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Abstract

Reconstructing gene regulatory networks from high-throughput data is a long-standing problem.
Through the DREAM project (Dialogue on Reverse Engineering Assessment and Methods), we
performed a comprehensive blind assessment of over thirty network inference methods on
Escherichia coli, Staphylococcus aureus, Saccharomyces cerevisiae, and in silico microarray data.
We characterize performance, data requirements, and inherent biases of different inference
approaches offering guidelines for both algorithm application and development. We observe that
no single inference method performs optimally across all datasets. In contrast, integration of
predictions from multiple inference methods shows robust and high performance across diverse
datasets. Thereby, we construct high-confidence networks for £. coliand S. aureus, each
comprising ~1700 transcriptional interactions at an estimated precision of 50%. We
experimentally test 53 novel interactions in £. coli, of which 23 were supported (43%). Our results
establish community-based methods as a powerful and robust tool for the inference of
transcriptional gene regulatory networks.

Introduction

“The wisdom of crowds,” refers to the phenomenon in which the collective knowledge of a
community is greater than the knowledge of any individual®. Based on this concept, we
developed a community approach to address one of the long-standing challenges in
molecular and computational biology, which is to uncover and model gene regulatory
networks. Genome-scale inference of transcriptional gene regulation has become possible
with the advent of high-throughput technologies such as microarrays and RNA sequencing,
as they provide snapshots of the transcriptome under many tested experimental conditions.
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From these data, the challenge is to computationally predict direct regulatory interactions
between a transcription factor and its target genes; the aggregate of all predicted interactions
comprise the gene regulatory network. A wide range of network inference methods have
been developed to address this challenge, from those exclusive to gene expression data?3 to
methods that integrate multiple classes of data*’. These approaches have been successfully
used to address many biological problems®-11, yet when applied to the same data, they can
generate quite disparate sets of predicted interactions?-3.

Understanding the advantages and limitations of different network inference methods is
critical for their effective application in a given biological context. The DREAM project has
been established as a framework to enable such an assessment through standardized
performance metrics and common benchmarks!? (www.the-dream-project.org). DREAM is
organized around annual challenges, whereby the community of network inference experts
is solicited to run their algorithms on benchmark datasets, participating teams submit their
solutions to the challenge, and the submissions are evaluated2-14,

Here, we present the results for the transcriptional network inference challenge from
DREAMDS, the fifth annual set of DREAM systems biology challenges. The community of
network inference experts was invited to infer genome-scale transcriptional regulatory
networks from gene expression microarray datasets for a prokaryotic model organism (£.
coli), a eukaryotic model organism (S. cerevisiae), a human pathogen (S. aureus), as well as
an in silicobenchmark (Fig. 1).

The predictions made from this challenge enable the first comprehensive characterization of
network inference methods across different species and datasets, providing insights into
method performance, data requirements, and inherent biases. We find that the performance
of inference methods varies strongly, with a different method performing best in each
setting. Taking advantage of variation, we integrate predictions across inference methods
and demonstrate that the resulting community-based consensus networks are robust across
species and datasets, achieving by far the best overall performance. Finally, we construct
high-confidence consensus networks for £. coliand S. aureus, and experimentally test novel
regulatory interactions in £. coli.

We make all benchmark datasets and team predictions, along with the integrated community
predictions available as a public resource (Supplementary Data 1-5). In addition, we provide
a web interface through the GenePattern genomic analysis platform1® (GP-DREAM, http:/
dream.broadinstitute.org), which allows researchers to apply top performing inference
methods and construct consensus networks.

Network inference methods

Based on the DREAMS challenge (Supplementary Notes 1-3), we compared 35 individual
methods for inference of gene regulatory networks: 29 submitted by participants and an
additional 6 commonly used “off-the-shelf” tools (Table 1). Based on descriptions provided
by participants, the methods were classified into six categories: Regression, Mutual
information, Correlation, Bayesian networks, Meta (methods that combine several different
approaches), and Other (methods that do not belong to any of the previous categories)
(Table 1).

Performance of network inference methods

We used three gold standards for performance evaluation: experimentally validated
interactions from a curated database (RegulonDB16) for £. coli; a high-confidence set of
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interactions supported by genome-wide transcription factor binding datal” (ChIP-chip) and
evolutionarily conserved binding motifs!® for S. cerevisiae; and the known network for the
in silico dataset (M ethods). Performance on S. aureuswas evaluated separately (see below)
as there currently does not exist a sufficiently large set of experimentally validated
interactions.

We assessed method performance for the £. coli, S. cerevisiae, and in silico datasets using
the area under the precision-recall (AUPR) and receiver operating characteristic (AUROC)
curves!4, and an overall score that summarizes the performance across the three networks
(Methods and Supplementary Note 4). Figure 2a shows the overall score and the
performance on each network for all applied inference methods. On average, regulatory
interactions were recovered much more reliably for the /in silicoand E. coli datasets
compared to S. cerevisiae.

Interestingly, well-established “off-the-shelf” inference methods, such as CLR1! and
ARACNE? (Mutual Information 1 and 3), were significantly outperformed by several teams.
The two teams with the best overall score used novel inference approaches based on random
forests!® and ANOVA20 (Other 1 and 2), respectively (Table 1). However, when
considering the performance on individual networks, these two inference methods only
performed best for £. coli. Two regression methods achieved the best AUPR for the in silico
benchmark (Regression 1 and 2) and two meta predictors for S. cerevisiae (Meta 1 and 5).

There was also strong variation of performance within each category of inference methods
(Fig. 2a). For example, the overall scores obtained by regression methods range from the
third best of the challenge, down to the fourth lowest. A similar spread in performance can
be observed for other categories. We conclude that there is no superior category of inference
methods and that performance depends largely on the specific implementation of each
individual method. For example, several inference methods used the same sparse linear
regression approach (lasso?1), but exhibited large variation in performance because they
implemented different data resampling strategies (Table 1 and Fig. 2a).

Complementarity of different inference methods

To examine the observed variation in performance, we analyzed complementary advantages
and limitations of the different methods. As a first step, we explored the predicted
interactions of all assessed methods by principal component analysis (M ethods). The top
principal components reveal four clusters of inference methods, which coincide with the
major categories of inference approaches (Fig. 2b). Even though the prediction accuracy of
methods from the same category varied strongly (Fig. 2a), PCA revealed they have an
intrinsic bias to predict similar interactions.

We next analyzed how method-specific biases influenced the recovery of different
connectivity patterns (network motifs), which revealed characteristic trends for different
method categories (Fig. 2c). For example, feed-forward loops were most reliably recovered
by mutual information and correlation-based methods, whereas sparse regression and
Bayesian network methods performed worse at this task. The reason for this is the latter
approaches preferentially select regulators that independently contribute to the expression of
target genes. However, the assumption of independence is violated for genes regulated by
mutually dependent transcription factors, as in the case of feed-forward loops. Indeed, linear
cascades were more accurately predicted by regression and Bayesian network methods. This
shows that current methods trade performance on cascades for performance on feed-forward
loops (or vice versa).
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For a subset of the transcription factors contained in the gold standards, knockout or
overexpression experiments were supplied to DREAMS participants, and a number of
inference methods explicitly used this information. Consequently, these methods recovered
target genes of deleted transcription factors more reliably than the inference methods that
did not leverage this information (Fig. 2c). Explicit use of such knockouts also helped
methods to more reliably draw the direction of edges between transcription factors. These
observations suggest that measurements of transcription factor knockouts can be very
informative for network reconstruction. In particular, this is the case for the £. coli dataset,
which contained the largest number of such experiments (see M ethods). To further explore
the information content of different experiments, we employed a machine learning
framework??2 to systematically analyze the information gain from microarrays grouped
according to the type of experimental perturbation (knockouts, drug perturbations,
environmental perturbations, and time series; Supplementary Note 5). We found that
experimental conditions independent of transcription factor knockout and overexpression
also provide information, though at a reduced level.

Community networks outperform individual inference methods

Network inference methods have complementary advantages and limitations under different
contexts, which suggests that combining the results of multiple inference methods could be a
good strategy for improving predictions. We therefore integrated the predictions of all
participating teams to construct community networks by re-scoring interactions according to
their average rank across all methods (Supplementary Note 6). The integrated community
network ranks 1st for /n silico, 3rd for E. coli, and 6th for S. cerevisiae out of the 35 applied
inference methods, which shows that the community network is consistently as good or
better than the top individual methods (Fig. 2a). Thus, it has by far the best performance
reflected in the overall score. We stress that, even though top-performing methods for a
given network are competitive with the integrated community method, the performance of
individual methods does not generalize across networks. Given the biological variation
between organisms and the experimental variation between gene expression datasets, it is
difficult to determine beforehand which methods will perform optimally for reconstructing
an unknown regulatory network. In contrast, the community approach performs robustly
across diverse datasets.

We next analyzed how the number of integrated methods affects the performance of
community predictions by examining randomly sampled combinations of individual
methods. On average, community methods perform better than individual inference methods
even when integrating small sets of individual predictions, e.g., just five teams (Fig. 3a).
Performance increases further with the number of integrated methods. For instance, given
twenty inference methods, their integration ranks first or second 98% of the cases (Fig. 3b).
We also found that the performance of the community network can be improved by
increasing the diversity of the underlying inference methods. Consensus predictions from
teams utilizing similar methodologies were outperformed by consensus predictions from
diverse methodologies (Fig. 3c).

A key feature in taking a community network approach is robustness to the inclusion of a
limited subset (up to ~20%) of poorly performing inference methods (Fig. 3d). Poor
predictors essentially contributed noise, but this did not affect the performance of the
community approach as a whole. This finding is crucial because the performance of
individual methods when inferring regulatory networks for poorly studied organisms is not
known a priori and is hard to evaluate empirically — even top performers on a benchmark
network (e.g. £. coli) have varied performance when inferring a new, unknown network
(e.g. S. aureus). On the other hand, adding good performers substantially increased the
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performance of the community approach (Fig. 3d), which highlights the importance of
developing high quality individual inference methods.

E. coli and S. aureus community networks

To gain insights into transcriptional gene regulation for two bacteria, £. coliand S. aureus,
we constructed networks for both organisms by integrating the predictions of all teams using
the average rank method. Figure 4 shows the community networks for both organisms at a
cutoff of 1,688 edges, which corresponds to an estimated precision of 50% for the £. coli
network based on the gold standard of experimentally validated interactions from
RegulonDB (Methods). At this cutoff, 50% of the de novo predicted regulatory edges were
recovered known interactions; the remaining 50% may be false positives or newly
discovered true interactions.

The precision of the S. aureus network cannot be measured accurately because there are
comparatively few experimentally supported interactions available. Nevertheless, we
confirmed the robustness of the consensus predictions by evaluating the network using the
largely computationally-derived interactions from the RegPrecise database?3
(Supplementary Note 7).

We found that the £, coliand S. aureus networks both have a modular structure??; that is,
they comprise clusters of genes that are more densely connected amongst themselves than
with other parts of the network. After identifying these modules?4, we tested them for
enrichment of Gene Ontology terms (Supplementary Note 7). Network modules are strongly
enriched for very specific biological processes. This allowed us to assign unique functions to
most of the identified modules in both networks (Fig. 4 and Supplementary Data 6). As a
specific example of an enriched module, 27 genes in S. aureus are highly enriched for
pathogenic genes (Fig. 4b). These include exotoxins (set7, set8, set11, set14), genes
responsible for biofilm formation (#ca/) and antibiotic metabolism (zetR), as well as a cell
surface protein (/76). The remaining 20 genes of this module are uncharacterized, but the
predicted connections suggest their role in pathogenesis. This example illustrates how the
inferred networks generate specific hypotheses regarding both the regulation and function of
uncharacterized genes, enabling targeted validation efforts.

Experimental support of novel interactions

In addition to validation against known interactions from the RegulonDB gold standard, we
experimentally tested a subset of novel predictions from the £. co/i community network
described above. We selected 5 transcription factors (rhaR, cueR, purR, mprA, and gadE),
and then individually tested each of the 53 corresponding target gene predictions
(Supplementary Note 8). Using gPCR, we measured the expression of each predicted target
gene in the absence and presence of a chemical inducer known to activate the corresponding
transcription factor (rhamnose for rhaR, copper sulfate for cueR, adenine for purR, carbonyl
cyanide m-chlorophenylhydrazone for mprA, and hydrogen chloride for gadE). To control
for possible indirect transcriptional responses, we also measured target gene expression in
transcription factor deletion strains, again in the absence and presence of the chemical
inducer. Putative targets were considered confirmed if they showed (1) strong response to
the inducer of the respective transcription factor in the wild type and (2) no response to the
inducer in the transcription factor deletion strain. We observed a clear difference between
the two responses (>1.8 fold) for 23 novel targets out of 53 tested (Fig. 4c); this corresponds
to a precision of ~40% for novel interactions, which is in line with our estimate of ~50%
precision based on known interactions from RegulonDB. We note that these data support a
direct regulatory effect of the tested transcription factor on the target gene, but chromatin
immunoprecipitation experiments would be required to determine physical binding.

Nat Methods. Author manuscript; available in PMC 2013 February 01.
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We observe a large variation in experimental validation among individual transcription
factors (Fig. 4c). For purR, a key regulator in purine nucleotide metabolism, 10 of the 12
predicted target genes were experimentally supported. Nucleotide metabolism is a
fundamental biological process that is affected across multiple conditions, thus purR
regulation is well sampled across the £. coli dataset. However, in the case of rhaR, a key
regulator in L-rhamnose degradation, none of the novel target gene predictions showed signs
of regulation. L-rhamnose degradation is a specialized process that is only activated in the
presence of L-rhamnose, and there were no conditions in the £. coli dataset where L-
rhamnose degradation was explicitly tested. In the instance of cueR, a transcriptional
regulator activated in the presence of copper, 4 out of 7 novel target gene predictions were
confirmed. As with rhaR, there were no conditions in the dataset that explicitly tested copper
regulation, yet unlike rhaR, network inference methods were able to identify true positive
cueR regulatory interactions. These results suggest that while the overall precision for the
network is high, the reliability of predictions for individual transcription factors can vary.
When constructing a compendium of microarrays for global network inference, biases
towards oversampling a narrow set of experimental conditions should thus be avoided.

Discussion

The DREAM project provides a unique framework where network inference methods from a
community of experts are collected and impartially assessed on benchmark datasets. The
collection of 35 inference methods assessed here itself constitutes a unique resource, as it
spans all commonly used approaches in the field. In addition, the collection includes novel
approaches (including the two best individual team performers of the challenge),
representing a snapshot of the latest developments in the field.

Our analyses revealed specific advantages and limitations of different inference approaches
(see Supplementary Note 9 and the full description of approaches in Supplementary Note
10). Sparse linear regression methods performed well, but only when data resampling
strategies such as bootstrapping were used (the best performing regression methods all used
data resampling, while the worst performing methods did not). Sparsity constraints
employed by these methods effectively increased performance for cascade motifs, at the cost
of missing interactions in feed-forward loops, fan-in, and fan-out motifs. Bayesian network
methods exhibited below-average performance in this challenge, likely because they use
heuristic searches, which are often too costly for systematic data resampling and may be
better suited for smaller networks. Information theoretic methods performed better than
correlation-based methods, but the two approaches had similar biases in predicting
regulatory relationships. Compared to regression and Bayesian network methods, they
perform better on feed-forward loops, fan-ins, and fan-outs (the more densely connected
parts of the network), but have an increased rate of false positives for cascades. Meta
predictors performed more robustly across datasets than other categories of methods,
however, they could not match the robustness and performance of the community
predictions, likely because they combine methods that do not provide sufficient diversity.
Among all categories, methods that made explicit use of direct transcription factor
perturbations (knockout or overexpression) greatly improved prediction accuracy for
downstream targets (albeit at an increased false positive rate for cascades). For improving
individual inference approaches we suggest the following: (1) optimally exploit direct
transcription factor perturbations; (2) employ strategies to avoid over-fitting, such as data
resampling; (3) develop more effective approaches to distinguish direct from indirect
regulation (feed-forward loops vs. cascades).

Overall, methods performed well for the /n silico and prokaryotic (£. coli) datasets;
however, inferring gene regulatory networks from the eukaryotic (S. cerevisiae) dataset
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proved to be a greater challenge. A fundamental assumption of network inference algorithms
is that mRNA levels of transcription factors and their targets tend to be correlated — we
found that this is true for £. coli, but not for S. cerevisiae (Supplementary Note 5). While the
lower coverage of S. cerevisiae gold standards may also play a role (£. colihas the best-
known regulatory network of any free-living organism16), the poor correlation at the mMRNA
level in S. cerevisiaeis likely due to the increased regulatory complexity and prevalence of
post-transcriptional regulation in eukaryotes, suggesting that accurate inference of
eukaryotic regulatory networks requires additional inputs, such as promoter sequences,
transcription factor binding, and chromatin modification datasets’.

Individual studies that introduce a novel inference method naturally tend to focus on its
advantages in a particular application, which can paint an over-optimistic picture of
performancel3. While previous studies have explored strengths and weaknesses of inference
approaches?3, the present assessment further shows that method performance is not robust
across species and varies greatly even in the same category of inference methods (Table 1).
This implies that performance is more related to the details of implementation, rather than
the choice of the underlying methodology.

In network inference, variation in performance presents a problem, but at the same time
offers a solution. By integrating the predictions from individual methods into community
networks, we show that advantages of different methods complement each other, while
limitations tend to be cancelled out. Instead of relying on a single inference method with
uncertain performance on a previously unseen network, integrating predictions across
inference methods becomes the best strategy. We note that not all of the 29 methods are
required for enhanced performance. By considering complementary methods, we have
shown that performance can be significantly improved with as few as three methods (Fig.
3c).

Ensemble-based methods have a storied past, with applications ranging from economics? to
machine learning2°. In systems biology, robust models are often constructed from ensembles
of instances (e.g., different parameterizations or model structures) that are derived from
experimental data via a single approach26-30, such as Monte Carlo sampling. In contrast, we
formed consensus predictions from a large array of heterogeneous inference approaches.
These “meta predictors” have been successful in other machine learning competitions31:32,
We have observed from previous DREAM challenges anecdotal evidence that community
predictions can rank amongst the top performers’3, but we did not previously attempt a
systematic study of prediction integration for network inference. Here we established,
through rigorous assessments and experimentally derived datasets, the performance
robustness of prediction integration for transcriptional gene network inference.

The shortcomings of individual methods revealed in our assessment present many
opportunities for improving these methods. We also expect further improvements in
performance from advanced community approaches that: (/) actively leverage the method-
specific advantages with regard to the datasets and networks of interest; (/7)) optimize
diversity in the ensemble, e.g., by weighting methods so as to balance the contribution of
different method categories or PCA clusters; and (///) employ more sophisticated voting
schemes to negotiate consensus networks. To help spur developments in these areas, we
provide the GP-DREAM web platform for the community to develop and apply network
inference and consensus methods (http://dream.broadinstitute.org). We will continue to
expand this free toolkit with top performing methods from the DREAM challenges, as well
as other methods contributed by the community.
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Methods

Expression data and gold standards

The design of the DREAMS network inference challenge is outlined in Figure 1 (full
description in Supplementary Note 1). Affymetrix gene expression datasets were compiled
for E. coli, S. aureus, and S. cerevisiae from the Gene Expression Omnibus (GEO)
database®0. Microarray datasets were uniformly normalized using Robust Multichip
Averaging (RMA)®°L. Each dataset queries the underlying regulatory network in hundreds of
different conditions, ranging from time courses to gene, drug, and environmental
perturbations. Note that the number of measurements of transcription factor specific
perturbations varies among the datasets (S. aureus. 0/161, E. coli. 67/806 and yeast: 3/537).
The fourth dataset is an /n silico counterpart to the £. coli dataset, generated using
GeneNetWeaver>253 (version 4.0). The structure of the in silico network corresponds to the
E. colitranscriptional regulatory network from RegulonDB8 (10% random edges were
added, resulting in 3,940 interactions). In addition to the gene expression data, we provide a
list of putative transcription factors for each dataset and a number of descriptive features for
each microarray experiment (e.g., the target of a gene deletion, or the time point of a time-
series experiment). It is important to note that the identity of the organisms from which the
data was generated was unknown to the participants. This was achieved by encrypting
certain aspects of the data, and by anonymizing gene names.

Participants were presented the challenge to infer direct regulatory interactions between
transcription factors and target genes from the given gene expression datasets. The
submission format was a ranked list of predicted regulatory relationships for each network?.

The gold standard set of known transcriptional interactions for £. coli was obtained from
RegulonDB6. We only included well-established interactions annotated with “strong
evidence” according to RegulonDB evidence classification (2,066 interactions). For S.
cerevisiae, we considered several alternative gold standards derived from orthogonal
datasets, namely ChIP binding data and evolutionary conserved transcription factor binding
motifs18, as well as systematic transcription factor deletions®® (Supplementary Note 3). For
the results reported in the main text, we used the most stringent gold standard, which
includes only interactions that have both strong evidence of binding and conservation18,

All data and scripts are available in Supplementary Data 1 and at the DREAM website:
http://wiki.c2b2.columbia.edu/dream/index.php/D5c4. The original microarray datasets are
also publically available at the Many Microbe Microarrays Database®® (M3D, http:/
m3d.bu.edu/dream).

Performance metrics

A detailed description of all performance metrics is given in Supplementary Note 4. Briefly,
transcription factor-target predictions were evaluated as a binary classification task. The
gold-standard networks represent the true positive interactions; the remaining pairs are
considered negatives. Only the top 100,000 edge predictions were accepted. Pairs of nodes
not part of the submitted list were considered to appear randomly ordered at the end of the
list. Performance was assessed using the area under the ROC curve (AUROC) and the area
under the precision vs. recall curve (AUPR)4. Note that predictions for genes that are not
part of the gold standard, i.e., for which no experimentally supported interactions exist, were
ignored in this evaluation.

AUROC and AUPR were separately transformed into p-values by simulating a null
distribution for 25,000 random networks. Random edge lists were constructed by sampling
edges from the submitted edge lists of the participants and assigning these edges random
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ranks between 1 and 100,000. The histogram of randomly obtained AUROC and AUPR
values was fit using stretched exponentials to extrapolate the distribution to values beyond
the immediate range of the histogram!4. To compute an overall score that summarizes the
performance over the three networks with available gold standards (£. coli, S. cerevisiae and
in silico), we used the same metric as in the previous two editions of the challenge3-14,
which is defined as the mean of the (log-transformed) network specific p-values:

3
_1
SCOICro- =3 Z] —lOg 10Proc.i
=

3
_1
SCOre,, =73 2 _log]()pPRj
iz

score,, . .+score
score=—ROC IR

Clustering of inference approaches by principal component analysis (PCA)

We constructed a prediction matrix 2, where rows correspond to edges (transcription factor-
target pairs) and columns to inference methods. The element p; ; of this matrix is thus the
rank assigned to edge /by inference method /. We only considered edges that figured in the
top 100,000 predicted edges of at least three inference methods, yielding 1,175,525
interactions across the four datasets. Note that knowledge of a gold standard network is not
required for the PCA, thus the S. aureus predictions were included in this analysis. The
dimensionality of the combined prediction matrix (including the predictions for all four
datasets) was reduced by PCA using SVDLIBC with standard parameters (http://
tedlab.mit.edu/~dr/SVDLIBC). Results are consistent when performing PCA for each of the
four datasets separately (Supplementary Note 4).

Network motif analysis

The goal of the network motif analysis is to evaluate, for a given network inference method,
whether some types of edges of motifs are systematically predicted less (or more) reliably
than expected3. We considered the six motif types illustrated in Figure 2. For each type of
motif m, we identified all instances in the gold standard network and determined the average
rank r;;assigned to its edges by the inference method. We further determined the average
rank assigned to all edges that are not part of this motif type. The prediction bias is given by
the difference r;,,— r; See Supplementary Note 4 for details.

Experimental materials and design

Novel predictions were selected from the £. co/i community network with greater than 50%
predicted precision. Transcription factors with at least 8 novel predictions were selected,
including rhaR, cueR, purR, mprA, and gadE (note that the dataset supplied to the DREAMS5
participants did not contain any knockout measurement for these transcription factors).
Primers were designed for all novel target gene predictions after accounting for operon
structure and at least 1 known target of the transcription factor was included as a positive
control. A total of 53 predictions and 6 positive controls were tested.

For each transcription factor, a knockout strain was generated from the background E. coli
strain BW25113. Each transcription factor was induced by a different stimulus: rhamnose
for rhaR, copper sulfate for cueR, adenine for purR, carbonyl cyanide m-
chlorophenylhydrazone for mprA, and HCI for gadE. Four experimental conditions were
used for each transcription factor: background strain without inducer (WT(-)), background
strain with inducer (WT(+)), deletion strain without inducer (A(-)), and deletion strain with
inducer (A(+)). Three biological replicates were generated for all experimental conditions.
Cultures were grown in LB media or minimal media (Supplementary Note 8), and
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incubation was performed in darkened shakers (300 RPM) at 37°C. PCR primers were
designed for all target genes. Target genes were quantified through gPCR using LightCycler
480 SYBR Green | Master Kit (Roche Applied Science). True positive interactions were
expected to meet two criteria: (1) a strong response to the TF inducer in wild type, and (2)
no or weak response to the TF inducer in the TF-deletion strain. Target gene interactions
were considered to have “strong support” if the ratio of criteria 1 to criteria 2, (WT(+)/
WT(=)) / (A(+)/A(-)), was greater than two and “weak support” if the ratio was greater than
1.8 (Supplementary Data 7).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The DREAMS5 network inference challenge

Assessment involved the following steps (from left to right). (1) Participants were
challenged to infer the genome-wide transcriptional regulatory networks of £. coli, S.
cerevisiae, and S. aureus, as well as an /n silico (simulated) network. (2) Gene expression
datasets for a wide range of experimental conditions were compiled. Anonymized datasets
were released to the community, hiding the identities of the genes. (3) 29 participating teams
inferred gene regulatory networks. In addition, we applied 6 “off-the-shelf” inference
methods. (4) Network predictions from individual teams were integrated to form community
networks. (5) Network predictions were assessed using experimentally supported
interactions from E. coliand S. cerevisae, as well as the known /n silico network.
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Figure 2. Evaluation of network inference methods

Inference methods are indexed according to Table 1. (a) The plots depict the performance
for the individual networks (area under precision-recall curve, AUPR) and the overall score
summarizing the performance across networks (M ethods). R indicates performance of
random predictions. C indicates performance of the integrated community predictions. (b)
Methods are grouped according to the similarity of their predictions via principal component
analysis. Shown are the 2nd vs. 3rd principal components; the 1st principal component
accounts mainly for the overall performance (Supplementary Note 4). (c) The heatmap
depicts method-specific biases in predicting network motifs. Rows represent individual
methods and columns represent different types of regulatory motifs. Red and blue show
interactions that are easier and harder to detect, respectively.
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Figure 3. Analysis of community networksvs. individual inference methods

(a) The plot shows the overall score, which summarizes performance across the £. coli, S.
cerevisiae, and in silico networks, for individual inference methods or various combinations
of integrated methods. The first boxplot depicts the performance distribution of individual
inference methods (K=1). Subsequent boxplots show the performance when integrating K>1
randomly sampled methods. The red bar shows the performance when integrating all
methods (K=29). Boxplots depict performance distributions with respect to the minimum,
the maximum and the three quartiles. (b) The probability that the community network ranks
among the top x% of the Kindividual methods used to construct the community network.
The diagonal shows the expected performance when choosing an individual method (K=1).
(c) The integration of complementary methods is particularly beneficial. The first boxplot
shows the performance of individual methods from clusters 1-3 (as defined in Fig. 2b). The
second and third boxplots show performance of community networks obtained by
integrating three randomly selected inference methods: (/) from the same cluster, or (/) from
different clusters. (d) The plots show the overall score for an initial community network
formed by integrating all individual methods (open circles, blue) except for the best five and
worst five. One-by-one the worst five (left panel) and best five (right panel) methods are
added to form additional community networks (filled circles, red).
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Figure4. E. coli and S. aureus community networks

(a, b) At a cutoff of 1688 edges, the (a) £. coli community network connects 1,505 genes
(including 204 transcription factors, shown as diamonds), and the (b) S. aureus network
connects 1,084 genes (85 transcription factors). Network modules were identified and tested
for Gene Ontology term enrichment, as indicated (grey colored genes do not show
enrichment). A network module enriched for Gene Ontology terms related to pathogenesis is
highlighted in the S. aureus network. (c) The schematics depict newly predicted E. coli
regulatory interactions that were experimentally tested. The pie chart depicts the breakdown
of strongly and weakly supported targets (M ethods). The positive controls were six known
interactions from RegulonDB.

Nat Methods. Author manuscript; available in PMC 2013 February 01.



1X31-)ewiarems 1Xa1-)ew1a1ems

1Xa1-)1ewa1ems

Marbach et al. Page 18
Table 1
Network inference methods.

ID | Synopsis Reference

Regression: Transcription factors are selected by target gene specific (1) sparse linear regression and (2) data resampling approaches.

1 | Trustful Inference of Gene REgulation using Stability Selection (TIGRESS): (1) Lasso; (2) the regularization parameter 334
selects five transcription factors per target gene in each bootstrap sample.

2 | (1) Steady state and time series data are combined by group lasso; (2) bootstrapping. 344

3 | Combination of lasso and Bayesian linear regression models learned using Reversible Jump Markov Chain Monte Carlo 354
simulations.

4 | (1) Lasso; (2) bootstrapping. 36

5 | (1) Lasso; (2) area under the stability selection curve. 36

6 | Application of the Lasso toolbox GENLAB using standard parameters. 37

7 | Lasso models are combined by the maximum regularization parameter selecting a given edge for the first time. 364

8 | Linear regression determines the contribution of transcription factors to the expression of target genes. _ab

Mutual Information: Edges are (1) ranked based on variants of mutual information and (2) filtered for causal relationships.

1 | Context likelihood of relatedness (CLR): (1) Spline estimation of mutual information; (2) the likelihood of each mutual 1146
information score is computed based on its local network context.

2 | (1) Mutual information is computed from discretized expression values. 3gab

3 | Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE): (1) kernel estimation of mutual information; ga.b
(2) the data processing inequality is used to identify direct interactions.

4 | (1) Fast kernel-based estimation of mutual information; (2) Bayesian Local Causal Discovery (BLCD) and Markov blanket 394
(HITON-PC) algorithm to identify direct interactions.

5 | (1) Mutual information and Pearson’s correlation are combined; (2) BLCD and HITON-PC algorithm. 394

Correlation: Edges are ranked based on variants of correlation.

1 | Absolute value of Pearson’s correlation coefficient. 38

2 Signed value of Pearson’s correlation coefficient. 383,17

3 | Signed value of Spearman’s correlation coefficient. 3gab

Bayesian networ ks optimize posterior probabilities by different heuristic searches.

1 | Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet), aggregation of three runs. —

2 | Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet). —

3 Max-Min Parent and Children algorithm (MMPC), bootstrapped datasets. 40

4 Markov blanket algorithm (HITON-PC), bootstrapped datasets. 41

5 Markov boundary induction algorithm (TIE*), bootstrapped datasets. 42

6 Models transcription factor perturbation data and time series using dynamic Bayesian networks (Infer.NET toolbox, http:// —a
research.microsoft.com/infernet).

Other Approaches: Network inference by heterogeneous and novel methods.

1 | Genie3: A random forest is trained to predict target gene expression. Putative transcription factors are selected as tree 194
nodes if they consistently reduce the variance of the target.

2 | Co-dependencies between transcription factors and target genes are detected by the non-linear correlation coefficient 12 204
(two-way ANOVA). Transcription factor perturbation data are up-weighted.

3 | Transcription factors are selected maximizing the conditional entropy for target genes, which are represented as Boolean 434

vectors with probabilities to avoid discretization.
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ID | Synopsis Reference
Transcription factors are preselected from transcription factor perturbation data or by Pearson’s correlation and then tested 44
by iterative Bayesian Model Averaging (BMA).

5 | A Gaussian noise model is used to estimate if the expression of a target gene changes in transcription factor perturbation 45
measurements.

6 | After scaling, target genes are clustered by Pearson’s correlation. A neural network is trained (genetic algorithm) and 464
parameterized (back-propagation).

7 Data is discretized by Gaussian mixture models and clustering (Ckmeans); Interactions are detected by generalized logical 474
network modeling (x? test).

8 | The x? test is applied to evaluate the probability of a shift in transcription factor and target gene expression in transcription 474
factor perturbation experiments.

Meta predictors (1) apply multiple inference approaches and (2) compute aggregate scores.

1 | (1) Z-scores for target genes in transcription factor knockout data, time-lagged CLR for time series, and linear ordinary 484
differential equation models constrained by lasso (Inferelator); (2) resampling approach.

2 | (1) Pearson’s correlation, mutual information, and CLR; (2) rank average. —

3 | (1) Calculates target gene responses in transcription factor knockout data, applies full-order, partial correlation and _a
transcription factor-target co-deviation analysis; (2) weighted average with weights trained on simulated data.

4 | (1) CLR filtered by negative Pearson’s correlation, least angle regression (LARS) of time series, and transcription factor 49
perturbation data; (2) combination by z-scores.

5 | (1) Pearson’s correlation, differential expression (limma), and time series analysis (maSigPro); (2) Naive Bayes. a

Methods have been manually categorized based on participant-supplied descriptions. Within each class, methods are sorted by overall performance

(see F

igure 2a). Note that generic references have been used if more specific ones were not available.

laDetaiIed method description included in Supplementary Note 10;

bOff-the-sheIf algorithm applied by challenge organizers.
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