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Simple Policies for Dynamic Pricing with Imperfect
Forecasts’

Yiwei Chen Vivek F. Farias ∗

Abstract

We consider the ‘classical’ single product dynamic pricing problem allowing the ‘scale’ of
demand intensity to be modulated by an exogenous ‘market size’ stochastic process. This is a
natural model of dynamically changing market conditions. We show that for a broad family of
Gaussian market size processes, simple dynamic pricing rules that are essentially agnostic to the
specification of this market size process perform provably well. The pricing policies we develop
are shown to compensate for forecast imperfections (or a lack of forecast information altogether)
by frequent re-optimization and re-estimation of the ‘instantaneous’ market size.

1. Introduction
The following is one of the central (and perhaps, simplest) problems in the theory of revenue
management: A vendor is endowed with some finite inventory that he must sell over some fixed sales
horizon; no inventory replenishment is permitted. The vendor’s customers are price sensitive and
arrive randomly over time. The vendor is thus faced with the task of dynamically adjusting prices
over time so as to maximize expected revenue earned over the course of the selling season. With
a view to providing managers with implementable prescriptions, this problem has been studied
in many different guises. Central to the theoretical study of this dynamic pricing problem is a
landmark paper by Gallego and van Ryzin [1994]. That paper studied a model wherein potential
customers arrived at a rate whose magnitude as a function of time and posted prices was known
in advance. Given this knowledge, the elegant and practical insight from that work was simply
this: by posting a fixed price over the course of the selling season, the vendor was guaranteed to
earn close to the maximum revenue achievable under a dynamic pricing policy, especially in ‘high
volume’ settings1.

In reality, it is typically not the case that a vendor has access to a reliable prediction of how
customer demand will evolve over the course of the season. In particular, the very nature of
the product being sold may preclude the possibility of coming up with accurate predictions, or
any prediction whatsoever: fashion items, or novelty luxury goods are good examples of such
products. More to the point, given that valuable information is revealed over time, the simple
‘fixed price’ prescriptions alluded to above are unlikely to be sufficient in the face of uncertainty in
the evolution of customer demand. Faced with such uncertainty, a natural alternative is to consider
building stochastic ‘forecast’ models for how consumer demand might evolve. This alternative has
∗
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its own perils: building a model of this type with predictive power is far from trivial. Moreover,
the implementability (or even, computability) of an optimal pricing scheme incorporating such a
stochastic model is unlikely to be as simple or clean as in the case where predictions made at the
start of the selling season are perfect.

What is needed at this juncture is a simple to interpret and implement prescription for the above
dynamic pricing problem. This prescription should rely only on data that a manager can easily
access or calculate which in the real world is essentially just sales information over time. Of course,
simplicity in itself is not sufficient; our prescription needs to provide compelling performance. Given
the restrictions on information about the market size process it is not clear what an appropriate
benchmark is. A ‘gold standard’ benchmark is, of course, the revenue under a ‘clairvoyant’ optimal
policy computed assuming perfect knowledge of the realization of customer demand over time. This
paper takes a first step towards constructing such a prescription. In brief, we consider a dynamic
pricing model wherein arriving customers are price sensitive. These potential customers arrive over
time at some potentially non-stationary rate. However, as opposed to being known in advance, this
rate process is stochastic, un-modeled and unobservable. This is representative of a volatile demand
environment and the reality that initial, pre-selling season demand predictions are often very crude
(or often, not even available). We make several contributions relative to the dynamic pricing model
above:
A New Prescription: Optimal dynamic pricing in our setting is challenging from a computa-
tional and implementational perspective. We propose a sub-optimal heuristic that accounts for the
stochasticity in the market-size (demand) process while preserving much of the simplicity and im-
plementability of the Gallego and van Ryzin [1994] policy. The policy we propose, the ‘Re-optimized
Fixed Price Policy’, or RFP-∆ policy in short, is akin to repeatedly applying the fixed price policy
at discrete epochs in time spaced ∆ apart, with updated values for market size and inventory. The
proxy for ‘market size’ used at a given epoch is computed from sales over the preceding epoch in
time. In the event that the manager has access to side information or wishes to hedge against some
specific realization of demand, this estimate is ‘tuned’ by a certain hedging parameter. The RFP-∆
policy is attractive from a practical perspective for two reasons:

• It is easy to interpret: Indeed, the price posted at each price revision may be interpreted
as the optimal ‘fixed price’ in response to the inventory level at that point in time and the
estimate of demand computed by the scheme at that point in time. This interpretability
is valuable not just in and of itself, but also because a number of ‘legacy’ dynamic pricing
systems already rely on fixed price logic.

• The variant of our policy that we predominantly study requires absolutely no information
pertaining to the market size process. Our policy never requires that the market size process
be directly observed. In particular, we present a family of schemes, one member of which can
be run in an entirely mechanical fashion given the ability to observe sales and nothing else.

Performance Analysis: In spite of its simplicity, we show the RFP-∆ policy is competitive with a
clairvoyant pricing algorithm with access not just to a probabilistic model of demand evolution but
realizations of how demand will evolve over the course of the selling season. We establish this by
showing that the performance loss in using our prescription relative to an optimal clairvoyant pricing
strategy is uniformly bounded for a broad class of Gaussian demand or ‘market-size’ processes in the
high volume setting; in particular this bound holds for arbitrarily volatile market-size processes. In
addition, we present a parametric performance analysis that succinctly describes the performance
of our prescription as a function of key market-size process parameters, and obtain correspondingly
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tighter bounds. Key to our analysis is a certain ‘inventory balancing’ property inherent to the
RFP-∆ policy which mitigates the need for a model of the market size process. In addition, the
frequency with which we review prices must clearly impact performance; it stands to reason that
as ∆ grows large, performance will suffer. As such, we provide an analysis of the ‘price’ of such
discrete price reviews that isolates the key factors that influence performance loss. We believe that
these results are potentially of broader independent interest.
Computational Evidence: We present a computational study that delves into the implementation
of our prescription and the performance we might expect in practice. In our experiments, we model
market-size processes as OU processes (which are continuous time analogues to the moving average
processes that serve as canonical stochastic forecast models). Our numerical results suggest that
the RFP-∆ policy performs consistently well (i.e well within 90% of an optimal pricing policy) for a
wide range of market-size volatilities and inventory levels or ‘load factors’. We show that these gains
can be achieved with a relatively small number of price adjustments. Finally, these experiments
show that the use of the RFP-∆ policy yields valuable gains over price updates that account for
inventory shocks but do not update demand forecasts, using instead some initial forecast.

1.1. Literature Review
There are several streams of literature that are relevant to our work. The most relevant perhaps
is the large literature on dynamic pricing: Gallego and van Ryzin [1994] formulated an elegant
model in which a vendor starts with a finite number of identical indivisible units of inventory
and is allowed to adjust prices over time. Customers arrive according to a Poisson process, with
independent, identically distributed reservation prices and make purchases if and only if their
reservation prices exceed the posted price. The primary insight in this work was that fixed price
policies are essentially optimal if the vendor has an accurate forecast of customer demand over time
and one operates is a ‘high volume’ regime where inventory and demand grow large simultaneously.

In related pieces of work, Bitran and Mondschein [1997] study optimal pricing policies in a
periodic-review model. They derive structural properties of the optimal pricing policy and show
that it is consistent with observations in practice. Zhao and Zheng [2000] specialize the model
formulated in Gallego and van Ryzin [1994] and explicitly model the evolution of the customer
reservation price distribution over time. They derive structural properties for this interesting
setting. Comprehensive literature reviews on dynamic pricing can be found in McGill and van
Ryzin [1999], Bitran and Caldentey [2003], Elmaghraby and Keskinocak [2003], and Talluri and
van Ryzin [2004].

A fairly recent stream of literature considers learning issues that arise in the above dynamic
pricing setting. The work here typically considers (relatively simple) market size processes param-
eterized by some un-observable parameter(s) that must be learned over time. Optimal policies
are developed in some contexts (see for example, Besbes and Zeevi [2009], Xu and Hopp [2004]),
and sub-optimal heuristics in others (see for example, Aviv and Pazgal [2005b], Aviv and Pazgal
[2005a], Araman and Caldentey [2009] and Farias and Van Roy [2010]). Boyaci and Ozer [2010]
study related issues in the context of capacity planning via advance selling.

In an important departure from the models above, Akan and Ata [2009] considered a model for
network revenue management wherein the relevant market size processes are allowed to be arbitrary
diffusions. In a tour-de-force analysis, that work showed that optimal policies in that model (in
high volume settings) were of the well-studied ‘bid-price’ type, and moreover that these bid prices
could be computed via the solution of certain PDE’s derived from the diffusions describing the
market size process. The present work can be seen to complement that line of literature in the
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sense that it asks what one may do if the diffusions describing the underlying market-size process
are unspecified or only partially specified to the seller. In other words, what can be done when a
perfectly specified forecast model is unavailable to the seller? The present work also complements
a recent paper by Besbes and Maglaras [2009] which studies issues similar to the ones here albeit
in the context of admission control to a queue via modulating prices. Both of the above papers
study the relevant systems in a limiting regime that produces a stochastic fluid model. This appears
to be the right regime for the issues at hand wherein the time scale at which customers arrive is
substantially ‘faster’ than that at which one sees shocks in the aggregate arrival rate. Our analysis
will be in a similar regime – we ignore fluctuations due to ‘point process noise’. Of course, the
use of deterministic fluid models in RM contexts is relatively common; see for instance, Gallego
and van Ryzin [1994], Gallego and van Ryzin [1997], Bitran and Caldentey [2003], Maglaras [2006],
and Maglaras and Meissner [2006]. Finally, it is worth noting that outside of dynamic pricing,
inter-temporal correlation in the customer arrival process is frequently modeled by assuming that
customer arrival rates are driven by some autoregressive integrated moving average (ARIMA)
process in the supply chain/ inventory management literature. See for instance the work by Lee
et al. [2000], Raghunathan [2001], Gaur et al. [2005] and Graves [1999].

The remainder of this paper is organized as follows: In Section 2, we formulate our model and
define the vendor’s optimization problem. Section 3 introduces ‘re-optimized fixed price’ (RFP)
policies which are the subject of this paper. Section 4 is devoted to a theoretical performance
analysis of an ‘idealized’ RFP policy. In Section 5, we discuss the impact of using a discrete review
version of the RFP policy (the RFP-∆ policy) and exhibit that the performance achieved by the
idealized RFP policy can, in essence, be obtained with this discrete review policy. We characterize
the performance loss due to discrete price reviews. Section 6 presents a numerical investigation of
the RFP-∆ policy. Section 7 concludes with thoughts on future directions.

2. Problem Formulation
We consider a vendor who begins a selling season of length T with x0 units of inventory of some
given product. The vendor posts a per-unit price pt ∈ R+∪{∞} at time t and is allowed to dynam-
ically adjust this price to compensate for demand shocks he may experience. Potential customers
arrive at rate Λt. These customers are assumed infinitely divisible and the demand rate is itself
determined by a ‘market size’ stochastic process {Λt : t ≥ 0}. The market-size process is exogenous
and independent of everything else. The corresponding sales rate at time t is ΛtF (pt) where pt is the
price posted by the seller at time t and F (·) is a modulating function that we will specify shortly.
The vendors revenue rate at time t is then simply ΛtF (pt)pt. The vendor’s goal is to dynamically
adjust prices in a manner that maximizes expected revenue while respecting an inventory constraint.

Reservation Prices: To motivate the choice of the modulating function F (·), consider a model
with indivisible customers where arriving customers are endowed with a reservation price drawn
independently from a fixed cumulative distribution F (·). For a customer arriving at time t, the
customer chooses to purchase a single unit of the product if her reservation price exceeds the price
posted at that time, pt; otherwise she is lost to the system. Letting F (p) = 1−F (p), we have that
the probability an arriving customer will choose to make a purchase when the posted price is p is
simply F (p). We will make assumptions on F (·) that, by the above analogy, may be viewed as
assumptions on customer reservation price distributions:
Assumption 1.
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1. F (·) has a continuous density f(·) with support R+. 2

2. F has a non-decreasing hazard rate on R+. That is, f(p)/F (p) is non-decreasing in p on R+.

3. pF (p) is concave and has a unique maximizer p∗.

The first assumption guarantees that F (·) is invertible. Many commonly used distribution
functions, such as the exponential, logistic and Weibull, satisfy the second assumption (see Farias
and Van Roy [2010]). The third assumption is also a standard regularity assumption in the revenue
management literature (see Talluri and van Ryzin [2004]). While each of these assumptions have an
economic interpretation (see Farias and Van Roy [2010]), we do not dwell on such interpretations
here since they are well studied in the extant literature. We note simply that the assumptions
will permit us to use first order conditions to guarantee the optimality of various quantities in the
sequel, and are thus made for convenience.

2.1. The Market-Size Process
In order to capture shocks to aggregate demand, we assume that the instantaneous demand rate
(or market size) is itself determined by an exogenous stochastic process, {Λt : t ≥ 0}. In positing
such a process we seek to model inter-temporal correlations in demand in addition to potential
non-stationarity. Here we will restrict ourselves to a special class of market-size processes that
while being broad, are sufficiently well-behaved to admit a number of useful pricing strategies. In
particular, define Λt = (Λt)+:

Λt = λt +
� t

0
φ(t− s)dZs

where we assume that λt > 0 and λt ∈ C0; φ(·) ∈ C1 and non-increasing in absolute value; and
dZs is an increment of Brownian motion. We dub these processes Generalized Moving Average
Processes 3. We think of {λt} as a deterministic forecast that the vendor may or may not possess
and
� t

0 φ(t − s)dZs as a ‘shock’ term that is difficult to model; indeed depending on the precise
definition of φ this term could behave in drastically different ways. We use σ2

t to denote the the
variance of Λt, where σ2

t =
� t

0 φ
2(s)ds, which follows from Ito’s isometry.

Our labeling of such processes, and indeed the reason we believe they are interesting follow from
the fact that when evaluated at discrete times i∆, we have:

Λn∆ = λn∆ +
n−1�

k=0
θn−k�k

where the �k are standard normal random variables and θj =
�� j∆

(j−1)∆ φ
2(s)ds. This is precisely

a moving average process and forecast models employed in practice are likely to be of this type
(see, for instance, Chapter 9 in Talluri and van Ryzin [2004]). Moreover, this analogy makes
our assumptions on φ fairly transparent: the requirement that |φ| be non-increasing implies that
demand shocks today have a diminishing influence on aggregate demand in the future.

Finally, we note that a number of well-studied continuous time stochastic processes are of this
type: Basic examples include the Wiener process with drift {µt : t ≥ 0} (which is recovered by

2
We extend the domain of F to define F (∞) = 0 and∞.F (∞) = 0; these formal definitions agree with the limiting

values of F (p) and pF (p) under our assumptions.
3
we will abuse terminology and refer to Λt as a generalized moving average process as well, when this does not

risk confusion
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setting λt = λ0 +
� t

0 µsds and φ(t) = σ for arbitrary σ > 0) and the Ornstein-Uhlenbeck (OU)
process with mean λ and Λ0 = λ (which is recovered by setting λt = λ and φ(t) = σ exp(−βt) for
arbitrary σ > 0, and β > 0). Further, as it turns out, we could consider an even more general class
of processes; see Appendix 2.

2.2. Dynamics and the Revenue Optimization Problem for an Idealized Vendor
We begin with defining the sales/ inventory process: Let us denote a sample path of the market-size
process up to time t by Λt � {Λs : s ∈ [0, t]} and similarly denote the price history up to time t by
pt � {ps : s ∈ [0, t]}. We define the sales process encoding the number of sales up to time t, Nt4,
according to

Nt =
� t

0
ΛtF (pt)dt,

and denote by Xt = x0 −Nt the corresponding inventory process. We denote by Ft the filtration
generated by the history of the market-size and sales processes up to time t, σ(Λt, N t), and allow
for optimal pricing policies pt that are progressively measurable with respect to this history.

The ‘Idealized’ Vendor’s Revenue Optimization Problem. We now discuss a revenue opti-
mization problem faced by a vendor with perfect knowledge of the specification of the market-size
process (i.e. knowledge of a probability distribution over sample paths of the Λt process), potentially
unlimited computational power and the ability to monitor market size. All of these assumptions
are objectionable and we will eventually seek an implementable prescription that requires none of
these assumptions. We require that the idealized vendor be restricted to causal pricing policies that
respect the inventory constraint. More precisely, let Π denote the family of all R+ ∪ {∞}-valued
price processes (‘policies’) {πt : t ≥ 0}, that are Ft-progressive and in addition satisfy NT ≤ x0 a.s.,
where pt = πt. The vendors objective is to find a pricing policy that maximizes expected revenue.
In particular, define the expected revenue under a policy π according to 5

J
π(x0
,λ

0
, 0) = E

�� T

0
πtdNt

����X0 = x0,Λ0 = λ0

�

.(1)

The vendor then seeks to find a policy π∗ that achieves

sup
π∈Π
J
π(x0
,λ

0
, 0) � J∗(x0

,λ
0
, 0).

The problem above raises some serious challenges:
1. In the absence of making restrictions on the market size process, the optimization problem is

an intractable, infinite dimensional one.

2. Even if one were to assume a relatively ‘tractable’ model for the market size process – in that
it induced a low dimensional optimization problem – it is unclear whether the specification of
this process is clear at the outset. To be concrete, the parameters specifying a tractable market
size process model will themselves need to be learned and this poses a further challenge to the
sellers optimization problem. Indeed, even very simple forms of such parametric uncertainty
are difficult to resolve; see Araman and Caldentey [2009], Aviv and Pazgal [2005a,b], Farias
and Van Roy [2010].

4
Notice that we are not specifying a point process but a fluid sales process. It is not difficult, but rather technical,

to augment our model with Nt defined as an appropriate point process.
5
We will frequently omit the conditioning in the sequel when this is apparent from context.
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3. In the interest of implementability, simple, easy to understand policies are highly desirable,
and even if an optimal policy were computable, its complexity may preclude an easy imple-
mentation

Thus motivated, we will in the next section introduce a simple dynamic pricing strategy that we
will: (a) Require little or no knowledge of the specification of the market-size process and (b)
Remain a ‘good’ alternative to optimal pricing policies.

3. Re-optimized Fixed Price (RFP) Policies
To motivate the policies that we will introduce in this section, we begin with a simpler scenario
that is closely related to that studied in a landmark paper by Gallego and van Ryzin [1994]: we
consider the case where {Λt : t ≥ 0} is in fact a deterministic process, so that Λt is identically equal
to λt. Here one may show (see Gallego and van Ryzin [1994]) that an optimal pricing policy selects
a fixed price pFP at time 0 and keeps this price fixed over the length of the selling season. This
fixed price is given by

pFP =
�
p∗, if

� T
0 F (p∗)λsds ≤ x0;

F
−1 �
x0/
� T

0 λsds
�
, otherwise.

Gallego and van Ryzin [1994] showed that this policy remained near optimal in models wherein
customers were indivisible and arrived according to independent increment point processes, as one
scaled the initial inventory and arrival rate process to grow large.

It is easy to see that if one considers the case where the market-size process is not deterministic,
there is no reason to believe that a fixed price policy such as the one above might work well. The
following example illustrates what might happen:
Example 1. Consider the market-size process Λt = (λ + σZt)+ where Zt is Brownian motion. Let
the initial inventory level, x0 and the length of the horizon T satisfy λT = x0. Further, assume that
customers’ reservation prices are exponentially distributed with parameter 1, i.e., F (p) = exp(−p).
Consider a static pricing policy πFP that employs a constant selling price of p∗ over the sales season.
When σ = 0, we are left with a deterministic market-size process so that the results of Gallego and
van Ryzin [1994] imply that:

JπFP(x0,λ0, 0)
J∗(x0,λ0, 0) = 1.

However, if σ > 0, we can show (see Appendix C.2) that
JπFP(x0,λ0, 0)
J∗(x0,λ0, 0) = O((log T )−1).

The fixed price policy is attractive from a managerial perspective for its simplicity, imple-
mentability and ease of interpretation. In the above example this policy is aware of λ but does
not know φ. It is also disadvantaged relative to the optimal policy in that it is allowed no price
changes. In what follows we will propose a policy that is given no more information at the outset
(it will not even know λ) but is allowed to update prices in a causal fashion and thus respond to
shocks. We will see that allowing this update recovers a substantial portion of the gap between
the fixed price and optimal policies above. This policy will be only slightly more sophisticated
than the above fixed price policy. It will be akin to repeated application of the fixed price policy
with updated values for market size and inventory along with an intuitive ‘hedging’ adjustment to
account for predictable variability in the market size process.
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3.1. An Idealized Re-optimized Fixed Price Policy
This section introduces a simple continuous-time dynamic pricing policy motivated by the fixed
price policy above. In addition should deterministic forecast information be available, the policy
will require as input an additional ‘hedging’ parameter α (in subsequent sections we will discuss an
oblivious choice of α). The dynamic pricing policy we propose is defined according to:

(2) πRFP(Xt,Λt, t) = F−1
�

min
�
F (p∗), Xth(t,α)

Λt(T − t)

��
,

where α ∈ [0, 1] is a parameter whose choice we will discuss shortly, and h(t,α) is defined according
to

h(t,α) =
α(1− tT ) + (1− α)λt(T−t)� T

0 λsds

α(1− tT ) + (1− α)
� T
t
λsds� T

0 λsds

.

for t < T ; h(T,α) = 1. This policy is idealized for the simple reason that it requires that prices
be updated continuously and moreover that the value of Λt be known to the manager at time t.
These shortcomings are not fundamental; we will address them comprehensively in Section 5 with
a simple revision to the above policy.

To develop a qualitative understanding of the RFP policy, we consider here the two extreme
cases where α = 0 and 1. In particular, setting α = 0 may be seen as an appropriate choice when
our forecasts of market evolution are perfect so that Λt = λt; i.e. there are no demand shocks. In
this case, the policy above reduces to

πRFP(Xt,Λt, t) = F−1
�

min
�

F (p∗), Xt� T
t λsds

��

,

which is essentially the fixed price policy for deterministic market-size processes. Next, consider
a scenario wherein the manager has essentially no forecast information available. Here one may
consider setting α = 1. This may also be seen as an appropriate choice when our forecasts are
‘swamped’ by volatility in the market-size process. In particular, for α = 1, our policy reduces to

πRFP(Xt,Λt, t) = F−1
�

min
�
F (p∗), Xt

Λt(T − t)

��
.

In the absence of no predictions on how the market will evolve, the policy above prices as though
the market size at time t will prevail over the remainder of the selling season. In both cases, we see
that the form taken by the policy closely resembles repeated application of the GVR fixed price
rule with an appropriate forecast for expected demand over the remainder of the selling season.
This is an immensely attractive feature as it agrees with existing real-world pricing practice.

In reality, we will operate in an intermediate regime, where the market size process will consist
of a predictable component (corresponding to initial forecasts e.g. a well established seasonality
pattern) in addition to an un-modeled stochastic process component (that one would otherwise
attempt to capture via a stochastic forecast model); intermediate choices of α allow us to hedge
appropriately between the two extreme scenarios described above. As we will show later, the
interpolation between the two extreme policies enforces an intuitive convex combination of the
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inventory levels one may expect under either of the two extreme policies at any given point in time.
In particular, we will show that under the policy above, one must have:

Xt ≥
�

α

�
1− t
T

�
+ (1− α)

� T
t λsds� T
0 λsds

�

x0

where one recognizes x0(
� T
t λsds)/(

� T
0 λsds) as the inventory on hand under the optimal policy in

the event that the shock term were 0, and x0(T − t)/T as a lower bound on the inventory on hand
in the event that one employed the RFP policy without forecast information and thereby chose to
ration inventory uniformly over time. In the sequel, we will provide a ‘universally good’ choice of
α that one may select in the absence of any information about the market size process whatsoever
and also argue that selecting α = 1 (which clearly results in a policy that is highly simple and
intuitive in form) will frequently be desirable and suffice.

4. Performance Analysis for the Idealized RFP Policy
This Section aims to understand the performance of the RFP policy presented in the previous
Section. Our goal will be to produce a lower bound on the quantity JπRFP(x0,λ0, 0)/J∗(x0,λ0, 0).
We begin with an overview and discussion of our results in this regard:

4.1. Performance Guarantees for the Idealized RFP Policy
This section will establish several performance guarantees for the idealized RFP policy. In partic-
ular, we will establish the following result:

Theorem 1. Assume Λt is a generalized moving average process. Then,

1. For the RFP policy with α = 1, we have

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ max

�
0.342, 1

1 +B −
B

1 +B
�
exp(−1/4πB2) + 0.853

��
,

where B � σT /
√

2πλ2, and we assume λt = λ for all t.

2. For the RFP policy with α = 0.594, and arbitrary forecasts {λt}, we have:

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ 0.203.

The proof can be found in the appendix. The guarantees of the first result apply to the setting
where the vendor sets α = 1. In particular, this is a setting wherein the manager knows absolutely
nothing about the specification of the market size process and as such, we believe this is a highly
relevant setting. The two salient features of this guarantee are:

1. The performance loss relative to an optimal policy remains bounded for arbitrarily volatile
market-size processes.

2. In a regime where the volatility is low, the same RFP policy is near optimal.
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We see that with continuous re-optimization, a well studied fixed price policy suffices to combat
uncertainty in market-size. In particular, while a fixed price policy with no re-optimization can be
arbitrarily bad (Example 1), the RFP policy which is allowed to adjust prices will have uniformly
bounded relative performance losses.

The second guarantee applies to a setting wherein the manager is aware of {λt}, i.e. has access
to a deterministic forecast. In that setting he may wish to incorporate this information into pricing
decisions, and the performance result provides a choice of the parameter α that allows him to do so
while preserving a uniform performance guarantee. Additional knowledge of the market-size process
will allow for a problem specific selection of the α parameter. This will be evident in the proof
of Theorem 1. We will also examine this issue from a computational perspective in our numerical
experiments and show that, in fact, the theoretically ideal choice of α performs quite well, while
the oblivious choice of α = 1 performs adequately as well.

As it will turn out, all of these guarantees hold relative to a ‘clairvoyant’ optimal policy that
has full knowledge of the realized sample path at time 0. This allows us to interpret our bounds
as stating that the value of an accurate stochastic forecasting model is mitigated by frequent (in
this section, continuous) re-optimization. Finally, we note that the analysis here could be extended
to other market-size process families; Appendix A.1 establishes versions of Theorem 1 for reflected
generalized moving average processes and also for Cox-Ingersoll-Ross (CIR) processes (which are
an important example of an affine process). In the remainder of this section, we provide a summary
of the key steps required in proving the above theorem.

4.2. An Upper Bound on the Optimal Value function
We follow a familiar path to deriving an upper bound on the optimal value function. In particular,
we consider a problem wherein the entire sample path of the market-size process, that is {Λt : t ≥ 0},
is available at time 0. The optimal value function for this ‘clairvoyant’ problem is easy to derive
and provides an intuitive upper bound. The revenue optimization problem here is a deterministic
one. In particular, let us denote by J∗{Λt}(x0, 0), the optimal value of the revenue maximization
problem:

maximize
pt∈R+,t≥0

� T
0 ptΛtF (pt)dt

subject to
� T

0 ΛtF (pt)dt ≤ x0.

Proposition 2 of Gallego and van Ryzin [1994] establishes that J∗{Λt}(x0, 0) = x0g(
� T

0 Λtdt/x0),
where the unit revenue function g : R+ → R+ is defined according to

g(y) =
�
p∗F (p∗)y if y ≤ 1/F (p∗);
F
−1(1/y) otherwise.

The properties of this unit revenue function are useful tools in our analysis and are established in
the appendix. Now since any policy π ∈ Π describes a feasible solution to the above problem, we
immediately have that

J
∗(x0
,λ

0
, 0) ≤ E

�
J
∗
{Λt}(x0, 0)

�
.

In addition, we define the certainty equivalent value function J∗CE according to

J
∗
CE(x0,λ0, 0) �

maximize
pt∈R+,t≥0

� T
0 ptE[Λt]F (pt)dt

subject to
� T

0 E[Λt]F (pt)dt ≤ x0.

10



We then have the following upper bounds on the optimal value function J∗. The proof relies
essentially on establishing the appropriate convexity and applications of Jensen’s inequality; it may
be found in the appendix:

Lemma 1.

J
∗(x0
,λ

0
, 0) ≤ E

�
J
∗
{Λt}(x0, 0)

�

≤ J∗CE(x0,λ0, 0)

≤ x0g

�� T
0 (λt + σt/

√
2π)dt

x0

�

≤ x0g

�� T
0 λtdt

x0

�

+ x0g

�� T
0 σtdt

x0
√

2π

�

.

4.3. A Lower Bound on JπRFP

The more difficult challenge in establishing our performance guarantees is deriving a useful lower
bound on the value of the RFP policy. In order to establish our lower bound we will first demonstrate
that the RFP policy possesses an intuitive ‘balancing’ property that yields useful uniform lower
bounds on the inventory process under any market-size sample path.

Lemma 2. (Inventory Balancing) The inventory at time t under the RFP policy, Xt, satisfies

Xt ≥
�

α

�
1− t
T

�
+ (1− α)

� T
t λsds� T
0 λsds

�

x0.(3)

Proof. By the definition of πRFP,

F (πRFP(Xt,Λt, t)) = min
�
F (p∗), Xth(t,α)

Λt(T − t)

�
.

Consider an arbitrary sample path of the market-size process, {Λt}, we have

dXt = −ΛtF
�
πRFP(Xt,Λt, t)

�
dt

≥ −Xth(t,α)
T − t dt

= Xtd log
�

α(1− t
T

) + (1− α)
� T
t λsds� T
0 λsds

�

.

Thus,

d log (Xt) ≥ d log
�

α(1− t
T

) + (1− α)
� T
t λsds� T
0 λsds

�

.

Integrating on both sides and using the initial value X0 = x0, yields

Xt ≥
�

α(1− t
T

) + (1− α)
� T
t λsds� T
0 λsds

�

x0.

�

11



The above result reflects a natural ‘balancing’ property of the RFP policy. To see this consider
the oblivious choice of α = 1. Here, the above bound reduces to

Xt ≥
�

1− t
T

�
x0,

so that when α = 1, the RFP policy enforces a ‘balanced’ allocation of inventories across all time
intervals irrespective of the actual realization of the market-size sample path. Moreover, when
α = 0, we see that

Xt ≥
� T
t λsds� T
0 λsds

x0

which is easily recognized as the inventory on hand under the optimal policy in the event that the
shock term were 0. As discussed earlier an appropriate choice of α allows the policy designer to
chose to ration inventory as a convex combination of these two levels irrespective of the sample
path.

We next use this balancing property in a crucial way to establish a useful lower bound on the
value of the RFP policy. The proofs also rely essentially on properties of the unit revenue function
and distributional properties of the marginals of the market size process. In particular, it is here
that we exploit the structural properties of our market size process (see Lemma 8). In particular,
we have:

Lemma 3.

J
πRFP(x0

,λ
0
, 0) ≥ 0.342αx0g

�� T
0 σtdt

x0
√

2π

�

+ 1− α
2 x0g

�� T
0 λtdt

x0

�

.

The Performance Guarantee: The upper and lower bounds derived thus far allow us to provide
a uniform bound on the performance loss of the RFP policy relative to an optimal clairvoyant pricing
strategy. In particular, observe that by Lemma 1 we have that J∗(x0,λ0, 0) ≤ J∗CE(x0,λ0, 0).
Consequently, we have:

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ J

πRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0)

≥
0.342αx0g

�� T
0 σtdt

x0
√

2π

�

+ 1−α
2 x0g

�� T
0 λtdt

x0

�

x0g

�� T
0 σtdt

x0
√

2π

�

+ x0g

�� T
0 λtdt

x0

�

≥ min
�

0.342α, 1− α2

�
.

The second inequality above is via Lemmas 1 and 3. Setting α = 0.594 maximizes the lower bound
established above, yielding the second claim in the Theorem. The first claim follows along similar
lines but is somewhat more tedious; the proof can be found in the appendix.

5. A Discrete Review RFP Policy
We now consider a variant of the idealized RFP policy that is potentially better suited to imple-
mentation. In particular, we consider a pricing policy that recognizes the following restrictions on
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the vendor: First, the vendor can only update prices at discrete, preferably infrequent, intervals.
Second, the vendor is never able to observe the market size process. As such, our scheme will require
that the vendor set a single parameter ∆, specifying how frequently prices need to be updated.
In addition, should the vendor have available forecast information on the market size process, he
will be required to select the α parameter as well; we anticipate that the most accessible choice in
practice will be setting α = 1. The pricing scheme will proceed as follows:

The RFP-∆ Policy

1. Over the interval [0,∆), post the price p∗ (the static revenue maximizing price).

2. At times i∆ (where i ∈ {1, . . . , �T/∆�}) for which Xi∆ > 0, estimate current market size
according to:

Λ̂i∆ =
Ni∆ −N(i−1)∆
F (p(i−1)∆)∆

where p(i−1)∆ is understood to be the price posted over the interval [i− 1∆, i∆).6

3. Over the period [i∆, (i+ 1)∆), post the price:

pi∆ = F−1
�

min
�

F (p∗), Xi∆h(i∆,α)
Λ̂i∆(T − i∆)

��

.

4. As an exception to the above pricing rules, if at any time t, inventory hits zero (i.e Xt = 0),
we immediately set the price to ∞. 7

The above policy can be formalized succinctly as follows: Define t(∆) = maxi{i∆ : i∆ ≤ t}.
Then the RFP-∆ policy is given by:

π
∆
RFP(Xt, t) =





F
−1
�

min
�
F (p∗), Xt(∆)h(t(∆),α)

Λ̂t(∆)(T−t(∆))

��
if Xt > 0

∞ if Xt = 0

where the estimated market size Λ̂i∆ assumed over times t ∈ [i∆, i+ 1∆) where Xi∆ > 0 is defined
as

Λ̂i∆ =






X(i−1)∆−Xi∆
F (π∆

RFP(X(i−1)∆,(i−1)∆))∆ if i ∈ {1, 2, 3, · · · }
x0
F (p∗) if i = 0.

The RFP-∆ policy is attractive from a practical perspective for several reasons:

• It can be implemented in an entirely mechanical fashion with absolutely no knowledge of the
underlying market size process; this corresponds to selecting α = 1. In the event that deter-
ministic forecast information is available to the retailer, this information is easily incorporated
into the pricing decision.

6
It is simple to establish inductively that so long as Xi∆ > 0, we must have p(i−1)∆ <∞.

7
This is a standard formalism of the notion that one cannot sell more than the initial endowment of inventory.
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• It is easy to interpret as a discrete review policy, where price updates are made based on
unexpected shocks in the sales process. The updated prices reflect a belief that the extant
state of the world will prevail over the remainder of the selling season.

• It uses easy to understand proxies of the prevailing market size process. The only data
required at each price update is the number of sales since the previous update and the price
posted over that period.

In fact, the general policy described here is reminiscent of what sophisticated retailers employ
in practice; see Talluri and van Ryzin [2004]. What we have been careful to specify is the precise
forecasting that one may use. As it turns out, the RFP-∆ policy enjoys similar performance
guarantees as the idealized policy presented and analyzed in previous sections. In particular, let
K � maxt∈[0,T ] Λt, and η(∆) =

�
∆ log(1/∆). We will establish the following approximation result

that, together with the results of the previous section, theoretically establishes the virtues of the
RFP-∆ policy.

Theorem 2. (The Price of Discretization) For generalized moving average processes and an RFP-∆
policy with α = 1, we have:

lim sup
∆→0

���JπRFP(x0,λ0, 0)− Jπ∆
RFP(x0,λ0, 0)

���

η(∆) log(1/η(∆)) ≤ 4p∗F (p∗)σT EK2T 2

x2
0

where σ � φ(0), and we assume λt = λ for all t.

This theorem provides valuable intuition. Precisely, it shows how the frequency with which
prices are updated should be adjusted relative to key problem parameters; the relationships are
intuitive but non-linear:

1. Volatiltiy: Ignoring logarithmic factors, if volatility σ is halved, one may shrink the frequency
with which prices are updated by a factor of

√
2 and maintain the same additive revenue loss

relative to the policy that updates prices continuously. As one might anticipate, low volatility
consequently calls for lower price update frequencies.

2. Load Factor: The quantity
√

EK2T/x0 is a measure of load, i.e. demand relative to inventory,
or at least an upper bound thereof. It stands to reason that when inventory is scarce relative
to demand one might wish to update prices frequently; indeed that is precisely what our
result suggests – the revenue loss due to discretization scales like the square of this measure
of load. In particular, the more inventory one has relative to demand, the less important it
is to update price. Again ignoring logarithmic factors, doubling the amount of inventory will
permit cutting the price review frequency by a factor of 4.

Our study in this section will restrict attention to generalized moving average processes with
λt = λ; an extension to the more general case is straightforward but tedious. The remainder of this
section outlines the proof of this approximation result.

5.1. An Outline of the Analysis
Our approximation result will naturally require some regularity in the market size process. In
particular, the regularity we exploit is characterized by the following estimate of the modulus of
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continuity of the samples paths of generalized moving average processes:

|Λt+∆ − Λt| = O
�
σ

�
2∆ log(1/∆)

�

where the constant in the big-Oh notation is ω dependent. More precisely, we have:

Lemma 4. (Sample Path Modulus of Continuity) Assume that Λt is a generalized moving average
process with φ ∈ C2 and λt = λ. Then, for ∆ > 0, and any t ∈ [0, T ), we have:

lim sup
∆→0

sup
0≤t≤T−τ,0≤τ≤∆

|Λt+τ − Λt|
σ
�

2∆ log(1/∆)
≤ 1 a.s.

Now define
Λ̃i∆ = 1

∆

� i∆

i−1∆
Λsds.

Observe that from the definition of the estimated market size, we have Λ̂i∆ = Λ̃i∆ if X∆
i∆ > 0 where

we denote by X∆
t and Xt the inventory processes under the RFP-∆ and RFP policies respectively.

We begin by estimating the deviation of the estimated market size process and the inventory
process under the RFP policy from the true market size process and the inventory process under
the idealized RFP policy; these results rely crucially on the sample path regularity result above.
In particular, we show:

Lemma 5. Assume that Λt is a generalized moving average process with φ ∈ C2 and λt = λ. Then,
for any t ∈ [0, T ), we have almost surely:

lim sup
∆→0

|Λ̃t(∆) − Λt|
σ
�

∆ log(1/∆)
≤ 2

and further,

lim sup
∆→0

|X∆
t(∆) −Xt|

σT
�

∆ log(1/∆)
≤ 4

We use these results to establish a precise rate at which the revenue under the RFP-∆ policy
approaches that under the RFP policy, as stated in Theorem 2. The proofs for all of these results
can be found the the appendix.

6. Numerical Validation
This section is dedicated to a computational exploration of the RFP-∆ policy that we have studied
carefully to this point. We are particularly interested in the policy with the oblivious choice of
α = 1; this is the policy one may implement with absolutely no information about the market
size process and thereby of potentially greatest interest to practitioners. We will be interested in
exploring the following questions:

1. What are ‘difficult’ (or conversely, ‘easy’) regimes for our problem? For example, we find it
natural to conjecture that as the relative volatility grows large we anticipate a degradation
in performance. As another example, it is intuitive to expect that as one increases inventory
available while leaving the market size process fixed, the problem at hand becomes easier.
We will carefully explore the performance of the RFP-∆ policy across the scenarios described
above in parameter regimes that include realistic scenarios.
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2. Tuning ∆: In our analysis of the price of discretization, we established various qualitative
dependencies of the loss in revenue due to our inability to update prices continuously as a
function or various problem parameters of interest. We are interested in seeing these insights
reflected in our computational experiments.

3. Naive Re-Optimization: A natural scheme involving re-optimization in the presence of a
forecast believed to be ‘good’ (i.e. knowledge of λt and the belief that φ is identically 0)
involves a re-optimization scheme which in our language would translate to the RFP-∆ scheme
with α set to zero. Since there may indeed be settings where this is reasonable (indeed,
consider the setting where it is in fact the case that φ is zero and λt is correctly known), we
wish to explore whether the RFP-∆ scheme with α = 1 is viable in this setting. We also
explore our robust choice of α designed for a setting where λt is known but one wishes to be
oblivious to the nature of φ.

6.1. Problem Specifications
We examine RFP-∆ policy performance numerically for a class of market-size processes that are
O-U type processes and evolve according to

Λt = λt + σ
� t

0
e
−β(t−s)

dZs.

In the bulk of our experiments we will consider λt to be a constant; the RFP-∆ policy will neither
be aware of this constant nor know the specification of φ. We will also explore the case where λt is
not constant in Section 6.4. We consider exponentially distributed customer reservation prices so
that F (p) = 1− e−p. We will compare ourselves to a super-optimal policy that knows {Λt : t ≥ 0}
at time 0. This yields the upper bound:

E
�
J
∗
{Λt}(x0, 0)

�
= x0E

�

g

�� T
0 Λtdt
x0

��

.

While computationally convenient, this bound can be quite loose in high volatility regimes, and as
such we will also consider another super-optimal bound corresponding to a policy that merely knows
the specification of Λt and can monitor the market size process; we compute the corresponding
optimal policy by numerically solving the associated HJB equation.

The specific choice of x0, λt, σ and T will vary across our experiments, while β will be normalized
to 1. Moving forward, we will often be interested in the following summary statistics about a
particular ensemble of problem instances:

• Coefficient of Variation: We define

CV �

�
var[
� T

0 Λtdt]
E[
� T

0 Λtdt]
.

This is a natural measure of the relative volatility in the underlying market size process. An
example of a ‘high’ CV in practice is typically on the order of 1 to 2; we will go as far as 5 in
our experiments.
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• Load Factor: We define load factor as the quantity x0/λT . This is a measure of the abundance
of inventory relative to demand. Large values typically signal easier problems, and in reality
it is fair to anticipate load factors close to 1; we will consider load factors as low as 0.3 in our
experiments.

We next set out to investigate each of the issues outlined at the outset of this section.

6.2. Performance Across Varying Volatility and Load Regimes
Here we seek to understand how the RFP-∆ policy performs across varying problem regimes. In
particular, we take λt = λ = e and β = 1 and vary x0 and σ so as to create various combinations of
relative volatility (the ‘CV’ measure) and load factor. Recall, that we expect problems with high
CV and low load factor (i.e scarce inventory) to be the most challenging. In the experiments below,
we take ∆ = 0.1.

Table 1: A Lower Bound on Relative Optimality (i.e. Jπ∆
RFP/J∗) across various CV/load factor

combinations. Common parameters across problem instances: λ = e,β = 1, T = 5,∆ = 0.1.
Initial Inventory Load Factor Relative Optimality

x0 x0/λT (CV, σ)=(0.5, 3.63) (1, 7.25) (2.5, 18.13) (5, 36.25)
4 0.294 0.947 0.902 0.830 0.768
8 0.589 0.991 0.958 0.886 0.828
12 0.883 1.000 0.987 0.922 0.861
16 1.177 1.000 0.997 0.949 0.887
20 1.472 1.000 0.999 0.968 0.908

The results here are very encouraging with performance generally within 95% for parameter
regimes one might encounter in practice. For extremely high CV and low load factor, the perfor-
mance is as bad as 77%; while this performance loss occurs in a regime quite far away from what
one encounters in practice, it is worth examining this issue further. As it turns out, it is not really
the case that the RFP-∆ policy degrades in this setting but rather that the upper bound we use
on the optimal value function is weak. In particular, if one computed a certain tighter but sub-
stantially more difficult to compute super-optimal policy in this setting (by considering the optimal
policy that was allowed to observe Λt causally and knew the distribution over its sample paths)
and compared performance against this policy, one again obtains performance figures essentially
within 95%; see Appendix C.3.

6.3. Selecting A Re-Optimization Frequency
Section 5 developed theory around the ‘price’ of discretization, i.e. the revenue loss inherent in
the fact that we permitted a limited number of price updates. To summarize that theory, we
characterized precisely how volatility impacted this revenue loss, all else being the same, and
further how greater amounts of inventory permitted more infrequent discretization, all else being
the same. Here we try to understand these tradeoffs in a more concrete setting. In particular,
we examine performance loss as a function of discretization frequency across various combinations
of load factor (which implicitly translates to varying levels of initial inventory) and CV (which
translates to varying σ). The results are summarized in the following tables:
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Table 2: A Lower Bound on Relative Optimality (i.e. Jπ∆
RFP/J∗) as a function of review frequency

across varying values of load factor and market size volatility. Common parameters across problem
instances: λ = e,β = 1, T = 5.

x0/λT=0.368 0.736 1.104

(CV, σ) ∆=0.1 0.5 1 2.5 0.1 0.5 1 2.5 0.1 0.5 1 2.5

(0.1, 0.73) 0.997 0.996 0.994 0.985 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

(0.5, 3.63) 0.962 0.953 0.937 0.884 0.998 0.998 0.998 0.997 1.000 1.000 1.000 1.000

(1, 7.25) 0.919 0.894 0.856 0.761 0.975 0.975 0.972 0.957 0.995 0.996 0.996 0.995

(2, 14.5) 0.847 0.762 0.669 0.576 0.905 0.884 0.850 0.775 0.943 0.940 0.928 0.892

What Table 2 shows is entirely in line with our theoretical development. What this adds to the
theoretical development is the surprising fact that in absolute terms one needs relatively little re-
optimization to capture most of the gains of the RFP-∆ policy in practical regimes. In particular,
under the majority of circumstances, ten or even five price updates suffices to get within 90% (and
frequently, 95%) of our loose upper bound.

6.4. The Hedging Parameter α and the Gain Over Re-optimization Without Fore-
casting

The literature abounds with example of re-optimization schemes without forecast updates; in the
language of the RFP policy this corresponds to setting α = 0. In particular, this is a setting where
the manager has a forecast {λt} which he believes to be perfect (i.e. he believes that φ is identically
zero). This section seeks to answer the following questions:

1. How might the RFP-∆ policy with forecast updates but oblivious to any knowledge of {λt}
perform in this setting, i.e. how does the RFP-∆ policy with α = 1 perform here?

2. Moreover, if the manager did indeed have knowledge of {λt} can he hedge between this perfect
forecast and a scenario where his forecast is corrupted by noise that is difficult to model, i.e.
how does our robust choice of α(= 0.594) for scenarios where {λt} is available fare?

We assume here that λt evolves according to8

λ̇t

λ− λt
= p+ qλt

λ
,λ0 = 0.

We consider four sets of experiments, each corresponding to different levels of CV (0.1, 0.5, 2.5
and 5). In each set of experiments we consider the performance of the RFP policy for various
settings of α; we are most interested in the setting where α = 1 and α = 0.594 which are respectively
settings appropriate to no knowledge of any specification of the market size process whatsoever,
and knowledge of {λt}. In order to tease apart the effect of discrete reviews and errors in estimating
the current market size, we consider the idealized RFP policy here. The results can be found in
Tables 3. We draw the following principle conclusions:

1. Except for scenarios where CV is very low, re-optimization without forecast updates can be
improved upon dramatically.

8
This is the so-called Bass model (Bass [1969]) which is widely used to characterize how a new product or service

grows after it is introduced to the market. p and q are termed the coefficient of innovation and imitation respectively,

λ represents potential market size
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2. The oblivious choice of α = 1, wherein the manager requires absolutely no knowledge of the
market size process performs surprisingly well; notice that this is a scenario outside of the
purview of our analysis since λt is no longer constant.

3. The robust choice of α appears to provide the hedging suggested by the theory providing
intermediate performance; it is closer to the naive scheme when forecasts are exact and closer
to the oblivious scheme when they are not. That said, even at its worst, the oblivious scheme
with α = 1 incurs a marginal loss relative to the best choice of α.

Table 3: Lower Bounds on Relative Optimality (i.e. JπRFP /J∗) across varying CV for different settings
of α in the idealized RFP policy. Common parameters across problem instances: λ = e,β = 1, T =
20, p = 0.03, q = 0.5.

Load Factor Naive Re-opt. Oblivious/ Robust Choice
(CV, σ) x0/

� T
0 λtdt α = 0 α = 1 α = 0.594

(0.1, 0.90)

0.250 0.974 0.975 0.980
0.417 0.985 0.999 0.998
0.583 0.993 1.000 1.000
0.750 0.995 1.000 1.000

(0.5, 4.49)

0.250 0.853 0.905 0.894
0.417 0.873 0.938 0.924
0.583 0.904 0.971 0.959
0.750 0.927 0.990 0.981

(2.5, 22.45)

0.250 0.756 0.820 0.801
0.417 0.748 0.821 0.799
0.583 0.748 0.828 0.805
0.750 0.753 0.840 0.815

(5, 44.90)

0.250 0.755 0.815 0.796
0.417 0.742 0.809 0.789
0.583 0.736 0.809 0.786
0.750 0.733 0.810 0.787

6.5. Summary of Experimental Conclusions
Our computational experiments provide valuable insights on the questions we set out to answer.
In particular:

1. The performance of the RFP-∆ policy with α set to 1 (so that no market size information
whatsoever is required) is robust across a broad swathe of parameter regimes that control
volatility and the scarcity of inventory. Performance well within 95% can be expected for pa-
rameter regimes of practical interest. Degradation beyond this point can be attributed largely
to the fact that the clairvoyant upper bound we compare ourselves against gets exceedingly
loose.

2. The revenue loss due to discrete reviews behaves largely as predicted by the theory; in partic-
ular, high volatility and low inventory levels call for higher review frequencies. Surprisingly,
in absolute terms, this frequency was quite low; ten, and frequently just five price updates
tended to suffice.
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3. The oblivious setting of α = 1 appears to provide excellent performance even in settings where
λt is itself time varying and unknown to the manager. A robust selection of the α parameter
provides added value in settings where λt is time varying and known and volatility is low.

7. Concluding Remarks
The present paper revisited a classical model of dynamic pricing in order to address an important
reality: forecasts are rarely accurate, and retailers frequently witness demand shocks that are ma-
terial to their revenues. The natural cure for such issues is typically the incorporation of stochastic
forecast models into the relevant dynamic pricing problem; such a cure is best avoidable if possible:
such forecast models are difficult to calibrate and their predictive power in practice is question-
able. Fortunately for us, it appears that at least in the context of single product dynamic pricing
one may well be able to deal with the issue of imperfect forecasts and potentially large demand
shocks with a combination of re-optimization and ‘running-average’ type forecasts. In particular,
we presented a simple dynamic pricing policy (the RFP-∆ policy) that can in fact be shown to be
competitive with a clairvoyant policy with a-priori access to information about demand evolution
over the course of the selling season. The policy we presented is easy to implement: in the guise we
focused on primarily (namely, the setting where α = 1), the policy required no initial information
about the market size process whatsoever, nor the ability to monitor it over time. The policy was
simply allowed a finite number of price adjustments that were made on the basis of observed sales.

There are several extensions to the present work possible along the lines of extending the scope
of the market size processes the analysis applies to, and incorporating learning of the reservation
price distribution. By far, the most interesting direction to pursue perhaps is an understanding of
what can be done in the multi-dimensional setting (i.e. the setting in Gallego and van Ryzin [1997]).
Doing so would require that we first understand how one might accomplish the requisite ‘inventory
balancing’ in that setting. Finally, it is worth noting that many retailers employ a pricing strategy
closely related to the RFP policy in practice (especially towards the end of the selling season); what
is typically missing is a careful understanding of what sort of forecast to use. A real-world study
with the present policy would thus not require a big departure from current practice and would be
of great value.

Acknowledgments: Ben Van Roy gave us the idea that using re-optimization in a dynamic pricing
context might obviate the need to know the specification of what we have called the market-size
process here.
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Results in this appendix are numbered consistently with those in the main paper. Results that
do not appear in the paper (auxiliary Lemmas or additional theorems omitted from the exposition
in the main paper) are numbered using the convention ‘SectionLetter.Number’.

A. Proofs for Section 4
We begin with establishing properties of the unit revenue function, g(·).

Lemma 6.

1. g(·) is a non-negative, continuous, non-decreasing, and concave function on R+, with g(0) =
0.

2. yg(1/y) is non-decreasing and concave on R++.

3. g(y)/y is non-increasing on R+.

4. If u, v > 0, then g(u)g(v) ≥ min(uv , 1), 1
u

� u
0 g(v)dv ≤ g(u/2).

Proof.

1. That g(·) is non-negative, continuous and non-decreasing with g(0) = 0 follows by definition.
We show g(·) is a concave function. In the remainder of the proof, we use the fact that
(pF (p))� |p=p∗ = F (p∗) − p∗f(p∗) = 0. We know that on y ≤ 1/F (p∗), g�(y) = p∗F (p∗). Now
on y ≥ 1/F (p∗), g(y) is non-decreasing in y and we have g�(y) = F 2(g(y))/f(g(y)), which
in turn must be non-increasing following the second part of Assumption 1 that F (p)/f(p) is
non-increasing. Finally,

F
2(g(1/F (p∗)))/f(g(1/F (p∗))) = F 2(p∗)/f(p∗) = p∗F (p∗).

so that g(·) is continuously differentiable on R+ with a non-increasing derivative. Thus, g(·)
is concave on R+.

2. Note that

yg(1/y) =
�
p∗F (p∗) if y ≥ F (p∗);
yF
−1(y) otherwise.

It follows that g(y)� = 0 on y ≥ F (p∗). On the domain (0, F (p∗)], define the function p(y) =
F
−1(y); p(y) is decreasing in y. On (0, F (p∗)], we have (yg(1/y))� = p(y)− F (p(y))/f(p(y)),

which is non-increasing in y following the second part of Assumption 1 that F (p)/f(p) is
non-increasing, and the fact that p(y) is decreasing in y. Moreover, on (0, F (p∗)],

(yg(1/y))� ≥ (yg(1/y))� |y=F (p∗) = p∗ − F (p∗)/f(p∗) = 0.

It follows that yg(1/y) is non-decreasing and concave on R++.

3. That g(y)/y in non-increasing on R+ follows directly from property (2) above.

4. Since g(·) is a non-decreasing and concave function on R+, this property holds due to Lemma
7.
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�

Lemma 1.

J
∗(x0
,λ

0
, 0) ≤ E

�
J
∗
{Λt}(x0, 0)

�

≤ J∗CE(x0,λ0, 0)

≤ x0g

�� T
0 (λt + σt/

√
2π)dt

x0

�

(4)

≤ x0g

�� T
0 λtdt

x0

�

+ x0g

�� T
0 σtdt

x0
√

2π

�

.(5)

Proof. The first inequality is evident by definition. Now, by definition of the unit revenue function
g(·) and Section 5.2 of Gallego and van Ryzin [1994], we have that

J
∗
CE(x0,λ0, 0) = x0g

�� T
0 E[Λt]dt
x0

�

By the concavity of g(·) established in Lemma 6 and Jensen’s inequality, we immediately have:

E
�
J
∗
{Λt}(x0, 0)

�
= E
�

x0g

�� T
0 Λtdt
x0

��

≤ x0g

�� T
0 E[Λt]dt
x0

�

= J∗CE(x0,λ0, 0)

which is the second inequality. The fact that J∗{Λt}(x0, 0) = x0g

�� T
0 Λtdt
x0

�

follows from the defini-

tion of g(·) and Section 5.2 in Gallego and van Ryzin [1994].
Now for a Normal random variable X with mean µ and variance σ2, we know that E[X+] ≤

µ + σ/
√

2π. Thus, E[Λt] = E
�
Λ+
t

�
≤ λt + σt/

√
2π. Since, by Lemma 6, g(·) is non-decreasing, it

then follows that

J
∗
CE(x0,λ0, 0) = x0g

�� T
0 E[Λt]dt
x0

�

≤ x0g

�� T
0 (λt + σt/

√
2π)dt

x0

�

.

The sub-additivity of g(·) from the fourth part of Lemma 6 then yields the final inequality. �

Lemma 3.

J
πRFP(x0

,λ
0
, 0) ≥ 0.342αx0g

�� T
0 σtdt

x0
√

2π

�

+ 1− α
2 x0g

�� T
0 λtdt

x0

�

.

Proof. We have:

J
πRFP(x0

,λ
0
, 0) = E

�� T

0
πRFP(Xt,Λt, t)F (πRFP(Xt,Λt, t))Λtdt

�

= E
�� T

0

Xth(t,α)
Λt(T − t)

g

�Λt(T − t)
Xth(t,α)

�
Λtdt
�

≥ x0E
�� T

0

�
α

T
+ (1− α) λt� T

0 λsds

�

g

�

Λt
�
x0

�
α

T
+ (1− α) λt� T

0 λsds

��

dt

�

2



≥ αx0
T

E
�� T

0
g

�ΛtT
x0

�
dt

�

+ (1− α) x0� T
0 λsds

E
�� T

0
λtg

�
Λt
� T

0 λsds

x0λt

�

dt

�

.(6)

where the second equality holds by the definition of g(·), the first inequality follows from the
lower bound on Xt established in Lemma 2 on the inventory balancing property and the property
that zg(1/z) is a non-decreasing function. The final inequality holds because zg(1/z) is a concave
function.

Next, we prove the lower bounds of two terms in 6 respectively. For the first term, we have:

E
�� T

0 g
�

ΛtT
x0

�
dt

�

Tg

�� T
0 σtdt

x0
√

2π

� =

� T
0
�∞
−∞ g

�
T (λt+y)+

x0

� exp(−y2/2σ2
t )√

2πσ2
t

dydt

Tg

�� T
0 σtdt

x0
√

2π

�

≥

� T
0
�∞
−∞ g

�
Ty+

x0

� exp(−y2/2σ2
t )√

2πσ2
t

dydt

Tg

�� T
0 σtdt

x0
√

2π

�

≥ 1
T

� T

0

� ∞

−∞
min
�

1, y+
� T

0 σtdt/T
√

2π

�
exp
�
−y2/2σ2

t

�
�

2πσ2
t

dydt

= 1
T

� T

0

�

1− Φ
�
σT,1
σt
√

2π

�
+
� σT,1/

√
2π

0

y

σT,1σt
exp
�
−y2/2σ2

t

�
dy

�

dt

≥ 0.342.
The first inequality holds due to Property 1 in Lemma 6, and the positivity of λt. The second
inequality holds due to Property 4 in Lemma 6. The final inequality was derived as a property of
the class of market-size processes we consider in Property 3 in Lemma 8.

For the second term in 6, we have

1
� T

0 λsds
E
�� T

0
λtg

�
Λt
� T

0 λsds

x0λt

�

dt

�

= 1
� T

0 λsds

� T

0
λt

� ∞

−∞
g

�
(λt + y)+ � T

0 λsds

x0λt

�
exp(−y2/2σ2

t )�
2πσ2

t

dydt

≥ 1
� T

0 λsds

� T

0
λt

� ∞

0
g

�
(λt + y)

� T
0 λsds

x0λt

�
exp(−y2/2σ2

t )�
2πσ2

t

dydt

≥ 1
� T

0 λsds

� T

0
λt

� ∞

0
g

�
λt
� T

0 λsds

x0λt

�
exp(−y2/2σ2

t )�
2πσ2

t

dydt

= 1
� T

0 λsds

� T

0
λtg

�� T
0 λsds

x0

�� ∞

0

exp(−y2/2σ2
t )�

2πσ2
t

dt

= 1
2g
�� T

0 λtdt

x0

�

.

The first and second inequalities follow respectively from the fact that g(·) is non-negative and
non-decreasing. �
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Theorem 1. Assume Λt is a generalized moving average process. Then,

1. For the RFP policy with α = 1, we have

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ max

�
0.342, 1

1 +B −
B

1 +B
�
exp(−1/4πB2) + 0.853

��
,

where B � σT /
√

2πλ2, and we assume λt = λ for all t.

2. For the RFP policy with α = 0.594, and arbitrary forecasts {λt}, we have:

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ 0.203.

Proof. We provide a proof of the first part of the theorem; the second part is proved in Section 4.
By Lemma 1 we have that J∗(x0,λ0, 0) ≤ J∗CE(x0,λ0, 0). Consequently, if λt = λ for all t, then for
an arbitrary α,

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ J

πRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) .

Now, we have:

JπRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) ≥

E
�� T

0
Xt

Λt(T−t)g
�

Λt(T−t)
Xt

�
Λtdt
�

x0g

�
λT+
� T

0 σtdt/
√

2π
x0

�

≥
E
�� T

0 g
�

ΛtT
x0

�
dt

�

Tg

�
λT+
� T

0 σtdt/
√

2π
x0

�

=

� T
0
�∞
−∞ g

�
T (λ+y)+

x0

� exp(−y2/2σ2
t )√

2πσ2
t

dydt

Tg

�
λT+
� T

0 σtdt/
√

2π
x0

�

≥ 1
T

� T

0

� ∞
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min
�

1, (λ+ y)+

λ+
� T

0 σtdt/T
√

2π

�
exp(−y2/2σ2

t )�
2πσ2

t

dydt

= 1
T

� T

0
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σT,1
σt
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2π

�
+
� σT,1/

√
2π

−λ

λ+ y
λ+ σT,1/

√
2π

exp(−y2/2σ2
t )�

2πσ2
t

dy



 dt

≥ 1
T

� T

0



1− Φ
�
σT,1
σt
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2π

�
+
� σT,1/

√
2π

0

y

σT,1/
√

2π
exp(−y2/2σ2

t )�
2πσ2

t

dy



 dt

≥ 0.342.

The first equality holds by definition of g(·) and Lemma 1. The second inequality follows by
applying the inventory balancing Lemma (Lemma 2) to obtain a lower bound on Xt along with the
property that zg(1/z) is a non-decreasing function, which is established in Lemma 6. The third
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inequality follows by Property 4 in Lemma 6. The final inequality follows by Property 3 in Lemma
8.

In addition, we have:

JπRFP (x0,λ0, 0)
J∗(x0,λ0, 0) ≥ 1

T

� T

0
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σT,1
σt
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dt
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T

� T

0

�
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σT,1
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2π

�
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1 +B
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Φ
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2π
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2πB
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2πλ+ σT,1

σt
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exp(−σ2

T,1/4πσ2
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�

dt

≥ 1
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� T

0
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1− Φ
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σt
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2π

�
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Φ
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σt
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− Φ
�
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2πB

��
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t )
�

dt
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�
− σt
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exp(−σ2
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����max
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T
2t , 1
�
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−
1

1− t/3T exp(−(1− t/3T )2
/4π)



 dt

= 1
1 +BΦ

� 1√
2πB

�

+ B

1 +B

� 1

0



1− Φ





����max
�

1
2v , 1
�

2π



−
1
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 dv

= 1
1 +BΦ

� 1√
2πB

�
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1 +B −

B

1 +B
�
exp(−1/4πB2) + 0.853

�
.

Here Φ is the C.D.F of a standard normal random variable. The first inequality follows from
the third inequality in the proof of Theorem 1, the second and third inequalities hold because
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σt ∨ σT,1 ≤ σT ≤
√

2πλB, the fourth inequality follows Property 2 in Lemma 8, and the last
inequality is derived from the fact that 1− Φ(x) ≤ exp(−x2/2)/x

√
2π for x > 0.

Combined with the lower bound derived in Theorem 1, we have

JπRFP (x0,λ0, 0)
J∗(x0,λ0, 0) ≥ max

�
0.342, 1

1 +B −
B

1 +B
�
exp(−1/4πB2) + 0.853

��
.

�

A.1. Performance Guarantees for Alternate Market Size Processes
While we focused on providing performance guarantees for market size processes satisfying As-
sumption 2, our analysis is easily extended to a number of distinct classes of market size processes.
The analysis schema is essentially identical to what we have seen thus far, except for the final steps
of the analysis where one must specialize to properties of the marginals of the market size process
in question. To illustrate this, we present analogues to Theorem 1 for two market size processes
outside of those specified by Assumption 2. The first class of processes we consider are ‘reflected’
generalized moving average processes, where as opposed to considering Λt = (Λt)+ we consider
Λt = |Λt| where Λt is constructed as before. Here we have:

Theorem 3. Consider the RFP policy with α = 0. Let Λt satisfy the requirements of Assumption
2. Moreover, assume that λt = λ for all t. Then, if Λt = |Λt|, we must have:

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ 0.243.

Proof. Now, we have:

JπRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) ≥
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0
Xt
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2πσ2
t

dydt

Tg

�
λT+
� T

0
√

2σtdt/
√
π

x0

�

≥ 1
T

� T

0

� ∞

−∞
min
�

1, (λ+ y)+

λ+
� T

0
√

2σtdt/T
√
π

�
exp(−y2/2σ2

t )�
2πσ2
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≥ 1
T

� T

0



1− Φ
�
σT,1
√

2
σt
√
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�

+
� σT,1

√
2/π
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exp(−y2/2σ2

t )�
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≥ 0.243.

The first equality holds by definition of g(·) and Lemma 1. In addition, we use the fact that for
a Normal random variable X with mean µ and variance σ2, we know that E[|X|] ≤ µ +

√
2σ/√π

ao that E[Λt] = E[|Λt|] ≤ λ +
√

2σt/
√
π. The second inequality follows by applying the inventory

balancing Lemma (Lemma 2) to obtain a lower bound on Xt along with the property that zg(1/z)
is a non-decreasing function, which is established in Lemma 6. The fourth inequality follows by
Property 4 in Lemma 6. Finally, by Lemma 1 we have that J∗(x0,λ0, 0) ≤ J∗CE(x0,λ0, 0) so that

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ J

πRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) ,

and the guarantee follows. �

As a second example of an alternate market size process, we consider a market-size process
specified by the Cox-Ingersoll-Ross (CIR) process

dΛt = θ(λ− Λt)dt+ σ
�

ΛtdZt,

where θ,λ,σ > 0. As is customary for the use of this process in applications we consider the regime
where 2θλ > σ2 wherein the process above becomes an example of a strictly positive and ergodic
affine process. In this model, θ controls the speed of market-size adjustment, λ and σ corresponds
to mean and volatility of the process respectively. The stationary distribution for this process is
Gamma distributed with shape parameter 2θλ/σ2 and scale parameter σ2/2θ. We assume Λ0 is
distributed according to this stationary distribution and define λ = Λ0.

Theorem 4. Consider the RFP policy with α = 0. Then if Λt is driven by the CIR process above,
we have:

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ 0.632.

Proof. Now, we have:

JπRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) ≥

E
�� T

0
Xt

Λt(T−t)g
�
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Xt

�
Λtdt
�

x0g
�
λT
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�
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E
�� T

0 g
�

ΛtT
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�
dt

�

Tg

�
λT
x0

�

≥ 1
T

� T

0
E[min{Λt

λ
, 1}]dt

= E
�
min{Λ0

λ
, 1}
�

= 1− Γ(a+ 1, a)
Γ(a+ 1) + Γ(a, a)

Γ(a)
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≥ 0.632.

The second inequality follows by applying the inventory balancing Lemma (Lemma 2) to obtain
a lower bound on Xt along with the property that zg(1/z) is a non-decreasing function, which
is established in Lemma 6. The third inequality follows by Property 4 in Lemma 6. Γ(·, ·) is an
incomplete Gamma function and is given by Γ(x, y) =

�∞
y s
x−1e−sds, and a � 2θλ/σ2 ≥ 1. By

Lemma 1 we have that J∗(x0,λ0, 0) ≤ J∗CE(x0,λ0, 0) so that

JπRFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≥ J

πRFP(x0,λ0, 0)
J∗CE(x0,λ0, 0) .

and the guarantee follows. �

B. Proofs for Section 5
Lemma 4. (Sample Path Modulus of Continuity) Assume that Λt is a generalized moving average
process with φ ∈ C2 and λt = λ. Then, for ∆ > 0, and any t ∈ [0, T ), we have:

lim sup
∆→0

sup
0≤t≤T−τ,0≤τ≤∆

|Λt+τ − Λt|
σ
�

2∆ log(1/∆)
≤ 1 a.s.

Proof. For any 0 ≤ t ≤ T − τ and 0 ≤ τ ≤ ∆, we have

|Λt+τ − Λt| =
����

�
λ+
� t+τ

0
φ(t+ τ − s)dZs

�+
−
�
λ+
� t

0
φ(t− s)dZs

�+����

≤
����
� t+τ

t
φ(t+ τ − s)dZs

����+
����
� t

0
(φ(t− s)− φ(t+ τ − s))dZs

����

=
����σZt+τ − φ(τ)Zt +

� t+τ

t
φ
�(t+ τ − s)Zsds

����

+
����(φ(0)− φ(τ))Zt +

� t

0
(φ�(t− s)− φ�(t+ τ − s))Zsds

����

≤ σ|Zt+τ − Zt|+ (φ(0)− φ(τ))|Zt|+
����
� t+τ

t
φ
�(t+ τ − s)Zsds

����

+(φ(0)− φ(τ))|Zt|+
����
� t

0
(φ�(t− s)− φ�(t+ τ − s))Zsds

����

≤ σ sup
0≤s≤T−u,0≤u≤∆

|Zs+u − Zs|+ Lφ1τB + Lφ1τB + Lφ1τB + Lφ2τBt

= σ sup
0≤s≤T−u,0≤u≤∆

|Zs+u − Zs|+ (3Lφ1B + Lφ2Bt)τ

where B � sup0≤t≤T Zt. The first inequality follows property that |(A+B)+−(A+C)+| ≤ |B−C|,
the second equality follows from the integration by parts formulas for stochastic integrals, the third
inequality follows from the assumed differentiability properties of φ(t) (the constants correspond
to bounds on the appropriate differentials) and the definition of B.

Now, we have

lim sup
∆→0

sup
0≤t≤T−τ,0≤τ≤∆

|Λt+τ − Λt|�
2∆ log(1/∆)

≤ lim sup
∆→0

sup
0≤t≤T−τ,0≤τ≤∆

σ|Zt+τ − Zt|+ (3Lφ1B + Lφ2Bt)τ�
2∆ log(1/∆)

8



= lim sup
∆→0

sup
0≤t≤T−τ,0≤τ≤∆

σ|Zt+τ − Zt|�
2∆ log(1/∆)

= σ,

where the first inequality follows from the first part of our argument, and the second inequality is
Levy’s theorem on the modulus of continuity of sample paths of Brownian motion. �

Lemma 5. Assume that Λt is a generalized moving average process with φ ∈ C2 and λt = λ. Then,
for any t ∈ [0, T ), we have almost surely:

lim sup
∆→0

|Λ̃t(∆) − Λt|
σ
�

∆ log(1/∆)
≤ 2

and further,

lim sup
∆→0

|X∆
t(∆) −Xt|

σT
�

∆ log(1/∆)
≤ 4

Proof. First, we prove the convergence rate of the estimated market size. We have

|Λ̃t(∆) − Λt| =
����

1
∆

� t(∆)

t(∆)−∆
Λsds− Λt

����

≤ sup
0≤s≤2∆

|Λt−s − Λt|.

Therefore,

lim sup
∆→0

|Λ̃t(∆) − Λt|
σ
�

∆ log(1/∆)
≤ lim sup

∆→0

sup0≤s≤2∆ |Λt−s − Λt|
σ
�

∆ log(1/∆)

≤ lim sup
∆→0

sup0≤t≤T−s,0≤s≤2∆ |Λt−s − Λt|
σ
�

∆ log(1/∆)

= lim sup
∆→0

sup0≤t≤T−s,0≤s≤2∆ |Λt−s − Λt|
σ
�

4∆ log(1/2∆)

�
4∆ log(1/2∆)
�

∆ log(1/∆)
≤ 2.

The last inequality follows from Lemma 4.
Next, we prove the convergence rate of the inventory process under the RFP-∆ policy. Now for

i > 0, we have

X
∆
(i+1)∆ =

�

X
∆
i∆ − F (π∆

RFP(X∆,i∆
, i∆))

� (i+1)∆

i∆
Λsds

�+
.

We have that for � > 0, there exist numbers C(�), D(�) < ∞, such that 1/(T − s) ≤ C(�) and
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| dds
1
T−s | ≤ D(�) for all s < T − �. Now, for any s,∆ such that 2∆ ≤ s < T − �, we have:

�����min
�
F (p∗), Xs

Λs(T − s)

�
Λs −min

�

F (p∗),
Xs(∆)

Λ̃s(∆)(T − s(∆))

�

Λs
�����

≤
����min

�
F (p∗)Λs,

Xs

T − s

�
−min

�
F (p∗)Λ̃s(∆),

Xs(∆)
T − s(∆)

�����

+ min
�

F (p∗),
Xs(∆)

Λ̃s(∆)(T − s(∆))

� ���Λs − Λ̃s(∆)
���

≤ F (p∗)
���Λs − Λ̃s(∆)

���+
����
Xs

T − s −
Xs(∆)
T − s(∆)

����+ F (p∗)
���Λs − Λ̃s(∆)

���

≤ 2 sup
0≤τ≤2∆

|Λs − Λs−τ |+
����
Xs

T − s −
Xs(∆)
T − s

����+
����
Xs(∆)
T − s −

Xs(∆)
T − s(∆)

����

≤ 2 sup
0≤s≤T−τ,0≤τ≤2∆

|Λs − Λs−τ |+ (C(�)K + x0D(�))∆,

(7)

whereK � supt∈[0,T ] Λt. The second inequality follows from the fact that |min{A,B}−min{C,D}| ≤
|A− C|+ |B −D|. Now, we have, for i ≥ 1 with (i+ 1)∆ < T − �,

|X∆
(i+1)∆ −X(i+1)∆| =

�����

�

X
∆
i∆ −

� (i+1)∆

i∆
min
�

F (p∗), X∆
i∆

Λ̃i∆(T − i∆)

�

Λsds
�+

−
�

Xi∆ −
� (i+1)∆

i∆
min
�
F (p∗), Xs

Λs(T − s)

�
Λsds

�+ �����

≤
�����

�

X
∆
i∆ −

� (i+1)∆

i∆
min
�

F (p∗), X∆
i∆

Λ̃i∆(T − i∆)

�

Λsds
�+

−
�

Xi∆ −
� (i+1)∆

i∆
min
�

F (p∗), Xi∆
Λ̃i∆(T − i∆)

�

Λsds
�+ �����

+
�����

� (i+1)∆

i∆
min
�
F (p∗), Xs

Λs(T − s)

�
Λsds

−
� (i+1)∆

i∆
min
�

F (p∗), Xi∆
Λ̃i∆(T − i∆)

�

Λsds
�����

≤ |X∆
i∆ −Xi∆|

+
� (i+1)∆

i∆

�����min
�
F (p∗), Xs

Λs(T − s)

�
−min

�

F (p∗),
Xs(∆)

Λ̃s(∆)(T − s(∆))

������Λsds

≤ |X∆
i∆ −Xi∆|+ 2 sup

0≤s≤T−τ,0≤τ≤2∆
|Λs − Λs−τ |∆ + (C(�)K + x0D(�))∆2

,

where the first inequality follows from the property that |A+ − (B + C)+| ≤ |A+ −B+|+ |C|, the
second inequality follows from the property that |(X−min{a, bX})+−(Y −min{a, bY })+| ≤ |X−Y |
for b ≥ 0, and the last inequality follows from (7). Moreover, since trivially |X∆

∆−X∆| ≤
�∆

0 Λsds ≤

10



K∆, we must have for any positive integer i with i∆ < T − �,

|X∆
i∆ −Xi∆| ≤ 2T sup

0≤s≤T−τ,0≤τ≤2∆
|Λs − Λs−τ |+ (C(�)K + x0D(�))∆2(i− 1) +K∆

≤ 2T sup
0≤s≤T−τ,0≤τ≤2∆

|Λs − Λs−τ |+ (C(�)KT + x0D(�)T +K)∆.

Hence, for any t < T − �,

|X∆
t(∆) −Xt| ≤ |X

∆
t(∆) −Xt(∆)|+ |Xt(∆) −Xt|

≤ 2T sup
0≤s≤T−τ,0≤τ≤2∆

|Λs − Λs−τ |+ (C(�)KT + x0D(�)T +K)∆ +K∆

Therefore,

lim sup
∆→0

|X∆
t(∆) −Xt|

σT
�

∆ log(1/∆)
≤ lim sup

∆→0

2T sup0≤s≤T−τ,0≤τ≤2∆ |Λs − Λs−τ |+ (C(�)BT + x0D(�)T +B)∆ +B∆
σT
�

∆ log(1/∆)

= lim sup
∆→0

2 sup0≤s≤T−τ,0≤τ≤2∆ |Λs − Λs−τ |
σ
�

∆ log(1/∆)

= lim sup
∆→0

2 sup0≤s≤T−τ,0≤τ≤2∆ |Λs − Λs−τ |
σ
�

4∆ log(1/2∆)

�
4∆ log(1/2∆)
�

∆ log(1/∆)
≤ 4,

for all t < T − �. The last inequality follows from Lemma 4. Since our choice of � > 0 was arbitrary,
the result follows. �

Theorem 2. (The Price of Discretization) For generalized moving average processes and an RFP-∆
policy with α = 1, we have:

lim sup
∆→0

���JπRFP(x0,λ0, 0)− Jπ∆
RFP(x0,λ0, 0)

���

η(∆) log(1/η(∆)) ≤ 4p∗F (p∗)σEK2T 3

x2
0

where σ � φ(0), and we assume λt = λ for all t.

Proof. Recall that by the inventory balancing property we have that:

Xt

T − t ≥
x0
T
.

Using this fact with Lemma 5 allows us to conclude after some algebraic manipulation that for any
t < T that

lim sup
∆→0

1
ση(∆)

������

Λ̃t(∆)(T − t(∆))
X∆
t(∆)

− Λt(T − t)
Xt

������
≤ 2T
x0

+ 4KT 3

x2
0(T − t)

Let κ(∆) � 8T 2ση(∆)/x0. Observe that on t < T − κ(∆), we must have by the Balancing Lemma
that Xt ≥ 8Tση(∆), so that for ∆ sufficiently small, Lemma 5 guarantees that X∆

t(∆) > 0 as well.

11



Consequently, we have that for ∆ sufficiently small:

|Jπ∆
RFP(x0

,λ
0
, 0)− JπRFP(x0

,λ
0
, 0)|

=
�����E
� � T

0
π

∆
RFP(X∆,t

, t)F
�
π

∆
RFP(X∆,t

, t)
�

Λtdt
�
− E
� � T

0
πRFP(Xt, t)F

�
πRFP(Xt, t)

�
Λtdt
������

≤ E
������

� T

0
π

∆
RFP(X∆,t

, t)F
�
π

∆
RFP(X∆,t

, t)
�

Λtdt−
� T

0
πRFP(Xt, t)F

�
πRFP(Xt, t)

�
Λtdt
�����

�

≤ E
������

� T−κ(∆)

0
π

∆
RFP(X∆

t(∆), t)F
�
π

∆
RFP(X∆

t(∆), t)
�

Λtdt−
� T−κ(∆)

0
πRFP(Xt, t)F

�
πRFP(Xt, t)

�
Λtdt
�����

�

+ EKκ(∆)p∗F (p∗).

(8)

Now, by our choice of κ(∆), we have that for ∆ sufficiently small that

E(∆) �
�����

� T−κ(∆)

0
π

∆
RFP(X∆

t(∆), t)F
�
π

∆
RFP(X∆

t(∆), t)
�

Λtdt−
� T−κ(∆)

0
πRFP(Xt, t)F

�
πRFP(Xt, t)

�
Λtdt
�����

≤ Kp∗F (p∗)
� T−κ(∆)

0

������

Λ̃t(∆)(T − t(∆))
X∆
t(∆)

− Λt(T − t)
Xt

������
dt

≤ Kp∗F (p∗)
�

ση(∆)
� T−κ(∆)

0

�
2T
x0

+ 4KT 3

x2
0(T − t)

�

dt

�

≤ Kp∗F (p∗)ση(∆)
�

2T 2

x0
+ 4KT 3 (log T + log(1/κ(∆)))

x2
0

�

where the first inequality follows from the fact that the function g(y)/y has its first derivative
bounded in absolute value by p∗F (p∗), and the second inequality was established at the start of
the proof. It follows that

lim sup
∆→0

E(∆)
ση(∆) log(1/η(∆)) ≤

4K2T 3p∗F (p∗)
x2

0

Using this inequality, (8) then yields

lim sup
∆→0

���JπRFP(x0,λ0, 0)− Jπ∆
RFP(x0,λ0, 0)

���

η(∆) log(1/η(∆)) ≤ lim sup
∆→0

E
�
E(∆) + κ(∆)p∗F (p∗)K
η(∆) log(1/η(∆))

�

≤ 4EK2T 3p∗F (p∗)σ
x2

0

where the second inequality follows from Fatou’s lemma. �

C. Miscellaneous Results and Computations
C.1. Properties of the Market-Size Process
We present in this Section, a few technical results for a class of market size processes satisfying the
assumption below. It is simple to check that this class subsumes the class of generalized moving
average processes we have studied in this paper.
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Assumption 2.

1. Λt =
�
Λt
�+

where Λt is a Gaussian process with continuous sample paths.

2. E
�
Λt
�

� λt is positive.

3. The variance of the random variable Λt, σ2
t , is non-decreasing as a function of t and concave.

Indeed it is evident that our moving average processes satisfy the first two requirements; to see
that the last requirement is satisfied, we observe that in the case of moving average processes, Ito
isometry yields Var(Λt) =

� t
0 φ

2(s)ds which is evidently non-decreasing and concave.

Lemma 7. Let f : R+ → R+ be a non-decreasing, concave function with f(0) = 0. Then for all
0 < y ≤ x,

1 ≤ f(x)
f(y) ≤

x

y
,

and

1
x

� x

0
f(t)dt ≤ f

�
x

2

�
.(9)

Proof. By definition, f(x)/f(y) ≥ 1. Moreover, the concavity of f yields f(x) = f(0+ xy y) ≤ xy f(y).
Thus, f(x)/x ≤ f(y)/y. Inequality (9) follows by Jensen’s inequality. �

Now, we use Lemma 7 to characterize properties of the volatility of the market-size process, σ2
t .

Defining
σT,1 �

� T

0
σtdt/T and

σT,2 �
� T

0
σ

2
t dt/T.

we have:

Lemma 8.

1. σt is non-decreasing and concave in t.

2. 1− t/3T ≤ σT,1/σt ≤
�
σT,2/σ2

t ≤
�

max {T/2t, 1}.

3. 1
T

� T
0

�
1− Φ

�
σT,1
σt
√

2π

�
+
� σT,1/

√
2π

0
y

σT,1σt
exp(−y2/2σ2

t )dy
�
dt ≥ 0.342.

Proof.

1. σ2
t is non-decreasing in t directly implies that σt is non-decreasing in t. Now,

(σ2
t )�� = 2(σ�t)2 + 2σtσ��t

so that since σ2
t is concave, σ��t ≤ 0 and the concavity of σt follows.
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2. To establish the first inequality, we see that:

σT,1
σt

=
� T

0 σsds

Tσt
= 1
T

� T

0

�
σ2
s

σ2
t
ds

≥ 1
T

� T

0

�

min
�
s

t
, 1
�
ds(10)

= 1− t3T ,

where inequality (10) follows by Lemma 7 and the concavity of σ2
t .

That σT,1/σt ≤
�
σT,2/σ2

t is a direct consequence of Jensen’s inequality.

The second part of Lemma 7 yields σT,2 ≤ σ2
T/2, so that the first part of Lemma 7 then yields:

σT,2
σ2
t
≤
σ2
T/2
σ2
t
≤ max

�
T

2t , 1
�
.

3. We have:

1
T

� T

0

�

1− Φ
�
σT,1
σt
√

2π

�
+
� σT,1/

√
2π

0

y

σT,1σt
exp(− y

2

2σ2
t

)dy
�

dt

= 1
T

� T

0

�

1− Φ
�
σT,1
σt
√

2π

�
+ σt

σT,1

�
1− exp(−(σT,1)2

/4πσ2
t )
��

dt

≥ 1
T

� T

0



1− Φ





����max
�
T
2t , 1
�

2π



+ 1
�

max
�
T
2t , 1
�
�
1− exp(−(1− t/3T )2

/4π)
�


 dt

=
� 1

0



1− Φ





����max
�

1
2v , 1
�

2π



+ 1
�

max
�

1
2v , 1
�
�
1− exp(−(1− v/3)2

/4π)
�


 dv

= 0.342,

where the first inequality follows from the previous property (i.e. Lemma 8, Property 2);
the penultimate equality follows by employing the change of variables v = t/T , and the final
equality follows from numerical evaluation of the definite integral in the penultimate line.

�

C.2. Analysis for Example 1 in Section 3
Recall, that our goal is to show that if σ > 0, then

JπFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≤ O((log T )−1),
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for the dynamic pricing problem described in Example 1. To show this, we will find it convenient
to use properties of the RFP policy established in Section 4, as we will use performance under this
policy as a lower bound to performance under an optimal policy. Now, we have

JπFP(x0,λ0, 0)
J∗(x0,λ0, 0) ≤ p∗x0

JπRFP(x0,λ0, 0)
≤ x0
JπRFP(x0,λ0, 0)

≤
�

0.342g
�

1 + 2T 3/2σ

3
√

2πx0
− λ

2√T
σ
√

2πx0

��−1

=
�

0.342 log
�

1 + 2T 3/2σ

3
√

2πx0
− λ

2√T
σ
√

2πx0

��−1

= O((log T )−1).

The first inequality follows by the definition of J∗ and also the fact that performance under the
fixed price policy is trivially upper bounded by p∗x0; in the case of our example, recall that p∗ = 1.
We now focus on the second inequality: Theorem 1 showed that

J
πRFP(x0

,λ
0
, 0) ≥ 0.342J∗CE(x0

,λ
0
, 0),

while by the definition of the unit revenue function, g(·), in Section 4, we know that

J
∗
CE(x0

,λ
0
, 0) = x0g

�� T
0 E[Λt]dt
x0

�

.

Since here,
� T

0 E[Λt]dt ≥ λT + 2T 3/2σ
3
√

2π −
λ2√T
σ
√

2π and g is non-decreasing from Lemma 6, it follows that

J
πRFP(x0

,λ
0
, 0) ≥ 0.342x0g

�

1 + 2T 3/2σ

3
√

2πx0
− λ

2√T
σ
√

2πx0

�

.

C.3. Computational Experiments Relative to a Tighter Super-Optimal Policy
In our computational experiments, we compared performance of the RFP-∆ policy against a clair-
voyant upper bound that was permitted to observe the entire realization of a sample path of the
market size process at time 0. While this bound was cheap to compute, we observed that in certain
cases performance relative to this upper bound was worse than 10%. We conjectured that this did
not reflect our pricing policies performance per se but rather simply the fact that our upper bound
was loose in settings with high volatility. As such, we compute a tighter upper bound here, namely
the expected revenue under an optimal policy with knowledge of the specification of the market size
process (i.e. a probability distribution over its sample paths) and the ability to monitor the process
and update prices in continuous time. This is obviously still an upper bound on the optimal value
function, but nonetheless tighter than the clairvoyant bound. The results are summarized (for an
OU process) in Tables 4 and 5.
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Table 4: Performance Relative to a Tighter Upper Bound. Common parameters across problem
instances: λ = e,β = 1, T = 5, CV = 2.5,∆ = 0.1.

Initial Inventory Load Factor Relative Optimality
x0 x0/λT JπRFP /J∗ Jπ

∆
RFP /J∗ Jπ

∆
RFP /JUB

4 0.294 0.951 0.923 0.830
8 0.589 0.962 0.941 0.886
12 0.883 0.979 0.965 0.922
16 1.177 0.990 0.977 0.949
20 1.472 0.998 0.990 0.968

Table 5: Performance Relative to a Tighter Upper Bound. Common parameters across problem in-
stances: λ = e,β = 1, T = 5, CV = 5,∆ = 0.1.

Initial Inventory Load Factor Relative Optimality
x0 x0/λT JπRFP /J∗ Jπ

∆
RFP /J∗ Jπ

∆
RFP /JUB

4 0.294 0.922 0.891 0.768
8 0.589 0.938 0.915 0.828
12 0.883 0.947 0.929 0.861
16 1.177 0.951 0.936 0.887
20 1.472 0.966 0.951 0.908

In the experiments above Jπ∆
RFP/JUB is the quantity reported for the bulk of our experiments

– performance relevant to a clairvoyant upper bound. The quantity Jπ∆
RFP/J∗ reports performance

relative to the tighter upper bounds. Since even this tighter upper bound is potentially loose
(since it re-optimizes continuously, and is allowed to observe the monitor the market size process),
the quantity JπRFP/J∗ report performance of the idealized RFP policy (that is also allowed to
re-optimize continuously and monitor the market size process directly) against the tighter upper
bound. We see that the results bear substantial support to the fact that a large fraction of the
performance losses reported in our computational study are potentially due to the fact that we
compare ourselves against an upper bound that can be fairly loose. This is not surprising given
the amount of information used by the policy implicit i! n the clairvoyant upper bound.
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