selective catalysts for olefin metathesis reactions. Z-selective catalysts based on molybdenum and tungsten are MAP (MonoAryloxide Pyrrolide) compounds that possess sterically demanding aryloxide ligands, typically substituted 2,6-terphenoxides or monoprotected Bitet ligands (Figure 5.1). Catalysts have been developed for *cis*-selective ring-opening metathesis polymerization (ROMP),¹ homocoupling,² ring-opening cross-metathesis, ³ ethenolysis, ⁴ and formation of natural products through ring-closing reactions.⁵ A similar strategy was also applied for the development of Z-selective catalysts based on ruthenium, specifically, the active catalyst species contain a stereogenic metal center and a sterically demanding chelating N-heterocyclic carbene that are proposed to bias the metallacycle intermediates for the formation of *cis* bonds (Figure 5.1).⁶

Figure 5.1. Examples of Z-selective catalysts for olefin metathesis reactions.

In order to better understand the dynamics at play between sterics and selectivity, MAP complexes were synthesized where the steric bias is switched: compounds that contain a 2,6-

dimesitylphenylimido ligand and comparatively small alkoxide or aryloxide ligand.^{7,8} The hypothesis was that the switch in steric bias would provide an entry to *E* selectivity by the mechanism shown in Scheme 5.1. A *syn* alkylidene reacts with substrate or monomer with its substituents pointed away from the imido ligand due to the sterically demanding imido substituent. The metallacycle opens to form a *trans* olefin and an *anti* alkylidene. The electron-donating alkoxide ligand then promotes rotation of the *anti* alkylidene to the *syn* alkylidene⁹ before further propagation. Upon synthesizing these compounds though, it was found that the *anti* and *syn* alkylidene isomers are about equal in energy, with equilibrium constants in the range of $10^0 - 10^2$ unlike all previous examples of four-coordinate imido alkylidene isomers are present and they are interconverting readily, *E*-selectivity is unlikely.

Scheme 5.1. Proposed route to *E*-selective catalysts. $Ar^* = 2,6$ -dimesitylphenyl, $Me_2Pyr = 2,5$ -dimethylpyrrolide, P = propagating polymer chain.

Although the unexpected alkylidene isomerism was inconsistent with our hypothesis about E selectivity, we were interested in exploring these compounds as catalysts for olefin metathesis. Even if these catalysts are not *cis* or *trans* selective, they may provide new reactivity or selectivity. Additionally, they will provide a deeper understanding of the interplay between the imido and alkoxide ligands, and how sterically demanding ligands affect the catalytic ability of MAP compounds.

RESULTS AND DISCUSSION

I. Ring-Opening Metathesis Polymerization

A. Polymerization of 2,3-Dicarbomethoxynorbornadiene by Five-Coordinate Compounds

Ring-opening metathesis polymerization (ROMP) is a useful reaction to assess the inherent selectivity of metathesis catalysts. When a strained monomer is utilized, the release of ring strain prevents the reverse reaction from occurring, which allows the initial selectivity to be observed without isomerization from the reverse reaction.

Most of the Mo NAr* MAP or monoalkoxide chloride compounds containing the unsubstituted pyrrolide ligand were isolated as pyridine adducts (Figure 5.2). It has been shown in Chapter 3 that $B(C_6F_5)_3$ can be used to remove the pyridine ligand *in situ*, but that the pyridine-free MAP complexes or monoalkoxide chloride complexes could not be isolated from the $B(C_6F_5)_3NC_5H_5$ byproduct.⁸ To test these *in situ* generated complexes for ROMP of 2,3-dicarbomethoxynorbornadiene (**DCMNBD**), one equivalent of $B(C_6F_5)_3$ was added to the Mo or W pyridine complex, a ¹H NMR spectrum was obtained to ensure complete formation of $B(C_6F_5)_3NC_5H_5$, and 100 equivalents of **DCMNBD** was added to the resulting mixture.

Reactions were conducted in toluene (0.2 M) at ambient temperature and were run until the conversion was complete, as determined by ¹H NMR spectroscopy. Data are shown in Table 5.1. None of the compounds give a highly regular structure, either in terms of *cis* or *trans* bonds or tacticity. No clear trends are observable between the structure of the initiator and the resulting polymer structure. Although the initial goal of the development of compounds containing the Ar*imido ligand was to find *trans* selective catalysts, no catalysts yet have been found that improve upon the *trans* selectivity of Mo(NAr)(CHCMe₂Ph)(O^tBu)₂ (Ar = 2,6diisopropylphenyl).¹⁰

Figure 5.2. Five-coordinate compounds employed for the polymerization of DCMNBD.

Of the *in situ* generated catalysts that have been screened, the most *trans* selective were $Mo(NAr^*)(CHCMe_2Ph)(Pyr)(OSi^iPr_3)$ and $Mo(NAr^*)(CHCMe_2Ph)(Pyr)(OSiPh_3)$. Since temperature can have a drastic effect on the selectivity of a reaction,^{11, 1b} the polymerizations were repeated at 0 °C and 60 °C, and in both cases the resulting polymer contained less *trans* content. The reactions conducted at 0 °C were slowed significantly, and gave only very little conversion after 2 h, while the reactions conducted at ambient temperature were complete after the same amount of time.

Table 5.1. Polymerization of DCMNBD by $Mo(NAr^*)(CHCMe_2Ph)(L_1)(L_2)(pyridine)$. One equivalent of $B(C_6F_5)_3$ was added to remove pyridine. Reactions were conducted in toluene (0.2 M) and quenched with benzaldehyde once conversion was complete. Reactions were conducted at ambient temperature unless otherwise indicated. Ar' = 2,6-dimethylphenyl; 3,5-HIPTO = 3,5-(2,4,6-triisopropylphenyl)C_6H_3; TMS = trimethylsilyl

Ligand 1	Ligand 2	% trans	Temperature
Pyr	OAr'	6	
Pyr	3,5-НІРТО	13	
Pyr	O ⁱ Pr	31	
Pyr	OCH(CF ₃) ₂	35	
Pyr	OSi(TMS) ₃	52	
Cl	OCMe(CF ₃) ₂	60	
Pyr	OSi ⁱ Pr ₃	61	0 °C
Pyr	OSiPh ₃	62	0 °C
Cl	O ^t Bu	62	
Pyr	OCMe(CF ₃) ₂	75	
Pyr	OSi ⁱ Pr ₃	77	60 °C
Pyr	OSiPh ₃	81	60 °C
Pyr	OSi ⁱ Pr ₃	83	
Pyr	OSiPh ₃	88	

B. Polymerization of 2,3-Dicarbomethoxynorbornadiene and by Four-Coordinate Compounds

Mo and W NAr* MAP compounds that contain the 2,5-dimethylpyrrolide ligand are four-coordinate species. To understand the selectivity of these compounds, **DCMNBD** was polymerized by 1 % of compounds 1 - 4 (Figure 5.3). Results are shown in Table 5.2. None of the catalysts provide a polymer with regular structure either in terms of C=C bond isomers or tacticity. *Trans* content of the polymers range between 19 % and 70 %. There are no clear catalyst structure – function trends, either in terms of metal or alkoxide ligand.

Figure 5.3. Labeling scheme for olefin metathesis catalysts.

Table 5.2. Structures of poly(DCMNBD) obtained with catalysts 1 - 4. Reactions were conducted with 2 % catalyst in 0.25 M toluene solution at ambient temperature and monitored until conversion of DCMNBD was complete.

Catalyst	% trans
1 _{Mo}	59
1_{W}	54
2 _{M0}	57
$2_{\rm W}$	30
3 _{Mo}	70
3 _W	19
4 _{M0}	34
$4_{ m W}$	38

C. Polymerization of Other Monomers

DCMNBD is often used as a test substrate to better understand catalysts, but expansion of ROMP to other monomers is important to understanding the structure – function relationships and limitations of the catalysts.

Polymerization of *rac*-2,3-dicarbomethoxynorbornene (**DCMNBE**) was conducted for catalysts 1 - 4. Reactions were conducted in toluene (0.5 M) at ambient temperature, monitored by ¹H NMR spectroscopy until conversion was complete, and quenched with benzaldehyde. Results are shown in Table 5.3. Compounds 1, 2, and 3_W produced completely irregular structures: resonances in the ¹³C and ¹H NMR spectra were extremely broad and it was not possible to distinguish between *cis, trans, isotactic,* or *syndiotactic* resonances. In the case of

poly(**DCMNBE**) synthesized with 3_{Mo} it was possible to distinguish *cis* and *trans* resonances in the NMR spectra. Compounds 4_{Mo} and 4_W produced polymer that was not soluble in chloroformd, acetone- d_{6} , or benzene- d_{6} . The low solubility could be due to the inherent nature of the polymer that is formed, or due to poor initiation, in which case very high molecular weight polymers form. Catalyst 2_W catalyzes the reaction very slowly. The polymerization was quenched with benzaldehyde after 7 d despite the fact that it was not complete.

These results are consistent with the results obtained for **DCMNBD** in that for either monomer no regular polymer structures are obtained. It is proposed that the structures are less regular for **DCMNBD** than **DCMNBE** though, as judged by the extremely broad resonances for **DCMNBE** where no fine structure could be determined. There are two enantiomers of **DCMNBE** due to the unsaturation between C2 and C3, which is not true for **DCMNBD**. The additional interactions between the different monomer enantiomers with the two enantiomers of the chiral MAP catalysts may complicate the polymerization more than in the case of **DCMNBD** causing even less regular structures.

Catalyst	Structure		
1 _{Mo}	No regular structure		
1_{W}	No regular structure		
2 _{M0}	No regular structure		
$2_{ m W}$	No regular structure (slow reaction)		
3 _{M0}	~ 50 % trans		
$3_{\rm W}$	No regular structure		
4 _{M0}	Insoluble polymer		
$4_{ m W}$	Insoluble polymer		

Table 5.3. Structures of poly(DCMNBE) obtained with catalysts 1 - 4.

In order to expand the scope of ROMP with NAr* catalysts, polymerization reactions were conducted with a variety of substituted norbornenes with 2 % of 3_w as catalyst, shown in Figure 5.4. The reactions were quenched after several days (3-10 days), although none was complete. None of the polymers obtained from A - E have a regular structure. This result is not surprising, because even with the catalyst Mo(NAd)(CHCMe₂Ph)(Pyr)(OHMT) (Ad = 1-Adamantyl, OHMT = OAr* = 2,6-bis(2,4,6-trimethylphenyl)phenoxide), which gives a regular *cis,syndiotactic* polymer for several norbornene-based monomers, irregular polymer is obtained

for monomers A, C, D, and E.¹² Additionally, no polymer was obtained after 6 days from the monomer 2,3-dicyano-7-oxanorbornene. The lack of polymerization in this case is likely due to the ability of the cyano groups to coordinate to the metal center.

Figure 5.4. Monomers utilized for ROMP reactions catalyzed by 3_w.

II. Homocoupling of Terminal Olefins

A. Homocoupling of 1-Octene

Scheme 5.2. Homocoupling of 1-octene with NAr* catalysts.

Compounds 1 - 4 were tested as catalysts for the homocoupling of 1-octene (Table 5.4). Reactions were conducted in toluene (0.4 M) at ambient temperature and monitored by ¹H NMR spectroscopy. They are metathesis active, although they are relatively slow. Many of the catalysts show conversions that are lower or the same after 24 h as they were at 6 h. These results could indicate that the catalysts have died after 6 h, and the conversions after 24 h are within the error of integration of the peaks in the NMR spectrum. It could also indicate that back reaction of some of the product with ethylene has occurred, and the conversion represents the equilibrium between the forward and reverse reactions without more efficient removal of ethylene (reactions were performed in closed vials).

These catalysts are not *cis* or *trans* selective. In all cases the *trans* content stays fairly consistent throughout the reactions, indicating that the poor selectivity is inherent to the catalysts rather than the result of secondary metathesis. Since both *syn* and *anti* alkylidene species are present in solution during catalysis and there is facile interconversion of the two isomers, it is not surprising that results close to the thermodynamic mixture are obtained.

Catalyst	% conversion after 1 h	% conversion after 6 h	% conversion after 24 h	Further % conversion (time)	% trans
1 _{M0}	53	66	69		82
1_{W}	51		57	65 (101 h)	72
2 _{Mo}	69	75	70		80
$2_{\rm W}$	43	an a nganga ato na tina abiyon na biyon na bi	57	65 (101 h)	58
3 _{Mo}	59	69	64		74
$3_{\rm W}$	59	65	65		80
4 _{Mo}	64	69	71	67 (77 h)	81
$4_{\rm W}$	36	60	62	67 (77 h)	76

Table 5.4. Results for the homocoupling of 1-octene by MAP catalysts.

The report by Jiang *et al.*^{2a} includes screening results for the homocoupling of 1-octene by many MAP catalysts, all of which contain sterically demanding aryloxide or alkoxide ligands. A large variety of selectivities and conversions are observed depending on the catalyst and the condition. The catalyst that gives both high *cis*-selectivity and conversion for this reaction is $W(NAr')(CHCMe_2Ph)(Pyr)(Mes_2Bitet)$ (Ar' = 2,6-dimethylphenyl, Pyr = pyrrolide, Mes_2Bitet = the phenoxide derived from deprotonation of 3,3'-dimesityl-2'-methoxy-5,5',6,6',7,7',8,8'octahydro-[1,1'-binaphthalen]-2-ol), providing 64 % conversion after 2 h with 93 % cis product with 4 % catalyst loading. It is clear that the system is very sensitive to small changes in sterics though, as most MAP catalysts tested do not give high selectivites, though all contain sterically demanding alkoxide or aryloxide ligands. Catalysts that give 20 - 30 % cis product, as the NAr* W(NAr)(CHCMe₂Ph)(Me₂Pyr)(Br₂Bitet), catalysts do. are W(NAr^{Cl})(CHCMe₃)(Me₂Pyr)(HIPTO), W(NAr)(CHCMe₂Ph)(Me₂Pyr)(OTPP), W(NAr')(CHCMe₂Ph)(Me₂Pyr)(OSi(TMS)₃), Mo(NAd)(CHCMe₂Ph)(Me₂Pyr)(OSi(TMS)₃), and Mo(NAr)(CHCMe₂Ph)(Pyr)((Trip)₂Bitet(TMS)). These results indicate that in order to achieve selectivity, it is not enough to produce a catalyst with a steric bias between the aryloxide or alkoxide and imido ligands, but fine-tuning of all factors is important. In the case of the NAr* catalysts, the sterically demanding imido ligand destabilizes the syn alkylidene, and since both alkylidene isomers are available as part of the catalytic cycle, thermodynamic mixtures of product are obtained.

B. Homocoupling of 1,3-Dienes

Scheme 5.3. Homocoupling of 1,3-dienes with NAr* catalysts.

In order to understand the chemoselectivity of catalysts 1 - 4, the homocoupling of 1,3dienes was conducted. The motivation for these reactions was to determine whether the catalysts show any selectivity towards terminal olefins, or if they react with both internal and terminal olefins.

Catalyst	% substrate	% Yield of Z	% Yield of E	% yield of side
	remaining	olefin	olefin	products
1 _{M0}	53	31	0	15*
1 _W	20	7	33	40
2 _{Mo}	0	80		20*
2_{W}	0	20	25	65
3 _{Mo}	20	30	25	25
3 _W	0	35	20	45
4 _{Mo}	20	45	20	15
4_{W}	0	40	25	35

Table 5.5. Results for the homocoupling of 1,3-decadiene after 24 h. * = E olefin and side products integrated together because of overlap in the NMR spectra.

Table 5.6. Homocoupling of 1,3-decadiene by 3_w.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	35	50	10	5
8 h	10	50	15	25
24 h	0	35	20	45

Results for the homocoupling of *E*-1,3-decadiene are shown in Table 5.5 and Table 5.6. Consistent with the results for the homocoupling of 1-octene, no high *cis* or *trans* selectivity is observed. Table 5.5 shows the yields of products determined by integration of olefin resonances in the ¹H NMR spectra after 24 h. Side products are obtained from the reaction of internal olefins. With this linear, unhindered diene, all the catalysts react with both internal and terminal olefins, despite the steric hindrance of the catalyst. In all cases, the tungsten-based catalysts give a higher proportion of side products than their molybdenum congeners, indicating that the Mo-based catalysts have higher selectivity for the terminal olefins. Additionally, the tungsten catalysts are faster than their molybdenum analogs, as determined by the amount of substrate remaining at all time points. Among the alkoxide ligands, the O^tBu compounds are the least reactive. This trend is likely due to electronic variations. The pK_a values of HO^tBu, HOCMe(CF₃)₂, HOSiPh₃, and 2,6-Me₂C₆H₃OH are 17.6,¹³ 9.6,¹³ 10.8,¹⁴ and 10.6,¹³ respectively. Based on the pK_a values, it follows that the O^tBu ligand is significantly less electron-withdrawing than the other three, and the more eletron-rich metal center in the t-butoxide compounds likely bind olefin substrate less strongly, leading to the slower reactivity.

Table 5.6 shows the results over time for the homocoupling of 1,3-decadiene by 3_W . This is intended as a representative example, and results with other catalysts are similar. As expected, conversion becomes higher with time, but these results indicate that product also reacts further with the catalyst. After 2 h, there is a preference for the Z olefin, but the ratio of Z:E olefin decreases with time, indicating isomerization of the initial product, likely by olefin metathesis. The ratio of side products to homocoupled product increases with time, which is additional indication that the catalyst reacts with the internal olefins formed in the homocoupled product.

Catalyst	% substrate remaining	% Yield of Z olefin	% Yield of E olefin	% yield of side products
1 _{Mo}	85	0	0	15
1_{W}	60	15	25	0
2 _{Mo}	8	58	33	0
$2_{\rm W}$	0	40	60	0
3 _{Mo}	50	20	25	5
3 _W	0	36	54	9
4 _{Mo}	0	31	69	0
$4_{ m W}$	0	30	70	0

Table 5.7. Results for the homocoupling of E-buta-1,3-dienylbenzene after 24 h.

Table 5.8. Homocoupling of *E*-buta-1,3-dienylbenzene by 3_W.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	45	30	20	5
8 h	20	35	35	10
24 h	0	36	54	9

Results for the homocoupling of *E*-buta-1,3-dienylbenzene are shown in Table 5.7 and Table 5.8. There is no particular selectivity for *cis* or *trans* olefins, as observed for the homocoupling of 1-octene and 1,3-decadiene. Due to the phenyl substitutent in the vinylic position, the internal olefins are less reactive and less side products are formed than for 1,3-decadiene. Catalyst reactivity is consistent with the results obtained for 1,3-decadiene: the O^tBu catalysts react slower than the catalysts containing the more electron-withdrawing alkoxide ligands and the W catalysts react faster than their Mo congeners. Examination of the time course results shown in Table 5.8 show a decrease in the ratio of *Z*:*E* olefin product, indicating that although the internal olefin moieties near the phenyl substituent do not react much, the center olefin continues to isomerize, likely by both olefin metathesis and by isomerization from light.^{2c,15}

been Homocoupling of dienes has studied employing MAP catalysts $M(NAr)(CHCMe_2Ph)(Pyr)(2,6-R_2C_6H_3)$ and $M(NAr)(C_3H_6)(Pyr)(2,6-R_2C_6H_3)$ (M = Mo or W, Ar = 2,6-diisopropylphenyl or 2,6-dimethylphenyl, Pyr = pyrrolide, R = 2,4,6-triisopropylphenyl or 2,4,6-trimethylphenyl).^{2c} These results show high *cis* selectivity in many cases. Similar to what was observed here, less side products are produced with the more sterically demanding substrate E-buta-1,3-dienylbenzene than linear substrate 1,3-decadiene. Trends observed in the previous study show that the bulkier ligand sets (OHIPT and 2,6-diisopropylphenylimido, where OHIPT = 2.6-di(triisoproylphenyl)phenoxide) give higher Z selectivity and chemoselectivity. comparison is The interesting between catalysts 4_{Mo.} 4w. and $M(NAr')(CHCMe_2Ph)(Pyr)(OHMT)$ (M = Mo, W; OHMT = 2,6-dimesitylphenoxide, Ar' = 2,6dimethylphenyl) because these have the same substituents on the ligands, except with the aryloxide and imido substituents switched. In that study, that was the least sterically hindering ligand set employed, and it gave the lowest Z- and chemoselectivity. Catalysts 4_{M0} and 4_W give similar chemoselectivity as $M(NAr')(CHCMe_2Ph)(Pyr)(OHMT)$ (M = Mo, W) for the homocoupling of 1,3-decadiene, but higher chemoselectivity for the homocoupling of E-buta-1,3-dienylbenzene. Based on the lower chemoselectivities observed for the OHMT based catalysts observed previously the chemoselectivities observed in these studies are not surprising.

The previous studies of diene homocoupling show that Mo catalysts give higher conversions at comparable reaction times and produce more side products than the W congeners. In these studies the opposite trend is observed: the W catalysts are more reactive as measured by the same two metrics. Higher reactivity for W catalysts than Mo catalysts has also been observed for polymerization of cyclooctenes.¹⁶ A change in rate determining step between the two catalyst systems could explain this observation. Studies of Mo and W methylidenes and metallacycles show that both the formation and the break-up of the metallacycle is faster for Mo than W.¹⁷ When either of these processes are the rate-limiting step, it would be expected that Mo catalysts are faster than W. In the systems studied here, it has been shown that alkylidene rotation is faster for W than Mo.⁸ If instead alkylidene rotation is the rate-limiting step, W catalysts should be faster than Mo.

III. Ring-Opening Metathesis

Strained cyclic olefins typically undergo polymerization processes with Group 6 olefin metathesis catalysts. We were interested in understanding the dynamics of the possibly competing processes of polymerization and ring-opening metathesis under ethylene atmosphere. By using NAr* methylidene complexes as catalyst, the ring-opening of substituted norbornenes and norbornadienes with ethylene has been developed. Scheme 5.4 shows the proposed mechanism for ring-opening metathesis and how polymerization may be a competing reaction pathway. The methylidene catalyst reacts with substrate to form a first-insertion product. If the first-insertion product reacts with ethylene, then ring-opening metathesis occurs. If the first-insertion product reacts with another equivalent of substrate, then polymerization occurs. Reaction of the methylidene with ethylene to form the unsubstituted metallacyclobutane is also a possible competing reaction that could sequester some of the active form of the catalyst.

Scheme 5.4. Ring-opening metathesis versus ring-opening metathesis polymerization for substituted norbornadienes.

Previously, in order to prevent polymerization and facilitate ring-opening metathesis, sterically hindered norbornenes with substituents in the 7-position were required for ring-opening cross-metathesis (ROCM) reactions.¹⁸ In certain cases, substituted norbornenes can undergo ROCM with excess cross partner with no reported oligomerization with Group 8 metathesis catalysts.¹⁹ Ring-opening metathesis of substituted norbornenes with ethylene has been reported using a Group 8 catalyst.²⁰

The tungsten methylidene compounds $W(NAr^*)(CH_2)(Me_2Pyr)(OSiPh_3)$ (5) and $W(NAr^*)(CH_2)(Me_2Pyr)(OAr')$ (6) (Figure 5.5) react cleanly with one molar equivalent of **DCMNBD** to give a first-insertion product (Chapter 4). This reactivity is in contrast to the neophylidene species 3_W and 4_W that show a complex mixture of products upon addition of one molar equivalent of **DCMNBD**, indicating that the rate of polymer propagation is much faster

than the rate of polymer initiation. Catalysts 3_W and 4_W also polymerize **DCMNBD** at a relatively slow rate, only showing complete conversion with 1 % catalyst after 5 d. Following these observations, it seemed that by using ethylene to cleave the first-insertion products, ring-opening metathesis could be performed on substrates that are typically used as monomers for polymerization.

Figure 5.5. Tungsten methylidene compounds.

Reactions were performed by mixing toluene solutions of catalyst and substrate inside the dry box, degassing the solution by application of vacuum through the Schlenk manifold, and refilling the system with ethylene. Slow reaction of the first-insertion product with additional substrate is required for this procedure since a few minutes elapse after the catalyst and substrate are mixed before ethylene is added. The time after mixing of catalyst and substrate is a variable that cannot be easily controlled, and this is likely the cause in some of the variation in the results. Initial reactions were conducted with **DCMNBD** and **5** as catalyst. Although conversions were initially low, ring-opening could be performed catalytically, with no evidence for oligomer or polymer formation by ¹H NMR spectroscopy.

Entry	Catalyst	Time (h)	Temperature	Pressure	% Yield	% Yield
			(° C)	(atm)	Ring	Polymer
					Opened	
1	5 ^a	16	20	1	14	0
2	5 ^a	16	20	1 ^b	22	0
3	6 ^a	16	20	1	25	0
4	5	4	20	3.7	16	11
5	6	4	20	3.7	10	0
6	5	16	20	3.7	24	4
7	6	16	20	3.7	41	0
8	6	24	20	3.7	41	0
9	6	48	20	3.7	53	0
10	5	16	20	20	3	2
11	6	16	20	20	24	0
12	6	18	60	3.7	0	0
13	6	22	20	3.7	47	0
14	6	22	20	1	45	0
15	6	24	20	1	63	5
16	6	93	60	1	Quantitative	0
17	6	21	60	1	85	0
18	6	21	80	1	52	8
19	6	48	60	1	70	0

Table 5.9. Ring-opening metathesis results for DCMNBD. Reactions performed in toluene with 2 % catalyst in a closed system unless otherwise indicated. Percent yields determined by ¹H NMR spectroscopy. a = 1 % catalyst, b = open to ethylene line.

Results for the ring-opening metathesis reactions for **DCMNBD** are listed in Table 5.9. These reactions were used to find optimal conditions for the reaction. One atmosphere of ethylene was found to work as well or better than higher pressures. Comparison of entries 7 and 11 show that higher conversion is achieved with 3.7 atm than 20 atm of ethylene, giving 41 % and 24 % conversion after 16 h, respectively. Comparison of entries 13 and 14 shows that similar

results are obtained with 3.7 and 1 atm of ethylene, giving 47 % and 45 % conversion. Higher ethylene concentrations could give lower conversions for multiple reasons. One possibility is that the catalysts decompose to inactive species more quickly in the presence of ethylene. Additionally, ethylene can act as an inhibitor of this reaction by sequestering some of the catalyst as an unsubstituted tungstacyclobutane when it reacts with the active methylidene species. A combination of these factors could also be at play, especially if the unsubstituted tungstacyclobutane species rearranges reductively to tungsten (IV) olefin complexes, as is observed for W(NAr*)(C₃H₆)(Me₂Pyr)(O^tBu), see Chapter 4.

The temperature 60 °C works well for this reaction. Entries 14, 17, and 18 in Table 5.9 show results at 20 °C, 60 °C, and 80 °C. After 22 h, the reaction at 20 °C showed 45 % conversion, while the reaction at 60 °C showed 85 % conversion, and the reaction at 80 °C showed 60 % conversions, but 52 % to the ring-opened product and 8 % to polymer.

Catalyst **6** provides higher conversion than **5**. In Table 5.9, entries 4 and 5, entries 6 and 7, and entries 10 and 11 give direct comparisons of the two catalysts. Catalyst **5** consistently provides polymer byproduct in this reaction, while it was rare for catalyst **6**. Additionally, catalyst **5** performs much more poorly than **6** at 20 atm of ethylene, giving only 5 % conversion, and 3 % yield of the desired product.

In order to detect if oligomers are forming, despite not being detected by NMR spectroscopy, GC-MS analysis of the reaction mixture was conducted. No dimer, which would be expected if oligomerization were a competing reaction pathway, was detected.

Substrate	Time (h)	% Yield of	% Yield of Polymer
		Ring-Opened	
DCMNBE	48	Quantitative	0
DCMNBE	25	Quantitative	0
B	25	Quantitative	0
С	24	63	37
	DCMNBE DCMNBE B C	JUSTIALTime (II)DCMNBE48DCMNBE25B25C24	SubstrateFine (ii)% Heat ofRing-OpenedDCMNBE48QuantitativeDCMNBE25QuantitativeB25QuantitativeC2463

Table 5.10. Ring-opening metathesis of norbornenes by 2 % of catalyst 6 at 60 $^{\circ}$ C and 1 atm ethylene. Percent yields determined by ¹H NMR spectroscopy.

Once conditions for the ring-opening metathesis were determined for **DCMNBD** the reaction was extended to other substituted norbornenes (Table 5.10). **DCMNBE** and **B** (Figure 5.4) give complete conversion to the ring-opened product. The ¹H NMR spectra of the reaction mixtures show no evidence for polymer or oligomer formation, and analysis by GC-MS shows no formation of dimer. The reaction with **C** shows 100 % conversion of monomer, but 37 % yield of polymer. This effect is likely due to electronic factors: **DCMNBE** and **B** both have electron-withdrawing ester groups at the C2 and C3 positions, while **C** has an electron-donating alkyl group, which should render **C** more reactive with the electron-deficient metal center. The more reactive the substrate is in comparison to ethylene, the more oligomers or polymer will form.

A major difference from the reactions of **DCMNBD** and the substituted norbornenes is the shorter reaction times. All the reactions with the substituted norbornenes (Table 5.10) are complete within 25 h (Table 5.10, entry 2), while the reaction of **DCMNBD** under the same conditions only 85% complete after 21 h (Table 5.9, entry 17). The only difference between **DCMNBD** and **DCMNBE** is the unsaturation between C2 and C3, which changes both the geometry at C2 and C3, as well as the electronics of the substrate. Although sterics could contribute to this effect, it is likely more due to electronics. The greater electron-deficiency of **DCMNBD** likely slows the reaction of substrate with the electron-deficient metal center.

Ring-opening metathesis reactions were also attempted with **A**, 3-methyl-3-phenylcyclopropane (**MPCP**), and 7-oxa-2,3-bis(trifluoromethyl)norbornadiene (**O-NBDF6**). No conversion was observed for **A** or **O-NBDF6**. Reactions with **MPCP** were indiscriminant and several products were observed. Although yields were difficult to measure, more polymer than ring-opened product was observed at both 20 °C and 80 °C. Based on the complicated NMR spectra, smaller oligomers were likely formed as well. **MPCP** is more reactive than the other substrates tested, due to its higher ring strain as well as more electron-donating substituents, so it is not surprising that **MPCP** is a substrate that is outside the scope of this reaction, since the higher reactivity makes polymerization the dominant process.

The NAr* ligand allows for the development of this new reactivity. Stabilization of methylidene species due to the steric protection provided by the NAr* ligand is important to this reactivity. It allows the required methylidene catalysts to be isolated, and additionally the NAr* ligand prevents bimolecular decomposition of the methylidene intermediates that form during the

catalytic cycle. On one hand, the NAr* ligand provides stability, but additionally the steric hindrance helps prevent polymerization and promote ring-opening metathesis reactions. The NAr* ligand provides the necessary bias to the system so that a first-insertion product will react more quickly with the small ethylene molecule than another substrate molecule.

CONCLUSIONS

Many types of olefin metathesis reactions have been conducted in order to understand the reactivity of compounds containing the 2,6-dimesitylphenylimido ligand as catalysts for olefin metathesis. The catalysts tested are not *cis* or *trans* selective, which is unsurprising in light of the equilibrium between the *syn* and *anti* alkylidene isomers in these compounds. No distinguishable structure-function trends were observed for polymerization reactions, but since ROMP reactions typically do not undergo reverse reactions, we understand the lack of *cis* or *trans* selectivity is inherent to these catalysts and not as a result of isomerization. All NAr* catalysts tested for the homocoupling of 1-octene give *cis/trans* mixtures close to the thermodynamic ratio from early time points, indicating that the lack of *cis/trans* selectivity is inherent to the catalysts, and not as a result of isomerization results.

To test the chemoselectivity of terminal versus internal olefins, homocoupling of 1,3dienes was conducted. Consistent with previous results, NAr* catalysts produced more side products from the reaction of internal olefins with linear 1,3-decadiene than the more sterically protected phenyl substituted diene, *E*-buta-1,3-dienylbenzene. Catalysts 4_{Mo} and 4_W were more selective for internal olefins for the homocoupling of *E*-buta-1,3-dienylbenzene than M(NAr')(CHCMe₂Ph)(Pyr)(OHMT) (M = Mo, W), compounds with similar sterics, but at different positions in the catalyst, indicative that the Ar* imido ligand provides better steric protection than the 2,6-dimesitylphenoxide. It was interesting to see that in the case of NAr* catalysts, the W compounds were more reactive than the Mo catalysts with the same ligand set. This reactivity difference is contrary to previous MAP catalysts tested for these reactions, where Mo catalysts are more reactive. This effect could be due to a change in rate limiting step between when a terphenyl substituent is on the imido versus the aryloxide ligand. Since alkylidene rotation is faster for W than Mo for the NAr* compounds, bond rotation becoming the rate limiting step could explain the observed results, which would be an interesting effect of the NAr* ligand.

A NAr* methylidene catalyst has been used to develop new reactivity for Group 6 olefin metathesis catalysts. Although neophylidene compounds do not initiate well for polymerization, it was found that for the methylidene compounds initiation is much faster than propagation. By exploiting this large difference in rates, rather than performing polymerization, ring-opening metathesis could be conducted. In the case of norbornenes and norbornadienes with electronwithdrawing substitutents, conversion to the ring-opened product with no polymer byproduct was observed. The NAr* system allows for the development of this new reactivity because the steric protection of the NAr* ligand stabilizes methylidene species which are required both as the isolated catalyst and as reaction intermediates. Additionally, the steric hindrance provided by the NAr* ligand prevents polymerization by biasing the first-insertion product to react with ethylene rather than another equivalent of substrate. The ring-opening of strained olefins is typically a ROMP process, but we can successfully perform the ring-opening metathesis of strained olefins selectively by utilizing catalysts containing the NAr* ligand.

EXPERIMENTAL

General Considerations

All air-sensitive manipulations were performed under nitrogen atmosphere in a drybox or an airfree dual-manifold Schlenk line. All glassware was oven-dried and allowed to cool under vacuum before use. NMR spectra were obtained on Varian 300 MHz, Varian 500 MHz, Bruker 400 MHz, or Bruker 600 MHz spectrometers. ¹H and ¹³C NMR spectra are reported in δ (parts per million) relative to tetramethylsilane, and referenced to residual ¹H/¹³C signals of the deuterated solvent (¹H (δ): benzene 7.16, chloroform 7.26, methylene chloride 5.32, toluene 2.09. ¹³C (δ): benzene 128.39, chloroform 77.23, methylene chloride 54.00, toluene 20.40).). ¹⁹F NMR spectra are reported in δ (parts per million) relative to trichlorofluoromethane and referenced using an external standard of fluorobenzene (δ –113.15). Diethyl ether, toluene, tetrahydrofuran, pentane, benzene, dichloromethane, and dimethoxyethane were sparged with nitrogen and passed through activated alumina. All solvents were stored over 4 Å molecular sieves. Liquid reagents were degassed, brought into the drybox, and stored over 4 Å molecular sieves. **DCMNBD**,²¹ **DCMNBE**,²² **A**,²³ **B**,²⁴ **C**,¹² **D**,¹² and \mathbf{E}^{12} were prepared according to literature procedures. All other reagents were used as received.

General Procedure for the Polymerization of DCMNBD with Five-Coordinate Compounds

Mo-alkylidene compound (0.0048 mmol) and $B(C_6F_6)_3$ (0.0048 mmol) were each dissolved/suspended in 0.3 mL C_6D_6 . The catalyst solution was added to a J.Young style NMR tube followed by the solution of $B(C_6F_6)_3$. ¹H and ¹⁹F NMR spectra were recorded after 15 m. The solution was transferred to a vial. A solution of 100 molar equivalents (100 mg, 0.48 mmol) of **DCMNBD** in 1 mL toluene was transferred to the vial with the stirring catalyst solution. The reaction mixture was stirred until conversion of monomer was complete, as determined by ¹H NMR spectroscopy. Once conversion was complete, the vial was removed from the dry box and 0.30 mL of benzaldehyde was added and stirred for 1 h. 20 mL of MeOH was added to precipitate the polymer. The polymer was allowed to settle for 16 h. The polymer was collected by vacuum filtration or centrifugation, washed with MeOH, and dried *in vacuo*.

General Procedure for ROMP Reactions with Catalysts 1-4

A solution of monomer (100 mg, 0.48 mmol) in 0.5 mL toluene was added to a stirring solution of catalyst (0.0048 mmol) in 0.5 mL toluene. Reactions were monitored by ¹H NMR spectroscopy by diluting an aliquot with C_6D_6 . Once the reaction was complete, the vial was brought out of the dry box, 0.3 mL benzaldehyde was added, and the mixture stirred 1 h. MeOH (20 mL) was added and a white precipitate formed. The precipitate was collected on a fritted filter, washed with MeOH, and dried *in vacuo*.

General Procedure for homocoupling of 1-octene.

A solution of 1-octene (63 μ L, 0.40 mmol) in 0.5 mL toluene was added to a stirring solution of catalyst (8.0 μ mol) in 0.5 mL toluene. Reactions were monitored by ¹H NMR spectroscopy by removing a drop of the reaction mixture and adding 0.5 mL undried CDCl₃.

General Procedure for the Homocoupling of 1,3-Decadiene.

1,3-decadiene (2.13 M, 47 μ L, 0.10 mmol), anthracene (internal standard), 0.5 mL C₆D₆, and a stir bar were added to a 4 mL vial. An aliquot was taken and diluted with C₆D₆ in order to

determine the ratio of substrate to internal standard. A solution of catalyst (5.0 μ mol) in 0.2 mL C₆D₆ was added and the cap was placed loosely on the vial. Aliquots were taken after 2 h, 8 h, and 24 h. The amounts of remaining substrate, *Z* olefin, *E* olefin were determined by integration versus the internal standard. The amount of side products was determined by subtraction.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	100	0	0	0
8 h	60	15		25*
24 h	54	31		15*

Table 5.11. Homocoupling of 1,3-decadiene by 1_{M_0} . *Combined % yield of *E* olefin and side products due to overlapping resonances.

Table 5.12. Homocoupling of 1,3-decadiene by 1_w.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	75	0	20	5
8 h	40	8	32	20
24 h	20	7	33	40

Table 5.13. Homocoupling of 1,3-decadiene by 2_{M_0} . *Combined % yield of *E* olefin and side products due to overlapping resonances.

Time	% substrate	% Yield of Z	% Yield of Z % Yield of E % Yield olefin olefin Prod	% Yield of Side
	remaining	olefin		Products
2 h	25	30	10	35
8 h	10	70		20*
24 h	0	80		20*

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	efin olefin	Products
2 h	30	60		10*
8 h	5	40	20	35
24 h	0	20	25	65

Table 5.14. Homocoupling of 1,3-decadiene by 2_{W} . *Combined % yield of *E* olefin and side products due to overlapping resonances.

Table 5.15. Homocoupling of 1,3-decadiene by 3_{Mo} .

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining olefin	olefin	Products	
2 h	70	0	5	25
8 h	45	25	15	15
24 h	20	30	25	25

Table 5.16. Homocoupling of 1,3-decadiene by 4_{Mo} .

Time	% substrate	% Yield of Z	Yield of E % Yield olefin Proproduction	% Yield of Side
	remaining	olefin		Products
2 h	50	30	10	10
8 h	20	40	18	22
24 h	20	45	20	15

Table 5.17. Homocoupling of 1,3-decadiene by 4_W . *Combined % yield of *E* olefin and side products due to overlapping resonances.

Time	% substrate	% Yield of Z	Z% Yield of E% Yield ofolefinProduct	% Yield of Side
	remaining	olefin		Products
2 h	30	55		15*
8 h	5	45	20	30
24 h	0	40	25	35

General Procedure for the Homocoupling of *E*-buta-1,3-dienylbenzene.

E-buta-1,3-dienylbenzene (3.0 M, 33 μ L, 0.10 mmol), hexamethylbenzene (internal standard), 0.5 mL C₆D₆, and a stir bar were added to a 4 mL vial. An aliquot was taken and diluted with C₆D₆ in order to determine the ratio of substrate to internal standard. A solution of catalyst (5.0 μ mol) in 0.2 mL C₆D₆ was added. Aliquots were taken after 2 h, 8 h, and 24 h. The amounts of remaining substrate, *Z* olefin, *E* olefin were determined by integration versus the internal standard. The amount of side products was determined by subtraction.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	100	0	0	0
8 h	90	0	0	10
24 h	85	0	0	15

Table 5.18. Homocoupling of *E*-buta-1,3-dienylbenzene by 1_{M_0} .

Table 5.19. Homocoupling of E-buta-1,3-dienylbenzene by 1w.

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	90	0	10	0
8 h	75	0	25	0
24 h	60	15	25	0

Table 5.20. Homocoupling of *E*-buta-1,3-dienylbenzene by 2_{M_0} . *Combined % yield of *E* olefin and side products due to overlapping resonances.

Time	% substrate	% Yield of Z	% Yield of E % % Yield of E % Y	% Yield of Side
	remaining	remaining olefin		Products
2 h	65	25		10*
8 h	30	65		5*
24 h	8	58		33*

Time	% substrate	% Yield of Z	Y % Yield of E % Yiel olefin Pro	% Yield of Side
	remaining	olefin		Products
2 h	35	65	0	0
8 h	0	60	40	0
24 h	0	40	60	0

Table 5.21. Homocoupling of *E*-buta-1,3-dienylbenzene by 2_w.

Table 5.22. Homocoupling of *E*-buta-1,3-dienylbenzene by 3_{Mo}.

Time	% substrate	% Yield of Z	% Yield of E % Yield olefin Proc	% Yield of Side
	remaining	olefin		Products
2 h	90	0	10	0
8 h	70	0	30	0.
24 h	50	20	25	5

Table 5.23. Homocoupling of *E*-buta-1,3-dienylbenzene by 4_{Mo} .

Time	% substrate	% Yield of Z	% Yield of E	% Yield of Side
	remaining	olefin	olefin	Products
2 h	40	35	40	0
8 h	0	39	61	0
24 h	0	31	69	0

Table 5.24. Homocoupling of *E*-buta-1,3-dienylbenzene by 4_w.

Time	% substrate	% Yield of Z	% Yield of E % Yield o olefin Produc	% Yield of Side
	remaining	olefin		Products
2 h	20	50	30	0
8 h	0	40	60	0
24 h	0	30	70	0

General Procedure for Ring-Opening Metathesis with 1 atm Ethylene

A solution of substrate (50 mg) in 0.5 mL toluene was added to a solution of catalyst in 0.5 mL toluene in a 100 mL, teflon-stoppered Schlenk flask. The solution was brought out of the dry box, attached to a Schlenk line, and degassed by applying vacuum for 5 s. The flask was refilled with ethylene and sealed. The reaction was heated to the temperature listed in Table 5.9 or Table 5.10. After the reaction time, a few drops of water were added to quench the reaction. An aliquot was taken, the volatiles were removed *in vacuo* and an NMR spectrum was obtained in CDCl₃.

Dimethyl 3,5-divinylcyclopent-1-ene-1,2-dicarboxylate

A solution of **DCMNBD** (51.5 mg, 0.247 mmol) in 0.5 mL toluene was added to a stirring solution of W(NAr*)(CH₂)(Me₂Pyr)(OAr'), **6** (208 µL of a 0.1 M solution in C₆H₆, 20.8 µmol) in 0.5 mL toluene in a 100 mL teflon-stoppered Schlenk flask. The solution was degassed by applying vacuum for 5 s. The flask was refilled with 1 atm ethylene, sealed, and heated to 60 °C. After 5 d a few drops of water was added. The aqueous and organic layers were separated. The aqueous layer was extracted with 3 x 1 mL Et₂O. The combined organic fractions were washed with 2 x 1 mL water and 1 x 1 mL brine. The solution was dried with MgSO₄ and filtered. The filtrated was eluted through a plug of silica gel and dried *in vacuo* to give 36 mg of a yellow oil (62 %).¹H NMR (CDCl₃) δ 5.815 (m, 2H, H_d), 5.106 (d, J_{HH} = 17 Hz, 2H, H_f), 5.050 (d, J_{HH} = 11 Hz, 2H, H_e), 3.752 (s, 6H, CH₃), 3.619 (m, 2H, H_a), 2.502 (dt, J_{HH} = 9 Hz, J_{HH} = 14 Hz, 1H, H_b/H_c); ¹³C NMR (CDCl₃) δ 165.7 (CO₂Me), 142.3, 138.9, 116.2 (olefinic), 52.2, 50.4, 37.0 (aliphatic); HRMS (ESI) *m*/z calc'd for C₁₃H₁₇O₄ (MH⁺): 237.1121, found: 237.1111.

Dimethyl 3,5-divinylcyclopentane-1,2-dicarboxylate

A solution of DCMNBE (54.8 mg, 0.261 mmol) in 0.5 mL toluene was added to a stirring solution of W(NAr*)(CH₂)(Me₂Pyr)(OAr'), 6 (4.8 µL of a 0.1 M solution in C₆H₆, 48 µmol) in 0.5 mL toluene in a 100 mL teflon-stoppered Schlenk flask. The solution was degassed by applying vacuum for 5 s. The flask was refilled with 1 atm ethylene, sealed, and heated to 60 °C. After 25 h a few drops of water was added. The aqueous and organic layers were separated. The aqueous layer was extracted with 3 x 1 mL Et₂O. The combined organic fractions were washed with 2 x 1 mL water and 1 x 1 mL brine. The solution was dried with MgSO₄, filtered, and the volatiles were removed in vacuo. The oil was dissolved in hexanes with 1 % ethylacetate, and eluted through a plug of silica gel and dried *in vacuo* to give 27 mg of a colorless oil (43 %). 1 H NMR (CDCl₃) δ 5.853 (m, 1H, H_d), 5.667 (m, 1H, H_d), 5.075 (pseudo t, J_{HH} = 17 Hz, 2H, H_f), 5.013 (pseudo t, J_{HH} = 10 Hz, 2H, H_e), 3.679 (s, 3H, CH₃), 3.644 (s, 3H, CH₃), 3.331 (dd, J_{HH} = 8 Hz, $J_{\text{HH}} = 10$ Hz, 1H, Hg), 3.074 (dd, $J_{\text{HH}} = 9$ Hz, $J_{\text{HH}} = 10$ Hz, 1H, Hg), 3.025 (m, 1H, Ha), 2.772 (m, 1H, H_a), 2.077 (dt, $J_{HH} = 7$ Hz, $J_{HH} = 13$ Hz, 1H, H_b/H_c), 1.639 (dt, $J_{HH} = 11$ Hz, $J_{HH} = 13$ Hz, 1H, H_b/H_c); ¹³C NMR (CDCl₃) & 174.6 (CO₂Me), 173.5 (CO₂Me), 139.6, 137.6, 116.3, 115.5 (olefinic), 52.1, 52.1, 52.0, 51.8, 48.0, 45.7, 38.3; HRMS (ESI) m/z calc'd for C₁₃H₁₈O₄Na (MNa⁺): 261.1097, found: 261.1104.

Bis(2,2,2-trifluoroethyl) 3,5-divinylcyclopentane-1,2-dicarboxylate

A solution of **B** (48.3 mg, 0.140 mmol) in 0.5 mL toluene was added to a stirring solution of W(NAr*)(CH₂)(Me₂Pyr)(OAr'), 6 (2.9 µL of a 0.1 M solution in C₆H₆, 29 µmol) in 0.5 mL toluene in a 100 mL teflon-stoppered Schlenk flask. The solution was degassed by applying vacuum for 5 s. The flask was refilled with 1 atm ethylene, sealed, and heated to 60 °C. After 25 h a few drops of water was added. The aqueous and organic layers were separated. The aqueous layer was extracted with 3 x 1 mL Et₂O. The combined organic fractions were washed with 2 x 1 mL water and 1 x 1 mL brine. The solution was dried with MgSO₄, filtered, and the volatiles were removed in vacuo. The oil was dissolved in hexanes with 1 % ethylacetate, and eluted through a plug of silica gel and dried *in vacuo* to give 32 mg of a colorless oil (61 %). ¹H NMR (CDCl₃) δ 5.833 (m, 1H, H_d), 5.666 (m, 1H, H_d), 5.133 – 5.039 (overlapping d, 4H, H_e and H_f), 4.563 - 4.347 (overlapping m, 4H, H_i and H_k), 3.456 (pseudo t, $J_{HH} = 9$ Hz, 1H, H_g), 3.164 (pseudo t, $J_{HH} = 9$ Hz, 1H, H_g), 3.105 (m, 1H, H_a), 2.802 (m, 1H, H_a), 2.167 (dt, $J_{HH} = 7$ Hz, J_{HH} = 13 Hz, 1H, H_b/H_c), 1.664 (dt, $J_{\rm HH}$ = 10 Hz, $J_{\rm HH}$ = 13 Hz, 1H, H_b/H_c); ¹⁹F NMR (CDCl₃) δ -73.44 (t, ${}^{3}J_{HF} = 8$ Hz), -73.74 (t, ${}^{3}J_{HF} = 8$ Hz); ${}^{13}C$ NMR (CDCl₃) δ 172.1, 171.1 (CO₂CH₂CF₃), 138.6, 136.7 (olefinic), 123.0 (quartet, $J_{CF} = 275$, CF_3), 122.9 (quartet, $J_{CF} = 275$, CF_3), 117.3, 116.4 (olefinic), 60.8 (quartet, J_{CF} = 37 Hz, CH₂CF₃), 60.6 (quartet, J_{CF} = 37 Hz, CH₂CF₃), 51.6, 51.6, 47.9, 45.4, 38.1; HRMS (ESI) m/z calc'd for C15H16F6O4Na (MNa⁺): 397.0845, found: 397.0860.

((3,5-Divinylcyclopentane-1,2-diyl)bis(methylene))bis(phenylsulfane)

A solution of C (51.7 mg, 0.152 mmol) in 0.5 mL toluene was added to a stirring solution of $W(NAr^*)(CH_2)(Me_2Pyr)(OAr')$, 6 (3.0 µL of a 0.1 M solution in C₆H₆, 30 µmol) in 0.5 mL toluene in a 100 mL teflon-stoppered Schlenk flask. The solution was degassed by applying vacuum for 5 s. The flask was refilled with 1 atm ethylene, sealed, and heated to 60 °C. After 25 h a few drops of water was added. The aqueous and organic layers were separated. The aqueous layer was extracted with 3 x 1 mL Et₂O. The combined organic fractions were washed with 2 x 1 mL water and 1 x 1 mL brine. The volatiles were removed *in vacuo*, the resulting oil was extracted with MeOH, and filtered through a pipette filter to remove polymer byproduct. The oil was dissolved in hexanes with 1 % ethylacetate, and eluted through a plug of silica gel and dried *in vacuo* to give 18 mg of a colorless oil (32 %). ¹H NMR (CDCl₃) δ 7.308 – 7.272 (overlapping signals, 4H, ArH), 7.254 – 7.228 (overlapping signals, 4H, ArH), 7.143 (tt, $J_{HH} = 7$ Hz, $J_{HH} = 2$ Hz, 2H, ArH), 5.856 (ddd, 1H, Hd), 5.737 (ddd, 1H, Hd), 5.102 - 5.059 (overlapping signals, 2H, H_e and H_f), 4.991 – 4.943 (overlapping signals, 2H, H_e and H_f), 3.168 – 2.999 (overlapping m, 3H), 2.871 - 2.808 (overlapping m, 2H), 2.450 (m, 1H), 2.279 (m, 1H), 2.040 - 1.968 (overlapping m, 2H), 1.514 (dt, $J_{\rm HH}$ = 10 Hz, $J_{\rm HH}$ = 13 Hz, 1H, H_b/H_c); ¹³C NMR (CDCl₃) δ 141.83, 138.66 (CO₂CH₂SPh), 137.45, 137.25, 129.14, 129.04, 129.03, 128.96 (Aromatic), 125.91, 125.81, 116.03, 114.79 (Olefinic), 49.42, 48.74, 46.56, 46.08, 37.92, 37.16, 35.96; HRMS (ESI) m/z calc'd for C₂₃H₂₇S₂ (MH⁺): 367.1549, found: 367.1563.

General Procedure for Ring-Opening Metathesis of DCMNBD with >1 atm Ethylene.

A solution of **DCMNBD** (50 mg, 0.24 mmol) in 0.5 mL toluene was added to a solution of catalyst (0.0048 mmol) in 0.5 mL toluene in a 4 mL vial. The vial was placed inside a pressure

reactor and sealed. The apparatus was removed from the dry box, pressurized to the desired ethylene pressure (3.7 atm or 20 atm), and allowed to stir for the desired reaction time. After the reaction time, a few drops of water were added to quench the reaction. An aliquot was taken, the volatiles were removed *in vacuo* and an NMR spectrum was obtained in CDCl₃.

~-

REFERENCES

¹ (a) Flook, M. M.; Jiang, A. J.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. *J. Am. Chem. Soc.* **2009**, *131*, 7962. (b) Flook, M. M.; Gerber, L. C. H.; Debelouchina, G. T.; Schrock, R. R. *Macromolecules* **2010**, *43*, 7515. (c) Flook, M. M.; Ng, V. W. L.; Schrock, R. R. *J. Am. Chem. Soc.* **2011**, *133*, 1784. (d) Flook, M. M.; Börner, J.; Kilyanek, S.; Gerber, L. C. H.; Schrock, R. R. *Organometallics* **2012**, *31*, 6231.

² (a) Jiang, A. J.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 16630.
(b) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Takase, M. K.; Hoveyda, A. H. Organometallics 2011, 30, 1780. (c) Townsend, E. M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 11334. (d) Peryshkov, D. V.; Schrock, R. R.; Takase, M. K.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 20754.

³ (a) Ibrahem, I; Yu, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 3844. (b) Yu, M.; Ibrahem, I.; Hasegawa, M.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2012**, 134, 2788.

⁴ (a) Marinescu, S. C.; Schrock, R. R.; Müller, P.; Hoveyda, A. H. J. Am. Chem. Soc. **2009**, 131, 10840. (b) Marinescu, S. C.; Levine, D.; Zhao, Y.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. **2011**, 133, 11512.

⁵ (a) Wang, C.; Yu, M.; Kyle, A. F.; Jacubec, P.; Dixon, D. J.; Schrock, R. R.; Hoveyda, A. H. *Chem. Eur. J.* **2013**, *19*, 2726. (b) Wang, C.; Haeffner, F.; Schrock, R. R.; Hoveyda, A. H. *Angew. Chem. Int. Ed.*, **2013**, *52*, 1939.

⁶ (a) Liu, P.; Xu, X.; Dong, Xj.; Keitz, B. K.; Herbert, M. B.; Grubbs, R. H.; Houk, K. N. J. Am. Chem. Soc. 2012, 134, 1464. (b) Keitz, B. K.; Endo, K.; Patel, P. R.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 693. (c) Keitz, B. K.; Fedorov, A.; Grubbs, R. H. J. Am. Chem. Soc. 2012, 134, 2040. (d) Herbert, M. B.; Marx, V. M.; Pederson, R. L.; Grubbs, R. H. Angew. Chem. Int. 2013, 125, 310. (e) Keitz, B. K.; Endo, K.; Herbert, M. B.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 9686. (f) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 9686. (f) Endo, K.; Grubbs, R. H. J. Am. Chem. Soc. 2011, 133, 8525. (g) Miyazaki, H.; Herbert, M. B.; Liu, P.; Dong, X.; Xu, X.; Keitz, B. K.; Ung, T.; Mkrtumyan, G.; Houk, K. N.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 5848. (h) Marx, V. M.; Herbert, M. B.; Keitz, B. K.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 94.

⁷ Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. J. Am. Chem. Soc., 2011, 133, 18142.

⁸ Gerber, L. C. H.; Schrock, R. R.; Müller, P. Organometallics, 2013, 32, 2373.

⁹ (a) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1992**, 114, 7588. (b) Oskam, J. H.; Schrock, R. R. J. Am. Chem. Soc. **1993**, 115, 11831.

¹⁰ (a) Bazan, G. C.; Khosravi, E.; Schrock, R. R.; Feast, W. J.; Gibson, V. C.; O'Regan, M. B.; Thomas, J. K.; Davis, W. M. *J. Am. Chem. Soc.* **1990**, *112*, 8378 – 8387. (b) Feast, W. J.; Gibson, V. C.; Marshall, E. L. *J. Chem. Soc., Chem. Commun.* **1992**, 1157 – 1158. (c) O'Dell, R.; McConville, D. H.; Hofmeister, G. E.; Schrock, R. R. *J. Am. Chem. Soc.* **1994**, *116*, 3414 – 3423.
¹¹ Schrock, R. R.; Lee, J.-K.; O'Dell, R.; Oskam, J. H. *Macromolecules*, **1995**, *28*, 5933 – 5940.
¹² Klatt, T. ROMP of Functionalized Monomers with Group 6 Imido Alkylidene Catalysts.

Master's Thesis, Technischen Universität München, Munich, Germany, 2011. ¹³ Serjeant, E. P.; Dempsey, B. *International Union of Pure and Applied Chemistry, Commission*

on Equilibrium Data. Ionisation Constants of Organic Acids in Aqueous Solution; Oxford, New York: Pergamon Press, 1979.

¹⁴ Duchateau, R.; Cremer, U.; Harmsen, R. J.; Mohamud, S. I.; Abbenhuis, H. C. L.; van Santen, R. A.; Meetsma, A.; Thiele, S. K.-H.; van Tol, M. F. J.; Kranenburg, M. Organometallics, 1999, 18, 5447.

¹⁵ Saltiel, J.; Wang, S.; Watkins, L. P.; Ko, D.-H. J. Phys. Chem. A 2000, 104 11443.

¹⁶ Jeong, H.; Kozera, D. J.; Schrock, R. R.; Smith, S. J.; Zhang, J.; Ren, N.; Hillmyer, M. A. *Organometallics*, Accepted.

¹⁷ Schrock, R. R.; Jiang, A. J.; Marinescu, S. C.; Simpson, J. H.; Müller, P. Organometallics **2010**, 29, 5241.

¹⁸ (a) La, D. S.; Sattely, E. S.; Ford, J. G.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc.
2001, 123 7767. (b) Pilyugina, T. S.; Schrock, R. R.; Müller, P; Hoveyda, A. H. Organometallics
2007, 26, 831.

¹⁹ (a) Hartung, J.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135, 10183. (b) Wakamatsu, H.;
Blechert, S. Angew. Chem., Int. Ed., 2002, 41, 2403. (c) Kannenberg, A.; Rost, D.; Eibauer, S.;
Tiede, S.; Blechert, S. Angew. Chem., Int. Ed., 2011, 50, 3299. (d) Tiede, S.; Schlesiger, D.; Rost,
D.; Lühl, A.; Blechert, S. Angew. Chem., Int. Ed. 2010, 49, 3972. (e) Liu, Z.; Rainier, J. D. Org.
Lett. 2005, 7, 131. (f) Krause, J. O.; Nuyken, O.; Wurst, K.; Buchmeiser, M. R. Chem. Eur. J.
2004, 10, 777. (g) Katayama, H.; Nagao, M.; Ozawa, F. Organometallics 2003, 22, 586. (h)
Mayo, P.; Tam. W. Tetrahedron 2002, 58, 9513. (i) Katayama, H.; Urushima, H.; Nishioka, T.;
Wada, C.; Nagao, M.; Ozawa, F. Angew Chem., Int. Ed. 2000, 39, 4513.
²⁰ (a) Nuyken, O.; Müller, B. Des. Monomers Polym. 2004, 7, 215. (b) Eyrisch, K. K.; Müller, B.

K. M.; Herzig, C.; Nuyken, O. Des. Monomers Polym. 2004, 7, 661.

²¹ Tabor, D. C.; White, F. H.; Collier, L. W.; Evans, S. A. J. Org. Chem. 1983, 48, 1638.

²² Koch, H. Monatsh. Chem. 1962, 93, 1343.

²³ Höfler, T.; Grießer, T.; Gstrein, X.; Trimmel, G.; Jakopic, G.; Kern, W. Polymer **2007**, *48*, 1930.

²⁴ Ryu, D. H.; Zhou, G.; Corey, E. J. Org. Lett. 2005, 7, 1633.

Laura C. H. Gerber

Massachusetts Institute of Technology Department of Chemistry 77 Massachusetts Avenue Cambridge, MA 02139

EDUCATION

Massachusetts Institute of Technology, Cambridge, MA Ph. D. Candidate in Inorganic Chemistry Relevant Coursework: Principles of Inorganic Chemistry II & III, Organometallic Chemistry, Organometallic Catalysis, Physical Inorganic Chemistry

Brandeis University, Waltham, MA B.A./M.S. in Chemistry and Minor in Environmental Studies

EXPERIENCE

Massachusetts Institute of Technology, Graduate Research Advisor: Prof. Richard R. Schrock

- Designed olefin metathesis catalysts for selective reactions, especially ring opening metathesis polymerization
- Developed novel synthetic routes for olefin metathesis catalysts allowing new ligands to be incorporated, analyzed compounds using x-ray crystallography, and NMR, IR, and UV-Visible spectroscopy, several projects in the group now utilize the findings
- Studied reaction mechanism to understand catalyst selectivity for polymerization by variable temperature NMR spectroscopy
- Trained and mentored an undergraduate student in organometallic synthesis

Fulbright Fellowship, University of Bergen, Norway

Advisor: Prof. Reiner Anwander

- Studied reactivity of trimethyl and heterobimetallic rare earth metal complexes
- Presented research at a department seminar and for Fulbright Fellows in all fields

Brandeis University, Undergraduate Research

Advisor: Prof. Oleg V. Ozerov

- Synthesized transition metal complexes containing rare bonding modes including the first bis(methylidene) complex
- Presented findings at anAmerican Chemical Society meeting and at an undergraduate research symposium

University of Notre Dame, Environmental Molecular Science Institute **Undergraduate Research**

Advisor: Prof. Patricia Maurice

Studied the sorption and dissolution mechanisms of siderophores with montmorillonite using a variety of techniques including UV-visible spectroscopy and powder x-ray diffractometry

2007

2008 - Present

2013

2007 - 2008

2005

2005 - 2007

LEADERSHIP

Chemistry Student Seminar, MIT	2011 - Present
Organizer of a weekly student run seminar series. Recruited speakers, obtained funding, and	
organized logistics.	
Teaching Assistant, General and Inorganic Chemistry Laboratory Courses, MIT	2008 - 2009
Prepared pre-lab lectures, quizzes, optimized experiments, and assisted students (15 students	
for inorganic lab and 60 for general chemistry lab) during lab hours.	
Undergraduate Departmental Representative, Brandeis Univ. Chemistry Dept.	2005 - 2007
Planned informational and community events. Served as a liaison between the students and	
department	
HONORS AND AWARDS	
Fulbright Fellowship	2007 - 2008
Awarded by the U.S. Department of State	
Melvin E. Snider Prize in Chemistry	2007
Awarded by the Brandeis University Dept. of Chemistry	
Presidential Scholarship	2003 - 2007
Awarded by Brandeis University	
COMMUNITY ACTIVITIES	
Chemistry Outreach Program, MIT	2009 - Present
Volunteer to visit high school science classes to demonstrate science concepts	

Member of a community orchestra that performs for local events in the Boston area

SKILLS

Manipulation of air-sensitive compounds by drybox and Schlenk technique; 1D, 2D, and multinuclear, and variable temperature NMR spectroscopy; x-ray crystallography; IR and UV-Visible spectroscopy.

2011 - Present

PROFESSIONAL AFFILIATIONS

Cambridge Symphony Orchestra, Cambridge, MA

American Chemical Society, Division of Inorganic Chemistry, Northeastern Section of the American Chemical Society, MIT Women in Chemistry

PUBLICATIONS

- Yuan, J.; Schrock; R. R.; <u>Gerber, L. C. H.</u>; Müller, P.; Smith, S. Synthesis and ROMP Chemistry of Decafluoroterphenoxide Molybdenum Imido Alkylidene and Ethylene Complexes. *Organometallics*, 2013, 32, 2983 – 2992.
- <u>Gerber, L. C. H.;</u> Schrock, R. R.; Müller, P. Molybdenum and Tungsten Monoalkoxide Pyrrolide (MAP) Alkylidene Complexes That Contain a 2,6-Dimesitylphenylimido Ligand. Organometallics, 2013, 32, 2373 – 2378.
- Flook, M. M.; Börner, J.; Kilyanek, S. M.; <u>Gerber, L. C. H.</u>; Schrock, R. R. Five-Coordinate Rearrangements of Metallacyclobutane Intermediates during Ring-Opening Metathesis Polymerization of 2,3-Dicarboalkoxynorbornenes by Molybdenum and Tungsten Monoalkoxide Pyrrolide Initiators. Organometallics, 2012, 31(17), 6231 - 6243.
- Gerber, L. C. H.; Schrock, R. R.; Müller, P.; Takase, M. K. Synthesis of Molybdenum Alkylidene Complexes That Contain the 2,6-Dimesitylphenylimido Ligand. J. Am. Chem. Soc., 2011, 133 (45), 18142 – 18144.

- Flook, M. M.; <u>Gerber, L. C. H.</u>; Debelouchina, G. T.; Schrock, R. R. Z-Selective and Syndioselective Ring-Opening Metathesis Polymerzation (ROMP) Initiated by Monoaryloxidepyrrolide (MAP) Catalysts. *Macromolecules*, 2010, 43 (18), 7515 – 7522.
- Takaoka, A.; <u>Gerber, L. C. H.</u>; Peters, J. C. Access to Well-Defined Ruthenium(I) and Osmium(I) Metalloradicals. Angewandte Chemie, International Edition, 2010, 49 (24), 4088.
- <u>Gerber, L. C. H.</u>; Le Roux, E.; Törnroos, K. W.; Anwander, R. Elusive Trimethyllanthanum: Snapshots of Extensive Methyl Group Degradation in La-Al Heterobimetallic Complexes. *Chemistry: A European Journal*, 2008, 14, 9555 – 9564.
- Gerber, L. C. H.; Watson, L. A.; Parkin, S.; Weng, W.; Foxman, B. M.; Ozerov, O. V. A Bis(methylidene) Complex of Tantalum Supported by a PNP Ligand. Organometallics, 2007, 26 (20), 4866 - 4868.

PRESENTATIONS

- <u>Gerber, L. C. H.</u> Exploration of Steric Bulk in Molybdenum and Tungsten Olefin Metathesis Catalysts. Inorganic Seminar Series, Massachusetts Institute of Technology Department of Chemistry, December 19, 2012.
- <u>Gerber, L. C. H.</u>; Schrock, R. R. **Molybdenum and tungsten olefin metathesis catalysts containing a 2,6-dimesitylphenylimido ligand.** 244th ACS National Meeting & Exposition, Philadelphia, PA, United States, August 19-23, 2012.
- <u>Gerber, L. C. H.</u>; Schrock, R. R. **Molybdenum olefin metathesis catalysts containing a 2,6dimesitylphenylimido ligand.** 242nd ACS National Meeting & Exposition, Denver, CO, United States, August 28-September 1, 2011.
- <u>Gerber, L. C. H.</u>; Schrock, R. R. **Mechanistic studies of ring-opening metathesis polymerization with molybdenum monoaryloxide monopyrrolide catalysts.** 240th ACS National Meeting, Boston, MA, United States, August 22-26, 2010.
- Litlabø, R., <u>Gerber, L. C. H.</u>, Anwander, R. **Reactivity of Homoleptic Lanthanide(III) Tetraalkylaluminate Complexes.** Seminar in Inorganic and Nanochemistry. University of Bergen. May 15, 2008.
- Gerber, L. C. H. Lanthanide Chemistry. Presentation at Meeting for U.S. Fulbright Fellows in Norway, February 14, 2008.
- <u>Gerber, L. C. H.</u>; Ozerov, O. V.; Weng, W.; Foxman, B. M. **Synthetic approaches to pincer complexes with tantalum-carbon multiple bonds.** 232nd ACS National Meeting, San Francisco, CA, United States, Sept. 10-14, 2006.
- Laura C. H. Gerber, Oleg V. Ozerov, Wei Weng, Bruce M. Foxman. New Tantalum Pincer Compounds: En route to Group 5 Alkylidynes. Research Experience for Undergraduates Symposium. Brandeis University. August 10, 2006.
- Laura C. H. Gerber, Elizabeth Haack, Patricia Maurice. **The Sorption of Acetohydroxamic Acid by Montmorillonite.** Research Experience for Undergraduates Symposium. Environmental Molecular Science Institute, University of Notre Dame. August 5, 2005.
Acknowledgements

There are many people who I would like to thank for their encouragement and support along this path. First, I would like to thank my advisor Richard Schrock. I am grateful for the opportunity to work in his research group, despite my late start. I have enjoyed my time in the group and I have learned so much from Dick. He has always been available to discuss my latest results and provide insight when I ran into roadblocks in my research. I admire his enthusiasm and creativity for solving chemical problems, qualities I hope to embody throughout my career as a chemist. I would like to thank my thesis committee chair, Christopher Cummins. Our discussions have always been extremely productive and his perspective has been invaluable. I greatly appreciate Yogesh Surendranath joining my thesis committee on short notice. Thanks are also due to the other Inorganic faculty. I have learned a lot from each of them throughout my years at MIT.

Much gratitude goes to those who have fostered my inclination towards chemistry. My high school chemistry teacher, Keith Zeise, made chemistry intuitive and kept class interesting with his creative analogies. I appreciate the encouragement and patience from my undergraduate advisors, Oleg Ozerov and Bruce Foxman. Professor Foxman provided my first introduction to inorganic chemistry. His dedication to teaching and his encouragement to explore inorganic chemistry further through research started me on my path to becoming a chemist. Oleg Ozerov was a superb research advisor. I was thrilled to be working on my own independent project from the start, and Oleg seemed to always know the right balance between providing guidance and allowing me to work independently. I appreciate his patience and how his door was always open when I wanted to discuss research.

My colleagues at MIT have been one of the greatest assets of working here. Daily discussions with my labmates and friends have helped me evolve into the chemist I am today. Their insight has shaped my research and their support has helped me through many frustrations. I would like to thank Ayumi Takaoka, Nate Szymczak, and Neal Mankad for helping me get started in lab during my first year of grad school. I am so grateful to Annie King and Maggie Flook who helped me get started in the Schrock Group. They helped make the transition easy. I would especially like to thank Maggie Flook who I shared a glove box and office with for over two years. She was easy to work with and always willing to discuss results and help me interpret my spectra. I have learned so much from all the past and present members of the Schrock Group and I am grateful to have worked with such a friendly and talented group of people. Special thanks go to Smaranda Marinescu, Keith Wampler, Erik Townsend, Jon Axtell, Hyangsoo Jeong, Alex Lichtscheidl, Dima Peryshkov, Stephan Kilyanek, and Graham Dobereiner for helpful discussions. My lab and officemates in 6-421 have made the day-to-day work enjoyable. I appreciated the opportunity to work with undergraduate Betsy Flowers. Her enthusiasm for chemistry was contagious. All current group members have proofread portions of this thesis. Thank you Will Forrest, Hyangsoo Jeong, Matt Cain, Jon Axtell, Graham Dobereiner, and especially Erik Townsend.

I need to thank my friends and family for their support and understanding, especially my parents Ann Heidkamp and Jim Gerber, my brother Alan Gerber, my grandmother Jane Gerber, and my cousin Eleanor Heidkamp-Young. Most of all, I would like to thank my husband Mark Zegarelli. His support and encouragement have been endless, and I appreciate it more than I can express.