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Abstract
De novo assembly of RNA-Seq data allows us to study transcriptomes without the need for a
genome sequence, such as in non-model organisms of ecological and evolutionary importance,
cancer samples, or the microbiome. In this protocol, we describe the use of the Trinity platform for
de novo transcriptome assembly from RNA-Seq data in non-model organisms. We also present
Trinity’s supported companion utilities for downstream applications, including RSEM for
transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed
transcripts across samples, and approaches to identify protein coding genes. In an included tutorial
we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity
platform. The software, documentation and demonstrations are freely available from http://
trinityrnaseq.sf.net.

Introduction
High throughput sequencing of genomes (DNA-Seq) and transcriptomes (RNA-Seq) has
opened the way to study the genetic and functional information stored within any organism
at an unprecedented scale and speed. For example, RNA-Seq allows in principle for the
simultaneous study of transcript structure (such as alternative splicing), allelic information
(e.g., SNPs), and expression with high resolution and large dynamic range1. These advances
greatly facilitate functional genomics research in species for which genetic or financial
resources are limited, including many ‘non-model’ organisms, which are nevertheless of
substantial ecological or evolutionary importance.

While many genomic applications have traditionally relied on the availability of a high-
quality genome sequence, such sequences have only been determined for a very small
portion of known organisms. Furthermore, sequencing and assembling a genome is still a
costly endeavor in many cases, due to genome size and repeat content. Conversely, since the
transcriptome is only a fraction of the total genomic sequence, RNA-Seq data can provide a
rapid and cheaper ‘fast track’, within reach of any lab, to delineating a reference
transcriptome for downstream applications such as alignment, phylogenetics or marker
construction. Indeed, even within a whole genome sequencing project, RNA-Seq has
become an essential source of evidence for transcribed gene identification and exon
structure annotation.

Realizing the full potential of RNA-Seq requires computational methods that can assemble a
transcriptome even when a genome sequence is not available. There are primarily two ways
to convert raw RNA-Seq data to transcript sequences: with the guidance of assembled
genomic sequences or via de novo assembly2, 3. The genome-guided approach to
transcriptome studies has quickly become a standard approach to RNA-Seq analysis for
model organisms, and several software packages exist for this purpose4, 5. It cannot,
however, be applied to organisms without a well-assembled genome, and even if one is
present, the results may vary across genome assembly versions. In such cases, a de novo
transcriptome assembler is required. However, the process of assembling a transcriptome
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violates many of the assumptions of assemblers written for genomic DNA. For example,
uniform coverage and the ‘one locus – one contig’ paradigm are not valid for RNA: an
accurate transcriptome assembler will produce one contig per distinct transcript (isoform)
rather than per locus, and different transcripts will have different coverage, reflecting their
different expression levels.

Several tools are now available for de novo assembly of RNA-Seq. Trans-ABySS 6, Velvet-
Oases7, and SOAPdenovo-trans (http://soap.genomics.org.cn/SOAPdenovo-Trans.html) are
all extensions of earlier developed genome assemblers. We previously described an
alternative and novel method for transcriptome assembly called Trinity8. Trinity partitions
RNA-Seq data into many independent de Bruijn graphs, ideally one graph per expressed
gene, and uses parallel computing to reconstruct transcripts from these graphs, including
alternatively spliced isoforms. Trinity can leverage strand-specific Illumina Paired-End (PE)
libraries, but can also accommodate non-strand-specific and single-end (SE) read data.
Trinity reconstructs transcripts accurately with a simple and intuitive interface that requires
little to no parameter tuning. Several independent studies have demonstrated that Trinity is
highly effective compared to alternative methods (e.g.9-11, The DREAM Project’s
Alternative Splicing Challenge (http://www.the-dream-project.org/result/alternative-
splicing)). Indicating Trinity’s utility, since its publication in May 2011, it has acquired an
avid user base with ~200 citations from May 2011 to March 2013 (http://
scholar.google.com/scholar?oi=bibs&hl=en&cites=14735674943942667509). Trinity users
study a broad range of model and non-model organisms from all Kingdoms, and come from
small labs and large genome projects alike (e.g., the pea aphid genome annotation v2;
Fabrice Legeai, INRA and Terence Murphy, RefSeq NCBI, personal communications).

Trinity also has an active developer community, which has greatly enhanced its performance
and utility (see http://trinityrnaseq.sourceforge.net). For example, while the runtime
performance of the first release was not computationally efficient11, the Trinity developer
community has since improved its efficiency, halving memory requirements and increasing
processing speed through increased parallelization and improved algorithms (12; M. Ott,
personal communication). Furthermore, Trinity was converted into a modular platform that
seamlessly uses third-party tools, such as Jellyfish13 for building the initial k-mer catalog.
Other third party tools integrated into Trinity have enhanced the utility of its reconstructed
transcriptomes. For example, as described below, Trinity now supports tools (e.g., RSEM14,
edgeR15 and DESeq 16) that take its output transcripts and test for differential expression,
while accounting for both technical and biological sources of variation17-19 and correcting
for multiple hypothesis testing. Given Trinity’s popularity and substantial enhancements
since publication, it is important to provide detailed protocols that leverage its various
features. The protocols we present below will maximize Trinity’s utility to users for studies
in non-model organisms, and inform the broad developer community on areas for future
enhancements.

Overview of the Trinity RNA-Seq assembler
Trinity’s assembly pipeline consists of three consecutive modules: Inchworm, Chrysalis, and
Butterfly (Figure 1). We strongly encourage users to first read Trinity’s first publication8 for
an extensive description of the method, which we present here more briefly.

First, all overlapping k-mers are extracted from the RNA-Seq reads. Inchworm then
examines each unique k-mer in decreasing order of abundance, and generates transcript
contigs using a greedy extension based on (k-1)-mer overlaps. Inchworm often generates
full-length transcripts for a dominant isoform, but reports just the unique portions of
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alternatively spliced transcripts. This works well for datasets largely deficient in repetitive
sequences, such as transcriptomes.

Next, Chrysalis first clusters related Inchworm contigs into components, using the raw reads
to group transcripts based on shared read support and paired reads links, when available.
This clusters together regions that have likely originated from alternatively spliced
transcripts or closely related gene families. Chrysalis then encodes the structural complexity
of clustered Inchworm contigs by building a de Bruijn graph for each cluster and partitions
the reads amongst the clusters. The partitioning of the Inchworm contigs and RNA-Seq
reads into disjoint clusters (“components”) allows massively parallel processing of
subsequent computations.

Finally, Butterfly processes the individual graphs in parallel, ultimately reporting full-length
transcripts for alternatively spliced isoforms and teasing apart transcripts that correspond to
paralogous genes. Butterfly traces the RNA-Seq reads through the graph, and determines
connectivity based on the read sequence and on further support from any available paired
end data. When connections cannot be verified by traced reads, Butterfly will split the graph
into several disconnected sub-graphs and process each separately. Finally, Butterfly
traverses the supported graph paths and reconstructs transcript sequences in a manner that
reflects the original cDNA molecules.

We describe key issues related to Trinity’s operation in Boxes 1-4 including: requirements
of the input sequence data and the optional use of in silico normalization to reduce the
quantity of the input reads to be assembled and to improve assembly efficiency (Box 1);
computing requirements and the availability of computing resources to users for running
Trinity (Box 2); the basics of running Trinity (Box 3); and advanced operations, such as
leveraging strand-specific RNA-Seq (Box 4). Additional issues relevant to evaluating de
novo transcriptome assemblies, including examining the completeness of an assembly and
estimating the potential impact of deeper sequencing are addressed in Supplementary Text
Section S1 and in Supplementary Fig. 1 and 2.

Transcriptome analysis package for non-model organisms
Generating a de novo RNA-Seq assembly is only the first step towards transcriptome
analysis. Common goals for studying transcriptomes in both model and non-model
organisms include identifying transcripts, characterizing transcript structural complexity and
coding content, and understanding which genes and isoforms are expressed in different
samples (tissues, environmental conditions, etc.). Trinity supports this by leveraging
additional popular software already likely to be installed in a bioinformatics environment, by
incorporating additional Open Source software as plug-in components that are directly
included in the Trinity software suite, and by providing easy-to-use scripts that aim to
provide a familiar and friendly command-line interface to otherwise complex analysis
modules. Results are often provided as tab-delimited files that users can import into their
favorite spreadsheet programs, and visualizations are generated in PDF format. Below, we
describe the details of the individual protocol steps and identify the currently supported
software utilities.

Comparing transcriptomes across samples
In many cases, a user will wish to compare the type or level of transcripts between samples,
for example for differentially expressed genes. There are two possible routes in this case.
One option is to assemble reads corresponding to each of the sample types separately, and
then compare the results from each of the assemblies. This, however, is complicated by the
need to match the ‘same’ transcripts derived from the independent assemblies. A more
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straightforward and recommended alternative is to first combine all reads across all samples
and biological replicates into a single RNA-Seq data set, assemble the reads to generate a
single ‘reference’ Trinity assembly (Fig. 2), and then quantify the level of each of these
transcripts in each sample, by aligning each sample’s (not normalized) reads to the reference
transcriptome assembly and counting the number of reads that align to each transcript (over-
simplified here, detailed below). Finally, statistical tests are applied to compare the counts of
reads observed for each transcript across the different samples, and those transcripts
observed to have significantly different representation by reads across samples are reported.
Further analysis of the differentially expressed transcripts can reveal patterns of gene
expression and yield insights into relationships among the investigated samples.

Transcript abundance estimation
Transcript quantification is a prerequisite to many downstream investigations. Several
metrics have been proposed for measuring transcript abundance levels based on RNA-Seq
data, normalizing for depth of sequencing and the length of transcripts. These metrics
include Reads Per Kilobase of target transcript length per Million reads mapped (RPKM20)
for single-end sequences, and an analogous computation based on counting whole
Fragments (FPKM21) for paired-end RNA-Seq data.

To calculate the number of RNA-Seq reads or fragments that were derived from transcripts,
the reads must first be aligned to the transcripts. When working with a reference genome
and an annotated transcriptome, reads are usually aligned to one or both4. In a de novo
assembly setting, the reads are re-aligned to the assembled transcripts. However,
alternatively spliced isoforms and recently duplicated genes may share subsequences longer
than the length of a read (or read pair), and these reads will map equally well to multiple
targets. Several methods4, 14, 22 were recently developed to estimate how to correctly
‘allocate’ such reads to transcripts in a way that best approximates the transcripts’ true
expression levels. Among these is the RSEM (RNA-Seq by Expectation-Maximization)
software14, which uses an iterative process to fractionally assign reads to each transcript
based on the probabilities of the reads being derived from each transcript (Fig. 3), taking
into account positional biases created by RNA-Seq library-generating protocols.

RSEM comes bundled with the Trinity software distribution. The RSEM protocol currently
requires gap-free alignments of RNA-Seq reads to Trinity-reconstructed transcripts, such as
alignments generated by the Bowtie software23. Given the Trinity-assembled transcripts and
the RNA-Seq reads generated from a sample, RSEM will directly execute Bowtie to align
the reads to the Trinity transcripts and then compute transcript abundance, estimating the
number of RNASeq fragments corresponding to each Trinity transcript, including
normalized expression values as FPKM. In addition to estimating the expression levels of
individual transcripts, RSEM computes ‘gene-level’ estimates using the Trinity component
as a proxy for the gene. In order to compare expression levels of different transcripts or
genes across samples, a Trinity-included script invokes edgeR to perform an additional
TMM (Trimmed Mean of M-values) scaling normalization that aims to account for
differences in total cellular RNA production across all samples24, 25.

Both full-length and partially reconstructed Trinity transcripts can be useful for estimating
gene expression, as compared to expression levels estimated using a high quality reference
genome-based transcript annotation. However, the more completely reconstructed
transcripts tend to be more highly correlated with the expression levels estimated for
reference transcripts (Supplementary Text Section S2, Supplementary Fig. 3).
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Analysis of differentially expressed transcripts
To estimate differential gene expression between two types of samples, we would ideally
obtain at least 3 biological replicates of each sample. The replicates allow us to test whether
the observed differences in expression are significantly different from expected biological
variation under the null hypothesis that transcripts are not differentially expressed. In the
absence of biological replicates, it is still possible to identify differentially expressed
transcripts by using statistical models of expected variation, such as under the Poisson or
negative binomial distribution. The Poisson distribution well models variation expected
between technical replicates26, whereas the negative binomial distribution better accounts
for the increased variation observed between biological replicates, and is the favored model
for identifying differentially expressed transcripts by leading software tools15, 16.

Trinity transcriptome assemblies can serve as a useful substrate for evaluating changes in
gene expression between samples, with results largely consistent with studies based on
reference transcriptomes (Supplementary Text Section S2, Supplementary Fig. 4). To this
end, we rely on tools from the Bioconductor project for identifying differentially expressed
transcripts, including edgeR15 and DESeq16. Bioconductor requires the R software for
statistical computing, which includes a command-line environment and programming
language syntax that can pose a significant barrier to new users or those lacking more
extensive bioinformatics training. To facilitate use of Bioconductor tools for transcriptome
studies, the Trinity software suite includes easy-to-use scripts that leverage the R software to
identify differentially expressed transcripts, generate tab-delimited output files listing
differentially expressed transcripts including fold-change and statistical significance values,
and generate visualizations such as MA-plots, volcano-plots, correlation plots, and clustered
heatmaps in PDF format (see Tutorial).

Protein prediction and functional annotation of Trinity transcripts
Most transcripts assembled from eukaryotic RNA-Seq data derived from polyadenylated
RNA are expected to code for proteins. A sequence homology search, such as by BLASTX,
against sequences from a well-annotated, phylogenetically-related species is the most
practical way to identify likely coding transcripts and to predict their functions.
Unfortunately, such well-annotated ‘relative’ species are often not available for newly
targeted transcriptomes. In such cases, using the latest non-redundant protein database (eg.
NCBI’s ‘nr’ (ftp://ftp.ncbi.nlm.nih.gov/blast/db/FASTA/nr.gz) or Uniprot (ftp://
ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_tre
mbl.fasta.gz)) is an appropriate alternative.

Newly targeted transcriptomes may also encode proteins that are insufficiently represented
by detectable homologies to known proteins. To capture those coding regions requires
methods that predict coding regions based on metrics tied to sequence composition. One
such utility is TransDecoder (Supplemental Text Section S3), which we developed and
include with Trinity to assist in the identification of potential coding regions within
reconstructed transcripts. When run on the Trinity-reconstructed transcripts, TransDecoder
identifies candidate protein-coding regions based on nucleotide composition, open reading
frame (ORF) length, and (optional) Pfam domain content.

Dynamic graphical user interfaces, such as IGV27 or GenomeView28, are especially useful
in studying transcript reconstructions. Although originally designed for genomes, these can
be readily used for viewing read alignments to transcripts, putative coding regions, regions
of protein sequence homology, and short read alignments with pair links.
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Limitations of the Trinity approach to transcriptome analysis
Although Trinity is highly effective for reconstructing transcripts and alternatively spliced
isoforms, in the absence of a reference genome, it can be difficult if not impossible to fully
understand the structural basis for the observed transcript variations, such as whether they
are due to one or more skipped exons, alternative donor or acceptor spliced sites, or retained
introns. We are currently exploring experimental and computational strategies to better
enable such insights from RNA-Seq data in the absence of reference genomes.

The RNA-Seq reads and pairing information allow Trinity to resolve isoforms and
paralogs8, but its success depends on finding sequence variations that can be properly
phased by individual reads or through pair-links. Sequence variations that cannot be
properly phased can result in erroneous chimeras between isoforms or paralogs that are
impossible to discern from short read data alone. Improvements in long read technologies 29

should help address these challenges. Notably, although Trinity currently only officially
supports Illumina RNA-Seq, efforts are underway to explore the use of transcript sequencing
reads generated from alternative technologies, including those from Pacific Biosciences 30

and Ion Torrent31.

Finally, as in high throughput genome sequences, evidence for polymorphisms can be mined
from the Illumina RNA-Seq data mapped to Trinity assemblies (as in Ref. 32) and visualized
within the display. However, one must be particularly cautious in evaluating polymorphisms
in the context of RNA-Seq and de novo transcriptome assembly data, since incorrect
transcript assembly or isoform misalignment can be easily misinterpreted as evidence for
polymorphism. In particular, when transcripts are very highly expressed, sequencing errors
can yield substantially expressed ‘variants’. Determining the best practices for calling SNPs
in de novo transcriptome assemblies and examining allele-specific expression is an open
area of research. Indeed as bioinformatic software become easier to use, it is essential for the
research community to develop and use best practices in order to ensure that controversial
results are not the result of multiple sources of error33.

Alternative analysis packages
Excellent tools are available and in widespread use for transcriptome studies in organisms
for which a high-quality reference genome sequence is available, including those provided
in the Tuxedo software suite (Bowtie, Tophat, Cufflinks, Cuffdiff, and
CummeRbund 4, 21, 23, 34) or Scripture 5. Available de novo RNA-Seq assembly software
include among others Oases7, SOAPdenovo-trans, and TransABySS6. The recently
published eXpress software22 implements a highly efficient algorithm for estimating
transcript expression levels, and leverages the Bowtie2 software34 for short read alignments,
providing an alternative to using RSEM for estimating transcript measurements. New
methods for differential expression analysis based on RNA-Seq data are also emerging35-39.
As we continue to maintain and enhance the Trinity software and support related
downstream analyses, we will explore the impact of new tools as they become available, and
integrate those found to be most useful into future analysis pipelines, and we encourage
users to explore alternative methods independently. In addition, we encourage users to
explore the currently supported tools, including edgeR and RSEM, independently from
using the Trinity-provided helper utilities, since they include additional capabilities that may
not be fully exposed through the Trinity wrappers.

Future Trinity developments are planned to not only support genome-free de novo
transcriptome assembly, but also to be able to leverage reference genome sequences and
transcript annotations where available. In addition to providing effective methods to assist in
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genome annotation, such developments should expand upon our abilities to explore the
transcriptional complexity of model organisms, particularly in those cases where genomes
are modified or rearranged, such as in cancer 40.

Introduction to the Trinity RNA-Seq tutorial
The following protocol will show you how to:

1. Run Trinity to assemble a transcriptome reference from RNA-Seq from multiple
samples.

2. Estimate expression levels for each transcript in each sample.

3. Identify transcripts that are differentially expressed between the different samples.

This tutorial provides a walk-through to some standard operations used to generate and
analyze Trinity assemblies, including de novo RNA-Seq assembly, abundance estimation,
and differential expression. For simplicity, our tutorial will not use libraries from biological
replicates, but note that at least three biological replicates per sample or condition are
required in order to test for significance given observed biological and technical variation.

All the methods and tools for interrogating assemblies are described on the Trinity software
website (http://trinityrnaseq.sf.net), and here we provide a selection of these operations that
strikes a balance between showcasing the breadth of capabilities and length of this tutorial.
This tutorial was produced with version Trinityrnaseq_r2013-02-25, and readers should
keep in mind that as Trinity is a continually evolving research software, some parameters
and filenames might change in future software releases. The most recent version of this
tutorial is maintained at (http://trinityrnaseq.sf.net/trinity_rnaseq_tutorial.html). A typical
use case for Trinity is not very different from the tutorial and we highly recommend users
complete the tutorial successfully before applying the protocol to their own data.

Before executing the steps described in the tutorial below, we encourage you to first read
through the entire tutorial document.

Materials
EQUIPMENT

• Data (requirements vary according to your experimental goals)

• Hardware (64-bit computer running Linux; ~1G of RAM per ~1M PE reads)

Trinity version trinityrnaseq_r2013-02-25: http://trinityrnaseq.sourceforge.net

Bowtie version 0.12.9: http://bowtie-bio.sourceforge.net (RSEM is currently
not compatible with Bowtie 2, so be sure to obtain the latest release for Bowtie
1, which is currently v. 0.12.9 as released on December 16, 2012.)

Samtools version 0.1.18: http://sourceforge.net/projects/samtools/files/
samtools/

R version 2.15: http://www.r-project.org

Blast+ version 2.2.27: ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/
LATEST/

Ensure that each of the above installed software tools (excepting Trinity) are available
within your unix PATH setting. For example, if you have tools installed in a ‘/usr/local/
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tools’ directory, you can update your PATH setting to include this directory in the search
path by:

% export PATH=/usr/local/tools:$PATH

EQUIPMENT SETUP
Optionally and only for simplicity, define the environmental variable TRINITY_HOME,
replacing ‘/software/trinityrnaseq’ below with the path to your Trinity software installation.
Otherwise you can write the full path where $TRINITY_HOME appears in this tutorial.

% export TRINITY_HOME=/software/trinityrnaseq

After you install R, you will need to install the following R packages:

1. Bioconductor: http://www.bioconductor.org

2. edgeR: http://www.bioconductor.org/packages/release/bioc/html/edgeR.html

3. gplots

The simplest way to do this is from within R:

% R
> source(“http://bioconductor.org/biocLite.R”)
> biocLite()
> biocLite(“edgeR”)
> biocLite(“ctc”)
> biocLite(“Biobase”)
> biocLite(“ape”)
> install.packages(“gplots”)

TUTORIAL DATA
For this tutorial, you will need to acquire strand-specific RNA-Seq data from
Schizosaccharomyces pombe grown in four conditions, described in Ref. 45: log growth
(log), plateau phase (plat), diauxic shift (ds), and heat shock (hs), each with 1M Illumina
paired-end strand-specific RNA-Seq data, to a total of 4M paired-end reads.

Reads for assembly
The data can be downloaded by visiting this URL in a web browser, or directly from the
command line using ‘wget’, by:

% wget \
http://sourceforge.net/projects/trinityrnaseq/files/misc/Trinity 
NatureProtocolTutorial.tgz/download

The file downloaded should be called ‘TrinityNatureProtocolTutorial.tgz’ and is 540 MB in
size. Unpack this file by:
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tar –xvf TrinityNatureProtocolTutorial.tgz

which should generate the following files in a TrinityNatureProtocolTutorial/ directory with
the following contents:

S_pombe_refTrans.fasta # reference transcriptome for S. pombe
1M_READS_sample/Sp.hs.1M.left.fq # PE reads for heatshock
1M_READS_sample/Sp.hs.1M.right.fq
1M_READS_sample/Sp.log.1M.left.fq # PE reads for log phase
1M_READS_sample/Sp.log.1M.right.fq
1M_READS_sample/Sp.ds.1M.right.fq # PE reads for diauxic shock
1M_READS_sample/Sp.ds.1M.left.fq
1M_READS_sample/Sp.plat.1M.left.fq # PE reads for plateau phase
1M_READS_sample/Sp.plat.1M.right.fq
samples_n_reads_described.txt # tab-delimited description
file.

This protocol expects the raw data to be of high quality, free from adaptor, barcodes and
other contaminating subsequences.

Procedure
De novo RNA-Seq assembly using Trinity (Timing: ~60 to 90 minutes)

1. Create a working folder and place the ‘TrinityNatureProtocolTutorial/’ directory contents
there (as per the Materials section).

2. In order to facilitate downstream analyses, concatenate the RNA-Seq data across all
samples into a single set of inputs to generate a single reference Trinity assembly. Combine
all ‘left’ reads into a single file, and combine all ‘right’ reads into a single file by:

% cat 1M_READS_sample/*.left.fq > reads.ALL.left.fq
% cat 1M_READS_sample/*.right.fq > reads.ALL.right.fq

3. Now, assemble the reads into transcripts using Trinity by:

% $TRINITY_HOME/Trinity.pl --seqType fq --JM 10G \
--left reads.ALL.left.fq --right reads.ALL.right.fq --
SS_lib_type RF --CPU 6

The --JM option allows the user to control the amount of RAM used during Jellyfish kmer
counting, in this case, 10 Gb of RAM. The --CPU option controls the number of parallel
processes. Feel free to change these depending on your system. The Trinity reconstructed
transcripts will exist as FASTA-formatted sequences in the output file ‘trinity_out_dir/
Trinity.fasta’.

4. The following ‘TrinityStats.pl’ will report the number of transcripts, components, and the
transcript contig N50 value based on the ‘Trinity.fasta’ file. The contig N50 value, defined
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as the maximum length whereby at least 50% of the total assembled sequence resides in
contigs of at least that length, is a commonly used metric for evaluating the contiguity of a
genome assembly. Note that, unlike genome assemblies, maximizing N50 is not appropriate
for transcriptomes; it is more appropriate to use an index based on a reference dataset (from
the same or a closely related species) and to estimate the number of reference genes
recovered and how many can be deemed to be full-length49, 50 (see below). The N50 value
is, however, useful for confirming that the assembly succeeded (you will expect a value that
is near the average transcript length of S. pombe, avg. = 1397 bases). Use the script
‘$TRINITY_HOME/utilities/TrinityStats.pl’ to examine this statistic for the Trinity
assemblies:

% $TRINITY_HOME/util/TrinityStats.pl trinity_out_dir/Trinity.fasta

Quality Assessment (Recommended, but Optional) (Timing: ~90 minutes)
5. Examine the breadth of genetic composition and transcript contiguity by leveraging a
reference data set. The annotated reference transcriptome of Schizosaccharomyces pombe is
included as file ‘S_pombe_refTrans.fasta’. Use megablast and our included analysis script to
analyze its representation by the Trinity assembly as described below:

a. Prepare the reference transcriptome fasta file as a BLAST database:

% makeblastdb -in S_pombe_refTrans.fasta -dbtype nucl

b. Run megablast to align the known transcripts to the Trinity assembly:

% blastn -query trinity_out_dir/Trinity.fasta \
-db S_pombe_refTrans.fasta \
-out Trinity_vs_S_pombe_refTrans.blastn \
-evalue 1e-20 -dust no -task megablast -num_threads 2 \
-max_target_seqs 1 -outfmt 6

c. Once BLAST is finished, run the script below examine the length coverage of top
database hits.

% $TRINITY_HOME/util/analyze_blastPlus_topHit_coverage.pl \
Trinity_vs_S_pombe_genes.blastn \
trinity_out_dir/Trinity.fasta \
S_pombe_refTrans.fasta

6. Examine the number of input RNA-Seq reads that are well represented by the
transcriptome assembly. Trinity provides a script ‘alignReads.pl’ that executes Bowtie to
align the left and right fragment reads separately to the Trinity contigs and then groups the
reads together into pairs while retaining those single read alignments that are not found to be
properly paired with their mate.

Run ‘alignReads.pl’ by:

% $TRINITY_HOME/util/alignReads.pl --seqType fq \
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--left reads.ALL.left.fq
--right reads.ALL.right.fq \
--SS_lib_type RF --retain_intermediate_files \
--aligner bowtie \
--target trinity_out_dir/Trinity.fasta -- -p 4

7. When ‘alignReads.pl’ is run using strand-specific data, as indicated above with the ‘--
SS_lib_type RF’ parameter setting, it will separate the alignments into those that align to the
sense strand (‘+’) from the antisense strand (‘−’). All output files including coordinate-
sorted and read-name-sorted SAM files should exist in a ‘bowtie_out/’ directory. Count the
number of reads aligning (at least once) to the sense strand of transcripts by running the
utility below on the sense-strand read name-sorted alignment file as shown:

% $TRINITY_HOME/util/SAM_nameSorted_to_uniq_count_stats.pl \
bowtie_out/bowtie_out.nameSorted.sam.+.sam

Abundance Estimation Using RSEM (Timing: ~40 to 60 minutes)
Transcript abundance estimates are obtained by running RSEM separately for each sample,
as shown below. The PERL script ‘run_RSEM_align_n_estimate.pl’ simply provides an
interface to the RSEM software, translating the familiar Trinity command-line parameters to
their RSEM equivalents and then executing the RSEM software.

8. # RSEM for log

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \
--transcripts trinity_out_dir/Trinity.fasta \
--left Sp.log.1M.left.fq \
--right Sp.log.1M.right.fq \
--SS_lib_type RF \
--prefix LOG

9. # RSEM for ds

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \
--transcripts trinity_out_dir/Trinity.fasta \
--left Sp.ds.1M.left.fq \
--right Sp.ds.1M.right.fq \
--SS_lib_type RF \
--prefix DS

10. # RSEM for hs

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \
--transcripts trinity_out_dir/Trinity.fasta \
--left Sp.hs.1M.left.fq \
--right Sp.hs.1M.right.fq \
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--SS_lib_type RF \
--prefix HS

11. # RSEM for plat

% $TRINITY_HOME/util/RSEM_util/run_RSEM_align_n_estimate.pl \
--transcripts trinity_out_dir/Trinity.fasta \
--left Sp.plat.1M.left.fq \
--right Sp.plat.1M.right.fq \
--SS_lib_type RF \
--prefix PLAT

Each step generates files ‘${prefix}.isoforms.results’ and ‘${prefix}.genes.results’,
containing the abundance estimations for Trinity transcripts (Table 1) and components
(Table 2), respectively. The ${prefix} in the filename is set based on the ‘--prefix’ setting in
the above commands, which is unique to each sample. Note, the genes and transcripts can be
examined separately using their corresponding RSEM abundance estimates in the
differential expression analysis guide below. For brevity, we pursue only the transcripts
below.

Differential Expression Analysis Using edgeR (Timing: < 5 minutes) Identification of
differentially expressed transcripts between pairs of samples

In the Trinity directory you will find the script ‘run_DE_analysis.pl’ (under
‘$TRINITY_HOME/Analysis/DifferentialExpression/’). This is a PERL script that
automates many of the tasks of running edgeR or DESeq; in this tutorial, we only leverage
edgeR. The input requires only one file: a matrix containing the counts of RNA-Seq
fragments per feature in a simple tab-delimited text file. The first column is the name of the
transcript. The second, third, etc., are the raw counts for each of the corresponding samples.
The program therefore needs a minimum of three columns. The first row contains the
column headings including a label for each sample.

We can create the matrix using the expected fragment count data produced by RSEM. You
will see that each of the RSEM ‘*.isoforms.results’ files has a number of columns, but we
only need the one called ‘expected_count’.

12. Merge the individual RSEM-estimated fragment counts for each of the samples into a
single data table by:

% $TRINITY_HOME/util/RSEM_util/merge_RSEM_frag_counts_single_table.pl\
LOG.isoforms.results DS.isoforms.results HS.isoforms.results \
PLAT.isoforms.results > Sp_isoforms.counts.matrix

13. Now, use edgeR to identify differentially expressed transcripts for each pair of samples
assayed, by:

%
$TRINITY_HOME/Analysis/DifferentialExpression/run_DE_analysis.
pl \
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--matrix Sp_isoforms.counts.matrix \
--method edgeR \
--output edgeR_dir

All the edgeR results from the pairwise comparisons now exist in the ‘edgeR_dir/’ output
directory, and also include the following files of interest:

• *.edgeR.DE_results - identified differentially expressed transcripts including fold
change and statistical significance (see Table 3 - output format for DE_results)

• *.edgeR.DE_results.MA_n_Volcano.pdf - MA and volcano plots from pairwise
comparisons (Fig. 9)

Normalizing expression values across samples
The statistical analyses of differential expression as performed above are based on the
analysis of raw counts of fragments corresponding to individual transcripts (or genes)
according to different samples. Execute the following steps to perform TMM normalization
and generate a matrix of expression values measured in FPKM.

14. First, extract the transcript length values from any one of RSEM’s *.isoform.results files.

% cut -f1,3,4 DS.isoforms.results > Trinity.trans_lengths.txt
%
$TRINITY_HOME/Analysis/DifferentialExpression/
run_TMM_normalization_write_FPKM_matrix.pl \
--matrix Sp_isoforms.counts.matrix \
--lengths Trinity.trans_lengths.txt

The above will generate the following files:

• ‘Trinity_trans.counts.matrix.TMM_info.txt‘ - containing the effective library size
for each sample after TMM normalization

• ‘Trinity_trans.counts.matrix.TMM_normalized.FPKM’- normalized transcript
expression values according to transcript and sample, measured as FPKM. This
matrix file will be used for clustering expression profiles for transcripts across
samples and generating heatmap visualizations as described below.

Analyzing expression patterns and sample relationships
15. To study expression patterns of transcripts or genes across samples, it is often useful to
restrict our analysis to those transcripts that are significantly differentially expressed in at
least one pairwise sample comparison. Given a set of differentially expressed transcripts, we
can extract their normalized expression values and perform hierarchical clustering to group
together transcripts with similar expression patterns across samples, and to group together
those samples that have similar expression profiles according to transcripts. For example,
enter the ‘edgeR_dir/’ output directory and extract those transcripts that are at least 4-fold
differentially expressed with false discovery-corrected statistical significance of at most
0.001 by:

% cd edgeR_dir/
% $TRINITY_HOME/Analysis/DifferentialExpression/analyze_diff_expr.pl \
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--matrix../Trinity_components.counts.matrix.TMM_normalized.FPKM \
-C 2 -P 0.001

Please note that the -C parameter takes the log2(fold_change) cutoff, which in this case is
log2(4) = 2. A number of files are generated, all with the prefix “diffExpr.P0.001_C2”
indicating the parameter choices:

• ‘diffExpr.P0.001_C2.matrix’ contains the subset of transcripts from the complete
matrix ‘matrix.TMM_normalized.FPKM’ that were identified as differentially
expressed, as defined by the specified thresholds.

• ‘diffExpr.P0.001_C2.matrix.heatmap.pdf’ contains a clustered heatmap image
showing the relationships among transcripts and samples (Fig. 10a) and a heatmap
of the pair-wise Spearman correlations between samples (Fig. 10b).

• ‘diffExpr.P0.001_C2.matrix.R.all.RData’ is a local storage of all the data generated
during this analysis. This is used below with additional analysis tools.

The ‘analyze_diff_expr.pl’ script will directly report the number of differentially expressed
transcripts identified at the given thresholds. In addition, you can easily determine the
number of differentially expressed transcripts, by counting the number of lines in the file by:

% wc -l diffExpr.P0.001_C2.matrix

and subtracting 1 so that you do not count the column header line as a transcript entry.

Due to the wide dynamic range in expression values of transcripts, it is useful to first log-
transform expression values before plotting data points. In addition, to examine common
expression patterns that focus on the relative expression of transcripts across multiple
samples, it is useful to center each transcript’s expression values by the median (or
alternatively, the mean) value. This is done by subtracting each transcript’s median
log2(FPKM) value from its log2(FPKM) value in each sample. The hierarchically clustered
transcript heatmap generated above uses median-centered log2(FPKM) values. Clusters of
transcripts with common expression profiles can be automatically extracted from the earlier
generated hierarchical clusters by running the script below, which uses R to cut the tree
representing the hierarchically clustered transcripts based on specified criteria, such as to
generate a specific number of clusters or by cutting the tree at a certain height. For example,
run the following to partition transcripts by cutting the tree at 20% of the tree height:

% $TRINITY_HOME/Analysis/DifferentialExpression/
define_clusters_by_cutting_tree.pl \
--Ptree 20 -R diffExpr.P0.001_C2.matrix.R.all.RData

This generates a directory: ‘diffExpr.P0.001_C2.matrix.R.all.RData.clusters_fixed_P_20/’
containing:

• ‘subcluster_*_log2_medianCentered_fpkm.matrix’ - each auto-defined cluster of
transcripts is provided along with expression values that are log2-transformed and
median-centered.

• ‘my_cluster_plots.pdf’ - contains a plot of the log2-transformed, median-centered
expression values for each cluster (Fig. 10c).
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The above script can be run several times with different values of --Ptree in order to increase
or decrease the number of clusters generated.

Automating the required sections of the tutorial
For those interested in executing the sections of the tutorial without manually typing in each
command, we include a script that executes the required sections of the tutorial. This
includes concatenating all samples’ reads into a single input data set, assembling the reads
using Trinity, performing abundance estimation separately for each sample, and running
edgeR to identify differentially expressed transcripts. This can be run by the following
command, including the -I (optional) parameter for an interactive experience, where the
system will pause and wait for user response before proceeding to the next step.

% $TRINITY_HOME/util/run_Trinity_edgeR_pipeline.pl \
--samples_file samples_n_reads_described.txt -I

Troubleshooting

Step Section Problem Possible reason Solution

3 Trinity
assembly

‘bad_alloc’
error

Insufficient computing
resources resulting in a
fatal out-of-memory
error.

Ensure you have ~1G of RAM per ~1 M
PE reads to be assembled. See Box 2
for computing requirements and
services available.

3 Trinity
assembly

Large
numbers of
fusion
transcripts

Not using strand-
specific RNA-Seq, or
applying assembly to a
transcriptome derived
from a compact
genome having
(minimally)
overlapping transcripts.

If PE reads are being used, try running
Trinity.pl with the ‘--jaccard_clip’
parameter, which uses PE reads to
separate minimally overlapping
transcripts.

3 Trinity
assembly

Retained
introns are
prevalent

Unprocessed RNA is
captured and
assembled, or
contaminating genomic
DNA contributes to the
assembly.

Setting Trinity.pl ‘--min_kmer_cov’ to
2 or higher should reduce the number of
retained introns, but will also reduce
sensitivity for transcript reconstruction.
Alternatively, lowly expressed
transcripts (often enriched for retained
introns) can be filtered from a given
component post- abundance estimation.

5-11 Quality
assessment
and
abundance
estimation

Cannot find
makeblastdb,
blastn, or
Bowtie

The additional required
software tools were not
installed or available
via the Unix PATH
setting.

See EQUIPMENT section, be sure
software tools are installed as required
and that the software utilities are
accessible via your PATH setting.
Check with a systems administrator as
necessary.

13-15 Differential
expression
analysis

Few or no
transcripts
identified as
differentially
expressed

Assuming transcripts
are truly differentially
expressed, increased
sensitivity is required to
detect them.

Adjust the sensitivity thresholds of
‘analyze_diff_expr.pl’, increasing the
allowed FDR and lowering the fold-
change requirements. Try running
Bioconductor tools directly and examine
the available options for data
exploration. Increase your depth of
sequencing to improve upon the
detection of lowly expressed transcripts.

Timing
Steps 1-4, Trinity de novo transcriptome assembly of 4M PE Illumina reads, ~60 to 90
minutes.

Steps 5-7, Quality Assessment (optional), ~60 to 90 minutes
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Steps 8-11, Using RSEM for abundance estimation, ~40 to 60 minutes.

Steps 12-15, Differential Expression Analysis Using EdgeR, < 5 minutes.

The amount of time taken for each of the commands executed for the required sections of
the tutorial, as reported during the automated execution via ‘run_Trinity_edgeR_pipeline.pl’
described above, and as run on a high performance server at the Broad Institute (hardware
specifications included), is provided as Supplementary Text Section S6.

Anticipated results
Since Trinity’s output is not absolutely deterministic, very slight variations in the output
may result from Trinity being run at different times or on different hardware.

Trinity assembly statistics are provided in Table 4.

Reference transcript BLASTN mapping results from Step 5: results provided in Table 5.
4,765 of the reference S. pombe transcripts have a BLAST hit with an E-value less than
1e-20 and 3,401 of the 5,163 total reference transcripts are considered approximately ‘full-
length’, with the Trinity contigs aligning by greater than 90% of the matching reference
transcript’s length.

The counts of reads mapped to the Trinity assembly via alignReads.pl and using the Bowtie
aligner, ascertained from Step 7, are provided in Table 6.

The number of differentially expressed transcripts identified as having a significant FDR
value of at most 0.001 and at least 4-fold difference in expression values, ascertained from
Step 15, is 659.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Box 1

Input sequence data requirements for assembly

Users are required to supply short-read data in the form of either FASTQ or FASTA
formats. These reads may be either paired-end (PE) or single-end (SE); paired-end
sequence data are preferable, particularly when coupled with a strand-specific sequencing
protocol (below). If multiple sequencing runs were conducted for a single experiment,
these reads may be concatenated into a single read file for single-end sequencing, or into
two files (e.g., merging all ‘left’ and all ‘right’ reads into single ‘left.fq’ and ‘right.fq’
files, respectively) in the case of paired-end sequencing. Similarly, if multiple biological
or technical replicates have been sequenced, these data can be concatenated into
individual files. Trinity may be used with data of any read length commonly produced by
next-generation sequencers, but most of our experience stems from the use of either 76 b
or 101 b Illumina reads.

For paired reads, Trinity must identify those reads that correspond to opposite ends of a
sequenced molecule. Trinity expects reads in either FASTQ or FASTA format to have
read names (accessions) that include a /1 or /2 suffix to indicate the left or right end of
the sequenced fragment. For example:

(first entry of the ‘left.fq’ file)

@61DFRAAXX100204:1:100:10494:3070/1
ACTGCATCCTGGAAAGAATCAATGGTGGCCGGAAAGTGTTTTTCAAATACAAGAGTGACAAT
GTGCCCTGTTGTTT
+
ACCCCCCCCCCCCCCCCCCCCCCCCCCCCCBC?CCCCCCCCC@@CACCCCCACCCCCCCCCC
CCCCCCCCCCCCCC

(first entry of the ‘right.fq’ file)

@61DFRAAXX100204:1:100:10494:3070/2
CTCAAATGGTTAATTCTCAGGCTGCAAATATTCGTTCAGGATGGAAGAACATTTTCTCAGTA
TTCCATCTAGCTGC
+
C<CCCCCCCACCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCBCCCCCCCCCCCCC
CCCACCCCCACCC=

If the Casava 1.8 format for FASTQ is used (below), Trinity will reconstruct the read
name from:

@HWI-ST896:156:D0JFYACXX:5:1101:1652:2132 1:N:0:GATCAG

to

HWI-ST896:156:D0JFYACXX:5:1101:1652:2132/1

Preprocessing sequence data
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While pre-assembly sequence quality control steps are not required, performing a few
easy steps can improve performance. First, if the reads include barcodes used for
multiplexing on the sequencing instrument, all barcodes must be removed before running
Trinity, for example, by running Trimmomatic41 or cutadapt42.

Second, removing reads (or regions of reads) with likely sequencing errors may reduce
the complexity of the resulting de Bruijn graph, and hence improve RAM usage and
program runtime. Specifically, the program Trimmomatic41 can successfully remove
terminal nucleotides that are less than a user-supplied minimum quality threshold (e.g.,
Q15).

Third, if more than 200 million PE sequences are to be assembled, the user may consider
performing an in silico normalization of the sequencing reads. Deep RNA-Seq produces
vast numbers of reads for transcripts that are already well represented at lower
sequencing depths in addition to providing increased sensitivity for the detection of rarer
transcripts36, 43. Normalization improves run-time by reducing the total number of reads,
while largely maintaining transcriptome complexity and capability for full-length
transcript reconstruction44. Trinity includes an in silico read normalization utility inspired
by the algorithm described for Diginorm44, except that here each RNA-Seq fragment
(single read or pair of reads) is probabilistically selected based on its median k-mer
coverage value (C) and the targeted maximum coverage value (M), specifically with
probability min(1, M/C) (Supplementary Text Section S4). Analyzing RNA-Seq data sets
from fission yeast8, 45 and mouse8, we have found that normalization to as low as 30X k-
mer (k=25) coverage (23% to 31% of the reads) results in full-length reconstruction to an
extent approaching that based on the entire read set, and far exceeds the full-length
reconstruction performance when simply subsampling the same number of reads from the
total data set (Fig. 4). Although in silico normalization can better enable

Trinity assembly of large RNA-Seq data sets, and is clearly better than the alternative of
subsampling reads, the sensitivity for full-length transcript reconstruction may be
affected, such as leading to the 6% decrease in full-length transcript reconstruction
observed for the 30X max. coverage normalization obtained based on our mouse RNA-
Seq data (Fig. 4). However, the relative impact on the percent of alternatively spliced
reference transcript isoforms detected remains largely unchanged (data not shown).
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Box 2

Computing requirements

The Trinity software is designed for Unix-type operating systems (primarily Linux),
provides a command-line interface, and is best run on a high memory multi-core
computer or in a high-performance computing environment. In general, we recommend
having approximately 1 GB of RAM per 1M PE reads. A typical configuration is a multi-
core server with 256 GB to 1 TB of RAM, and such systems have become more
affordable in the recent years (~ $15,000 to $40,000 – significantly less expensive than
many high-performance instruments used in molecular biology, and definitely within
reach of a departmental core facility). Smaller datasets can be executed in computing
environments with reduced memory resources (e.g., see Tutorial which can be
completed on a laptop with 8 GB of RAM). For those that lack the required computing
resources, such resources are freely accessible to eligible researchers by the Data
Intensive Academic Grid (DIAG, http://diagcomputing.org), and services are available to
researchers in the US (and their international collaborators) through the eXtreme Science
and Engineering Discovery Environment (XSEDE), on systems such as “Blacklight” at
the Pittsburgh Supercomputing Center (http://www.psc.edu/index.php/trinity).

As Trinity is executed from command-line, users should have a basic familiarity with
operating in a Unix environment. Each of Trinity’s three core modules has a different
characteristic runtime, memory usage, and parallelization (Fig. 1). Although the entire
Trinity compute pipeline can be executed on a single high-memory machine, the later
stages, including Chrysalis’ ‘QuantifyGraph’ section and the Butterfly computations,
benefit from access to a compute farm, where they can be massively parallelized. To this
end, Trinity’s final massively parallel section integrates the ability to submit to Load
Sharing Facility (LSF), a grid scheduling system. This is accomplished through the use of
the command line parameter ‘--grid_computing_module’ identifying a user-defined
module for submitting commands to the grid for execution. A submission script
(‘trinity_pbs.sh’) is also provided for using Trinity with the Portable Batch System (PBS)
Torque and PBSpro cluster job schedulers.
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Box 3

Basic Trinity operation

The assembly pipeline for a typical Trinity assembly is executed from the command line
via a single PERL script called ‘Trinity.pl’, with options describing the sequencing
protocol and the names of the files containing RNA-Seq reads. For the Unix-style
commands shown throughout, we use the initial character ‘%’ as a command prompt, and
the $TRINITY_HOME variable corresponds to the location of the Trinity software
installation directory. Commands that span multiple lines are separated by a trailing ‘\’
character.

If the RNA-Seq protocol used a non strand-specific method, then Trinity.pl is executed as
follows:

For single-end reads:

% $TRINITY_HOME/Trinity.pl --seqType fq \
--single single.fq --JM 20G

For paired-end reads:

% $TRINITY_HOME/Trinity.pl --seqType fq \
--left left.fq \
--right right.fq --JM 20G

The --seqType parameter indicates the file format for the sequenced reads, which can be
in FASTQ (‘fq’) or FASTA (‘fa’) format (See Box 1 and the Tutorial for more detailed
descriptions of input requirements). Trinity will also detect which flavor of FASTQ is
used (Sanger, Illumina 1.3, CASAVA 1.8+) and convert them to FASTA files; Trinity
does not presently use the base quality scores provided in the FASTQ file format. If the
data are paired, the new FASTA file will have /1 and /2 header information to indicate
‘pairedness’. When other formats of FASTQ or if paired-end FASTA files are provided
to Trinity, users must ensure that this pairedness is represented using the /1 and /2 read
name suffix notation.

Users can include additional parameter settings (see below) to tune any of the three
assembly steps according to the characteristics of the dataset, but Trinity usually
performs well with the default parameters. Further, some settings, such as --JM 20G
above (20G of memory to be allocated to Jellyfish for building the initial k-mer catalog),
relate to the hardware being used and Box 2 describes how users can select optimal
settings for different hardware configurations.

Trinity output

The final output from running Trinity is a single FASTA-formatted file containing the
reconstructed transcript sequences, found as ‘trinity_out_dir/Trinity.fasta’. To understand
the output format, recall that Chrysalis divides sequences into graph components based
on subsequences shared between them, and Butterfly further refines the sequence’s
classification by partitioning components into sets of transcript contigs based on read
support within the graph (Fig. 1).

An example of a pair of entries found in the Trinity FASTA-formatted output is (Fig. 5):
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>comp0_c0_seq1 len=5528 path=[3647:0-3646 129:3647-3775 1752:3776-5527]
AATTGAATCCCTTTTTGTATTGAAAAAGTTGAAATGAAAGACATATACAGAT
TGAATGTG…TCCTCTGATACACAGCCTCGCAGGGTTCATTTCAAGCCGTGGG
GCTGCGCCACGGGTGCTAAGTCAACTGCATTCGATGCGGCTTTTAAACCCCC
AGGGGACACCTCGGCCAGCTGTTTGCCTGCAGTA…TTGTGTTTCTTCAACAG
TTTATCAGCTTGCTGAATTGCCATTTTATTATTTCCATTATCAAGATAATCG
TAAATGGGCCGGAGGCGCCGGTCGTTAGGGTCCTGCACATGGCCCCGCGTCG
CCATGATGACAAGCGCAGAACCTCAGT
>comp0_c0_seq2 len=5399 path=[3647:0-3646 1752:3647-5398]
AATTGAATCCCTTTTTGTATTGAAAAAGTTGAAATGAAAGACATATACAGAT
TGAATG…TGGTGATTGCAAAATATAATGCAATTTCGAACAATTAAAATTATG
AAAATATAC…TTGTGTTTCTTCAACAGTTTATCAGCTTGCTGAATTGCCATT
TTATTATTTCCATTATCAAGATAATCGTAAATGGGCCGGAGGCGCCGGTCGT
TAGGGTCCTGCACATGGCCCCGCGTCGCCATGATGACAAGCGCAGAACCTCA
GT

The FASTA header describes how the transcript was structurally represented as
reconstructed by Butterfly. For example, in the header of the first reported sequence, the
accession value ‘comp0_c0_seq1’ corresponds to i) Chrysalis component ‘comp0’, ii)
Butterfly disconnected subgraph ‘c0’, iii) Butterfly-reconstructed sequence ‘seq1’, and
iv) having a length of 5,528 bases. The path of the sequence traversed by Butterfly
through nodes in the sequence graph (Fig. 5a, blue, red and green nodes) is provided in
the header as “path=[3647:0-3646 129:3647-3775 1752:3776-5527]”, listing the
identifiers of the ordered nodes (3647, 129, 1752) and the ranges within the reconstructed
transcript sequence that correspond to each respective node.

The second sequence above is a second transcript derived from the same component,
identified by the accession ‘comp0_c0_seq2’ that corresponds to a sequence ‘seq2’
output from the same Chrysalis component and Butterfly subgraph ‘comp0_c0’. In this
case, the path traverses only two of the nodes 3647 and 1752; Fig. 5a, blue and green
nodes), through the edge connecting them directly. Thus, ‘seq1’ differs from ‘seq2’ only
by the addition of the sequence in the internal node ‘129’ (highlighted subsequence; Fig.
5a, red node). Such variations can result from alternative splicing. Here, for example,
comparison to the reference mouse genome shows that the internally unique sequence in
‘seq1’ corresponds to a cassette exon that is skipped in ‘seq2’ (Fig. 5c, where Trinity
‘seq1’ and ‘seq2’ are shown as ‘Isoform B’ and ‘Isoform A’, respectively). Validating
such transcripts can be done by comparison to an annotated reference genome (even of a
related species) or experimentally. In some cases, alternative paths reflect the shared and
distinct portions in paralogous genes or alternative alleles. Mate pairing information and
sufficiently long reads allow Trinity to resolve phased variations and correctly
reconstruct the individual isoforms or paralogous transcripts from the more complex
graphs8.
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Box 4

Advanced Trinity Operations

Leveraging strand-specific RNA-Seq data

Trinity’s preferred input is strand-specific RNA-Seq data, which allows us to distinguish
between sense and antisense transcripts and minimizes erroneous fusions between
neighboring transcriptional units that are encoded on opposite strands. This is particularly
useful when applied to dense microbial genomes, where overlapping transcriptional units
are common. Several methods are available for generating strand-specific RNA-Seq46, 47.

When given strand-specific data, Trinity first converts all the input reads to the
transcribed strand orientation, reverse-complementing if required. Users need to indicate
strand-specificity to Trinity.pl via the ‘--SS_lib_type’ parameter, with ‘F’ or ‘R’ values
for single-end reads to indicate reads originating from the transcribed or opposite-strand,
respectively. Similarly, ‘FR’ or ‘RF’ values are used for paired-end reads to reflect both
ends (Fig. 6). For example, the dUTP-based strand-specific sequencing generates ‘RF’
paired-end sequences, where the right read (name ending with /2) corresponds to the
transcribed strand and the left read (name ending with /1) exists in the opposite-strand. A
corresponding Trinity assembly command would be constructed as:

For single-end reads

% $TRINITY_HOME/Trinity.pl --seqType fq --single single.fq \
--JM 20G --SS_lib_type F

For paired-end reads

% $TRINITY_HOME/Trinity.pl --seqType fq --left left.fq \
--right right.fq --JM 20G --SS_lib_type RF

During the FASTA conversion, Trinity reverse-complements the read sequences that are
specified to exist in the ‘R’ orientation.

Using strand-specific data can cause a small increase in running time, due to the
increased k-mer complexity of the data. Specifically, in strand-specific data, the forward
and reverse-complemented k-mers are stored individually, whereas in non-strand-specific
data, there is no distinction between a k-mer in either orientation and it is stored in a
single canonical representation. However, this small increase yields several benefits,
including a small overall improvement in transcript reconstruction compared to non-
strand-specific data (Fig. 7), a substantial reduction in the number of falsely fused
transcripts in species with compact genomes such as fission yeast or Drosophila
melanogaster (Fig. 7), and the ability to distinguish sense and antisense transcripts, thus
revealing otherwise concealed mechanisms for transcriptional regulation8, 45.

Mitigating falsely fused transcripts

To further resolve erroneous fusion of overlapping transcripts from close neighboring
genes, Trinity can leverage mate-pair information (with the ‘--jaccard_clip’ parameter) to
identify and dissect regions within assembled contigs, consistent with overlapping yet
distinct transcripts (Fig. 8). In our experiments, roughly half of fused transcripts in fission
yeast and D. melanogaster are resolved using this method, albeit at a cost of doubling to
tripling of the total runtime (Fig. 7). Since this operation has little effect on the quality of
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transcriptomes reconstructed from gene-sparse genomes, such as many vertebrates (e.g.,
mouse) (Fig. 7), users are encouraged to use ‘--jaccard_clip’ in the case of transcriptome
assemblies for organisms expected to have compact genomes, such as microbial
eukaryotes, where erroneous fusions are more likely to be generated.

Additional parameters and approaches to consider

Several other options can be tuned to further improve accuracy and reduce runtime. First,
while Trinity handles substitution-type sequencing errors well, it cannot detect adaptors
or contaminants that survive the poly-dT enrichment (poly-A capture) protocols. In
Trinity’s assemblies, it is not uncommon to find sequences from other species (such as
viruses and bacteria) or native non-polyadenylated transcripts that are highly abundant
(such as rRNA). While some such sequences can yield important insights (e.g., viral
genomes in tumors48), in other cases users will opt to pre-filter them. In particular, read
pre-processing such as in silico normalization of read quantities, quality trimming, or
read filtering can reduce graph complexity and resulting runtimes (Box 1).

Second, when sequencing very deeply (e.g., in order to identify rare transcripts), the
larger number of observed sequencing errors contributes to increased graph complexity
and longer runtimes. In most cases, setting the minimum k-mer coverage requirement to
2 instead of the default of 1 via the ‘--min_kmer_cov 2’ parameter setting will effectively
handle such cases, eliminating the singly occurring k-mers that are heavily enriched in
sequencing errors, and vastly decreasing the complexity of the graph. In cases of very
deep sequencing (beyond several hundred million PE reads), users can (i) normalize their
data (Box 1) and/or (ii) consider performing a Trinity assembly with ‘--min_kmer_cov
2’; and then (iii) align the original read dataset back to the final Trinity transcripts for
abundance estimation.

Third, Trinity’s final phase, Butterfly, operates in parallel on graphs from individual
clusters and, by default, uses identical parameters for each cluster. As most clusters can
be processed by Butterfly quite rapidly (seconds to a few minutes), users who have
domain-specific knowledge can explore a number of parameter settings relating to graph
traversal to better understand how well assembled is a particular cluster of transcripts.
Such parameter adjustments may include redefining the read overlap requirements for
path extension, or tuning the minimum edge weight thresholds at branchpoints in the
graph (details are provided in the Supplementary Text Section S5 and Supplementary
Figures 5-9).
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Figure 1. Overview of Trinity assembly and analysis pipeline
Shown are the key sequential steps in Trinity (left) and the associated compute resources
(right). Trinity takes as input short reads (top left) and first uses the Inchworm module to
construct contigs. This requires a single high-memory server (~1G RAM per 1M paired
reads, but varies based on read complexity; top right). Chrysalis (middle left) clusters related
Inchworm contigs, often generating tens to hundreds of thousands of Inchworm contig
clusters, each of which is processed to a de Bruijn graph component independently and in
parallel on a computing grid (bottom right). Butterfly (bottom left) then extracts all probable
sequences from each graph component, which can be parallelized as well.
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Figure 2. De novo transcriptome assembly and analysis workflow
Reads from multiple samples (e.g., different tissues, top) are combined into a single data set.
Reads may be optionally normalized to reduce read counts while retaining read diversity and
sample complexity. The combined read set is assembled by Trinity to generate a ‘reference’
de novo transcriptome assembly (right). Protein coding regions can be extracted from the
reference assembly using TransDecoder and further characterized according to likely
functions based on sequence homology or domain content. Separately, sample-specific
expression analysis is performed by aligning the original sample reads to the reference
transcriptome assembly on a per sample basis, followed by abundance estimation using
RSEM. Differentially expressed transcripts are identified by applying Bioconductor
software, such as edgeR, to a matrix containing the RSEM abundance estimates (number of
RNA-Seq fragments mapped to each transcript from each sample). Differentially expressed
transcripts can then be further grouped according to their expression patterns.

Haas et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Abundance estimation via Expectation Maximization by RSEM
Shown is an illustrative example of abundance estimation for two transcripts with shared
(blue) and unique (red, yellow) sequences. To estimate transcript abundances, RNA-Seq
reads (short bars) are first aligned to the transcript sequences (long bars, bottom). Unique
regions of isoforms will capture uniquely-mapping RNA-Seq reads (red and yellow short
bars), and shared sequences between isoforms will capture multiply-mapping reads (blue
short bars). An Expectation Maximization algorithm, implemented in the RSEM software,
estimates the most likely relative abundances of the transcripts and then fractionally assigns
reads to the isoforms based on these abundances. The assignments of reads to isoforms
resulting from iterations of expectation maximization are illustrated as filled short bars
(right), and those assignments eliminated are shown as hollow. Note that assignments of
multiply-mapped reads are in fact performed fractionally according to a maximum
likelihood estimate. Thus, in this example, a higher fraction of each read is assigned to the
more highly expressed top isoform than to the bottom isoform.
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Figure 4. Effects of in silico fragment normalization of RNA-Seq data on Trinity full-length
transcript reconstruction
Shown are the number of full-length transcripts reconstructed (Y axis) from a dataset of
paired-end strand-specific RNA-Seq in S. pombe (a, 10M paired-end reads) or mouse (b,
100M, paired-end reads), using either the full dataset (Total; 100%) or different samplings
(X axis) by either Trinity’s in silico normalization procedure at 5X up to 100X targeted
maximum k-mer (k=25) coverage (blue bars) or by random down-sampling of the same
number of reads (red bars).
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Figure 5. Transcriptome and genome representations of alternatively spliced transcripts
Shown is an example of the graphical representation generated by Trinity’s Butterfly
software (a) along with the corresponding reconstructed transcripts (b) and their exonic
structure based on the alignment to the mouse genome (c). Each node in the graph (a) is
associated with a sequence, and directed edges connect consecutive sequences from 5′ to 3′
in the same transcript. Bulges (bifurcations) indicate sequence differences between
alternative reconstructed transcripts, including alternatively spliced cassette exons; only a
single bulge is shown in this transcript graph. Edges are annotated by the number of RNA-
Seq fragments supporting the transcript from the 5′ sequence to the 3′ one. In this example,
there are two supported paths: one from the blue to the green node (supported by 32
fragments) yielding ‘isoform A’ (b, top), and the other from the blue to the red to the green
node, supported by at most 5 fragments, yielding ‘isoform B’ (b, bottom). The red node is a
result of an alternatively skipped exon, as apparent in the gene structure (c, red bar, shown in
‘isoform B’). Navigable transcript graphs are optionally generated by Butterfly, provided in
‘dot’ format and can be visualized using graphviz (http://graphviz.org). These details are
provided on the Trinity website (http://trinityrnaseq.sourceforge.net/
advanced_trinity_guide.html).
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Figure 6. Strand-specific library types
The left (/1) and right (/2) sequencing reads are depicted according to their orientations
relative to the sense strand of a transcript sequence. The strand-specific library type (F, R,
FR, or RF) depends on the library construction protocol and is user-specified to Trinity via
the ‘--SS_lib_type’ parameter.
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Figure 7. Full-length transcript reconstruction by Trinity in different organisms, sequencing
depths, and parameters
Shown is the number of fully reconstructed transcripts (bars, left Y axis) for Trinity
assemblies of RNA-Seq data derived from fission yeast (Schizosaccharomyces pombe8, 45),
Drosophila melanogaster11, and mouse8 with different combinations of parameters: DS –
double stranded mode, SS – strand-specific mode, +J – using the ‘--jaccard_clip’ parameter
to split falsely fused transcripts. Both SS and DS results are provided for S. pombe and
mouse, but only DS results are provided for Drosophila since its RNA-Seq data was not
strand-specific. Blue: full-length transcripts; red: full length merged, i.e., transcripts
erroneously fused with another (typically neighboring) transcript. The black curve (right Y
axis) indicates the run times in each case with a contemporary high-memory (256G to 512G
RAM) server using a maximum of 4 threads (‘--CPU 4’, see Tutorial).
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Figure 8. Evaluating paired-read support via the Jaccard similarity coefficient
Read pair support is computed by first counting the number of RNA-Seq fragments (bounds
of paired reads) that span each of two outer points of a specified window length (default:
100 bases), and then computing the Jaccard similarity coefficient (intersection/union)
comparing the fragments that overlap either point. An example is shown for a neighboring
pair of S. pombe transcripts (SPAC23C4.14 and SPAC23C4.15, bottom) that have
substantial overlapping read coverage (gray track), resulting in a contiguous (fused)
transcript assembled by Inchworm. However, the Jaccard similarity coefficient (blue track)
calculated from the paired-reads (grey dumbbells) clearly identifies the position of reduced
pair support. Examples of strong (upper left) and weak (upper right) pair support are
depicted at top. When using the ‘--jaccard_clip’ parameter, the Inchworm contig is
dissected to two separate full-length transcripts, which are then further processed by
Chrysalis and Butterfly as part of the Trinity pipeline.
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Figure 9. Pairwise comparisons of transcript abundance
Shown are two visualizations for comparing transcript expression profiles between the
logarithmic growth and plateau growth samples from S. pombe. (a) MA-plot for differential
expression analysis generated by EdgeR, plots for each gene its log2(fold change) between
the two samples (A, Y axis) vs. its log2(average expression) in the two samples (M, X axis).
(b) Volcano plot comparing false discovery rate (-log10FDR, Y axis) as a function of
log2(fold-change) between the samples (logFC, X axis). Transcripts that are identified as
significantly differentially expressed at most 0.1% FDR are colored red.
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Figure 10. Comparisons of transcriptional profiles across samples
(a) Hierarchical clustering of transcripts and samples. Shown is a heatmap showing the
relative expression levels of each transcript (rows) in each sample (column). Rows and
columns are hierarchically clustered. Expression values (FPKM) are log2 transformed and
then median-centered by transcript. (b) Heatmap showing the hierarchically clustered
Spearman correlation matrix resulting from comparing the transcript expression values
(TMM-normalized FPKM) for each pair of samples. (c) Transcript clusters, extracted from
the hierarchical clustering using R. X axis: samples (DS: diauxic shift; HS: heat shock; Log:
mid-log growth; Plat: plateau growth); Y axis: median-centered log2(FPKM). Grey lines:
individual transcripts; Blue line: average expression values per cluster. Number of
transcripts in each cluster is shown in a left corner of each plot.
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Table 1

Example contents of RSEM’s ‘isoforms.results’ file

transcript_id gene_id length effective_length expected_count TPM FPKM IsoPct

comp56_c0_seq1 comp56_c0 3739 3443 637.65 16664.43 7008.23 11.26

comp56_c0_seq2 comp56_c0 3697 3401 4966.34 131393.38 55257.53 88.74

comp62_c0_seq1 comp62_c0 7194 6898 4551.13 59364.09 24965.59 95.54

comp62_c0_seq2 comp62_c0 7076 6778 208.87 2771.95 1165.74 4.46

Transcript_id: Trinity transcript identifier

Gene_id: Trinity component to which the reconstructed transcript was derived.

Length: length of the reconstructed transcript.

Effective length: The mean number of 5′ start positions from which an RNA-Seq fragment could have been derived from this transcript, given the
distribution of fragment lengths inferred by RSEM. The value is equal to (transcript_length - mean_fragment_length + 1).

Expected count: number of expected RNA-Seq fragments assigned to the transcript given maximum likelihood transcript abundance estimates.

TPM: transcripts per million

FPKM: number of RNA-Seq fragments per kilobase of transcript effective length per million fragments mapped to all transcripts.

IsoPct: percent of expression for a given transcript compared to all expression from that Trinity component.
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Table 2

Example contents of RSEM’s ‘genes.results’ file

gene_id transcript_id(s) length effective_length expected_count TPM FPKM

comp56_c0 comp56_c0_seq1,
comp56_c0_seq2

3701.73 3405.49 5604 148057.81 62265.76

comp62_c0 comp62_c0_seq1,
comp62_c0_seq2

7188.74 6892.5 4760 62136.04 26131.33

The gene’s length and effective length are defined as the IsoPct weighted sum of transcript lengths and effective lengths. The gene’s expected
counts, TPM, and FPKM are defined as the sum of its transcripts’ expected counts, TPM and FPKM.
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Table 3

Example contents of logarithmic vs. plateau growth edgeR ‘DE_results’ file

Transcript logFC logCPM PValue FDR

comp5128_c0_seq1 10.3 11.1 2.13e-22 1.22e-18

comp5231_c0_seq1 10.0 10.9 1.10e-21 3.13e-18

comp5097_c0_seq1 8.7 11.3 5.72e-20 1.10e-16

comp1686_c0_seq1 9.2 10.4 1.01e-19 1.46e-16

comp1012_c0_seq1 8.3 11.5 2.8e-19 3.23e-16

logFC: log2(fold change) = log2(plateau_phase/logarithmic_growth)

logCPM: log2(counts per million)

FDR: false discovery rate
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Table 4

Trinity assembly statistics for the assembly of 4M PE S. pombe reads.

Assembly statistic Value

Total Trinity transcripts 9299

Total Trinity components 8694

Contig N50 1585
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Table 5

Distribution of BLASTN hit coverage of reference transcripts

% Length coverage
bin

Count of reference
transcripts in bin

Cumulative count of
reference transcripts
at or above bin level.

100 3401 3401

90 194 3595

80 165 3760

70 197 3957

60 224 4181

50 203 4384

40 158 4542

30 140 4682

20 83 4765

10 0 4765

0 0 4765
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Table 6

Counts of reads mapped to the Trinity assembly

Read classification Count of individual reads Percent of mapped reads

Proper pairing 8102100 93.12

Left only 307933 3.54

Right only 284203 3.27

Improper pairing 6476 0.07
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