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ARTICLE
doi:10.1038/nature11404

Comprehensive genomic characterization
of squamous cell lung cancers
The Cancer Genome Atlas Research Network*

Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year
worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no
molecularly targeted agents have been specifically developed for its treatment. As part of The Cancer Genome Atlas, here
we profile 178 lung squamous cell carcinomas to provide a comprehensive landscape of genomic and epigenomic
alterations. We show that the tumour type is characterized by complex genomic alterations, with a mean of 360 exonic
mutations, 165 genomic rearrangements, and 323 segments of copy number alteration per tumour. We find statistically
recurrent mutations in 11 genes, including mutation of TP53 in nearly all specimens. Previously unreported
loss-of-function mutations are seen in the HLA-A class I major histocompatibility gene. Significantly altered pathways
included NFE2L2 and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH kinase pathway
genes in 47%, and CDKN2A and RB1 in 72% of tumours. We identified a potential therapeutic target in most tumours,
offering new avenues of investigation for the treatment of squamous cell lung cancers.

Lung cancer is the leading cause of cancer-related mortality worldwide,
leading to an estimated 1.4 million deaths in 2010 (ref. 1). The discovery
of recurrent mutations in the epidermal growth factor receptor (EGFR)
kinase, as well as fusions involving anaplastic lymphoma kinase (ALK),
has led to a marked change in the treatment of patients with lung
adenocarcinoma, the most common type of lung cancer2–5. More recent
data have suggested that targeting mutations in BRAF, AKT1, ERBB2
and PIK3CA and fusions that involve ROS1 and RET may also be suc-
cessful6,7. Unfortunately, activating mutations in EGFR and ALK fusions
are typically not present in the second most common type of lung cancer,
lung squamous cell carcinoma (SQCC)8, and targeted agents developed
for lung adenocarcinoma are largely ineffective against lung SQCC.

Although no comprehensive genomic analysis of lung SQCCs has
been reported, single-platform studies have identified regions of
somatic copy number alterations in lung SQCCs, including amplifica-
tion of SOX2, PDGFRA and FGFR1 and/or WHSC1L1 and deletion of
CDKN2A9,10. DNA sequencing studies of lung SQCCs have reported
recurrent mutations in several genes, including TP53, NFE2L2,
KEAP1, BAI3, FBXW7, GRM8, MUC16, RUNX1T1, STK11 and
ERBB4 (refs 11, 12). DDR2 mutations and FGFR1 amplification have
been nominated as therapeutic targets13–15.

We have conducted a comprehensive study of lung SQCCs from a
large cohort of patients as part of The Cancer Genome Atlas (TCGA)
project. The twin aims are to characterize the genomic and epigenomic
landscape of lung SQCC and to identify potential opportunities for
therapy. We report an integrated analysis based on DNA copy number,
somatic exonic mutations, messenger RNA sequencing, mRNA
expression and promoter methylation for 178 histopathologically
reviewed lung SQCCs, in addition to whole genome sequencing
(WGS) of 19 samples and microRNA sequencing of 159 samples
(Supplementary Table 1.1). Demographic and clinical data and results
of the genomic analyses can be downloaded from the TCGA data
portal (https://tcga-data.nci.nih.gov/docs/publications/lusc_2012/).

Samples and clinical data
Tumour samples were obtained from 178 patients with previously
untreated stage I–IV lung SQCC. Germline DNA was obtained from

adjacent, histologically normal tissues resected at the time of surgery
(n 5 137) or from peripheral blood (n 5 41). All patients provided
written informed consent to conduct genomic studies in accordance
with local Institutional Review Boards. The demographic characteris-
tics are described in Supplementary Table 1.2. The median follow-up
for the cohort was 15.8 months, and 60% of patients were alive at the
time of the last follow-up (data updated in November 2011). Ninety-six
per cent of the patients had a history of tobacco use, similar to previous
reports for North American patients with lung SQCC16. DNA and
RNA were extracted from patient specimens and measured by several
genomic assays, which included standard quality-control assessments
(Supplementary Methods, sections 2–8). A committee of experts in
lung cancer pathology performed a further review of all samples to
confirm the histological subtype (Supplementary Fig. 1.1 and
Supplementary Methods, section 1).

Somatic DNA alterations
The lung SQCCs analysed in this study display a large number and variety
of DNA alterations, with a mean of 360 exonic mutations, 323 altered
copy number segments and 165 genomic rearrangements per tumour.

Copy number alterations were analysed using several platforms.
Analysis of single nucleotide polymorphism (SNP) 6.0 array data
across the set of 178 lung SQCCs identified a high rate of copy number
alteration (mean of 323 segments) when compared with other TCGA
projects (as of 1 February 2012), including ovarian cancer (477
segments)17, glioblastoma multiforme (282 segments)18, colorectal
carcinoma (213 segments), breast carcinoma (282 segments) and renal
cell carcinoma (156 segments) (P , 1 3 10215 by Fisher’s exact test).
These segments gave rise to regions of both focal and broad somatic
copy number alterations (SCNAs), with a mean of 47 focal and 23
broad events per tumour (broad events defined as $50% of the length
of the chromosome arm). There was strong concordance between the
three independent copy number assays for all regions of SCNA
(Supplementary Figs 2.1–2.4).

At the level of whole chromosome arm SCNAs, lung SQCCs exhibit
many similarities to 205 cases of lung adenocarcinoma analysed by

*Lists of participants and their affiliations appear at the end of the paper.
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TCGA (Supplementary Fig. 2.1a). The most notable difference
between these cancers is selective amplification of chromosome 3q
in lung SQCC, as has been reported9,19. Using the SNP 6.0 array
platform and GISTIC 2.0 (refs 20, 21), we identified regions of sig-
nificant copy number alteration (Supplementary Methods, section 2).
There were 50 peaks of significant amplification or deletion
(Q , 0.05), several of which included SCNAs previously seen in lung
SQCCs including SOX2, PDGFRA and/or KIT, EGFR, FGFR1 and/or
WHSC1L1, CCND1 and CDKN2A9,10,19 (Supplementary Fig. 2.1b and
Supplementary Data 2.1 and 2.2). Other peaks defined regions of SCNA
reported for the first time, including amplifications of chromosomal
segments containing NFE2L2, MYC, CDK6, MDM2, BCL2L1 and EYS
and deletions of FOXP1, PTEN and NF1 (Supplementary Fig. 2.1b).

Whole exome sequencing of 178 lung SQCCs and matched germline
DNA targeted 193,094 exons from 18,863 genes. The mean sequencing
coverage across targeted bases was 1213, with 83% of target bases above
303 coverage. We identified a total of 48,690 non-silent mutations with
a mean of 228 non-silent and 360 total exonic mutations per tumour,
corresponding to a mean somatic mutation rate of 8.1 mutations per
megabase (Mb) and median of 8.4 per Mb. That rate is higher than rates
observed in other TCGA projects including acute myelogenous leuk-
aemia (0.56 per Mb), breast carcinoma (1.0 per Mb), ovarian cancer17

(2.1 per Mb), glioblastoma multiforme18 (2.3 per Mb) and colorectal
carcinoma (3.2 per Mb) (data as of 1 February 2012, P , 2.2 3 10216 by
t-test or Wilcoxon’s rank sum test for lung SQCC versus all others). In
lung SQCC, CpG transitions and transversions were the most com-
monly observed mutation types, with mean rates of 9.9 and 10.7 per
sequenced megabase of CpG context, respectively, for a total mutation
rate of 20.6 per Mb. At non-CpG sites, transversions at C:G sites were
more common than transitions (7.3 versus 2.9 per Mb; total 5 10.2 per
Mb) and more common than transversions or transitions at A:T sites
(1.5 versus 1.3 per Mb; total 5 2.8 per Mb).

Significantly mutated genes were identified using a modified version
of the MutSig algorithm (Supplementary Methods, section 3)22,23. We
identified 10 genes with a false discovery rate (FDR) Q value , 0.1
(Supplementary Table 3.1): TP53, CDKN2A, PTEN, PIK3CA, KEAP1,
MLL2, HLA-A, NFE2L2, NOTCH1 and RB1, all of which demonstrated
robust evidence of gene expression as defined by reads per kilobase of
exon model per million mapped reads (RPKM) . 1 (Fig. 1). TP53
mutation was observed in 81% of samples by automated analysis; visual
review of sequencing reads identified a further 9% of samples with
potential mutations in regions of sub-optimal coverage or in samples
with low purity. Most observed mutations in NOTCH1 (8 out of 17)
were truncating alterations, suggesting loss-of-function, as has recently
been reported for head and neck SQCCs22,24. Mutations in HLA-A were
also almost exclusively nonsense or splice site events (7 out of 8).

To increase our statistical power to detect mutated genes in the
setting of the observed high background mutation rate, we performed
a secondary MutSig analysis only considering genes previously
observed to be mutated in cancer according to the COSMIC database.

This yielded 12 other genes with FDR , 0.1: FAM123B (also known as
WTX), HRAS, FBXW7, SMARCA4, NF1, SMAD4, EGFR, APC, TSC1,
BRAF, TNFAIP3 and CREBBP (Supplementary Table 3.1). Both the
spectrum and the frequency of EGFR mutations differed from those
seen in lung adenocarcinomas. The two most common alterations in
lung adenocarcinoma, Leu858Arg and inframe deletions in exon 19,
were absent, whereas two Leu861Gln mutations were detected in EGFR.

As described in Supplementary Fig. 3.1, we verified somatic muta-
tions by performing an independent hybrid-recapture of 76 genes in
all samples. A total of 1,289 mutations were assayed, and we achieved
satisfactory coverage to have power to verify at 1,283 positions. We
validated 1,235 mutations (96.2%) (Supplementary Fig. 3.1 and Sup-
plementary Methods, section 3). We also verified mutation calls using
WGS and RNA sequencing data with similar results (Supplementary
Figs 3.1, 4.3 and Supplementary Methods, sections 3 and 4).

WGS was performed for 19 tumour/normal pairs with a mean
computed coverage of 543. A mean of 165 somatic rearrangements
was found per lung SQCC tumour pair (Supplementary Fig. 3.2), a
value in excess of that reported for WGS studies of other tumour types
including colorectal carcinoma (75)25, prostate carcinoma (108)26,
multiple myeloma (21)23 and breast cancer (90)27. Although most
inframe coding fusions detected in WGS were validated by RNA
sequencing, no recurrent rearrangements predicted to generate fusion
proteins were identified (Supplementary Data 3.1 and 4.1).

Somatically altered pathways
Many of the somatic alterations we have identified in lung SQCCs
seem to be drivers of pathways important to the initiation or progres-
sion of the cancer. Specifically, genes involved in the oxidative stress
response and squamous differentiation were frequently altered by
mutation or SCNA. We observed mutations and copy number altera-
tions of NFE2L2 and KEAP1 and/or deletion or mutation of CUL3 in
34% of cases (Fig. 2). NFE2L2 and KEAP1 code for proteins that bind
to each other, have been shown to regulate the cell response to oxid-
ative damage, chemo- and radiotherapy, and are somatically altered in
a variety of cancer types28,29. We found mutations in NFE2L2 almost
exclusively in one of two KEAP1 interaction motifs, DLG or ETGE.
Mutations in KEAP1 and CUL3 showed a pattern consistent with loss-
of-function and were mutually exclusive with mutations in NFE2L2
(Figs 1c and 2). PARADIGM SHIFT30 analysis predicts that muta-
tions in NFE2L2 and KEAP1 exert a considerable functional effect (Sup-
plementary Fig. 7.C.1, 7.C.2 and Supplementary Methods, section 7).

We also found alterations in genes with known roles in squamous
cell differentiation in 44% of samples, including overexpression and
amplification of SOX2 and TP63, loss-of-function mutations in
NOTCH1, NOTCH2 and ASCL4 and focal deletions in FOXP1
(Fig. 2). Although NOTCH1 has been well characterized as an onco-
gene in haematological cancers31, NOTCH1 and NOTCH2 truncating
mutations have been reported in cutaneous SQCCs and lung SQCCs32.
Truncating mutations in ASCL4 are the first to be reported in human
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cancer and may have a lineage role given the requirement for ASCL1
for survival of small-cell lung cancer cells33. Alterations in NOTCH1,
NOTCH2 and ASCL4 were mutually exclusive and exhibited minimal
overlap with amplification of TP63 and/or SOX2 (Fig. 2), suggesting
that aberrations in those modulators of squamous cell differentiation
have overlapping functional consequences.

mRNA expression profiling and subtype classification
Whole-transcriptome expression profiles were generated by RNA
sequencing for the entire cohort and by microarrays for a 121-sample
subset. Of 20,502 genes analysed, the mean RNA coverage indices were
193 and 6,420 RPKM (Supplementary Fig. 4.1 and Supplementary
Methods, section 4). Previously reported lung SQCC gene expression-
subtype signatures34 were applied to both of the expression platforms,
yielding four subtypes designated as classical (36%), basal (25%),
secretory (24%) and primitive (15%). The concordance of subtypes
between the two platforms was high (94% agreement) (Supplemen-
tary Fig. 4.2). Considerable correlations were found between the
expression subtypes and genomic alterations in copy number, mutation
and methylation (Fig. 3). The classical subtype was characterized by
alterations in KEAP1, NFE2L2 and PTEN, as well as pronounced hyper-
methylation and chromosomal instability. The 3q26 amplicon was pre-
sent in all of the subtypes, but it was most characteristic of the classical
subtype, which also showed the greatest overexpression of three known
oncogenes on 3q: SOX2, TP63 and PIK3CA. RNA sequencing data
suggested that high expression levels of TP63, in samples with and
without amplification of TP63, were associated with dominant expres-
sion of the deltaN isoform (also called p40), which lacks the amino-
terminal transactivation domain, compared with the longer isoform,
called tap63 (89% of tumours overexpressed deltaN compared with

tap63; P , 2.2 3 10216). The short deltaN isoform is thought to func-
tion as an oncogene35,36, and its expression was most enriched in the
classical subtype. By contrast, the primitive expression subtype more
commonly exhibited RB1 and PTEN alterations, and the basal express-
ion subtype showed NF1 alterations (Fig. 3). Amplification of FGFR1
and WHSC1L1 was anticorrelated with the classical subtype and spe-
cifically with NFE2L2 or KEAP1 mutated samples. Although CDKN2A
alterations are common in lung SQCCs, they are not associated with any
particular expression subtype (Fig. 3).

Independent clustering of miRNA and methylation data indicated
association with expression subtypes. The highest overall methylation
was seen in the classical subtype (Fig. 3, Supplementary Figs 5.1 and
6.1, Supplementary Methods, sections 5 and 6, Supplementary Data
6.1 and 6.2 and Supplementary Table 5.1). Integrative clustering
(iCluster)37 of mRNA, miRNA, methylation, SCNA and mutation
data demonstrated concordance with the mRNA expression subtypes
and associated alterations (Fig. 3, Supplementary Fig. 7.A.1 and
Supplementary Methods, section 7). Independent correlation of
somatic mutations, copy number alterations and gene expression
signatures revealed notable subtype associations with alterations in
the TP53, PI3K, RB1 and NFE2L2/KEAP1 pathways (Supplementary
Fig. 7.B.1 and Supplementary Methods, section 7).

Analysis of the CDKN2A locus
Integrated multiplatform analyses showed that CDKN2A, a known
tumour suppressor gene in lung SQCC38 that encodes the p16INK4A

and p14ARF proteins, is inactivated in 72% of cases of lung SQCC
(Fig. 4a and Supplementary Data 7.1)—by epigenetic silencing by
methylation (21%), inactivating mutation (18%), exon 1b skipping
(4%) and homozygous deletion (29%).
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Analysis of mRNA expression across the CDKN2A locus revealed
four distinct patterns of expression: complete absence of both p16INK4
and ARF (33%); expression of high levels of both p16INK4 and ARF
(31%); high expression of ARF and absence of p16INK4 (31%); or
expression of a transcript that represents a splicing of exon 1b from
ARF with the shared exon 3 of ARF and p16INK4, generating a pre-
mature stop codon (4%) (Supplementary Fig. 4.4). Almost all of the
cases completely lacking p16INK4 and ARF expression showed homo-
zygous deletion (Fig. 4b and Supplementary Data 7.1). In one case,
p16INK4 expression was detected but analysis of WGS data demon-
strated an intergenic fusion event that resulted in detectable transcrip-
tion between exon 1a p16INK4 and exon 18 of KIAA1797 (Fig. 4b, c).
Interestingly, combined analysis of WGS and RNA sequencing data
identified tumour suppressor gene inactivation by intra- or interchro-
mosomal rearrangement in PTEN, NOTCH1, ARID1A, CTNNA2, VHL
and NF1, in eight further cases (Supplementary Data 3.1 and 4.1).

In addition to homozygous deletion, there are frequent mutational
events in CDKN2A (Fig. 4b and Supplementary Data 7.1). These
account for 45% of the 56 cases with high p16INK4 and ARF expres-
sion. Furthermore, methylation of the exon 1a promoter accounts for
many other cases of CDKN2A inactivation (70% of lung SQCCs with
ARF expression in the absence of detectable p16INK4). Seven other
tumours in the high-ARF/low-INK4A group had documented
mutations of INK4A, primarily nonsense mutations, suggesting
nonsense-mediated decay as a mechanism. Of the 28% of tumours
without CDKN2A alterations, RB1 mutations were identified in eight
cases and CDK6 amplification in one case (Fig. 4d).

Therapeutic targets
Molecularly targeted agents are now commonly used in patients with
adenocarcinoma of the lung, whereas no effective targeted agents have
been developed specifically for lung SQCCs13. We analysed our genomic
data for evidence of the two common genomic alterations in adeno-
carcinomas of the lung: EGFR and KRAS mutations. Only one
sample had a KRAS codon 61 mutation, and there were no exon 19
deletions or Leu858Arg mutations in EGFR. However, amplifications
of EGFR were found in 7% of cases, as were two instances of the
Leu861Gln EGFR mutation, which confers sensitivity to erlotinib
and gefitinib39.

The presence of new potential therapeutic targets in lung SQCC
was suggested by the observation that 96% (171 out of 178) of tumours

contain one or more mutations in tyrosine kinases, serine/threonine
kinases, phosphatidylinositol-3-OH kinase (PI(3)K) catalytic and
regulatory subunits, nuclear hormone receptors, G-protein-coupled
receptors, proteases and tyrosine phosphatases (Supplementary
Fig. 7.D.1a and Supplementary Data 7.2 and 7.3). From 50 to 77%
of the mutations were predicted to have a medium or high functional
effect as determined by the mutation assessor score40 (Supplementary
Fig. 7.D.1a), and 39% of tyrosine and 42% of serine/threonine kinase
mutations were located in the kinase domain. Many of the alterations
were in known oncogenes and tumour suppressors, as defined in the
COSMIC database (Supplementary Data 7.3).

We selected potential therapeutic targets based on several features,
including (1) availability of a US Food and Drug Administration
(FDA)-approved targeted therapeutic agent or one under study in
current clinical trials (Supplementary Data 7.2); (2) confirmation of
the altered allele in RNA sequencing; and (3) the mutation assessor
score40. Using those criteria, we identified 114 cases with somatic
alteration of a potentially targetable gene (64%) (Supplementary
Fig. 7.D.1b and Supplementary Data 7.4). Among these, we identified
three families of tyrosine kinases, the erythroblastic leukaemia viral
oncogene homologues (ERBBs), fibroblast growth factor receptors
(FGFRs) and Janus kinases (JAKs), all of which were found to be
mutated and/or amplified41. As discussed for EGFR, the mutational
spectra in these potential therapeutic targets differed from those in
lung adenocarcinoma (Supplementary Fig. 7.D.2)42.

To complement a gene-centred search for potential therapeutic
targets, we analysed core cellular pathways known to represent poten-
tial therapeutic vulnerabilities: PI(3)K/AKT, receptor tyrosine kinase
(RTK) and RAS. Analysis of the 178 lung SQCCs revealed alteration
in at least one of those pathways in 69% of samples after restriction of
the analysis to mutations confirmed by RNA sequencing and to
amplifications associated with overexpression of the target gene
(Fig. 5). Mutational events that have been curated in COSMIC are
also shown in Supplementary Fig. 7D.2, as is the distribution of muta-
tions, amplifications and overexpression of the genes depicted in
Fig. 5. (A summary of all samples and their significant mutations
and copy number alterations, including alterations in Fig. 5, is shown
in Supplementary Data 7.5.) Specifically, one of the components of the
PI(3)K/AKT pathway was altered in 47% of tumours and RTK sig-
nalling probably affected by events such as EGFR amplification, BRAF
mutation or FGFR amplification or mutation in 26% of tumours
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(Fig. 5 and Supplementary Fig. 7.D.3). Alterations in the PI(3)K/AKT
pathway genes were mutually exclusive with EGFR alterations as
identified by MEMo43 (Supplementary Fig. 7.D.4.). Although the
dependence of lung SQCC on many of these individual alterations
remains to be defined functionally, this analysis suggests new areas for
potential therapeutic development in this cancer.

Discussion
Lung SQCCs are characterized by a high overall mutation rate of 8.1
mutations per megabase and marked genomic complexity. Similar to
high-grade serous ovarian carcinoma17, almost all lung SQCCs
display somatic mutation of TP53. There were also frequent altera-
tions in the following pathways: CDKN2A/RB1, NFE2L2/KEAP1/
CUL3, PI3K/AKT and SOX2/TP63/NOTCH1 pathways, providing
evidence of common dysfunction in cell cycle control, response to
oxidative stress, apoptotic signalling and/or squamous cell differenti-
ation. Pathway alterations clustered according to expression-subtype
in many cases, suggesting that those subtypes have a biological basis.

A role for somatic mutation in the cancer hallmark of avoiding
immune destruction44 is suggested by the presence of inactivating muta-
tions in the HLA-A gene. Somatic loss-of-function alterations of HLA-A
have not been reported previously in genomic studies of lung cancer.
Given the recently reported efficacy of anti-programmed death 1
(PD1)45 and anti-cytotoxic T-lymphocyte antigen 4 (CTLA4) antibodies
in non-small-cell lung cancer46, these HLA-A mutations suggest a pos-
sible role for genotypic selection of patients for immunotherapies.

Targeted kinase inhibitors have been successfully used for the treat-
ment of lung adenocarcinoma but minimally so in lung SQCC. The
observations reported here suggest that a detailed understanding of
the possible targets in lung SQCCs may identify targeted therapeutic
approaches. Whereas EGFR and KRAS mutations, the two most com-
mon oncogenic aberrations in lung adenocarcinoma, are extremely
rare in lung SQCC, alterations in the FGFR kinase family are
common. Lung SQCCs also share many alterations in common with
head and neck squamous cell carcinomas without evidence of human
papilloma virus infection, including mutation in PIK3CA, PTEN,
TP53, CDKN2A, NOTCH1 and HRAS22,24, suggesting that the biology
of these two diseases may be similar.

The current study has identified a potentially targetable gene or
pathway alteration in most lung SQCC samples studied. The data
presented here can help to organize efforts to analyse lung SQCC
clinical tumour specimens for a panel of specific, actionable muta-
tions to select patients for appropriately targeted clinical trials. These

data could thereby help to facilitate effective personalized therapy for
this deadly disease.

METHODS SUMMARY
All specimens were obtained from patients with appropriate consent from the
relevant Institutional Review Board. DNA and RNA were collected from samples
using the Allprep kit (Qiagen). We used commercial technology for capture and
sequencing of exomes from tumour DNA and normal DNA and whole-genome
shotgun sequencing. Significantly mutated genes were identified by comparing them
with expectation models based on the exact measured rates of specific sequence
lesions. GISTIC23,24 analysis of the circular-binary-segmented Affymetrix SNP 6.0
copy number data was used to identify recurrent amplification and deletion peaks.
Consensus clustering approaches were used to analyse mRNA, miRNA and methy-
lation subtypes using previous approaches20,21,34,38,41,44.
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CORRECTIONS & AMENDMENTS

CORRIGENDUM
doi:10.1038/nature11666

Corrigendum: Comprehensive
genomic characterization of
squamous cell lung cancers
The Cancer Genome Atlas Research Network

Nature 489, 519–525 (2012); doi:10.1038/nature11404

In this Article, author Kristen Rodgers was spelt incorrectly. This
error has been corrected in the HTML and PDF of the original paper.
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