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Abstract
Respiratory sinus arrhythmia (RSA) is largely mediated by the autonomic nervous system through
its modulating influence on the heart beats. We propose a robust algorithm for quantifying
instantaneous RSA as applied to heart beat intervals and respiratory recordings under dynamic
breathing patterns. The blood volume pressure derived heart beat series (pulse intervals, PIs) are
modeled as an inverse gaussian point process, with the instantaneous mean PI modeled as a
bivariate regression incorporating both past PIs and respiration values observed at the beats. A
point process maximum likelihood algorithm is used to estimate the model parameters, and
instantaneous RSA is estimated via a frequency domain transfer function evaluated at
instantaneous respiratory frequency where high coherence between respiration and PIs is
observed. The model is statistically validated using Kolmogorov-Smirnov (KS) goodness-of-fit
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analysis, as well as independence tests. The algorithm is applied to subjects engaged in meditative
practice, with distinctive dynamics in the respiration patterns elicited as a result. The presented
analysis confirms the ability of the algorithm to track important changes in cardiorespiratory
interactions elicited during meditation, otherwise not evidenced in control resting states, reporting
statistically significant increase in RSA gain as measured by our paradigm.

Keywords
Respiratory Sinus Arrhythmia; Heart Rate Variability; Meditation; Point Processes; Time-
Frequency Analysis

1 Introduction
A large number of autonomic and hemodynamic parameters are influenced by respiratory
activity. Among them, respiratory sinus arrhythmia (RSA) is defined as the variations in
heart rate during inspiratory and expiratory phases of the respiratory cycle (43, 13). At
typical resting respiratory frequencies, heart rate increases during inspiration, decreases
during expiration, and respiratory frequency also influences the phase relationship between
respiration and heart rate oscillations (13, 44). RSA serves an important role in providing
synchrony between the respiratory and cardiovascular systems, together responsible for
maintaining the metabolic equilibrium over a wide range of physical and psychological
conditions. RSA magnitude is dependent on both respiratory frequency and tidal volume,
even when the autonomic tone remains stable (25). A key problem in cardiorespiratory
engineering is to efficiently and accurately quantify and monitor RSA under different
physiological and behavioral conditions where frequent variations in respiration and
autonomic inputs are present. A solution to this issue could yield critical insights into the
mechanisms involved in short-term and long-term cardiorespiratory coupling (13, 43).

Accurate quantification of RSA serves several purposes. First, it is an indirect measure of
parasympathetic cardiac control, and it has been shown that pharmacologically induced
changes in cardiac vagal tone (eg. atropine administration) can be accurately tracked by
RSA measures (15, 20). Thus, RSA mainly reflects cardiac vagal efferent effects on the
sinoatrial node (14, 23), though at lower respiratory frequencies sympathetic cardiac control
can contribute to RSA as well (43). RSA could be used as a stable measure of
parasympathetic cardiac control not only in the controlled environments but also in the
ambulatory recordings (19). Second, evidence has been given for using RSA as a predictive
marker of risk of physiological morbidity (29). Generally, it has been found that lower RSA
is associated with high risk of morbidity. Third, RSA has become a central point in
evolution theory of central and vagal control of cardiorespiratory interactions (22).

In early work, RSA was defined using simple time domain measures of beat interval series
(28, 21). The algorithm measures the RSA as the difference between the shortest Pulse
Interval (PI) during inspiration and the longest PI during expiration within one respiratory
cycle, and has been thus referred as peak-valley method. The differences are then averaged
across several breaths, thus requiring a predetermined estimation window. Furthermore,
when using peak-valley based RSA estimations respiratory parameters need to be controlled
carefully, which may not be possible under some behavioral conditions (23). In addition to
the standard time domain measures (33), new indices have been proposed for the long-term
heart rate variability analysis (41, 34). Several other methods have been devised in the last
decades, both in the time and frequency domain, successfully relating measures of heart rate
variability to RSA and cardiopulmonary coupling (35, 26, 6, 36, 45, 18, 11, 7, 16, 46, 37).
Also, combined linear and nonlinear methods have been devised for heart disease screening
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(24, 48). In particular, filtering and transfer function approaches were also used in
quantifying RSA (44, 49), and a bivariate autoregressive model was further proposed to
estimate the time-varying RSA gain (3, 2). As most of these methods are not able to
completely overcome non-stationarity issues and not capable of estimating the fast changes
in RSA at arbitrarily small time scales, a point process framework for heart beat dynamics
(1, 4) has been proposed to assess RSA within an adaptive point process filtering algorithm
(9). However, the above approaches do not account for irregular respiration dynamics when
assessing RSA.

This paper introduces a maximum likelihood point process framework for instantaneous
estimation of RSA. This estimation method has been selected for its robust dynamic
identification qualities, and because it is less sensitive to parameter initialization and
numerically more stable than other adaptive recursive point process filters. The proposed
method allows time increments for parameter update at arbitrary small time intervals, thus
achieving instantaneous estimations of HRV and RSA measures. As a consequence, rapid
RSA changes at time intervals smaller than pulse or respiratory cycles can be monitored and
accounted for, and to get consecutive RSA estimates it is not necessary to average over
overlapping time windows, or wait till the next respiratory cycle or the next pulse, as
required by other existing methods. Importantly, as measures based on the traditional
subdivision in oscillatory frequency components might not be reliable in the presence of
non-stationary respiratory patterns, we further propose a new method for dynamically
estimating the RSA gain within the transfer function spectrum, based on a time-frequency
characterization of the respiratory cycle and the time-varying coherence between respiration
and the PIs. Such a combined method is capable of computing reliable, instantaneous
estimates of RSA by accounting for rapid dynamic changes in both respiration patterns and
autonomic inputs. The new algorithm is validated on simulated data, as well as applied to
recordings from subjects practicing meditation, where respiration patterns are considerably
altered.

The structure of this paper is as follows: In Section 2 we present the maximum likelihood
point process framework, the methods for evaluating model goodness-of-fit, and the
methods for estimating instantaneous RSA gain within the framework. Section 3 reports on
results obtained from applying the proposed algorithms on simulated signals with varying
respiration and autonomic inputs, and on results of a meditation protocol with non-stationary
respiration patterns respectively. Finally, in Section 4 we present discussions and final
conclusions.

2 Methods
2.1 Point Process Model of Heart Beat Interval Dynamics

Integrate and fire models are regularly used to simulate heart beats, and such models
postulate that the resulting times between two firing events (the PIs) have statistical
properties of an inverse Gaussian process (4). Additionally, autonomic inputs to the SA node
are part of the cardiovascular control circuitry, thus the PI variations are dynamic, or time-
varying (4). For this reason, we here model the pulses as a history dependent, inverse
gaussian point process model with time-varying model parameters. Assume in a given
observation interval (0, T], K successive pulses are recorded: 0 < u1 < u2 < … < uK ≤ T.
Given any pulse-timing uk, the waiting time until the next pulse-timing (ie. next PI), obeys a
history dependent inverse gaussian probability density f(t) given by
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(1)

where t is at any time satisfying t > uk, and μPI (t) > 0 is the mean of the distribution, which
is an estimation of the instantaneous mean PI. θ(t) > 0 is the shape parameter of the inverse
gaussian distribution. The standard deviation of the above PI probability model is given by
(10)

(2)

Because of the lasting effects of autonomic inputs to the SA node, μPI (t) in the point
process probability model should be modeled as dependent on the recent history of the
previous PI intervals,

(3)

Thus, the mean value of the distribution is modeled as a univariate p-order autoregressive
(AR) process. According to the model, the mean PI interval is influenced by the past p PI

intervals, thus dependent on the AR coefficients , whereas the PI interval variance

is determined by  and θ(t). All the model parameters are time-varying, thus taking
into account the non-stationary behavior of heart beat dynamics, and allowing for definition
of instantaneous estimates of heart rate variability (HRV). Later we shall see an extension to
bivariate AR in Section 2.4 which takes into account non-stationarities in respiration.

2.2 Heart Rate and Heart Rate Variability
Heart rate is often defined as the reciprocal of the PIs (33). For PIs measured in seconds, r =
c/(t − uk), where c = 60s/min, gives the estimation of heart rate in beats per minute (bpm).
By using a standard change of variables formula (42), we get heart rate probability density
f(r) = f(c/(t − uk)) as

(4)

Mean and standard deviation of the heart rate probability density are given by (4)

(5)

(6)

Instantaneous estimates of heart rate and heart rate variability are characterized by μ HR (t),

and , respectively.
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2.3 Heart Beat Spectral Components
Spectral analysis of HRV has been deemed useful in measuring the sympathovagal balance
of a subject. The frequency response for the PI interval series is given by

(7)

where fs is the beat rate. we can then evaluate the dynamic power spectrum, or the
parametric auto-spectrum (5) by

(8)

Main spectral components can be identified from the above auto-spectrum by subdividing
into three frequency bands as specified by the current HRV standards (33). The low
frequency component (LF, 0.04–0.15Hz) indicates the slow autonomic effects (sympathetic
and parasympathetic) on the SA node, whereas the high frequency component (HF, 0.15–
0.5Hz) indicates only parasympathetic modulation. The very low frequency component
(VLF, 0.003–0.04Hz) is dubious and is rarely attributed to physiological processes,
especially in short-term recordings. As a consequence, an instantaneous estimation of LF/HF
power ratio would provide important information about the dynamic sympathovagal balance
of a subject. Furthermore, the HF band has been defined as dynamically centered around the
respiratory frequency (37).

2.4 Bivariate Model for RSA analysis
The influence of past autonomic inputs and respiration activity on the PIs are incorporated
into the model by defining a bivariate regression on the mean of the point process
probability density,

(9)

The original respiration signal (RP) is re-sampled at the pulse timings, so that both
respiration and PIs are synchronized. Re-sample of RP can be can be performed quite
accurately, as current respiration measuring techniques offer high sampling rates.

RSA can then be defined as the transfer function from RP to PI,

(10)

We propose two methods of estimating the RSA gain from the above transfer function. First,
the time-varying respiration spectrum PRP (ω, t) is used to estimate the frequency ωRP(t)
where maximum respiration power is concentrated at each time instance, i.e.,

(11)

Then, RSA gain can be estimated by evaluating Eq. 10 at ωRP,
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(12)

Alternatively, we evaluate the RSA gain at the frequency where maximum interaction
between PIs and respiration occur. In this regards, we use the time-varying coherence
spectrum Coh(ω, t) (49)

(13)

where PPI−RP (ω, t) is the cross-spectral density between respiration and the PIs, while PRP
(ω, t) and PPI (ω, t) are the auto-spectral densities of respiration and PIs, respectively. The
time-varying coherence spectrum is then used to estimate the frequency ωcoh (t) where
coherence is maximum, i.e.,

(14)

and the RSA gain is evaluated at ωcoh,

(15)

Although computed differently, both RSA indices are expected to yield similar results, as
the PIs are highly correlated with the breathing cycle, and coincident with the main
respiratory frequency in spectral terms. In Section 3.5, we test the validity of this

assumption, pointing at both  as reliable estimates of instantaneous
RSA.

2.5 Local Maximum Likelihood Estimation
A local maximum likelihood method (32, 47) is implemented to estimate the unknown time-

varying parameter set . In estimating ξ at time t, we take a local
likelihood interval (t − l, t], where l is the length of the local likelihood observation window.
Within (t − l, t], we may observe n pulses, t − l < u1 < u2 < … < un ≤ t. Then, we consider
the local joint probability density of ut−l:t, where ut−l:t = {u1, …,un}. The log-likelihood
associated with the joint probability density is given by

(16)

where w(t − uj) = αt−uj, 0 < α < 1, is a weighting function for the local likelihood estimation
(4, 32). The weighting time constant α governs the degree of influence of a previous event
observation uj on the local likelihood at time t. The second term of Eq. 16 represents the
likelihood of the partially observed interval since the last observed pulse un (right
censoring). To maximize the local log likelihood given in Eq. 16 we use a Newton-Raphson
method, and obtain the local maximum likelihood estimate of ξ. Of note, the time increment
Δ for computing the next ξ from t to t+Δ can be chosen as arbitrarily small, thus yielding
instantaneous estimates of heart rate and heart rate variability.
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2.6 Model Goodness-of-Fit
Goodness-of-fit of the proposed model is evaluated using a Kolmogorov-Smirnov (KS) test
based on the time-rescaling theorem (8). The test uses the conditional intensity function

 to transform pulse events into independent observations on the
interval [0, 1], and the KS plot allows to test the agreement of the transformed observations
and the ideal uniform probability density. The transformed quantiles’ autocorrelation
function is further computed to check independence of the transformed intervals. If the
model is correct the KS plots should align with the 45 degrees diagonal (within 95%
confidence intervals), and the autocorrelation values should be as close as possible to zero
(also within 95% confidence intervals). The KS distance is defined as the maximum distance
of the KS plot from the diagonal.

3 Results
3.1 Simulations

Algorithms were tested with simulated signals for both constant and dynamic respiratory
conditions in order to evaluate the robustness of the proposed methods under altered
respiratory patterns. A simple sinusoidal model was used for both PI and RP signals as given
below.

(17)

(18)

The LF and HF components of the simulated PIs are modeled by f1(t) and f2(t) with
amplitude factors α(t) and β(t) respectively. With the basic assumption that the HF
component is coherent with respiration, the RP frequency will be given by f2(t). The
amplitude of the RP waveform is modeled by γ(t). n1(t), and n2(t) are additive white
gaussian noises. Such formulation is capable of simulating dynamic autonomic inputs via
setting the α(t) and β(t) parameters, thus varying the LF and HF powers. The LF/HF ratio,
which is proportional to (α(t)/β(t))2, can consequently also be varied. The model is also
capable of altering the RSA gain by changing the ratio β (t)/γ(t). The proposed point process
algorithm is used to perform two sets of simulations which estimate the dynamic RSA gain
at both constant and dynamic respiration by varying β(t), and then β(t) and f2(t),
respectively.

3.1.1 Constant Respiration Frequency—The first set of simulations was devised in
order to show that the proposed algorithm is capable of accurately estimating the RSA gain
while respiratory frequency remains relatively constant, and the results are shown in Figure
1a. Parameters in Eq. 17 and Eq. 18 were set to μPI = 1s, f1(t) = 0.1Hz, f2(t) = 0.3Hz, α(t) =
0.1s, γ(t) = 0.1rpu, β(t) has a step change from 0.2s to 0.1s at 500s, and then a linear
increment from 0.1s to 0.2s between 1000s and 1500s. Additive white Gaussian noise was
used for n1(t) and n2(t) with signal to noise ratio set at 20dB. A bivariate AR model (order 6)
was used to estimate the time-varying respiratory frequency and the coherence between the
PIs and respiration at the beats. The regression was defined at the beats, thus neither
interpolation nor resampling was necessary. Results demonstrate the ability of the algorithm
to track step changes as well as gradual changes in RSA gain while respiratory frequency
remains constant. Respiratory frequency was accurately estimated to be 0.3Hz, and a very
high coherence was observed (close to 1) between PI and RP at that frequency as seen from
Figure 1a. The step change at 500s was tracked accurately, and the point process algorithm
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was capable of reaching 95% of the lower RSA level within 41s. Gradual changes in RSA
from 1000s to 1500s were also followed accurately.

3.1.2 Dynamic Respiration Frequency—The second set of simulations was done in
order to show that the proposed algorithm is robust under sudden and gradual changes in the
respiratory frequency, and still capable of accurately estimating the RSA gain. The
simulation results for the dynamic respiration is shown in Figure 1b. In this case, respiratory
frequency f2(t) was linearly increased from 0.25Hz to 0.35Hz between 0sand 500s, suddenly
dropping back to 0.25Hz at 1000s. All the other parameters were set at same values as in
Section 3.1.1. Figure 1b shows the simulation results, where we observe a drop in coherence
down to 0.7 due to the step change in respiratory frequency at 1000s. More precisely, the
coherence drop occurs at 1026s, 26s after the actual frequency drop due the transient effect.
The estimated RSA gain during the gradual increase in respiratory frequency (from 0s to
500s) fluctuates just below 2, which demonstrates the robustness of the point process
algorithm under altered respiratory conditions. Note that the step change in the respiratory
frequency at 1000s does not have an impact on accurate estimation of RSA gain during that
period.

3.2 Meditation Protocol
Numerous reports have documented phase-locked decreases in respiratory rate during
meditation periods (31, 39), thus this is an ideal protocol for evaluating the robustness of the
proposed methods under time-varying respiration activity concurrent with dynamic
autonomic inputs. The data were acquired from 13 experienced practitioners of Buddhist
Insight (a.k.a. Vipassana) meditation, which is a form of ‘mindfulness’ meditation.
Mindfulness is defined as “paying attention in a particular way: on purpose, in the present
moment, and non-judgmentally” (27, 40). The study participants were instructed to perform
a breath awareness meditation technique, which consists of focusing attention on breathing
sensations (flow of air through the nose, or rise and fall of the abdomen) and passively
ignoring everyday thoughts. In total 4 females and 9 males, (25 to 49 years old, average
38.4), were included. They had been practicing Insight meditation for between 1 and 20
years (average 8.7), and were required to have been practicing 40 minutes per day at least 5
days per week for at least 1 year and to have attended at least one week-long meditation
retreat. None reported taking any medication or having any cardiovascular disease. These
subjects are compared to a demographically matched control group of 10 subjects, 4 females
and 6 males, (24 to 49 years old, average 35.7), with no previous yoga or meditation
experience.

The experiment which was conducted inside a MRI scanner as part of a larger study (30),
started with a 6 minute of baseline period, followed by 1 minute of fixation, then 24 minutes
of meditation, followed by 1 minute of fixation, and finally 6 minutes of silent random
number generation. The control group did not meditate, but rather simply rested throughout
the corresponding 24-minute period. For analytical purposes the meditation session is
divided into three epochs (early, middle, late) of 8 minutes each, referring to the temporal
stage of the meditation. During the experiment, the blood volume pressure (BVP) signal was
recorded, and used to identify the PIs. Additionally, two respiration signals, a flow signal
proportional to the airflow changes of the breath, and a belt signal proportional to the lung
volume changes were recorded. All the raw signals obtained were initially sampled at 1kHz.
Respiration signals were resampled at the pulse timings to obtain the respiration values at
the beats, after low pass filtering (cutoff 0.5Hz) to avoid aliasing.

A subset of nine meditation subjects further performed an experiment in which they were
cued to inhale and exhale in the exact pattern as during a previous meditation period (paced
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breathing), but without employing any meditation techniques. This was done in order to
evaluate the intrinsic effects of meditation as opposed to the effects of ‘meditative’
breathing. External visual stimuli were used to cue the subjects to reproduce the same
breathing patterns as in a previous meditation session. Both protocols were approved by the
Massachusetts General Hospital Institutional Review Board. Written informed consent was
obtained from all study participants and they were compensated for completion of
assessment procedures.

3.3 Instantaneous PI and HRV Estimation
PI and RP series from each recording session were used to estimate the optimal model
parameters for the proposed point process model. Optimal values for regression orders of the
bivariate model p and q, local maximum-likelihood interval l, and weighting time constant α
were obtained by minimizing the Akaike Information Criterion for maximum likelihood
estimation, as well as the KS distance on the KS plot. This empirical optimization yields to p
= 4, q = 6, l = 90s, and α = 0.98. The proposed maximum likelihood point process model
was then applied to both meditating and control subjects with these optimal model

parameters. The instantaneous mean PI estimate μPI (t), PI variance , mean heart rate

μHR(t), and HRV index  are updated every Δ= 5ms.

The estimated instantaneous HR and HRV indices for two representative subjects, one from
each group, are shown in Figure 2. In particular, sudden variations can be observed in the
estimated mean PI of the experienced meditator. These distinctive contractions are not
classifiable as ectopic beats, but could be attributed to fast tachycardic and/or bradycardic
events, possibly due to sharp shifts in the sympathovagal balance. Sharp increases in the
HRV index are consequently observed at corresponding timings. Of note, similar transients
were less frequent in the mean PI of the control subject.

The goodness-of-fit of the model was tested against the experimental data using KS plots
and transformed quantiles’ autocorrelation functions for each subject, as shown in Figure 2
for two representative subjects. For all 23 subjects considered, the KS plots approximately
follow the uniform cdf (the ideal fit), and mostly stay within the 95% confidence interval.
The reportedly small KS distances further indicate that the model fits well with the original
data. Additionally, autocorrelation plots were also generated for up to 60 lags
(approximately 1 minute), and we observed a low autocorrelation for all the subjects.
Almost all the points stay within the 95% confidence interval, which indicates the model has
successfully extracted all the dynamic structure from the original data.

3.4 Time-Frequency Analysis of PI and RP
After validating the model, time-frequency analysis of PI, RP, and coherence between the
two was performed for each subject in order to identify the dynamic respiration frequency
ωRP(t) and the dynamic frequency where maximum coherence occurs ωcoh(t), as a
preliminary step of evaluating dynamic RSA. The time-varying bivariate AR model (order
6) was used to estimate the dynamic auto-spectra of PI and RP, as well as the cross-spectrum
between the two, thus generating the time-frequency plots shown in Figure 3 for the two
representative subjects. From the RP and coherence time-varying spectral distributions, it is
evident that the frequency of maximum coherence (ωcoh(t)) closely matches with the
respiratory frequency (ωRP (t)), confirming the mentioned assumption that the highest
correlation between PIs and RP activity generally occurs at the predominant respiratory
frequency.

For the meditation subject, a notable drop in the predominant respiratory frequency is
observed during meditation. During baseline and number generation phases the subject
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breaths at around 0.25Hz, whereas respiratory frequency falls to around 0.2Hz during
meditation (even slower in early meditation). Of note, each expert meditator exhibits
different trends in respiration, likely due to individual differences in the ability to sustain a
deep meditative state. Therefore, a reliable method for autonomic control assessment should
be able to account for a wide range of respiratory dynamic changes. As the proposed method
relies on estimates of instantaneous respiratory frequency to compute the RSA gain, it is
possible to follow such variations in breathing. As we shall see in later analysis, measures
based on the standard subdivision of frequency bands are not able to account for such
changes.

3.5 Instantaneous RSA Estimation
The bivariate model in Eq. 9, together with the new time-frequency spectral
characterization, was used to estimate the instantaneous RSA. As applied to the considered

experimental data, the first important finding was that both  (respiration based) and

 (coherence based) gave very similar RSA estimates in all the subjects considered.
As previously noted, this finding was somehow expected, as PIs are often highly correlated
with respiration activity at the main respiratory frequency, indicating both

 as reliable estimates of instantaneous RSA. Results are shown in
Figure 4 for one experienced meditator, and for a control subject. For both subjects we
generally observed a high coherence (> 0.8), with only one evident exception in the
experienced meditator where coherence drops below 0.8 at the timings corresponding to
some of the fast transients in the heart beat dynamics.

Second, a significant increase in RSA gain is clearly noticeable during meditation, whereas
in the control subject RSA gain seems to fluctuate around baseline levels along the entire
experiment1. As the RSA transfer function exhibits low-pass characteristics (44), it could be
argued that increases in RSA during meditation are not a result of meditation itself, but are
only a result of the drop in breathing frequency. In order to account for such argument, we
estimated the RSA gain at a fixed frequency, and Figure 5a shows the comparison between
two RSA estimates, one at the dynamic respiratory frequency, and one at a fixed frequency
all along the experiment (ffix = 0.223Hz for the particular meditation subject). The fixed
frequency ffix was chosen so that, on average, the highest RP power was observed at ffix
during the entire experiment. We refer to this fixed frequency based RSA estimation as

static evaluation as opposed to the dynamic evaluations, , described
in the proposed methods. Higher RSA was found during meditation regardless of whether
the static or dynamic evaluation method was used, thus indicating that meditation yields
higher RSA independently of changes in respiration. For the RSA estimation based on static
frequency, drops in coherence were observed more frequently, especially during the early
meditation epoch. Thus, the proposed dynamic RSA estimation based on time-varying
respiration relies on higher values of coherence to provide more accurate results on the
linear interactions associated with cardiorespiratory coupling. It is important to highlight
that the static evaluation requires observing the entire data segments in order to estimate the
mean respiratory frequency, and as such it could not be implemented in an on-line fashion
for prospective real-time monitoring use. Furthermore, our dynamic evaluations add in
flexibility, and overcome at the same time the problems associated with a rigid subdivision
in frequency bands (33). A more comprehensive statistical analysis as applied to the two
groups considered is presented in Section 3.7.

1Note that for a fair comparison across subjects, the RSA gain was normalized by the standard deviation of the corresponding RP.
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Third, we compare two RSA estimates obtained by using two distinct acquisition methods
for the respiration signals. The first method measured the air flow through the subject’s
airways (flow RP), whereas the second method measured lung volume from the expansion
and contraction of the abdomen using a respiration belt (belt RP). Even though both signals
give similar respiratory frequencies, the amplitudes are incomparable, thus they were
normalized by the standard deviation of each RP signal in each single experiment. Figure 5b
shows a comparison of the RSA instantaneous estimations obtained using flow and belt
respiration signals for the previously shown expert meditator subject. The correlation index
between RP frequencies estimated for two signals was 0.9593, whereas the corresponding
RSA estimates had a correlation of 0.8253. Such high correlation indicates that regardless of
the respiration measuring method, both flow and belt RP signals lead to a similar and
consistent estimation of RSA. Deviations from a correlation of 1.0 can be reasonably
attributed to experimental noise.

3.6 LF-HF Spectral Analysis
We here compare the standard frequency domain indices (33) with the proposed RSA
measures. Figure 6 shows the PI power in the LF and HF bands, the LF/HF ratio, and the
percentage of RP power in the LF band for an exemplary meditation subject. It is interesting
to note that for the considered subject, the average respiratory frequency was found to be
0.146Hz, which is at the borderline between the LF and HF bands. As shown in Figure 6, on
average 47.3% of RP power falls in the LF band. This means that the respiratory-driven
autonomic control on HRV is now present in both frequency bands, thus causing a bias in
the LF/HF ratio as an indicator of the sympathovagal balance.

A slight increase in HF is observed during the middle and late meditation epochs possibly
due to the effects of meditation, but those changes are also mirrored in LF. Therefore the
LF/HF ratio fails to capture the corresponding autonomic dynamics happening during
meditation sessions where slow breathing cycles are usually observed. In contrast (Figure 4),
the proposed RSA estimates show an increase in RSA during practice epochs as a result of
meditation influence, as would be expected from self-reports of increasing relaxation over
the course of a typical mediation session.

3.7 Statistical Analysis
In this section we present a more detailed statistical comparison of both meditation and
control groups in terms of the proposed RSA indices as well as a set of standard HRV
indices. A summary of average pulse intervals, heart rates, their variances, and standard
SDNN and pNN50 estimates for the two groups is shown in Table 1. On average, the control
group exhibits a lower heart rate when compared to the expert meditator group, although
with no statistically significant differences between the two groups. Of note, in Figure 2, the
control subject exhibits a higher heart rate compared to the expert meditator, which is in
disagreement with the mean statistics, possibly due to large variations in heart rate within
each group. For both groups no significant changes in mean heart rate were observed during
practice or number generation epochs compared to the baseline. Standard time domain
measures SDNN and pNN50 as defined in (33) also fail to show statistical significance
between the two groups during practice epochs, although on average both SDNN and
pNN50 are somewhat higher for the control group. For both groups a general increase in
SDNN is observed during practice epochs compared to baseline or number generation
epochs. In summary, standard time-domain measures of HRV are not able to report any
significant changes distinguishing meditation practice from very relaxing states.

Average RSA statistics estimated by the proposed point process algorithm along with
respiration and coherence statistics are shown in Table 2. We also compare the proposed
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RSA estimations with standard frequency domain HRV measures and RSA measures
computed within the HF-band. As shown in Table 2 PI power in HF has increased (no
statistical significance) in expert meditators during meditation practice, suggesting an
improved vagal tone during meditation. We do not observe statistically significant changes
in LF/HF as well, possibly due to the considerable transient presence of respiration within
the LF-band during meditation practice. Conversely, RSA gain estimated at instantaneous
respiratory frequency using the proposed point process model does reveal significant
differences between the baseline and meditation condition for the meditators. In fact, all
three meditation epochs show a significant increase in RSA (p < 0.05), where increment is
between 29% and 44% compared to the baseline. No such difference was found in the
control group. In addition, coherence between PIs and RP remains high, between 0.86 and
0.96, at the respiratory frequency for both groups.

Within the meditation group, meditation epochs result in decrease in respiratory frequency
as well as respiratory power, though changes are not significant. Previously it has been
reported that the change in respiration rate during meditation compared to baseline is highly
correlated with meditation practice (30), suggesting that changes in respiration reflect
increasing mastery of the meditation technique. Respiratory rate increases slightly during
number generation phase for both groups compared to baseline, also without statistically
significant differences.

In order to show that RSA statistics are not biased by lower predominant respiratory
frequencies during meditation, we have computed the RSA gains at fixed frequencies where
(on average) maximum respiration is observed. We still found mean values comparable to
the dynamic assessment (i.e., higher RSA during meditation which is not evident in control
subjects), although with higher standard error, lower significance levels, and lower
coherence values at constant frequencies. This important outcome indicates that RSA gains
estimated accounting for dynamic respiratory frequencies provide a more accurate linear
assessment, and consequently yield lower variability of the estimates and less identification
uncertainty. During the silent random number generation phase, RSA values are statistically
comparable to baseline levels in both groups.

Previous frequency domain methods estimated RSA within the HF-band to disentangle
effects from the baroreflex loop (2). The proposed method is independent of such a
frequency division, as it is based on time-varying instantaneous respiratory parameters. In
order to explore frequency band biases, we have applied our proposed method singularly
within the HF-band and LF-band (also in Table 2). Mean respiration power in HF decreases
during meditation due to the shift in breathing rate to lower frequencies, then increasing
back to baseline levels in the random number generation epoch. A similar trend is noticeable
in the control group as well, but it is less significant. As expected, we observe an increase in
RSA during meditation, but all the increments are less significant compared to the proposed
dynamic RSA estimation where the entire spectrum was accounted for in the analysis.
Interestingly, HF-band based estimation fails to show a significant RSA increase (p > 0.1)
for the third meditation epoch, compared to the highly significant results given by our
dynamic RSA estimation (p = 0.005).

In the LF-band, respiration power increases considerably during meditation. It is interesting
to note that high coherence (≥ 0.74) is observed during meditation epochs between
respiration and PIs even in this range. This is possibly due to the ‘leakage’ of RP power into
LF during meditation, consequently increasing RSA in the LF band within the baroreflex
control loop, and biasing the LF/HF ratio as a measure of sympathovagal balance.
Importantly, results from the control group do not evidence a similar effect.
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Figure 7 shows the mean RSA as estimated by the proposed point process model for the two
groups along different epochs in the experiment. Again, ‘practice’ epochs implicate
engaging in meditation for the meditator group, while ‘practice’ refers to relaxation for the
control group. The expert meditator group has a significantly high RSA gain during
meditation, while the control group does not show significant changes compared to the
baseline epoch. Expectedly, both dynamic RSA measures proposed in this paper, based on
respiration and coherence, give similar RSA estimates statistics.

Finally, we further compare the RSA statistics of the meditation group during the paced
breathing experiment with the meditation experiment. As expected, paced breathing
successfully reproduces respiration characteristics as during meditation, with
undistinguished mean respiratory frequencies (fRP = 0.17 ± 0.06Hz paced vs. 0.17 ± 0.04Hz
meditation). As we compare results from the respective respiration dynamics within each
subject, it is reasonable to assume that the differences between the two experiments solely
represent the effects of meditation. On average, at dynamic respiratory frequency, mean
coherence was found to be 0.91 ± 0.07 (0.89 ± 0.09 with meditation), and at the fixed
frequency it dropped to 0.80 ± 0.08 (0.75 ± 0.14 with meditation). Overall, even in the
presence of slower respiratory frequencies, RSA estimation did not alter significantly during
paced breathing as compared to the baseline. For the group of subjects considered, sign-rank
test between baseline and paced breathing showed no significance (p = 0.10) as opposed to
the high significance (p = 0.0005) obtained during meditation. This result further supports
the finding that changes in RSA during meditation are not simply due to changes in
respiratory rate, but effectively associated to meditation practice.

4 Discussion
We have introduced a point process model for instantaneous estimation of a set of HRV and
RSA measures under dynamic respiration characteristics. Within the point process model,
the mean pulse interval is modeled as a bivariate regression of both previous PIs and
respiration values. We termed the feed-forward dependency of the PIs on respiration as
RSA, and a transfer function approach was used to quantify the instantaneous RSA
estimates. The model was validated statistically using Kolmogorov-Smirnov (KS) goodness-
of-fit tests and independence tests.

Obviating any artificial subdivision in frequency bands, our proposed method is robust to
variations in respiration patterns and relies on the instantaneous respiratory spectral power
distribution and the dynamic coherence between respiration and PIs. As a further proof that
RSA gains are not considerably biased by possible shifts in RP predominant frequency, we
have computed similar indices at pre-estimated fixed frequencies where coherence is the
highest on average along each experiment, and verified that average statistics using fixed
frequency based estimates corroborate the results from the proposed method. We have also
demonstrated that considering the entire spectrum instead of designated frequency intervals
leads to more reliable and less variable estimates.

Statistical analysis further reports a significant increase of RSA during meditation for the
expert meditator group, while no relevant difference and no statistical significance was
found for the control group, or during paced breathing. While traditional HRV indices
confirm previous findings pointing at an autonomic assessment not necessarily reflective of
quiescent cardiac dynamics (39), and possibly biased by altered breathing patterns (31), our
statistical RSA appraisal substantiates previous reports of a marked increase of RSA during
meditation (12), and further indicates that these changes are not simply due to changes in
respiration. Although unlikely, it is possible that mental effort of following the visual cues
during the paced breathing condition may have contributed to the observed differences in
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RSA between this condition and the meditative state. However, the meditative state also
requires some mental effort to remain focused, and so differences in cognitive load between
the conditions is likely minimal.

Our findings are further substantiated by the absence of an increase in RSA during an
experiment in which respiratory dynamics similar to those in meditation were reproduced
without effective meditation practice. Comparison between the two protocols allows for
isolation of the physiological effects of meditation, thus removing possible additional biases
in parameter estimation due to systematic changes in respiration characteristics, and it helps
in identifying important changes in cardiorespiratory coupling in the presence of dynamic
breathing patterns. Therefore, our overall results support the hypothesis that increased RSA
during mindfulness meditation performed by experienced practitioners may reflect adaptive
properties of the central-autonomic nervous system to this practice, that are not related to
any ‘voluntary intention’ towards the breathing process.

Future research will be required to identify physiological and psychological causes of
increased RSA during meditation. As some studies suggest, meditation-based clinical
interventions can impact physiological recovery during emotional challenges (17, 38). These
RSA measures may provide useful novel applications in dynamic instantaneous impact of
meditation and other behavioral interventions on autonomic functioning. Future studies will
address whether these methods can also be used to determine an objective measure of
meditative states. Such research may lead to finding how meditation practice is capable of
positively influencing mood and decreasing arousal with targeted changes to the vagal tone.

Future improvements to the model will consider introducing a vagal filter to the proposed
model, thus obtaining more direct estimates of vagal control. Also, devising a multivariate
model including arterial blood pressure as further covariate and accounting for directionality
and causality will enable to disentangle the closed-loop blood pressure control dynamics
from the respiratory-driven effects. Additionally, consideration of nonlinear models to
comprise the nonlinear interactions observed in cardiovascular control and cardiorespiratory
coupling may also lead to more accurate instantaneous RSA estimates. A precise dynamic
RSA assessment could provide a useful complement to current standard HRV measures with
the prospect of including RSA quantification into standard clinical or ambulatory monitoring
systems to achieve better patient care.

We have proposed a maximum likelihood point process model for instantaneous RSA
estimation combined with a time-frequency RSA evaluation based on pulse intervals and
respiration spectra and coherence. Our novel framework allows for robust tracking of RSA
changes at any time resolution, as well as overcoming potential problems associated with
traditional subdivision in standard frequency bands in the presence of distinctive respiratory
dynamics. The new algorithm was applied to subjects either practicing meditation, or just
asked to relax under equal conditions. Results show a significant increase in RSA under
meditation practice which is not evident in the control group or paced breathing experiment,
providing interesting insights into the effects of meditation on cardiorespiratory function and
encouraging further investigation into the effects of meditation techniques on cardiovascular
control and into the potential benefits of meditation on cardiovascular health. Overall, the
dynamic statistical measures computed from our point process framework provide the basis
for potential real-time indicators for ambulatory monitoring and instantaneous assessment of
autonomic control in clinical practice.
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Fig. 1.
fRP (top), coherence (middle), and RSA gain (bottom) as estimated by applying the point
process algorithm to simulated PI and RP signals with constant (left) and varying (right)
respiratory frequency (dotted curve shows the theoretically expected RSA gain).
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Fig. 2.
Point process instantaneous measures of heart rate and heart rate variability. Top panels
show instantaneous mean PI, PI variance, mean heart rate, and heart rate variability indices
for (a) an expert meditator and (b) a control subject estimated by the point process
algorithm. Bottom panels show KS plots and transformed quantiles’ autocorrelation
functions for (c) the experienced meditator and (d) the control subject. Dashed lines indicate
the 95% confidence bounds.
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Fig. 3.
Time-frequency distributions of PI power (top), RP power (middle), and Coherence between
PI and RP (bottom) for the expert meditator (left panel) and the control subject (right panel).
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Fig. 4.
Meditation subject (left) and control subject (right): From top to bottom: dynamic
frequencies where maximum RP power is observed (fRP, blue) and coherence between PIs
and RP is maximum (fcoh, red); coherence at fRP (blue) and maximum coherence (red); RSA
gain estimated at fRP (blue) and fcoh (red) by the point process model, (nrpu=normalised
respiratory units).
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Fig. 5.
(a) Comparison of RSA estimations based on dynamic (blue) and fixed (red) frequency for
the expert meditator subject, (b) Comparison of RSA estimations obtained using flow RP
(blue) and belt RP (red) signals for the expert meditator subject.
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Fig. 6.
From top to bottom: PI power in LF-band 0.04–0.15Hz; PI power in HF-band 0.15–0.5Hz;
LF/HF ratio; and percentage RP-power in LF-band 0.04–0.15Hz for the expert meditator
subject.
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Fig. 7.
Mean and standard deviation of dynamic RSA estimates averaged for both meditator and
control groups.
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