
Axiomatic Development of a Machine Control System

by

Kwangduk Douglas Lee

B.S., Mechanical Engineering
Pohang University of Science and Technology, 1998

Submitted to the Department of Mechanical Engineering
In Partial Fullfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

at the

Massachusetts Institute of Technology

August 2000

© 2000 Massachusetts Institute of Technology
All rights reserved

Signature of Author

7!

Certified by

Accepted by

Departieiidii Mechanical Engineering
I August 18, 2000

Nam P. Suh
Ralph E. Cross Professor of Mechanical Engineering

Thesis Supervisor

Ain A. Sonin
Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SEP 2 0 2000

LIBRARIES

I

Axiomatic Development of a Machine Control System

by

Kwangduk Douglas Lee

Submitted to the Department of Mechanical Engineering
on August 18, 2000 in Partial Fullfillment of the

Requirements for the Degree of Master of Science in
Mechanical Engineering

Abstract

Axiomatic Design is presented as a scientific methodology in designing a complex
machine control system. As an example, the CMP a machine control system is developed
using the Axiomatic Design framework. The machine is a type of semiconductor processing
equipment, which requires numerous actuators and sensors and the intelligent control of
them to planarize thin layers of wafers. Signal processing modules, control algorithms,
sequential process steps, graphical user interface, process recipe editor and the overall
control system structure are all designed by the Axiomatic decomposition. Axiomatic Design
is proved to be a very effective tool in control system development. It took less than six
months to develop the system and the control system is fully functional without any major
error or mistake. The resulting system is clear to understand, easy to maintain and upgrade,
and flexible for further development and integration. Although the development has been
specific to the CMP cc machine, the control system structure and the design methodologies
presented in this thesis are universally applicable to the development of any type of machine
control system.

Thesis Supervisor: Nam P. Suh
Title: Ralph E. Cross Professor of Mechanical Engineering

2

Acknowledgements

I would like to acknowledge and thank many people who have supported and helped
me in the preparation of this thesis. Professor Suh, my thesis advisor, has been vital in the
completion of the thesis and the success of the project. He always has trusted me and
endowed me with the strength to finish this work. I am also indebted to other faculty
members in the group. Professor Chun has helped me thorough the numerous suggestions
and encouragements. Dr. Saka has guided me through his academic advices and lengthy
discussions with me.

Many thanks go to my group members, too. Jiun-Yu has helped me with his
academic arguments; Jason with his brilliant ideas; Jamie with his hearty collaborations; Amir
with his witty cheers.

Many people have helped me during the control system development. I owe a lot to
Dr. Oh at United Technologies Corporation, who has been with me during the initial system
development. Mr. Cord Ohlenbusch at Ultra Clean International Corp. has helped me with
wiring. In fact, the machine power distribution and safety system is his work. I would like to
give a special thank to Professor David Trumper for his teachings in the mechatronics
course and the suggestions for the controller design. I also wish to acknowledge the help of
Mr. Beau Tateyama, who, as a UROP student, helped me with his Visual Basic programming
skill in the early stage of the system development.

Numerous people and innumerable instances, which I can not enumerate in a single
page, have helped me to accomplish this project, once seemed to be almost unattainable. My
family and friends have always been patient and supportive to me, understanding and
allowing for me to be 'workholic.'I would like to appreciate all the circumstances around
me, which have been so generous to this humble being.

3

To all the sensible beings in the world...

4

Table of Contents

Chapter 1. Introduction 10
1. Machine Control System Design 10
2. Chemical Mechanical Planarization (CMP) 12
3. CMP Performance Requirement_ 14
4. CMP cc Machine 16
5. CMP cx Machine Control System Overview 18
6. Thesis Objective 21
7. Thesis Overview 21

Chapter 2. Machine-level Control System (DP1) 22
DP11. I/O Unit 25
DP12. Signal Processing Unit 31
DP13. Controller Unit 36
DP14. Machine-level Overhead 49

Chapter 3. Process-level Control System (DP2) 61
DP21. Supportive Unit 61

DP21 1. Recipe Builder 63
DP22. Process Unit 72

DP221. Manual Mode 72
DP222. Auto Mode 81

Chapter 4. Servo Controller Design 106
1. System Modeling 106
2. Controller Design 110
3. Digital Implementation 116
4. Performance Evaluation 118

Chapter 5. System Integration 124
1. Hardware Interface 124
2. System Implementation 131

Chapter 6. Conclusion 137

Chapter 7. Future Work 139

Reference 140

5

List of Figures

Figure 1.1 Schematic of Microelectronic Features before and after Planrization 12
Figure 1.2 Two Types of Polishing Kinematics 13
Figure 1.3 Overview of CMP x Machine 17
Figure 1.4 Overview of CMP a Machine Control System 19
Figure 2.1 Interaction of Machine-level Control System with Other Systems 25
Figure 2.2 State Transition of Two Channel Encoder 27
Figure 2.3 Block Diagram of CNT-VR4 Counter 27
Figure 2.4 Block Diagram of Pro-Ain-8/16 ADC Card 28
Figure 2.5 Circuit Diagram of Pro-REL-16 Relay 29
Figure 2.6 Block Diagram of Analog Output Module, Pro-Aout-8/16 29
Figure 2.7 Three Difference Methods to Approximatef'(t)32
Figure 2.8 Two Methods of Numerical Integration 35
Figure 2.9 Quantities and Types of On-off Controllers 38
Figure 2.10 Switching Circuit of LED Signal Light 40
Figure 2.11 Types of Open-loop Controllers 41
Figure 2.12 Block Diagram of Open-loop Controller 42
Figure 2.13 Types of Closed-loop Controllers 44
Figure 2.14 Schematic of WC Z Axis Mechanism 44
Figure 2.15 Block Diagram of WC Z Position Controller 46
Figure 2.16 Examples of Input Shaping- Ramp and Ramp plus Sinusoid 49
Figure 2.17 CPU Duty Ratios as Function of Duty Interval and Event Interval 51
Figure 2.18 Apparent frequencyf0 as function of true frequencyfand sampling frequencyf/

51
Figure 2.19 External Enable/Disable Circuit of Servo Amplifier 56
Figure 2.20 Sequential Functional Diagram of Initialization Mode 57
Figure 2.21 Sequence of Event Block 58
Figure 2.22 DP Tree of Machine-level Control System 60
Figure 3.1 Recipe Objects and Data Flow 64
Figure 3.2 Private Array Data Out Procedure of Step Class 67
Figure 3.3 Structure of Recipe File 68
Figure 3.4 Object I/O Handling from Recipe Editor 69
Figure 3.5 Recipe Editor User Interface 71
Figure 3.6 Wafer Carrier X Command Collision Avoidance Logic Sequence 75
Figure 3.7 Wafer Carrier Vacuum BitMap Handling 76
Figure 3.8 Error Handling of Manual Mode Overhead 77
Figure 3.9 Initialization Procedure of Manual Mode 77
Figure 3.10 Number Pad for Touch Screen 79
Figure 3.11 Manual Mode User Interface Screen 79
Figure 3.12 Sequential Functional Diagram of Load Method of Recipe Editor Link__ 84
Figure 3.13 Auto Mode User Interface 86
Figure 3.14 Sequential Functional Diagram of Sub-step MoveWCCA 92
Figure 3.15 Four Motion Stages of Sub-step MoveWCCA 93
Figure 3.16 Wafer Sweep Command Profile with Ramp Plus Sinusoid Input Shaper 97
Figure 3.17 Cyclic Position Command Generation Algorithm of sub-step SweepWC __ 97
Figure 3.18 Sequential Functional Diagram of Sub-Step BuffWafer 99

6

Figure 3.19 Sequential Functional Diagram of Step Polish 104

Figure 3.20 Design Parameter Tree of Process-level Control System 105
Figure 4.1 Schematic of Gantry X Axes Drive 107
Figure 4.2 Block Diagram Model of Each Gantry X Axis 110
Figure 4.3 Block Diagram of Synchronization Topologies Applied to Gantry Twin Axes
with Velocity Minor and Position Major Control Loop 111
Figure 4.4 Block Diagram of Adjustable Cross Compensation for Motion Synchronization
Applied to Gantry Twin Axes 112
Figure 4.5 Block Diagram of Gantry X Controller Implemented in Discrete Domain__ 118
Figure 4.6 Inputshaped Command and Each Axis Position Output of Gantry X Axes with
100 mm Step Command and 50 mm/sec Reference Velocity 119
Figure 4.7 Steady State Response of Gantry X Axes with 100 mm Step Command and 50
mm/sec Reference Velocity _ 119
Figure 4.8 Relative Error between Two Axes of Gantry with 100 mm Step Command and
50 mm/sec Reference Velocity 120
Figure 4.9 Inputshaped Command and Each Axis Position Output of Gantry X Axes with
200 mm Step Command and 100 mm/sec Reference Velocity 121
Figure 4.10 Exploded View of Command and Output Trajectory from Figure 4.9 (200 mm
Step Command and 100 mm/sec Reference Velocity) 121
Figure 4.11 Exploded View of Gantry X Position Trajectory from Figure 4.10 (200 mm
Step Command and 100 mm/sec Reference Velocity) 122
Figure 4.12 Relative Error between Two Axes of the Gantry with 200 mm Step Command
and 100 mm/sec Reference Velocity 122
Figure 5.1 Overview of CMP cc Machine Control System Interface 125

Figure 5.2 Schematic of Electrical Power Distribution of CMP cX Machine Control System
126

Figure 5.3 Schematic of Brushless DC Motor/Encoder/Amplifier Wiring 127
Figure 5.4 Photograph of Control Cabinet Assembled & Wired 129
Figure 5.5 Photograph of Switch Panel & ADwin 130
Figure 5.6 Photograph of Servo Amplifiers 130
Figure 5.7 Photograph of CMP cc Machine, oblique view 131
Figure 5.8 Photograph of CMP c Machine, front view 132
Figure 5.9 Semiauto Mode User Interface 132
Figure 5.10 StepPolish Editor and Number Pad 133
Figure 5.11 Photograph of CMP a Machine in Conditioning 135
Figure 5.12 Photograph of CMP a Machine in Polishing 135
Figure 5.13 Photograph of CMP a Machine in Platen Cleaning 136

7

List of Tables

Table 1.1 National Technology Roadmap for Semiconductors 11
Table 1.2 2002 CMP Production Tool Performance Targets 15
Table 2.1 Mission Statement (Highest Level FR) 22
Table 2.2 Decomposition of Mission Statement 23
Table 2.3 Decomposition of Machine-level Control System 24

Table 2.4 Decomposition of I/O Unit 26
Table 2.5 Decomposition of Machine I/O Unit 26
Table 2.6 Decomposition of Process-level I/O Unit 30
Table 2.7 Decomposition of Signal Processing Unit 31
Table 2.8 Decomposition of Controller Unit 37
Table 2.9 Decomposition of On-off Controller 37
Table 2.10 Decomposition of On-off Controller Structure 39
Table 2.11 Decomposition of Open-loop Controller 41
Table 2.12 Decomposition of Open-loop Controller Structure 42
Table 2.13 Decomposition of Closed-loop Controller 43
Table 2.14 Decomposition of Closed-loop Controller Structure 47
Table 2.15 Decomposition of Machine-level Overhead 50
Table 2.16 Decomposition of Software Structure 53
Table 2.17 Decomposition of Software Initialization 54
Table 2.18 Decomposition of Event Sequence 55
Table 2.19 Decomposition of Software Termination 59
Table 3.1 Decomposition of Process-level Control System 61
Table 3.2 Decomposition of Supportive Unit 62
Table 3.3 Decomposition of Recipe Builder 63
Table 3.4 Decomposition of Recipe Classes 65
Table 3.5 Decomposition of Recipe File 67
Table 3.6 Decomposition of Recipe Editor 69
Table 3.7 Decomposition of Editor User Interface 70
Table 3.8 Decomposition of Process Unit 72
Table 3.9 Decomposition of Manual Mode 73
Table 3.10 Decomposition of Manual Mode Overhead 74
Table 3.11 Decomposition of User Interface 78
Table 3.12 Decomposition of Machine-level Interface 80
Table 3.13 Decomposition of Auto Mode 81
Table 3.14 Decomposition of Auto Mode Overhead 82
Table 3.15 Decomposition of Recipe Editor Link 83
Table 3.16 Decomposition of User Interface 85
Table 3.17 Decomposition of Machine-level Interface 87
Table 3.18 Decomposition of Process steps 88
Table 3.19 Decomposition of Sub-steps 89
Table 3.20 Decomposition of Transport Sub-steps 90
Table 3.21 Decomposition of Sub-step Move_WCCA 90
Table 3.22 Decomposition of Sequential Algorithm 91
Table 3.23 Decomposition of Wafer Polishing Sub-steps 94
Table 3.24 Decomposition of Sub-Step SweepWC 96

8

Table 3.25 Decomposition of Sub-Step BuffWafer 98
Table 3.26 Decomposition of Conditioning Sub-steps 100
Table 3.27 Decomposition of Step Polish 100
Table 3.28 Decomposition of Sequential Algorithm (StepPolish) 101
Table 4.1 Numerical Values of Gantry X Control System Constants (for each axis) ___ 110
Table 4.2 Numerical Values of Position Servo Controllers 123

9

Chapter 1. Introduction

1. Machine Control System Design

The scope of a machine control system design is quite extensive. It includes the
selection and configuration of major system components, such as computers, controllers,
motors, amplifiers, etc., the wiring of those components to establish signal interfaces, the
design of open-loop and closed-loop controllers, organizing and programming individual
controllers to form a whole scale machine control system, providing an easy-to-use interface
to machine operators, and so on. People often identify designing servo controllers with
designing a whole machine control system; a user interface shown on the host computer
screen with its control system. But they are just parts of a control system. The design and
development of a control system involves more than simply designing its subcomponents
(although quite important).

A machine control system can be conceived as a set of constituents or subsystems
(both hardware and software) with its overhead structure, intended to drive individual
components of the machine in a well coordinated manner to achieve the desired changes on
target objects with a reduced or minimum human intervention. At a low level, a control
system may be used to place a work piece precisely, instead of a human operator performing
positioning task. At a higher level, the same control system may cut a complicated three
dimensional shape out of the work piece based on a CAD drawing, automatically without a
human intervention during the whole process of cutting.

The development (design and subsequent implementation) of a machine control
system requires a sound knowledge of physical hardware, control technology, software
engineering and system integration, due to the scope involved. In addition, a systematic
design tool is required to structure the whole system and to guide the design of its
components. Although there are some methodologies in specific disciplines, such as object-
oriented programming in software engineering, no comprehensive tool seems to exist tobe
able to encompass all the realms involved. Naturally, the development of various control
systems has relied on human experience and trial-and-error, without any universal
framework. As a result, one control system developed for a certain type of machine can not
be used for a different type of machine. At each occasion, the time and cost of a machine
control system development is substantially high due to the lack of interchangeability and
reusability, the product of an ad hoc development. Also a system developed without any
discipline often contains fatal errors undetected during its design phase, resulting in the
endless upgrade and maintenance cycle, sometimes harming the very profitability of the
system.

The control system design based on Axiomatic Design (AD) is proposed in this
thesis. AD provides a concrete scientific methodology for the system development, by
identifying Customer Attributes (CAs) first, setting up independent Functional Requirements
(FRs), conceiving appropriate Design Parameters (DPs), and also selecting Process Variables
(PVs). Instead of relying on speculations and trial-and-errors, AD ensures a coherent new
system development by clearly stating FRs and choosing right DPs, and by showing their
relationships in terms of design equations. The Axiomatic Design approach eliminates
unnecessary couplings and promotes innovative ideas throughout the entire design process.
For a more detailed description about Axiomatic Design, please refer to Suh[3, 4].

10

As an example, the control system for the CMP a machine will be designed and
implemented throughout this thesis, based on the Axiomatic Design approach. The machine
is a prototype semiconductor wafer processing machine developed at MIT. The detailed
explanations about the background of the machine are to be presented in the following
sections.

Table 1.1 National Technology Roadmap for Semiconductors

* DRAM: Dynamic Random Access Memory
** ASIC: Application Specific Integrated Circuits
*** CD: Critical Dimension
**** ILD: InterLayer Dielectric

11

Year of First Product 1997 1999 2001 2003 2006 2009 2012
Shipment- DRAM*

Minimum feature size 250 180 150 130 100 70 50
(pim) I I _t_4
Bits/chip- DRAM 64M 256M 1G 1G 4G 16G 64G
Chip size (mm2)
- DRAM 280 400 445 560 790 1120 1580
-Logic 300 340 385 430 520 620 750
- ASIC** 480 800 850 900 1000 1100 1300
Maximum Substrate 200 300 300 300 300 450 450
Diameter (mm)

Number of metal levels
- DRAM 2-3 3 3 3 3-4 4 4
- Logic 6 6-7 7 7 7-8 8-9 9
Maximum interconnect 820 1480 2160 2840 5140 10000 24000
length- logic (meter/chip)

Planarity requirement 300 250 230 200 175 175 175
within litho field for
minimum interconnect
CD*** (nm)
Minimum metal CD (nm) 250 180 150 130 100 70 50
Metal height/width aspect 1.8 1.8 2.0 2.1 2.4 2.7 3.0
ratio- logic

Minimum contacted/non-contacted pitch (nm)

- DRAM 550/500 400/360 330/300 280/260 220/200 160/140 110/100
- Logic 640/590 460/420 400/360 340/300 260/240 190/170 140/130
Metal effective resistivity 3.3 2.2 2.2 2.2 2.2 < 1.8 < 1.8
(pQ-cm)

Barrier/cladding thickness 100 23 20 16 11 8 6
(nm)

ILD**** dielectric constant 3.0-4.1 2.5-3.0 2.0-2.5 1.5-2.0 1.5-2.0 1.5 1.5
(K)

Interconnect metal Al Al, Cu Al, Cu Al, Cu Al, Cu Al, Cu Al, Cu

2. Chemical-Mechanical Planarization (CMP)

Since the advent of Integrated Circuit (IC) technology, microelectronic devices have
been fabricated on tiny pieces of semiconductor material, or on chips. A microelectronic
chip is composed of numerous circuit components, or devices, such as transistors, diodes,
resistors, and capacitors. Several layers of dielectric and metal materials are grown or
deposited on top of the base silicon wafer, and these circuit features are created by a variety
of methods such as diffusion, oxidation, lithographic patterning, etching, etc. A single wafer
usually contains tens of 'dies', which are electronically complete units. Each die is sliced from
the wafer, and then bonded and packaged to provide electrical connections and a more
rugged support.

Each device is composed of many features, such as a metal line, a segment of doped
silicone substrate and a portion of dielectric layer. The topographic combination of these
features produce transistors, diodes, resistors, capacitors, etc. These devices then constitute a
microelectronic chip. Feature sizes are getting smaller with the advance of integration. A
typical feature size is less than a micron, while 0.15 ptnm is becoming the current generation.
Table 1.1 is the National Technology Roadmap for Semiconductors, which shows the trends
and requirements in the semiconductor industry for the next decade[1].

To meet the stringent requirements of submicron feature size, the layers deposited or
grown during fabrication processes must be flat. The thickness variation of a layer over a
device scale should understandably be much smaller than its feature size. Without this level
of planarity, many fabrication techniques, especially lithography, fail to produce the desired
submicron features.

Before Planarization

E oxide

After Planarization

I... U ml

I U U m mi

E substrate

Figure 1.1 Schematic of Microelectronic Features before and after Planarization

12

ILD
Planarization

Metal
Damascene

E metal

F

wafer

wafer carrier - abrasive slurry pad

i platen

C 3CO p
F: normal force
cow: wafer angular speed

(oP: platen angular speed

Rotary kinematics

wafer

wafer carrier abrasive slurry

platenfluid bearing

belt/pad

-I-

F: normal force oW: wafer angular speed v: belt speed

Belt kinematics

Figure 1.2 Two Types of Polishing Kinematics

Metal layers are planarized to expose the underlying microelectronic circuitry,
whereas oxides are planarized to provide flat base layers for further depositions or growths
of upper layers in the subsequent processes. Types of metals to be planarized include copper
(Cu, dual damascene), tungsten (W, vias planarization) and aluminum (Al, alternative to Al
etching). Figure 1.1 shows the schematic of the microelectronic features before and after
planarization for both metal and oxide.

Planarization is usually accomplished by polishing a wafer mechanically against a pad
in the presence of slurry, which is a mixture of loose abrasives and chemicals suspended in

13

drun

water. For this reason, CMP is also interpreted as Chemical-Mechanical Polishing. A
polishing process requires pressure and relative displacement between the two bodies in
contact. Pressure is usually created by pneumatically pressing the wafer in a container (wafer
carrier) against the pad on top of the platen. Relative displacements can be generated either
by rotating the pad with the platen (rotary kinematics), or by the pad only with a stationary
platen (linear or belt kinematics). In either case, the wafer is also rotated to ensure uniform
polishing profile across the wafer surface and also to increase the relative speed seen from
the wafer surface. Figure 1.2 shows the two types of polishing mechanism schematically.

3. CMP Performance Requirement

A CMP equipment should be able to process wafers to the desired specifications
(effectiveness) in an efficient manner, as in any manufacturing machine. CMP specifications
include uniformity, surface quality, defect density, etc. Throughput rate, cost of ownership,
and tool capital cost can be the measures of a tool efficiency.

Uniformity can be classified into three levels- wafer, die, and feature level. On wafer
level, non-uniformity (or variation in uniformity) is usually quantified by the standard
deviation of a layer thickness divided by the mean thickness of the layer (&-/h). The lower is
the thickness variation, the lower is the non-uniformity, meaning more planar surface. From
the production point of view, wafer-to-wafer non-uniformity as well as within-wafer non-
uniformity is important.

On die level, a difference in pattern (or feature) density leads to a difference in
polishing rate and thus creates a non-uniformity. In metal polishing, the metal in high
density area (i.e. which has more metal lines compared to the surrounding area) gets polished
faster than the one in low density area, leading to overpolishing the underlying oxide layer.
One solution to this problem is to use a selective slurry- the chemical in the slurry has a
preferable etch rate to metal compared to oxide, thus minimizing oxide overpolishing.

On feature level, the cross section of an interconnect metal line tends to develop a
hollow indentation after polishing, termed 'dishing.' Metal lines typically lose 20 % of their
designed volume by the combination of dishing and overpolishing. A slight overpolishing is
desirable to prevent any possible short circuit between the metal lines due to the metal
residue over them.

Surface quality is closely related to defects. The polishing action can generate
scratches comparable to the abrasive size used. The industry widely uses 50 to 300 nm size
abrasives, which is close to the underlying feature size of the wafer surface. A streak of
scratch can ruin many devices, considering it can be millimeters or centimeters long. The
scratches should be minimized to the possible extent. Also the surface roughness should be
less than 10 nm (R).

Mechanical abrasion and chemical etching during polishing can damage underlying
features. Scratches are commonly observed. Weakly laid features can also be damaged by the
contact with the abrasive particle, resulting in defects. A defect can also be created by an
impurity particle embedded during polishing or attached after polishing. Buffing (polishing
with light pressure and only with water after main polishing) and post-CMP cleaning are
essential to remove any impurity from the wafer surface.

Porous polyurethane is typically used as a pad material in the conventional loose
abrasive polishing, because of its chemical stability, low cost, and ease in tuning the

14

mechanical and physical properties. However as polishing continues, the surface of a pad
plastically changes by the rubbing and plowing actions of abrasive particles. Pores are filled
and the surface hardness changes (pad surface is glazed). These deformations result in the
decrease in the material removal rate (MRR) and in the deterioration in the wafer uniformity
and surface quality. To minimize this effect, the pad surface is continually regenerated during
and/or between polishing by rubbing the pad surface with a fixed abrasive disk. This
refreshing process is termed 'conditioning' in CMP industry. Diamond grits are typically
used as the conditioning abrasives. Conditioning maintains a certain degree of pad roughness
and keeps a number of pores open.

Table 1.2 2002 CMP Production Tool Performance Targets

Attribute Metrics for Dielectrics Metrics for Metals
Equipment Auto pad condition Required Required
Parameters In-line metrology Desired N/A

End point detector for STI Required N/A
application
In-situ thickness monitor and N/A Desirable
control or endpoint control
Integrated with post-CMP clean N/A Required
Dry in-Dry out Required Required

Process CMP uniformity total variability 10% 10%
Targets (3a)

Head to head variation (3a) 1% 1%
Defects On-film @ 0.20 ptm <12.8/wafer (0.0186/cm2) <12.8/wafer (0.0186/cm2)
(with in-situ On bare Si @ 0.09 jim <64.3/wafer (0.0919/cm2) <64.3/wafer (0.0919/cm2)
CMP Backside on Si @ 0.20 pm <200/wafer (0.30/cm2) <200/wafer (0.30/cm2)
integrated
post-clean)
Cost/Perform Throughput 75 wafers/hr 75 wafers/hr
Targets Tool capital cost $1.9M $1.9M

Mean Time Between 300 hrs 220 hrs
Failure(MTBF)
Mean Time To Repair(MTTR) 2 hrs 2 hrs
Preventive maintenance 6 hrs/wk 6 hrs/wk
Consumables <$4/wafer pass <$4/wafer pass
Area per tool 7.9 m 2 7.9 m 2

Support area per tool 2.8 m 2 2.8 m 2

CoO Target CoO objective $5.56/wafer pass $5.57/wafer pass

In the semiconductor industry, metrology is of the utmost importance. Metrology is
required in almost all the process controls, yet measurements at nanometer level are quite
challenging. A wafer can be measured during (in-situ) or at the end (ex-situ) of a process to
check if the required physical changes have occurred. In-situ measurement is usually
preferred, because the measured information can be fed to the controller for real-time
process control purposes. But in-situ measurement is usually more difficult and costs more
than ex-situ. Ex-situ measurement is applied where in-situ is not viable. Each wafer and/or
die is tested and if it doesn't meet the process requirement, it is either sent back for re-work
or discarded. Minimizing the amount of re-work and scrap is a big aim in the industry.

In CMP, the in-situ measurement is still not well established. The end of polishing

(endpoint) is indicated by the amount of polishing time, which is set beforehand based on

15

the experiments and trial-and-error. To reduce the amount of rework, the wafers are usually
overpolished slightly. It becomes essential to have an in-situ measurement capability to signal
the endpoint at a right moment. Several methodologies are being used or under
investigation: motor current sensing (friction force), film thickness measurement (acoustic,
optical, electrical), etc.

Material removal rate (MRR) is of great concern, because it plays a major part in
determining the throughput rate of a CMP tool. Thus a higher MRR is desirable. But
increasing MRR beyond a certain point can reduce uniformity and surface quality. An
optimum MRR increases the efficiency of the equipment, yet ensuring the effectiveness of
the process it provides.

Throughput rate is not only affected by MRR, but also affected by other factors such
as wafer handling and transportation time, cleaning time, conditioning time (ex-situ), number
of heads and platens in a single machine, scheduling of individual process, etc. Throughput
rate is a system issue indeed, and the request for a specific rate is to be met by considering
those factors altogether.

There also are other measures of tool efficiency: tool capital cost, consumable cost,
cost of ownership, tool size, ease of maintenance, etc. Table 1.2 shows the 2002 Production
Tool Performance Targets from Semiconductor International magazine[2].

4. CMP a Machine

In order to meet the growing research need, a CMP machine has been developed at
MIT by the CMP research group, as a successor of the simple test-bed machine developed
two years ago. This cc machine has a great flexibility and a high precision, and designed to
excel other commercially available machines. Figure 1.3 shows the drawing of the machine.

The machine has one wafer carrier head and two platens, which enable multi-step
polishing. The wafer carrier is mounted on the bracket, and the bracket can move up and
down along the gantry Z axis. The gantry also provides X directional wafer carrier
transportation. Two synchronized motors on each side of the gantry transmits x directional
motion to the gantry via ball screws. The wafer carrier and the platens have their motors for
rotation. The conditioner has one motor for the rotation of its head and also the other
motor for the X direction transportation. Loading, unloading, and cleaning of a wafer are all
performed at the load/unload/cleaning station. All of these components are mounted on
top of the granite table, which has a good vibrational damping characteristic. The table is
then mounted on the steel supporting structure.

There are several distinctive features in the machine. The machine is designed with
precision in mind. Flatness of the granite table and the platens are ensured. Verticality of the
gantry Z axis, the wafer carrier spindle, and the platen spindles are also double checked. All
the translational motions will be controlled with less than 50 pm of precision, and all the
rotational motions will have error bounds of ±0.1 rad/sec. The machine can provide wider
range of process parameters. It can achieve 4 m/s of relative polishing speed, whereas other
tools are typically limited to 1 or 2 m/s. It also provides polishing pressure of up to 20 psi,.
However nominal polishing pressure is usually 7 psi.

Depending on the CMP process development, the machine may be asked to perform
multi-step polishing. A wafer can be polished for a given amount of time on one platen with
a certain set of process parameters- pressure, velocity, abrasive size and material, slurry

16

chemical, pad material and physical property, etc. Then it will be transferred to the other
platen with a different set of process parameters. Usually a platen is dedicated to a specific
slurry and pad, but other process parameters can be changed even within a single platen. A
plausible scenario is two-step metal polishing: First step for major material removal with
high speed and pressure, and large abrasive size; Second step for finishing and planarization
with low speed and pressure, fine abrasive size, and selective chemicals. The machine is
mainly designed for metal (Cu) polishing, but can also be used for oxide polishing and even
for polymeric ILD polishing.

Gantry

Wafer Carrier

Load/Unload/Cleaning Station

Conditioner

Platen

- Granite Table

C) S Sport Structure

z

Figure 1.3 Overview of CMP cc Machine

Two different types of slurry can be delivered to each platen at the same time. The
slurry dispense lines can be used for deionized (D1 water flushing. A slurry can be dispensed
either on top of the platen, or through the platen for a better slurry transportation. When a
slurry is dispensed only on the top of the platen, it is often difficult for the slurry to flow to
the middle of the polishing interface. The edge sees more slurry then the center, and thus it
usually gets polished faster, contributing to the non-uniformity. By dispensing slurry through
the holes in the platen and pad, an even distribution of slurry is achieved.

An optical sensor is embedded in the platen, which measures intensity of the
reflected light, or reflectance, from the opposing surface, which is the wafer being polished.
Metal has higher reflectance than oxides. Thus at the end of metal polishing, once underlying
oxide layers are exposed, the reflectance value will drop significantly. By employing this
principle, the reflectance measurement can be used for endpoint detection in metal

17

polishing. Signal acquisition methods and signal processing algorithms are being developed
for Cu endpoint detection.

Many factors can affect the uniformity of the wafer surface- uneven pad profile,
uneven slurry distribution, spatial difference of relative velocity over the polishing interface,
etc. Due to the rotation of wafer, the circumferential layer thickness variation is usually less
than the radial one. Typically, edge is being polished faster than the center, leading to a
convex profile. In part to combat the problem, the pressure actuation compartment of the
wafer carrier is divided into four concentric chambers, called Active Membrane Assembly
(AMA), which can have different pressures. For example, to prevent the convex profile, the
inner compartments may exert higher pressures, where as the outer compartments lower
pressures. Another possibility is to actuate membranes dynamically from the reflectance
feedback. Reflectance measurement can give the information about the remaining metal
layer thickness (or if it is completely removed). The machine control system keeps track of
the sensing position on the wafer. By combining film thickness metrology and spatial
information, it is possible to actively actuate AMA during polishing. For example, if an area
corresponding to the third compartment is detected to be polished faster than the rest, the
process controller tells the AMA to reduce the pressure in the third compartment.

5. CMP a Machine Control System Overview

The machine control system needs to be designed to ensure the effectiveness of the
CMP process and enhance the efficiency of the machine operation, by integrating all the
intended system functions. The control system development includes the electrical wiring
and interfacing of various actuators, sensors and the controller; the design and
implementation of individual control algorithms (or controllers) for each drive and actuation
component; creation of process steps, such as wafer loading, buffing, conditioning and
polishing, which are generated by time-wise and conditional combinations of individual
control actions; realization of machine operation, which allows a user to process sets of
wafers to the desired specifications, using the various process parameters and sequences
(recipe) in a fully automated environment.

The control system has a cabinet which houses most of the electrical components
separate from the machine. The external processing system (a computer for system control)
is located inside the cabinet. A 19" rack mountable, modular system, called ADwin, is
selected as the real time process controller. ADwin has its own local 40 MHz RISC
(Reduced Instruction Set Computer) DSP (Digital Signal Processor) and 32 MB of memory.
Analog-to-Digital (AD), Digital-to-Analog (DA), Digital-In-Out (DIO), counter, relay
modules can be mounted on the ADwin controller. The processor communicates with these
modules via ADwin bus. For more information about ADwin, refer to its manual[12].

A host computer is required for the initial loading of the control program to ADwin
and the communication and supervision while the controller is at work. A personal
computer (PC) is selected for this purpose. The PC has a graphical user interface (GUI) to
interact with a user, to save and edit recipes, and to monitor the machine operation. The PC
has a Pentium III, 450 MHz CPU and runs under Windows NT 4.0 environment. It has a
flat panel LCD (liquid crystal display) touch screen for an easy user interaction. Figure 1.4
gives the general idea of the CMP a machine control system.

18

GUI Communication
User <TC>C Fab Environment

Control Board

on Pressure Flow Temperature Sensin
rol Unit Control Unit Control Unit Control Unit

tr PneumaticS
iton Actuator+

;iio DI Water TMachine a

tation LOConditioner Slur

Moti
Cont

Poa

Ro
IArn~

ten
tation

Figure 1.4 Overview of CMP (x machine Control System

The machine has nine motors, with nine corresponding switching amplifiers. They all
have incremental rotary encoders for position feedback. Two pumps are used to deliver
slurries and DI water for each platen. Numerous valves are required for slurry and DI water
transport control and for pneumatic control. Endpoint and wafer detection sensors are used
for process control purposes. In addition, there are numerous relays for on/off type
actuation. All these devices are located either in the control cabinet or on the machine and
wired both in power and logic.

Wiring requires a careful planning and cautious implementation, because a single
misplaced wire can ruin the whole control system. Wiring is also a greatly time consuming
process. The biggest concern in wiring is to minimize noise pickup, generated from
switching amplifiers and other electronic devices. Noise can interfere with the signal in/out
(I/O) processing of the ADwin and the communication between the host PC and the
ADwin. A small glitch can stop the whole machine and also undermine the safety of the
machine operation. Certain methods will be employed to suppress the noise from
propagation. But usually, they can not eliminate noise completely. The issue here is how to
keep the noise below a certain level, so that the control system can perform its normal
functions without being affected by the noise.

Once wiring is completed and proper signal I/Os for the ADwin are established, the
next task is to design digital controllers. Digital controllers are implemented as software
programs which run on the ADwin controller. Although confusing, the term controller is

19

Un7it]

ct

ry

unt

used to mean both an external control circuit board (such as ADwin) and a specific control
algorithm for a drive.

Relays and On/Off controls require just a single line of coding in control software.
All the pneumatic and fluid valves will be controlled in open-loop, but they need to be
calibrated so that the dictated value from the controller matches with the actual physical
value in the valves. Analog sensors, such as the reflectance sensor and the strain gages need
calibration, too.

For the CMP a machine, all the position and velocity components will be controlled
in closed-loop. The gantry X axis, the gantry Z axis, the conditioner X axis and the wafer
aligner angle are position controlled. Synchronization of two axes motors and providing fast
enough speed for the heavy gantry mass (approx. 1100 Kg) are challenges of the gantry X
axis position controller development. The weight of the wafer carrier (approx. 300 Kg) and
maintaining the vertical position are the concerns in the gantry Z axis controller design.

Conditioner X position control is expected to be relatively easy because of its light
dynamics. But coordinating its motion to avoid any collision with the wafer carrier is a
demanding subject. Four arm wafer aligner is located in Loading/Unloading/Cleaning
Station (LUCS), to center the wafer before the wafer pickup by the wafer carrier. A proper
force control is required in order not to crush the wafer during aligning.

Velocity control is relatively easier than position control. The wafer carrier rotation,
the two platen rotations and the conditioner rotation are all velocity controlled. The issue
here will be maintaining a set velocity under the load, such as polishing or conditioning.

Having functional individual controllers at hand doesn't necessarily mean we can
polish wafers. We have to create an intelligent set of the control actions, generated by the
designed controllers, to embark any processing. For example, to move the wafer carrier from
a position (X1, Z1) to (X2, Z2), we have to call both X and Z controllers with a certain
sequence and possibly multiple times.

A small set of control actions can be designated as a 'sub-step.' A sub-step refers to a
set of individual control actions, which is identifiable as a single unity during wafer
processing. Wafer transport, wafer sweeping during polishing and wafer buffing can be the
examples of the sub-step.

These sub-steps and other procedures can be combined to form a 'step,' which is a
distinctive set of processes in the continuous stream of wafer processing. A step is an
ingredient to form a recipe. By combining various steps, a process recipe can be designed.
Loading, unloading, polishing and cleaning can be the examples of the step. The grouping is
rather arbitrary, but performed in the viewpoint of a user, who has to design a recipe to
obtain the desired product. Recipe is a set of process parameters and sequences to induce
the desired physical change to a wafer which has a certain film layer (material, thickness,
topography, etc.) to be planarized with underlying features.

The process control software will be designed to accommodate various possible
recipes to run the machine. The process control software will send process commands to the
machine control software. The machine side will recognize the commands from the process
side, collect process data, perform required control actions, and update process parameters
and machine status to the process side.

On the PC side, it will have a GUI, where the user can edit and retrieve recipes and
operate the machine. Machine operation involves loading and unloading of control program
to ADwin, loading and unloading of recipes, sending function commands (Run, Stop, etc.),
supervising the work of ADwin control software, receiving process parameters and machine

20

status data from ADwin and updating on the GUI operation screen. Supportive features,
such as set up, machine operation database (machine use log), and maintenance log should
be included on the PC side.

6. Thesis Objective

The objective of this thesis is to develop the CMP cc machine control system
successfully, using the framework of Axiomatic Design. During the course, it will become
evident that Axiomatic Design can provide a systematic design methodology for a complex
control system design. Main hypotheses include:

1. Axiomatic Design can provide a systematic framework and guideline in developing a
complex machine control system.
2. Axiomatic Design clearly identifies required control actions (FRs), corresponding
controllers (DPs), and run-time control variables (PVs).
3. Modern control technology can be employed to realize the control action specified by AD
during the decomposition with a reasonable tolerance (Controller design follows Axiomatic
decomposition).
4. Axiomatic Design can be used to design the structure and the sequence of the process
control software.
5. Hierarchical structuring and abstraction between the levels in a software improves
readability, efficiency, and maintainability of the system, which are the natural consequence
of software design based on Axiomatic Design.
6. The structure designed by AD is realizable by the current software technology
(Programming follows Axiomatic decomposition).

7. Thesis Overview

This chapter has been the introduction, outlining the work involved in the CMP cc
machine control system development and presenting the objective of this thesis. In Chapter
2, the machine side control system is developed using the AD framework. The development
continues in Chapter 3, which presents the design of the process control system. Chapter 4
deals with the design of a servo controller and its implementation. The entire system is
integrated and implemented in Chapter 5. The conclusion is given in Chapter 6. The
discussion about the future work follows in Chapter 7.

21

- -- El- ~ -

Chapter 2. Machine-level Control System

Axiomatic Design begins with identifying customer needs(Customer Attributes,
CAs). In the case of the CMP cc machine control system development, customers include
MIT CMP research group(both the design and the process team), the research sponsor, and
potentially the semiconductor industry as a market. Many of the needs have already been
remarked in the introduction chapter. The following lists the most fundamental CAs.

* Provide the required precision.
* Minimize the non-processing time.
" Enable a fully automated wafer processing.
" Flexible recipe editing and its implementation.

* Provide an equipment use and maintenance log.
* Easy to operate.
* Safe to use.

These CAs can also be thought of as general guidelines or constraints throughout the overall
system development process. These constraints will be explained more elaborately at each
corresponding level.

Axiomatic decomposition often starts with a single objective or mission statement.
In this case, the objective is clear: Integrate individual components to create an effective and
efficient machine control system. Table 2.1 shows the mission statement, which serves as the
highest level FR/DP set.

Table 2.1 Mission Statement (Highest Level FR)

Coordinate the individual components of the CMP cx Equipment control system
machine in a systematic manner so that it can process wafers
effectively and efficiently to the desired specifications.

In the CMP a machine control system development, the issues are three fold:
hardware interfacing, generating individual control actions, organizing those control actions
to process wafers. Hardware interfacing belongs mostly to the domain of Electrical
Engineering, employing the knowledge of circuit design, power electronics, signal
conditioning, etc. Design of an individual controller also belongs to the realm of Control
Engineering, with the indexes of tracking error, response time, robustness, optimization, etc.
However, providing a framework for individual controllers and organizing the output of the
controllers to achieve higher level goals are mostly system design issues. Thus, AD can be
used from the beginning to structure the control system. AD can not design a controller
itself. A controller is designed from the principles of Control Engineering. But it will identify
the need of a certain type of controller to achieve FRs and place the controller as a DP,
through the decomposition. Also, AD will be used to identify and layout the elements and
methods of a controller, because a digital controller is essentially a block of coding running
as a part of a greater control system software.

22

We define the equipment control system as a set of software designed to achieved
the goal of coordinated wafer processing, with appropriate interfaces to the machine and the
user. Thus it is natural to decompose the highest level FR into two sub FRs: Machine-level
and Process-level. Table 2.2 is the decomposition of the mission statement.

Table 2.2 Decomposition of Mission Statement

Contro Coordate otrociosfmec individual Machinn-levs coto sse
mahe coPamponent. na yteai

Process Organize the controlled outputs for wafer Process-level control system
processing.

FRI X o DP1

FR2 XX_ DP2

Machine-level control system will concentrate on ensuring and structuring individual
control actions of the machine, which are the basic ingredients of the overall equipment
control system. Because it deals with the real time hardware control issues, it will be
programmed for and running on ADwin external processing system. In contrast, Process-
level control system deals with the issue of organizing these individual actions generated by
the Machine-level to process wafers in desired manners. Thus it should supervise and
communicate with the Machine-level, giving commands and taking statuses, interact with a
user to accept user inputs and display machine parameters, and run the machine in a
preprogrammed manner in an automatic wafer processing mode. Process-level control
software naturally nests on the host PC.

Although not specified in this decomposition, we can think of a third design
parameter, DP3: Operation-level control system. Our present goal is to process a single
wafer with a given set of conditions in a fully automated manner. But in a real production
environment, we are interested in operating the machine to process lots of wafers. For

example, we may want to process two lots of 50 Cu wafers with 0.13 ptm line width in the

morning and a lot of 100 oxide wafers with 1 pm film thickness in the afternoon. Also, in a
fab, a machine hardly works as a stand alone equipment. A CMP machine is usually located
in a bay or cluster type configuration, with other equipments such as a cleaning station, an
inspection station, and a wafer transporting and handling robot. Scheduling of the
equipment, cooperation with other machines, and managerial supervision of 'operation'
become important issues at this level. In most cases, this Operation-level control system will

23

run on a physically separate unit, such as a central processing and monitoring computer,
connected via an intranet. DP3 addresses the necessity of a higher level control system and

provides an interface for it. However, we will remain in the decomposition of DP1 and DP2,
because the machine is more oriented to the research rather than the production.

It will simply be impossible to present every detail of the decomposition of all the
branches and all the way down to the lowest levels. Rather, structuring of the system along
the major branches will be described, with an occasional illustrative decomposition down to
the required level where needs arise. We will first tackle the Machine-level control system.
When we are comfortable with the clear picture of the Machine-level in mind, we will move
on to the Process-level in the next chapter to zoom out.

DP1. Machine-level Control System

Machine-level control system is responsible for generating individual control actions
of the machine in a systematic manner, so that they can be used as constituents in wafer
processing and machine operation by higher level control systems. To meet the objective, a
machine-level control system should have an In/Out(J/O) unit to handle communication
with the machine and a higher level control system, an signal processing unit to condition
incoming signals(mostly from the machine), a controller unit to command outputs to the
machine and an overhead to structure and coordinate these units and the machine-level
itself. Table 2.3 shows the decomposition of the Machine-level control system.

Table 2.3 Decomposition of Machine-level Control System

Control Receive inputs and send outputs. I/O unit
Control Process incoming signals. Si al processing unit
Control Produce controlled outputs. Controller unit

4 Control Structure the Machine-level control system. Machine-level overhead

FRl1 XOOO DPll

FR12 XXOO DP12

FR13 XXXO DP13

FR14 X X X X_ DP4

24

DP11. I/O Unit of the Machine-level Control System

The Machine-level control system basically interacts with the machine and the
Process-level control system. In turn, the machine interacts with the environment and the
Process-level interacts with a user and possibly an operation-level control system. Figure 2.1
conceptualizes the interactions of the Machine-level with other systems.

display logic & control commands machine parameter input performance

Process-level Machine-level Machine
t t 4

user input status & control parameters controller output disturbance

* Logic commands: function buttons, initialization
* Control commands: position, velocity, pressure, flow rate, valve and switch on/off, etc.

* Status parameters: error, operative status
* Control parameters: current position, velocity, sensor output, time, etc.

Figure 2.1 Interaction of Machine-level Control System with other systems

We decompose the I/O unit into two sub units by their corresponding counter
parts- the machine and the Process-level, as shown in Table 2.4. The machine I/O unit deals
with the interface with the machine to acquire the data for machine control and transmit the
output to drive the machine to the desired states. Thus the machine I/O works as a bridge
between the machine hardware and the control system software. As one can imagine, the
formation of the machine I/O depends largely on the hardware configuration. Types of
actuators and sensors and the natures of their signal dictate the forms of the required
interface cards. Basically inputs and outputs are either analog(continuous) or digital(discrete),
and interface cards are built to handle varieties of those basic signals.

Table 2.5 shows the decomposition of the machine I/O unit. A counter(CNT) card
is required to decode the position information from the encoder signals installed on the
mating motor shaft. An encoder typically gives two channels of TTL(transistor-transistor
logic) level square wave signal. As described in Figure 2.2, one channel leads the other
depending on the direction of the rotation. The state transition sequence of a counter-
clockwise(CCW) rotation is different from the one of a clockwise(CW) rotation. Thus by
observing the state sequence, a counter can determine in which direction the shaft is
spinning, and it is reflected in counting(up or down). The counter decodes the position

25

information by counting the transitions of states(quadruple decoding). Thus an 1000
pulses/rev encoder gives 4000 counts/rev resolution in quadruple decoding. Starting from 0,
it will count 4000 if the shaft makes one CCW revolution, -4000 if one CW revolution.

Table 2.4 Decomposition of I/O Unit

Handle inputs from and outputs to the machine. Machine I/O unit
Handle inputs from and outputs to the Process- Process-level I/O unit
level control system.

{FR111 F X0 DP111

FR12f Lo X DP12

Table 2.5 Decomposition of Machine I/O Unit

Control I Acquire encoder(position) signal Counter(CNT) card

Control Sense digital(Hi or Low) signal Digital Input(DI) card
Control Accept analog(continuous) signal Analog-to-Digital Conversion(ADC) card
Control Send On/Off(Hi/Low) signal Digital Output(DO) card
Control Output relay signal Relay(REL) card
Control Provide analog output Digital-to-Analog Conversion(DAC) card

FRI I

FRI 112

FR1113

FR1114

FRI115

FRI116

x 0 0 0 0 0
0 X 0 0 0 0

O X O O 0

0 0 0 X 0 0

O OO O X O

O O O 0 X

DP1111

DPI 112

DPI 113

DP1 114

DPI 115

DP1 116

26

CCW: A leads B

A

90 elec. deg.

1 cycle

time

CW: B leads A

A ___

B

5 V Channel A Channel B State
1 0 1
0 1 2
0 1 3
0 0 4

5 V Channel A Channel B State
1 1 2

0V 1 0 1
0 0 4
o 1i

2 CCW 4

3

2 CW 4

3

Figure 2.2 State Transitions of Two Channel Encoder

ADwin is equipped with 3 CNT-VR4 counter cards. Each CNT card has four
counters with maximum input channel rate of 1.25 MHz(5 MHz quadruple count rate).
Figure 2.3 shows the block diagram of a CNT-VR4 counter. Optionally each counter can be
configured as a clock(single channel) and a direction(up or down) input. The output is stored
as a 32 bit integer value in the register and transported to the CPU via ADwin-PRO bus.

clock
dir

A
32 bit up/down counter quadruple(edge) -

evaluation

- clear input

32 bit latch 'c ntrlu i

Internal ADwin-PRO Bus

Figure 2.3 Block Diagram of CNT-VR4 Counter

27

Many on/off type sensors give TTL level signal, and a digital input(DI) card is
required to capture the signal. Also a digital output(DO) card is required to transmit TTL
level on/off signal either directly to an actuator or its amplifying circuit. ADwin has three
Pro-DIO-32 cards with 32 digital input and output channels at TTL levels for each card.
Each channel can be selected as input or output by software.

An analog-to-digital conversion(ADC) card is necessary to measure a continuous
voltage signal. A Pro-Aln-8/16 card is equipped with a 16 bit ADC and 8 differential input
channels, and has a maximum sampling rate of 50 kHz. ADC will be used to interface
process sensors, such as a reflectance senor and strain gauges. Figure 2.4 shows the block
diagram of the Pro-Ain-8/16 ADC card. Its output is a 16 bit integer variable for each
channel.

1

Op >amp AD pt- data Hdata
ThePoE -6 rconverte d r register

2

pt- address addes

8 oude decoer

Figure 2.4 Block Diagram of Pro-Ain-8/16 ADC card

The Pro-REL-16 relay card has 16 isolated relay outputs. Each relay channel is
driven to open or closed contact by the built in transistor switch, which is in turn controlled
by a digital output. In that sense, it is a variation of DO card, with built in relays and
transistor switches. Figure 2.5 shows a simple diagram of a relay output circuit. Each relay
can switch up to 30 V AC/DC and 500 mA current.

Servo amplifiers and variable speed pumps usually accepts an analog voltage input as
a command signal. In a computer controlled system, both open loop and closed loop
controllers are implemented by a software program. Thus, to transmit a controller output to
the corresponding plant, a digital-to-analog conversion(DAC) card is required. The Pro-
Aout-8/16 has 8 channels of 16 bit DACs with fixed 1 order low-pass filters. Each channel
can output up to ±10 V and 5 mA with 20 ptsec of settling time. Figure 2.6 shows the
schematic of the Pro-Aout-8/16 analog output module.

28

relay outputs

A

Rel 00 ... 15

B

+5 V

DIG GND

Figure 2.5 Circuit Diagram of Pro-REL-16 Relay

Op low-pass DA
amp filter converter

2 Op low-pass DA
amnp filter converter

8 Op low-pass DA

amp filter converter

data data
register dat

address address
register

Figure 2.6 Block Diagram of Analog Output Module, Pro-AOut-8/16

The Machine-level control system should also communicate with the Process-level
control system to receive command inputs and provide machine status and process data.
The ADwin system is equipped with two Analog Device's 40 MHz ADSP 21062 digital
signal processor(DSP) chips. Each processor has two types of memory: 256 KB of internal
memory to load program and local variables; 16 MB of external dynamic memory(DRAM)
for array variables which are typically used for data measurement and storage. ADbasic, the
programming language of ADwin, provides drivers so that a host PC can access the
memories of the ADwin processors. For more information about the ADwin processor
memory structure and accessibility, please refer to the ADbasic manual[5].

We use the memories of DSPs to design the Process-level I/O unit of the Machine-
level control system. Table 2.6 shows the decomposition of DP112. Command inputs

29

-c
0

I
0

r ~ - -~ -~ ~-=-~" - -~ - - -- ,-~

include both logic and control commands. Run, Stop, Reset, and Initialize are examples of
logic commands, which mainly handles process controls. Control commands are instructions
for desired control actions, such as position, velocity, and flow rate. The number of the
command input is typically less than 100. Thus it is reasonable to use a section of the DSP
internal memory writable by the host PC. By the same token, parameter outputs of the
Machine-level control system are placed in a segment of the DSP internal memory,
accessible by the host PC. Parameters include both status and control parameters. Status
parameters indicate the status of the machine and the error code, if an error is set. Control
parameters are machine parameters including, current positions, velocities, sensor values,
time, etc.

A large amount of data(typically on the order of MB) is collected during wafer
processing for the purpose of measurement and on- and off-line analysis. Reflectance of
wafer surface during polishing is an example of process data. If the host PC requires the data
for a higher level analysis and storage, the ADwin should be able to temporarily house the
data until the host come and pick them up. 16 MB of external memory of DSP can be used
for this purpose. However, one should be careful not to overwrite the memory.

Table 2.6 Decomposition of Process-level I/O Unit

Receive command inputs

FRI 1211 X 0 DPI 121

FR1122 = x XO DP1122

FRI 123 [O O X_ DP123

30

DP12. Signal Processing Unit of the Machine-level Control System

A raw signal from the machine first needs to be converted to an appropriate unit
used in the control system software, and then differentiated and integrated, if necessary.
Typically, an incoming signal contains a lot of noise, superposed on the original signal.
Proper filtering is quite essential in a high precision measurement and control. A controller
output is also required to be converted to a required format by the I/O unit. Process date
needs to be saved temporarily until requested by the Process-level control system.

Signal processing unit conditions incoming signals from the machine so that they can
be used both by the Machine-level and the Process-level control system. Most signals are
processed to be used by the Machine-level controllers, but some processed signals are fed
directly to the Process-level for a higher level process monitoring and control. Wafer
reflectance signal is an example of locally conditioned information, yet used for a higher level
process control. Table 2.7 is the decomposition of the signal processing unit.

Table 2.7 Decomposition of Signal Processing Unit

Control Convert an input to the desired unit. Input conversion unit
Control Differentiate an input signal. Differentiation unit
Control Filter the input. Filtering unit
Control Integrate required signals. Integration unit
Control Convert controller outputs to the I/O unit Output conversion unit

units

Control Save data internally. Internal data save unit

FR121

FR122

FR123

FR124

FR125

FR126

X

X

X

X

X

0

00000

X 0 0 0 0

XX000

XXX00

XX XX 0

0 0 0 O X

DP121

DP122

DP123

DP124

DP125

DP126

An encoder counter gives a 32 bit integer value, but for control purposes it needs to
be converted to an angle either in radian or degree. The following simple formula converts a

count to a radian in an incremental manner. To decode an absolute rotary position(0 ~

27), a modulo q operation can performed on n.

31

0 = 2frxn/q

6: motor shaft angular position, [radian]
n: encoder count
q: number of counts per revolution

An ADC input is expressed by a 16 bit unsigned integer value. With bipolar 10 V
input range, -10 V corresponds to 0 and + 10 V to 65535. Suppose the reflectance sensor
output has a range of 0 to 10 V corresponding to 0 to 100 % of reflectance. An ADC input n
can be converted to the reflectance r by the following simple formula.

r = m/VxV/lx(n - c)

r: reflectance, 1%]
rn/V reflectance ratio, 100/10, [%/V]
V/: voltage ratio, 10/32768, [V]
n: 16 bit ADC value
c: integer offset, 32767

Also an input should be checked for the validity with respect to its value range. For
example, if a slurry pump has the flow rate range of 0 to 1000 ml/min, the command input
of 1500 ml/min is impossible, and if unchecked, it will either cause an error on the pump or
saturate the DAC output line. The input range check will be performed on the Process-level
after the user enters the command variable. However, it is still recommended to perform the
second input range check on the Machine-level as a fail-safe, and also because a noise can be
picked up during the transmission from the Process-level to the Machine-lelvel.

f(tK+,)

f(tK)

f(t K-1

t K-I K K+J

(a)
backward difference

f(tK+)

f(K)

$~K-1) # - ---

K-I K K+J

(b)
forward difference

f(IK+)

f(tK)

f(tK-I
A !-----------

K-I K K+J

(c)
central difference

Figure 2.7 Three Difference Methods to Approximate f'(td)

32

Differentiation is often performed to extract the velocity and the acceleration from a
positional information, in the condition that a complete time information is available to the
signal processing unit. However in reality, the differentiation unit runs in a discrete time
domain, where differentiation is emulated by a variety of difference techniques. Suppose a
positional information is given by a (sampled) function f(tk), then the derivative of the
function(velocity) at a point tk is approximated by the slope of the tangent line at tk using the
values of the function at points near tk. The approximation can be done in several ways.
Figure 2.7 illustrates the most popular three methods.

In a backward difference approximation, the derivative at tk is estimated by the slope
of the line betweenf(t)andf(tkQ. Thus in a time domain, the derivative is determined by the
present and the past value.

backward difference: f'(tk)= f(tk -(tk)
tk - tk-1

Forward difference approximates the derivative by the slope of the line betweenf(t)
and f(tk), or the derivative is determined by the present and the future value.

forward difference: f')(tk f fk+) - f(tk)
tk+1 - t k

A combination of backward and forward difference is possible by using the slope
betweenf(tk.) andf(tki). This type of derivative approximation is called a central difference
approximation.

central difference: f (tk) = (tk+) - (tkI
tk+1 - tkl

Central difference is the most accurate among the three, but backward difference is
the most widely used in control and signal processing, because the differentiation is
performed with the known(present and past) values, without the need to wait for future
values. In other words, there is no computational delay involved in calculating derivatives.
The backward difference scheme will be used in the differentiation unit of the Machine-level
control system.

Incoming signal usually contains lots of noise picked up during the transmission. A
digital(low or high) signal and its complementary one are usually filtered by a differential
operational amplifier(op amp). An analog signal is often filtered by various types of low-pass
filters. Hardware filters can be placed before the data acquisition cards of the ADwin. Some
cards have built-in filters before and after sampling. However, even after A/D conversion,
noises are still present on the measurement value. Further software(digital) filtering is
required to attenuate the noise below an acceptable level. Differentiation often amplifies the
superimposed noise on the original signal. Thus, filtering should be performed after
differentiation, if necessary.

A digital filter has the following general form:

33

M(kh) = - - 1)h] - a2.5[(k - 2)h] - - an[(k - n)h] + boy(kh) + + b.,y[(k - m)h]

where h is the sampling interval,j the filtered output and y the input measurement value. If
all the ais are zero, the filtered output is determined solely by the measurement inputs. This
type of filter is called a moving average(MA) filter. If some of the ais are non-zero, the
filtered output is determined as a weighted sum of both the measurement values and the
previous filtered outputs, which is called an autoregressive(AR) filter. The general form is
called an autoregressive moving average (ARMA) time series.

Moving average and exponential filters are the most widely used low pass filters. For
example, a 3-point MA filter can be constructed by the following simple formula.

1
y(kh) =-{y(kh) + y[(k - 1)h] + y[(k - 2)h] }

3

This MA filter has a finite impulse response. Thus if an impulse is given at t = 0 thenj
becomes 0 after t = 3h.

An exponential filter is a first-order ARMA filter, given by:

y(kh) = a 5[(k - 1)h] + (1 - a)y(kh) or

5(kh) = [(k - 1)h] + (1 - a) {y(kh) - 5[(k - 1)h] }

where 0 a 1. The filtered value is computed as a weighted average of the previous
filtered value and the present measurement. The exponential filter is a discrete form of a
first-order continuous analog low pass filter. Suppose the following transfer function of a
first order filter, with the time constant T

Y(s) 1
Y(s) =+sT

In a time domain,

dt

If we approximate the derivate by the backward difference, we obtain:

5(t)-'(t-h) _I 1
= y(t)+-y(t)h T T

Rearranging the equation, we get:

hl

Y (0) = (t - h) + T yt
h yt)

Th

34

Comparison with the formula of the exponential filter reveals that:

1
a-

1+T

Thus we verify that the exponential filter is a 1i order low pass filter. Higher order filters can
be constructed by connecting first-order filters in series.

It is often necessary to integrate an incoming signal. The most common usage is the
integration of the error signal in a PID type controller to minimize the tracking error. In a
discrete time domain, integration is performed by summing the products of the
measurement value and the sampling interval. The rectangular and the trapezoidal rule are
widely used in numerical integration. Figure 2.8 shows the schematic of these two rules.

y

y =f(x)

LL____
x b

X
a x, x2

y

y =f(x)

a x, x2 ' ' X
--;P x

b

(a)
rectangular rule

(b)
trapezoidal rule

Figure 2.8 Two Methods of Numerical Integration

The rectangular rule is obtained by subdividing the interval of the integration a x
b into n subintervals of equal length h = (b - a)/n and by approximatingf(x) at the middle of
each interval. Thenfis approximated by a series of step functions. The rectangular rule gives
the following formula:

£ f(x) dx ~ h[f(x.)+ f(x 2) + f(xn)]

The trapezoidal rule is generally more accurate, and is obtained by the same
subdivision as in the rectangular rule but with f(x) approximated at each vertex of the

35

subdivision. Each area of the subdivision takes the form of a trapezoid. The trapezoidal rule
can be expressed by:

f(x) dx ~ h[f(a)+ f(xI)+ f(x 2)+ + f(x,, 1)+ f(b)]
2 2

The output of an controller needs to be converted to an appropriate format, so that
the output unit can transmit to the corresponding actuator. For example, if a controller has
±2 Nm of torque command range for a servo motor with a torque constant of 1 Nm/A, we
have to convert the torque command to an unsigned 16 bit integer value (0 ~ 65535(216)), so
that a DAC channel can transmit as a voltage command (-10 - 10 V) to the corresponding
servo amplifier. The amplifier supplies an armature current proportional to the input voltage
command. In a brushless DC servomotor, the output torque is proportional to the armature
current. Thus by combining all of these scalings in a single equation, we can write an output
conversion equation for the DAC output unit.

T
n + c

Ka 8

n: 16 bit DAC value
T: required torque, [Nm]
K: motor torque constant, 1, [Nm/A]
a: armature current constant, 2/10, [A/V]
,8: voltage constant, 10/32768, [V]
c: integer offset, 32767

The output needs to be checked against its limit. Especially, the output of a PID
controller can be quite large to compensate the error when there is a large disturbance.
However the large output can easily saturate the DAC line and the servo amplifier. Thus any
output the DAC, n, should be checked for its maximum(65535). If it is greater than the
allowable maximum, the output conversion unit should export the legal maximum, instead.

A few measurement data need to be saved temporarily to the memory of DSP, either
for the Process-level data acquisition(large array) or for internal signal processing purposes,
such as past position and velocity for filtering and differentiation. The internal data save unit
handles these types of data storages.

DP13. Controller Unit of the Machine-level Control System

The controller unit is the backbone of the Machine-level control system, because all
the control actions take place here, which is the main functional requirement of the
Machine-level control system. The other three design parameters, in a sense, serve as
supportive units for the controller unit. The controller unit can be categorized into three
classes of controllers based on the types of the plants to be controlled, as shown in Table
2.8.

36

ulum.. - - --.-.- ~,---~-=--~--~-- -

On-off controllers control the on-off(bang-bang) type devices. This type of
controller is basically a switch to activate or deactivate the device. Lamps, valves, relay
switches are the examples of on-off type devices. In ADwin, an on-off signal is generated
either by a hi-low(5-0 V) signal of a DO channel or by an open-close contact of a REL
channel. A DO signal is usually used to drive the switching circuit of a device. Switching
circuits usually consist of a series of switching transistors. A REL signal is generally used to
close or open directly the switching circuit.

Table 2.8 Decomposition of Controller Unit

Control Handle on/off type devices
Control Drive open-loop type components

Control Manipulate closed-loop type plants I Closed-loop controller

FR131 X 0 O] DP131

FR132 0 X O DP132

FR133 OO XI DP133J

Table 2.9 Decomposition of On-off Controller

Create a general structure for the on-off On-off controller structure
controllers

I Control individual on/off type devices I Individual on-off controllers

FR1311 X 0 DP1311

FR1312J X X DP1 312

A REL card has 16 channels of relays(RELOO - REL15). A 16 bit integer is used as a
bitmap to command the type of the contacts for each channel. Suppose we want to close the
relay 15, 10, and 0, with other relays remaining open, then the following bit map fed to the
REL card via the output unit will do the job:

37

n = 10000010000000001B

n: 16 bit integer for a REL card, binary

We used the convention that LSB (Least Significant Bit) represents the lowest relay and that a
high(1) bit represents a closed contact.

A DO card has 32 digital output channels(DO00 ~ D031). These 32 channels are
controlled by two 16 bit integer variables, n1 and n2. n1 controls the first 16 channels(DO00

DO15), and n2 takes care of the rest(DO16 D03 1). As in the REL card bitmap, we can
control each channel individually by setting the corresponding bit either high(+ 5 V output)
or low(0 V output). If we want to turn on the device 10, 9 and 1, we set the following
bitmap.

n1 = 0000011000000010B

n1: 16 bit integer for the first 16 channels of a DO card, binary

Again, we used the convention that LSB represents the lowest channel and that a high bit
represents a high(+ 5 V) output signal.

A general structure of the on-off controller should be designed first, and this
structure will be applied in designing individual controllers. The on-off controller can be
decomposed as in Table 2.9. Because of the complex nature of the wafer processing, more
than 50 on-off type devices are installed in the machine. Wafer polishing is essentially a
combined art of electrical, mechanical, pneumatic, and fluidic actuations. Figure 2.9
enumerates the number and the type of individual on-off controllers.

DP1312
Individual On-off Controllers

[Relay Conrle DO Controller

4 Slurry pump on/off 25 Fluid valve on/off
4 Slurry pump direction- CW/CCW 8 Pneumatic valve on/off
4 Slurry pump prime velocity- on/off 1 Vacuum pump on/off
2 Servo amplifier enable/disable 1 Buzzer on/off
1 WC Z axis brake on/off 4 light lamp on/off

Figure 2.9 Quantities and Types of On-off Controllers

38

The general structure of an on-off controller is simple: Read -+ Convert -+ Write, as
shown in Table 2.10.

Table 2.10 Decomposition of On-off Controller Structure

In: Re3ei.# Cinprts Ryste prosigur

IFRI13111 FXOO1F DPI31111
FRi3112 RXXO (F DP13112

FR13113 L XXX DP13113i

Step 1: Read
Inputs to the on-off controller are both the output bitmap and the input command. The
input command can be either a Boolean command or a bitmap received from the Process-
level. Suppose we want to control the device 1, which is dictated by the bit 3 of the input
bitmap command.

Step2: Convert
We have to extract the bit 3 from the input bitmap command.

b =FshiftR.right((i AND 010 0B), 3)

b: internal variable of the on-off controller, Boolean
i: incoming bitmap command, integer
AND: bitwise operation, 1 AND 1 = 1, otherwise 0

The AND operation applies the bitmask 01000B to the input bitmap to extract the bit 3.
Then the result is shift by 3 bits to the right. Thus, if the bit 3 is set, b becomes 1 (True),
otherwise 0(False).

Step3: Write
As a final step, we write b to o, the output bitmap.

o = o OR shiftjleft(b, 1)

o: output bitmap, integer

39

OR: bitwise operation, 0 OR 0 = 0, otherwise 1

The output bitmap is initialized to 0 at the beginning of every event by the Machine-level
overhead. The Boolean value b is shifted to the corresponding output bit position, and is
written to o by the OR operation. The output bitmap is repeatedly fed to each device
controller and, at the end of the event, is transferred to the output unit. Then the output unit
converts the bitmap into the physical control actions.

Figure 2.10 shows the diagram of a signal tower light switching circuit, controlled by
the output of the on-off controller. At 0 V DO output, no current flows through the bases
of the dual transistor, thus there is no returning current through the LED. Once DO is
changed to 5 V, the resulting base current turns on the transistors. Then the return line of
the LED is connected to the DC ground and a current flows through the LED from the
+24 VDC source, which in turn generates the light.

+24 VDC ------ -- ----- -----
signal light- LED

DO

ASIC

20 pF

10 KQ

DIG GND

DIG GND

switching transistor

5 V at Hi
0 V at Low

4.7 KQ

---- -- - ----- --------- -- -------

DC GND

Figure 2.10 Switching Circuit of LED Signal Light

Open-loop controllers control open-loop type devices. The output is
continuous(analog), compared to the binary output of the on-off controller. Also the output
is directly proportional to the input command, because there is no feedback and error
correction mechanism programmed. However many open-loop controlled devices have their
own feedback loop built in. For example, a pneumatic pressure regulator sets its output
pressure at a constant command value, despite fluctuations in the input pressure and the
disturbances in the output line. In the system point of view, this type of localized closed-
loop control(open-loop for the system) is a great benefit, because it can save lots of

40

*mum.w~IEI - - -- -

computation time and program space for the main controller. However, open loop
controllers usually don't provide fast and accurate responses. Open-loop control is usually
used to control the slow-varying and low precision processes, such as pressure and flow rate.

As in the decomposition of the on-off controller, the open-loop controller can be
decomposed into the general structure and the individual controllers. Table 2.11 illustrates
this decomposition. Open-loop controllers can be grouped into the pressure controller and
the flow rate controller. Figure 2.11 enumerates each individual controller.

Table 2.11 Decomposition of Open-loop Controller

Control Create a general structure
controllers

open-loop Open-loop controller structure

Control I Control individual open-loop type devices I Individual open-loop controllers

{FR13211 X o DP1321

FR1322{ _X X. DP1322

DP1322
Individual Open-loop Controllers

Pressure Controller

Wafer carrier active membrane chamber
Wafer carrier bias chamber
Wafer carrier retaining ring chamber
Conditioner pressure bellow
WC Z axis pneumatic cylinder

Flow Rate Controller

4 Slurry pump flow rate

Figure 2.11 Types of Open-loop Controllers

Open-loop devices are often needs to be calibrated before the design of the open-
loop controllers. A voltage input-pressure output relationship of a pressure regulator, for
example, should be plotted before hand. Most open-loop devices have linear input-output

41

4

-- --- 1---~ ~ --

relationship with nonlinearity typically less than 1 %. In this case, we can find a first order
relationship curve by the least square fit of the measurements.

Table 2.12 Decomposition of Open-loop Controller Structure

Control Receive inputs

Control Convert to an output

Control Send the output

FR13211 X

FR13212 = X

FR13213 _X

000 DP13211

XO DP13212

X Xj DP13213

Open-loop controller structure can be decomposed to read, convert and write
procedure, as in Table 2.12, following the same pattern as in the on-off controller structure
decomposition. For example, a pressure regulator controller should read the command
pressure p at the read procedure. The pressure command is converted to an integer value,
and finally written to a DAC variable at the write procedure. Figure 2.12 summarizes this
process in the block diagram.

command
input

P

offset

C

+ DAC output

al + n

scaling

Figure 2.12 Block Diagram of the Open-loop Controller

42

n = P+ c
a #

n: 16 bit integer DAC variable
p: pressure command, [psi]
a: voltage constant, [V]
: pressure constant, [psi/V]

c- integer offset, 32767

Closed-loop control is used where the high precision and the fast response are
required. The motion(servo) control of a machine is usually done by the closed-loop control,
because the motion control is directly related to the precision of the machine process and
the safety of the machine operation. In the current Machine-level control system, the closed-
loop controller is equivalent to the motion controllers. We can decompose the closed-loop
controller into the general structure and the individual controllers as in Table 2.13.

Table 2.13 Decomposition of Closed-loop Controller

Control Provide a general structure for closed-loop Closed-loop controller
controllers structure

Control Control individual closed-loop plants Individual closed-loop
controllers

FR1331 XO DP1331

FR1332 LX X_ DP1332

The machine has 8 servo controlled components. Thus 8 closed-loop controllers
need to be designed. However, the wafer carrier is transported in X direction by the motion
of the gantry, and the gantry has two ball screw and motor actuation mechanism, one on
each side. The total motor count becomes 9 and the WC X axis controller should
synchronize two motors to provide a coordinated X motion to the gantry. Figure 2.13 lists
the types of motion controllers.

A motion controller is either a position or a velocity controller, although both can be
controlled at the same time in a limited manner. The velocity control is usually much easier
and simpler than the position control, because typically a less precision is required in a
velocity control than in a position control. However, the general structure of the controller
will be the same in both cases.

The design of a closed-loop controller typically involves the following processes:

Selection of the performance index(target) -+ Modeling of the physical plant -> Parameter

43

Identification -> Selection and design of the controller -+ Testing and the controller gain
tuning -+ Implementation and further optimization. Rise time, maximum overshoot and
steady state error are common performance indices. After setting a reasonable control target,
the corresponding physical plant is modeled for the analysis and the controller design.
Because not every parameter is known at the time of modeling, many experiments are
performed after the modeling to identify the modeled parameters. For example, let's
consider the design of the WC Z axis position controller.

Figure 2.13 Types of the Closed-loop Controllers

T1, 80, N.

Pulley 1 Timing Belt

mwci + bwci ± F + W = F

Ball Screw

Pulley 2

T 2, 02, N2

Bracket

Wafer Carrier F

w

mwc: Wafer Carrier Assembly Mass(Kg)

bwc:Viscous Damping(Kg/sec)

F : Coulomb Friction(N)

W: Weight(N)

F: Force applied(N)

Figure 2.14 Schematic of WC Z Axis Mechanism

44

DP1332
Individual Closed-loop Controllers

FMotion Contro'ller

- Wafer carrier dual X axes synchronized position control
- Wafer carrier Z axis position control
- Conditioner X axis position control
- Loading station wafer aligner position control
" Wafer carrier rotation velocity control
" Platen rotation velocity control- 2EA
- Conditioner rotation velocity control

, z

Figure 2.14 shows the schematic of the WC Z axis mechanism and the modeling of
the system on the Z axis. However, the WC Z controller controls the motor and we are
more interested in the input torque and the output position relationship on the motor shaft.
After a further reduction, the following second order differential equation is obtained along
the motor spindle.

Jj, +b,1 1 ± T + Tw = T = Kud

T: torque generated by the armature current, [Nm]
K: torque constant, [Nm]
Ud: DAC variable, 16 bit integer
0,: motor shaft angle, [rad]

J,: Total inertia viewed from the motor shaft, [Kg-m2]
b,: Total viscous damping viewed from the motor shaft, [Nm-sec/rad]

T: Total friction torque viewed from the motor shaft, [Nm]
T.: Torque induced by the weight of the wafer carrier assembly, [Nm]

The torque constant K is usually known to the designer. The total inertia can be
calculated from the mass of the plant and the known constants(pulley ratio, ball screw pitch,
etc.). The torque due to the dead weight can also be computed. However, the friction torque
and the viscous damping are usually unknown during the modeling and they are need to be
identified. The friction torque can easily be measured by supplying small amounts of torque
to the system, increasing the supply until it starts to move. The torque applied at the verge of
the motion is roughly equivalent to the friction torque. The viscous damping can be
identified by supplying a certain amount of torque to the system and let the spindle spin at a
constant speed. At the constant speed, the acceleration is zero and the supplied torque
minus the friction and the weight torque is used to spin the system at a constant speed.
Dividing the net torque by the angular speed gives b,.

After the parameter identification, the whole system is usually modeled in the
complex domain and represented in a block diagram, and the controller is designed by
employing various control engineering techniques. Figure 2.15 shows the block diagram of
the WC Z position control system as an example. The input Zcmd (mm) first needs to be
converted to the motor command angle lcd dividing by and N/N 2. is the
pitch(mm/rad) of the ball screw, and N/N is the ratio of the number of gear teeth of each
pulley. The error signal, 0,,, - 0, is fed to the controller Ge(s) and the controller generates
the control signal Ud. Although many different types of controllers can be designed, the
proportional-integral-derivative(PID) controller and its variations are the most widely used
in the industry. In the complex domain, the PID controller can be represented by the
following transfer function.

1
G,(s) = k, + k, -+ kdS

S

k,: proportional gain
ki: integral gain

45

kd: derivative gain

The controllers for the Machine-level control system will also be based on the PID
controller. Because of the friction and the weight, only Rd from Ud will be available for the
system dynamics. The controller output minus the parasitic dynamics will eventually drive
the plant and generate the output velocity and the output position, 0h. By multiplying and
N/N2, we extract the output z position of the wafer carrier.

The physical system is usually more complex than the simple modeling, in reality.
The system behaves rather differently than designed and simulated. Thus it is quite often
necessary to test the controller to tune the individual gains of the controller, and sometimes
to tune the controller itself. After tuning, the controller is implemented in the overall control
software and can be further optimized in conjunction with the overall control system.

Tf+T,

K

>>- Gc(s) >+ :-
#NU "_* g Jsbi s N2

d

J,01 +b,0 1 Tf1 + Tw = Kud

Ud Ud (±Tf +Tw)/K

Figure 2.15 Block Diagram of WC Z Position Controller

The structure of a closed-loop controller is basically the same as the open-loop
controller: input, computation, and output. But because of the nature of the servo control,
two more procedures need to be built in the controller- homing and input shaping. Table
2.14 summarizes the decomposition of the closed-loop controller structure.

Homing is usually necessary in the position control system to find a reference
position of the plant, unless it has an absolute encoder throughout its range of the motion.
The rotary encoder of the motor can not provide the absolute position of the motor shaft,
instead it provides incremental position information, unless its motion is confined to less
than a single revolution. Homing typically involves the on-off signal from a homing sensor
at a known reference position. During homing, the plant is driven toward the homing

46

sensor, until the homing signal is triggered. Once the signal is triggered the procedure

calculates the position offset from the amount traveled and the known reference position.

Table 2.14 Decomposition of Closed-loop Controller Structure

Handle homing commands
Shape the command input
Perform closed-loop computations

Input shaping procedure
Computation procedure

FR13311

FR13312

FR13313 =

FR13314

FR13315J

X 0 0 0 0

XX000

XXX 00

XXXX 0

XXXXX

The homing procedure is placed after the read procedure, so that it can override the
normal input commands for the homing purpose. The homing is signaled by a Boolean
variable, for example blnHome, which is normally False. blnHome is set to True by a higher
level control program to home the corresponding plant, usually during the machine
initialization. Once the homing is completed, the homing procedure sets blnHome back to
False, so that the normal control action can be performed. A homing usually involves three
steps- Start, Peek and Finish.

Stepi: Start
In this step, the position command, the reference velocity and the controller output limit are
set for the homing purpose. The position command is usually a large enough value towards
the reference point to make the plant to travel all the way to the homing sensor. The
reference velocity is usually set at a low value. The controller output is also limited to
prevent any possible damage to the plant and the servo amplifier.

Step2: Peek
Once the homing motion is in steady state, the procedure looks for(peeks) the homing
sensor signal.

Step3: Finish

47

DP13311

DP13312

DP13313

DP13314

DP13315

Once the procedure detects the homing sensor signal(on), it calculates the position offset,

Olffsw t

0
offset = home -

0
cnt

offset: position offset, [rad]
0

home: home position, known, [rad]
Ocnt: current encoder counter position, [rad]

From now on, adding the position offset to the counter position gives the absolute position.

0 cnt + offset

0: absolute position, [rad]

The procedure resets the position command, the reference velocity and the controller output
limit and sets binHome to False, before it exits the loop

Input shaping is usually necessary to smooth out the input profile and the resulting
output of the controller, otherwise the sudden change of a command input(a step command)
will result in large controller outputs at the beginning, which result in large overshoots and
sustained oscillations during the settling phase. The additional befit is that by shaping the
input you can control the gradient of the input(the reference velocity in the case of a
position control system or the reference acceleration in the case of a velocity control
system). There can be many types of input profiles. But the ramp and the sinusoid are the
most popular. Figure 2.16 illustrates two types of the input shaping- the ramp and the hybrid
of ramp and sinusoid.

In the ramp input shaping, the slope(reference velocity) is first specified. At the
moment of the input command change(t = TO) from xO to xl, the reset time(Treset) is
calculated. While TO st Treset, the input shaped command x-cmd is computed by the
following simple formula.

x cmd = slopex(t - TO) + xO

After t passes Treset, x_cmd is set to xl, the desired command input. However there still is a
sharp transition at t = Treset, which is not desirable in terms of minimizing the overshoot.
The hybrid sinusoid is introduced to address this problem.

The hybrid ramp and sinusoid input shaping combines the merits of each input
shaper: the velocity referencing in the ramp and the smooth transition in the sinusoid. At t =
TO, it calculates the reset time, Treset, but in this case, the reset occurs at the half of the
command step, (xl - xO)+2, to make a transition to the sinusoidal profile. After t passes
Treset, the input shaped command is given by the following formula.

x cmd = (xl -x0)+2x(sin((t - Treset)/T) + 1)

where T = (xl - xO)+2+slope

Once t > Tx(;r/2 + 1) + TO, xcmd becomes x1.

48

Ramp + Sine Input Shaping

x_cmd =slope x(t - TO) + x

=xO x-cmd =xl

- - -. .

TO Treset

x cmd = (xl -x)+2x(sin((t - Treset)/) + 1)

x cmd = slope x(t - TO) + x
x_cmd x

x_cmd x]

xl-

(xl -xO)+2-

X/x

A >
(sec) 0 T

TO ' 'Treset

T = Treset - TO

Figure 2.16 Examples of Input Shaping- Ramp and Ramp plus Sinusoid

The input shaping procedure will have various input shaping profiles available to a
higher-level control system. The higher-level will select the profile and send the command to
the input shaper. The procedure will generated the input shaped commands based on the
selected profile, the slope and the time. The input shaped command is fed to the
computation procedure of the closed-loop controller to produce the controller output.
Finally, it is written to a DAC variable to be transmitted to the servo amplifier via the output
unit.

DP14. Machine-level Overhead

The three units discussed so far, the I/O, the signal processing and the controller
unit, are the essence of the Machine-level control system. They acquire and process the input
signal, and generate and send the output signal, which are the fundamental functionalities to
control a machine. However due to the large number of machine constituents to be
controlled and the complexity involved in controlling them, it is necessary to organize those
units and their sub units in a systematic way, to ensure the effectiveness and enhance the
efficiency of the Machine-level control system. The Machine-level overhead deals with the
issue of how to build the Machine-level control system from the existing units and other

49

x cmd
(mm) -

xl -

xO V
0

Treset = (x] - x)+slope + TO Treset = (xl - x)+2+slope + TO

Ramp Input Shaping

I

-
mum -, - - ~ -~.--.'- =--~..- ~- --

available software procedures, and with the practical considerations and the design decisions
to run the control software in real time to drive the 'real machine.'

The Machine-level overhead constructs the system software with the units, the sub
units and other individual software procedures as its constituents. However, the Machine-
level control system runs on the memories of the ADwin CPUs, commanding hardware
interface cards to drive the physical machine. Naturally, there are physical limitations in
running the control system. Among them, time and space are the most fundamental and

important. Thus we have to make the time-wise and the space-wise decisions at the early
stage of the overhead structure design. We decompose the Machine-level overhead as shown
in Table 2.15.

Table 2.15 Decomposition of Machine-level Overhead

Control Organize the Machine-level control actions into Machine-level control
a system. system software

Control Designate how often the Machine-level control Event frequencies
actions occur.

Control Distribute the computational loads between Load division
and within CPUs.

FR1411 X 0 0 DP141

FR142 X= XXO DP142

FR143 _X X X_ DP143

The event frequency is often called the sampling frequency, because the required
signals are sampling at every periodic control event. For a closed loop servo control, not less
than 1 KHz of event frequency is required. Theoretically, the higher is the sampling rate, the
better is the closed loop controller performance, because a sampled discrete system can
better emulate a continuous system with a higher sampling frequency. However, a higher
frequency demands more resources from the CPU and the other hardware devices. The
event block of the Machine-level control program is repeatedly executed at the beginning of
each event interval, for a finite time span, called the duty interval. Thus a duty interval can
not exceed an event interval, otherwise a fatal error will occur (either the rest of the program
will not be executed or the CPU will simply crash). The ratio of the duty interval to the event
interval is called the CPU duty ratio. The duty ratio should always be less than 1. For a given
duty interval (which is typically the case), the duty ratio can change by changing the event
interval. Figure 2.17 illustrates this point. The event frequency needs to be selected to keep
the duty ratio less than 1, but as close to 1 as possible to make a maximum use of the
available hardware resources.

50

CPU Load (%)

100

0

d

CPU Load (%)

T

d = 0.4 msec
T =1 msec
duty ratio = d/T = 0.4

100 1 rI

-- 0
t

d

T

d = 0.4 msec
T = 0.5 msec
duty ratio = d/T = 0.8

(a) (b)

d: duty interval
T: event interval

Figure 2.17 CPU Duty Ratios as Function of Duty Interval and Event Interval

apparent frequency, normalized

fo/fl
0.5

fN

7

0.5 1.0 1.5 2.0 2.5 f/f

true frequency, normalized

f real signal frequency
fi: sampling frequency
fo: apparent frequency
fN: Nyquist frequency,f/2

Figure 2.18 Apparent frequencyfe as function of true frequencyfand sampling frequencyfs

51

t
. , , . . .

Another concern in the selection of a sampling frequency is the prevention of the
aliasing. If the sampling frequency is too small compared to the signal frequency, a false
frequency (an alias frequency) appears. Theoretically, for a given sampling frequencyf, any
signal which has frequency components higher thanN = f/2 can not be reconstructed from
the sampled values. The frequencyfN is called the Nyquist frequency. Higher frequency
components will appear as waves of lower frequency. Figure 2.18 shows the apparent
frequency/f as a function of the true frequency and the sampling frequency.

Thus, it is required to sample at least twice faster than the highest predictable
frequency component in the signal. However, it is still recommended to sample five to ten
times faster than the signal frequency, so that the sampled (discrete) waveform can well
approximate the continuous (analog) input signal. In a highly noisy environment, noise
signals with bandwidths of a few KHz to hundreds of MHz can be picked up by the analog
signal. Maximum sampling rate is usually limited to a few hundred KHz by the hardware
capacity. AD converters and multiplexers typically have the settling time of a few
microseconds. It is simply impossible to achieve a MHz of sampling rate. Instead, it is a
common practice to place a low pass filter with the bandwidth of 1/5 to 1/10 of the
sampling frequency before the AD conversion to eliminate any potential high frequency
noise signal.

1 KHz is a good starting point for both the closed-loop control and the signal
processing. Event frequencies will be increased if the hardware permits. The goals are 3 KHz
for the closed-loop control and 5 KHz for the signal processing.

The division of the computational load is required to make a maximum use of two
CPUs of the ADwin system. Two limiting factors need to be considered in the load division.

* Program size: There is a limit in the program size, which is loaded on the CPU's memory.
ADSP21062, the processor of the ADwin system, can load up to 75 Kbytes of program size.
Also the duty cycle is roughly proportional to the program size with the given sampling
frequency.
* Communication between the CPUs: The CPUs in the ADwin system can not share the
memory nor the bus. The communication between the CPUs is possible via the host PC.
The host PC can not guarantee a real time data transmission. Thus, any time critical event
procedure should be performed within a single CPU.

It is recommended for a single processor to handle the machine control and the
required signal processing for its own. Analog signals (strain gauge, reflectance sensing) are
usually not required for the Machine-level control, but for the process control in a higher
level. We dedicate the CPU 1 for the machine control and the CPU2 for the analog signal
processing with its own ADC card.

ADwin further allows the division of the load in a single processor. Instead of
running a single program, several programs can be written and run with their own unique
sampling frequency. This capability is quite useful when it is required to sample signals at
different frequencies, depending on the input channels. In the given application, the
reflectance signal can be sampled at 5 KHz, while other slow varying analog signals are
sampled at 1 KHz.

The Machine-level control software can be grouped into three parts- the software
initialization, the event, and the software termination block. The software initialization
configures the hardware cards, defines the numerical constants, etc. so that the event block

52

can perform the routine jobs. The software initialization is different from the machine
initialization, which requires a series of control commands and hence can not be completed
in a single software initialization event. The machine initialization will be handled by the
event block. The event block is repeatedly executed with the designated event frequency for
the machine control and the signal processing. The termination block reconfigures the
hardware, assign a nominal signal for each output channel, etc. before the finish of the
Machine-level control. Table 2.16 shows the decomposition of the software structure.

Table 2.16 Decomposition of Software Structure

Control Perform necessa C iitialzations. Software initialization
Control Desinate event se uences. Eventseuence
Control Set the controller at off states before termination Software termination

FR1411 X 0 0 DP411

FR1412 X XO DP1412

FR1413 JOO X_ DP1413

Table 2.17 shows the further decomposition of the software initialization block. The
bus in the back plane of the ADwin needs to be separated as a first procedure in the
software initialization, if multiple CPUs are to be used. Even though it is possible to run two
processors at the same time without the bus separation, it is strongly recommended to split
the bus to prevent for the two processors to access the same channel of an interface card,
which will result in the crash of the system. Bus separation is required for the stability and
reliability of the control system.

Some interface cards of the ADwin requires software configurations before use. The
counter card requires the selection of either a dual channel quadruple evaluation or a single
channel clock mode. Then the card is enabled and its counter is cleared to zero. Also, the
selected channels of the DIO card need to be configured as outputs, because by default all
DIO channels are booted as inputs.

A large amount of constants need to be defined during the initialization. It may be

any of a purely numeric constant, such as 7E, a geometric constant, such as the distance from
the loading/unloading station center to the platen center, a hardware constant, such as the
number of encoder pulses per a platen revolution, or a control system constant, such as the
conditioner X controller proportional gain.

Sometimes it is necessary to read sensor values during the initialization for various
purposes. One example is the gantry X linear encoder reading during the software
initialization. Because the linear encoder provides the absolute X position of the gantry, the

53

homing of the gantry can be skipped in the event block, once the X position offset variable

is set after the linear encoder reading.
Software variables are initialized after the acquisition of the necessary sensor values.

Position and velocity commands, error integrals, and the buffers for temporary storage are
the examples of the variables need to be initialized. The appropriate indicators of the system,
mostly the LEDs of the ADwin, are turned on at the last procedure, marking the end of the
software initialization block.

Table 2.17 Decomposition of Software Initialization

Control Spht the bus ot the controller tor each
CPU, if necessary

Bus separation procedure

Control Configure each counter channel for its CNT configuration procedure

.respective input.

Control Configure necessary DIO channels (for DIO configuration procedure

output).

Control Assign numerical values to the declared Constant assignment procedure
constants.

Control Pick up initial sensor values, if necessary Initial sensor reading procedure

Control Initialize variables. Variable initialization procedure

Control Turn indicators on Indicators-on procedure

x 0 0 0 0 0 0

XX0000

XOX00 00

= OQOXOO
XXXOX 0

XXXXXX o

x 0 0 0 0 0 x

'DP1 4111

DP14112

DP14113

DP14114

DP14115

DP14116

DP14117

The decomposition of the event sequence is a bit more demanding because of the
size and the nature of the event block, which is the main body of the Machine-level control
system. Table 2.18 proposes a possible decomposition of the event sequence.

At the beginning of every event, which is cyclically called with the event frequency,
various machine parameters are updated by the machine input handler. The machine input
handler calls the machine input units and assigns their output to the machine parameters. An
encoder count, a digital input bit, and a 16 bit ADC value are the examples of machine

54

FR14111

FR14112

FR14113

FR14114

FR14115

FR14116

FR14117

-

-
-~--.-.----~ --

parameters. Then the signal processing handler calls the numerous signal processing units to
process the machine parameters to the appropriated forms and values.

Table 2.18 Decomposition of Event Sequence

Control Update machine parameters. Machine input handler
Control Perform signal processing. Signal processing handler
Control Take appropriate actions if an error is set Error handler
Control Update inputs from the Process-level Process-level input handler
Control Adjust the command inputs based on the Mode handler

selected machine modes
Control Perform control processing Control processing handler
Control Update outputs to the machine Machine output handler
Control Save data Data save handler
Control Update outputs to the Process-level Process-level output handler
Control Update clock Clock handler

FR14121

FR14122

FR14123

FR14124

FR14125

FR14126

FR14127

FR14128

FR14129

FR141210

=

X O OO O 0 0 0 0 0

XX 0000000

XXX 0000000

OO O XO O 0 0 0 0

XXXXX00000

XXXXXXOO 00

XXXXXXXO 0 0

XXXXXXXX oo

XXXXXXXXX o

0 0 0 0 0 0 00 0 X

DP14121

DP14122

DP14123

DP14124

DP14125

DP14126

DP14127

DP14128

DP14129

DP141210

Error handling is quite important in a machine control system, because it is directly
related to the safety of the machine. The error handler should be able to detect an error
signal in a real time and stop any further motion of the motion. Removal of the power stage
of the actuators is further recommended, if possible. However power-off switchings are
usually accomplished by hard wiring. On/off type sensing devices are used in conjunction
with the relays and/or the logical enable circuits. Figure 2.19 illustrates the external enable
circuit of a servo amplifier connected to an optical limit switch, which provides an NPN

55

transistor output. Normally the transistor is off, and the sense-out carries +5 V signal.
Because there is no current on the opto-diode, the opto-coupler of the external enable
circuit of the amplifier is off, which gives the +5 V of enable logic signal. Once sensing, the
sense out is pulled down to the ground, and as a result a current flows through the opto-
diode and the opto-coupler is on. The logic carries 0 V of disable signal, which is used by the
servo amplifier to remove the power stage from itself. Thus once the sensor is triggered, the
corresponding amplifier is first disabled by the external wiring.

+24 VDC

---- ------- ---- --

sensing
circuit

optical limit sensor

+5 VDC

2.3 KG

sense out

DC GND

+5 VDC

10 KQ
390 Q

enable/disable
logic

opto-coupler

external enable circuit/servo amplifier

DI sense

10 KQ

ADwin DI channel

Figure 2.19 External Enable/Disable Circuit of Servo Amplifier

The sense out is also connected to an ADwin DI channel. The error handler of the
event block will recognize the trigger of the limit sensor, remove the controller output and
set an error for the Process-level control system. The following are the examples of the
Machine-level errors.

* Emergency off(EMO) switch engagement.
* Gantry X travel limit.
* Conditioner X travel limit.
* Gantry X/Conditioner X relative clearance.
* Wafer carrier wafer retention sensor.

Inputs from the Process-level will be updated by the process-level input handler,
which calls the Process-level input unit in conjunction with the corresponding input

56

-

conversion unit. Some of the control commands are required to be updated as a batch. For
example, a position command and a reference velocity command for a servo controller need
to be updated at the same time, otherwise a fatal error can occur during input shaping.
Because it takes a finite amount of time to transmit a packet of control commands from the
Process-level to the Machine-level, there is no guarantee that all the commands are updated
within a single event. A simple solution is to send an update flag at the end of the packet
transmission. The process-level input handler updates the control commands only after it
receives the update flag, by that time all the control commands will have been received and
saved in the buffer of the Process-level input unit.

In most cases, it is not required to adjust the commands once updated by the
Process-level input handler. However, during the machine initialization and the machine
termination(parking), which are set by the corresponding modes, the mode handler assumes
the role of the Process-level control system and manipulates the control commands in a
preprogrammed manner. Four components require homing during the machine
initialization: the wafer carrier Z axis, the conditioner X axis, the wafer aligner angular
position, and the platen B angular position. At each homing a max or min command is
generated by the mode handler, so that the corresponding actuator can travel to the position
of the homing. The homing is usually sensed by a digital sensor or the presence of a
mechanical stop. Figure 2.20 illustrates the sequence of the initialization mode.

Initializatio 1 1-1 Give a max position commandaxis
* 1 1initialization

Initialization - -C 2 = Mechanical stop detected
mode set

C 1 2 = WC Z initialization completed

2-1 Give a max position command Conditioner X axis
2 initialization

C2-1,2-2 = Homing sensor triggered

2-2 Move to the nominal position

C2-2,3 = Move done

C2 ,3 = CA X initialization completed

3-1 Wafer aligner3 3-1 Give a mi position command initialization

C3-1,3-2 = Mechanical stop detected

3-2 - Move to the nominal position

C3-2, = Move done

Initialization C3, = WA initialization completed

mode reset 41___Give a min velocity commd _Platen B angular position
initialization

-1Cs = Index signal detected

Figure 2.20 Sequential Functional Diagram of Initialization Mode

The control commands generated either by the Process-level input handler or the
mode handler are fed to the control processing handler, which calls the various controller

57

]

units. The output of the controller units are picked up by the machine output handler, which
sends the output to the machine via the machine output unit.

Many data are internally saved for signal processing purposes. Current position and
velocity are typically saved for the filtering and the differentiation purposes. The data save
handler performs the specified data save function by calling the internal data save unit.

The Machine-level control system should update the machine status at the end of
every event to the Process-level. The Process-level output handler posts the machine
parameters (position, velocity, controller output, etc.) and the status parameters (error,
running indicator, etc.) to the Process-level output unit, which writes to the domain of the
DSP memory, accessible by the Process-level.

FR/DP1412: Event sequence

14121 -- Update machine input- data acquisition
Event

14122 Perform signal processing- conversion/differentiation/filtering, etc.

14123-Hadeers

14124 Update Process-level input- control and logic commands

clock 14125 Handle special modes- machine initialization/termination

14126 Perform control processing- on-off/open-loop/closed-loop

t14127 Update machine output- control signal transmission

14128- Save data- temporary datastrg

14129 Update Process-level output- control and status parameters
Event
reset

141210 Update clock

Figure 2.21 Sequence of Event Block

Time is the most important and widely used variable in the event block. Time needs
to be updated before the end of the event procedures. The following simple procedure is
used for the clock, because the event is guaranteed in the real time control system. ADwin
also offers a timer function.

t=t+T

t: time (sec)
T: event interval (sec)

58

Once t is initialized to zero in the software initialization, t is incremented by the event
interval at the end of every event. Thus t is the measure of time since the control system is

first run.
Figure 2.21 shows the summary of the event block sequence in a block diagram

format. Each event is triggered by the internal event clock of the ADwin CPU.

Table 2.19 Decomposition of Software Termination

Keset L)IU channels (tor input).
Assign nominal off-state values to each output
channel.

Cancel the bus split of the controller.

Output reset procedure

Variable reset procedure
Indicators-off procedure
Bus unification procedure

FR14131

FR14132

FR14133 =

FR14134

FR14135

X 0 0 0
XX00

0

0
FDP14131

DP14132

00 X0 0 1 DP14133

O O 0 X O

XXOXX IDP14134

DP14135

The finish and the subsequent unload of the Machine-level software is triggered by
the Process-level control system, such as a 'Quit' or 'Exit' button. The Process-level
transmits the finish command and the ADwin executes the termination block before
unloading the program. Table 2.19 shows the decomposition of the software termination.

The DIO channels which have been configured as outputs need to be reset to inputs
to drive the corresponding actuators to the nominal off states. All the relays are switched to
the nominal open contacts, and the nominal outputs (normally 0 V) are assigned to the DAC
channels.

Global variables of the ADwin have the permanent addresses in the CPU memory.
The global variables will keep (memorize) the values assigned to themselves even after the
termination of the program. If another program is loaded without rebooting the ADwin,
these values can be picked up the program, which may result in errors. Thus it is
recommended to reset all the global variables to zero.

The ADwin indicators are turned off and the split bus is reunified before the end of
the software termination. Then the ADwin unloads the program. The machine is in a safe
'off' state.

59

The Machine-level control system has been designed in this chapter. As a summary,
the design parameter tree of the Machine-level control system is attached in Figure 2.22,
which shows the major constituents of the system.

DPI
Machine-level Control System

I

DP 1 DP12
I/O Unit Signal Processing Unit

DPIl I DPI12
Machine /0 Unit Process-level 1/0 Unit

4/ 4,

DP13
Controller Unit

I I I I
DP121 DP122 DP123 IneDP I24

Input Conversion Unit Differentiation Unt Filtering Unit Iegration Unit

E
DP125 DP126

Output Conversion Unit FIternal Data Save Unit

DP131 DP132
On-off Controller Open-loop Controller

DP14
Machine-level Overhead

DP133
Closed-loop Controller

DP141
Machine-level Control Software

DP1411
Software Initialization

DP1412
Event Sequence

DP1411
Software Termination

Figure 2.22 DP Tree of Machine-level Control System

60

DP142
Event Frequencies

I
DPl43

Load Division

'~uIi m-' - - - -

Chapter 3. Process-level Control System

The processing of a wafer requires a series of the coordinated machine control
actions. For example, to polish a wafer, the wafer carrier first picks up the wafer, move to
the polishing position, the wafer carrier and the platen start to rotate, the slurry pump is
turned on, pneumatic pressures are applied to the wafer carrier membranes, etc. The
individual control actions are provided by the Machine-level control system, which is
thoroughly designed in the previous chapter. Having the machine control actions at its
disposal, the Process-level control system dictates the Machine-level in a concerted manner
to achieve the desired wafer processing with the user interaction. The Process-level control
system is placed between the Machine-level and the user (and also the higher level control
systems), and acts both as a messenger and a coordinator (and possibly as a manager).
Running the machine for wafer processing and supporting the processing are the basic
functionalities of the Process-level control system. Table 3.1 shows the decomposition.

Table 3.1 Decomposition of Process-level Control System

Prex: 2.# id Cupotiee trfor wyster Droesig. uprieui

Procss rocssDeses.gnit rmee

{ FR21 [xosDP21

FR22J LXx X1DP22{

The process unit is used to process wafers to the desired specifications. The unit may
include manual and/or auto mode wafer processing. The supportive unit contains various
utilities used by the process unit and useful for the equipment run and maintenance. Let's
first decompose the supportive unit

DP21. Supportive Unit

The supportive unit can be decomposed into the recipe builder, the equipment
database, and the Set Up mode as shown in Table 3.2.

Although not essential for an a stage or research grade machine, the equipment

database is quite important and necessary beyond the P stage toward the production grade
machine. The data logged in the database can be grouped in two categories.

Operation database: handles the data related with the equipment use. At each run (single
wafer or batch), the database may record time, user, recipe, lot number, type and number of

61

wafers processed, type and amount of used consumables, etc. The operation database can be
used to keep track of the equipment use history and the wafers which have been processed
by the equipment. The database can provide a useful data to improve the efficiency of the
equipment operation and to optimize the process performed by the equipment.

Maintenance database: deals with the data concerning the equipment maintenance. They may
fall in two categories- machine and consumables. The machine maintenance database will
handle the data of the machine itself- lubrication, tubing, fitting, fastening, etc. The
consumable database will log the data related to pad, slurry and other utilities. Each database
saves the time and the type of the service performed on the equipment and let the user know
when is the next scheduled service.

The database can belong either to the Process-level control system or to the
Operation-level control system, depending on the configuration. However, the database
development is not critical at this stage. We will come back to the database design once we
accomplish the process unit design and implementation.

Table 3.2 Decomposition of Supportive Unit

Provide recipes for wafer processing
Provide a database for the machine use and
maintenance

Set up and calibrate the machine for wafer
processing

FR211 X

FR212 0

FR213 J

00 DP211

X 0 DP212

0 X_ DP213J

It is often necessary to readjust the set points and the calibration factors for the
sensors and actuators. Also the maintenance and the repair require a direct access to run
each component individually. The set up mode is required for these non-process machine
run purposes. The set up mode also contains the machine initialization and the machine
termination procedures to drive the machine to the on and the off state. These procedures
can be called by the process units to initialize and terminate the machine before and after the
wafer processing.

62

DP. 211 Recipe Builder

The recipe builder is required to process a wafer in an auto mode. The recipe builder
defines the recipe and its file structure for storage, and provides a recipe editor for recipe
handling. The recipe editor should be able to create, edit, and save a recipe, and retrieve the
existing one. The auto mode will have an adequate link to load the recipe data to its process
parameter buffer. The design of a flexible and easy-to-use recipe editor is quite essential to
ensure the effectiveness of the automatic wafer processing and to enhance the processing
efficiency. Table 3.3 shows the decomposition of the recipe builder.

Table 3.3 Decomposition of Recipe Builder

Process Define the recipe structure Recipe classes
Process Define the recipe file structure Recipe file
Process Manipulate recipes Recipe editor

FR2111 FX 0 0 DP2111

FR2112 =X Xo DP2112

FR2113 _X X X_ DP2113

The design of the recipe builder starts with the design of the recipe classes
(templates). A recipe class defines the required data (process parameters) and tags
(identification parameters) and its associated interaction methods to communicate with the
environment. Based on the recipe classes, defined at the design time, the recipe editor
program will create recipe objects at each run time.

The recipe object acts as an active data carrier between the editor window (front end,
user side) and the recipe file (back end, hardware side) stored in a computer hard disk. It
extracts the data from a recipe file and house them in a predefined manner, then it provides
the data to the editor. The editor displays the data according to the user interface layout. The
edited data is then fed to the recipe object and the object updates its data content. Finally the
data is stored in a recipe file. Figure 3.1 illustrates the recipe object concept and related data
flow.

The presence of the recipe objects reduces the complexity involved in the direct file
I/O from the editor window, and enhances the readability, the flexibility, and the
maintenanceablity of the editor program. The recipe objects make it easy to design the recipe
file structure and the recipe editor.

63

Recipe Editor Recipe Objects

Overhead NwOverhead object

. *'~ Li~ 4-*tags

paater_

Step object

tags

- ata

Figure 3.1 Recipe Objects and Data Flow

The recipe for an automated wafer processing is composed of many distinctive
recipe steps. The step is a series of control actions, which can be uniquely identified and
grouped in the (continuous) process flow. As an example, we can process a wafer using the
following assembly of recipe steps:

Load -> Polish -- Clean -> Unload -> Condition

Table 3.4 shows the decomposition of the recipe classes into the individual ones.
StepLoadReady is used as a waiting step between each wafer count, and is the first step in
any wafer processing recipe. StepCondition and StepCondClean are non wafer processing
steps but required to insert the conditioner related activities into a recipe. A condition recipe
composed solely of the conditioner steps can be created, but can be executed as a single run
only in the run time. In contrast, wafer processing recipes can be executed as a multi run. A
single recipe can process a stack of wafers repeatedly one by one.

These individual steps can be placed arbitrarily in a user-created sequence during
editing to complete a recipe. However, certain rules must be observed. For example, you can
not polish a wafer after you unload it. Also some steps can have pluralities in a single recipe.
A user may want to polish a wafer first at the platen A and move to the platen B for the
second polishing step. Polishing, cleaning, conditioning, and conditioner cleaning steps have
plurality. A recipe should be able to indicate how many steps it has, the order of the steps,

64

and the plurality of each step. Thus it is quite necessary to have a type of carrier to hold this
recipe-wide, or overhead information.

Table 3.4 Decomposition of Recipe Classes

Process Provide a structure for the recipe overhead Class KecipeUverhead
Process Provide a structure for the load ready step Class StepLoadReady

Process Provide a structure for the condition step Class StepCondition

Process Provide a structure for the load step Class StepLoad

Process Provide a structure for the polish step Class StepPolish

Process Provide a structure for the clean step Class StepClean

Process Provide a structure for the unload step Class StepUnload

Process Provide a structure for the conditioner clean step Class StepCondClean

FR2 1111

FR21112

FR21113

FR21114

FR21115

FR21116

FR21117

FR21118

x 0
x x

x 0

x 0

x 0

x 0

x 0

x 0

0
0
x

x

x

x

x

0

00000
00000

00000

x 0 0 0 0

OX O O

0 0 x 0 0

0 0 0 X o

0 0 0 0 X

DP21

DP21

DP21

DP21

DP21

DP21

DP21

DP21

1

1

1

11

12

13

14

15

16

17

18

RecipeOverhead class is designed to process the overhead information. As in any
class design, the design of the RecipeOverhead class should describe what to contain
(attributes) and how to behave (methods).

Axiomatic Design rigorously specifies the design of an object. Object behaviors are
stated as FRs, appropriate attributes are chosen as DPs to meet the behavior demands, and
design matrix elements are selected to construct methods to realize the intended behaviors.
For more detail about the object oriented programming based on Axiomatic Design
approach, refer to Chapter 5 of Suh[4].

Attributes are the information encapsulated in a class. The attributes can be grouped
in two types.

* Tags: Members designed for identification purposes. For example, the recipe name and
the edit time are tags for the RecipeOverhead.

65

+ Data: Members designed to hold process parameters. The number of steps included, the
sequence of step IDs are the example of data for the class RecipeOverhead

Suppose a recipe is composed of the following sequence of process steps (the
number in a parenthesis indicates the corresponding step ID).

LoadReady(0) -+ Load(2) -> Polish(3) -+ Clean(4) -+ Unload(5) -+ Condition(1)

Then the number of steps field contains the value of 6 (Recipe Overhead.StepN = 6). The
step ID sequence field holds the string of 0-2-3-4-5-1 (RecipeOverhead.StepSqc = 023451).

The methods dictate the behavior of a class. The methods of the RecipeOverhead
class should provide means of interaction with the recipe file and the recipe editor.
Following methods are required:

* WriteToFile: writes the attributes to a recipe file in a predefined manner and sequence.
+ ReadFromFile: reads the data from a recipe file and assigns them to the corresponding
attributes.
+ WriteToBuffer: writes the (data) attributes to the I/O buffer of the recipe editor.
+ ReadFromBuffer: reads the data from the editor I/O buffer and writes them to the
attributes.

More methods may be added with the advance of the recipe builder/the Process-level
control system development.

The attribute and method design of the step classes will follow the same pattern.
Each step class will have similar members and behaviors compare to each other, differing
only in the specific data types and contents. Generally a step class will have the following
attributes:

+ Public: step name, step ID, edit time, edit flag (default or edited), plurality, value string (to
hold either a Boolean, integer, or float variable), value index (for value sting I/O), number of
Boolean data fields, number of integer data fields, number of float data fields, starting index
of the Boolean data, starting index of integer data, starting index of float data, etc.
+ Private: Array of value strings (to hold Boolean, integer, float data arrays), array index, etc.

Public attributes are data members accessible by the environment; private attributes
are not accessible. Private members are for the internal use only. Ultimately a step has three
types of process parameters: Boolean (on/off of an actuator, etc.), integer (number of
sweeps, etc.), and float (position and velocity of an actuator, etc.). A step will have three
arrays to hold these parameters according to their variable type. However, every variable is
written as a text in the recipe file to be stored in a computer hard disk. The step class will
have a single string (text) array to hold every type of parameters. The parameters will be
converted to their corresponding data type once picked up by the I/O buffer of the recipe
editor.

One practical concern is that in Visual Basic, the programming language of the
Process-level control system, an array can not be a public member of a class. Thus it is
impossible to send an array of data to the I/O buffer at a single time. One solution is to

66

create a private array and its index (local copy) and a public string and its index (public copy).
To read a variable from the private array, the public index is first set, which is copied by the
local index. The request of the public string will pick up the value in the private array located
by the local index, and assign it to the public string. By advancing the public index one by
one and requesting the public string one at a time, the whole content of the private array can
be read by the I/O buffer of the editor. A simple I/O stream function can be written to
handle this process. Figure 3.2 illustrates the private array data out process of a step class.

The data in process follows the similar pattern (set index -> set public string -+ locate -

assign).

0 set index = 1

@ return string = 37.3

Class Step_**

Public index = 1

© locate

G load

T Public string = 37.3

Private Array

index data
0 True
1 37.3
2 100

Figure 3.2 Private Array Data Out Procedure of Step Class

Table 3.5 Decomposition of Recipe File

Store the overhead mtormation
Store the individual recipe steps

FR21121 X O DP21121

FR21122 X X_ DP21122

Even though a recipe consists of many step objects, it is required to be stored in a
single recipe file. Otherwise, a recipe will generate several recipe files and the bookkeeping

67

and maintenance of them can be problematic. A recipe file contains two sections: overhead
and step. The overhead section is the file header. It contains the information from the
Recipe Overhead class. The step section is composed of a series of process steps following
the order labeled in the overhead section. In run time, the editor first reads the information
in the overhead section and create the appropriate type and number of step objects. Table
3.5 is the decomposition of the recipe file structure.

Each step part is composed of the tag fields and the data fields. The data fields hold
the process parameters, originally Boolean, integer, or float variables, converted to the texts.
Figure 3.3 illustrates the structure of a recipe file.

Recipe File

Overhead tags name, time,

data number of steps, step sequence, ...

Step 0 tags name, time, edit flag, plurality ...

data data fields

Step 1 tags name, time, edit flag, plurality...

data data fields

Step N-I tags name, time, edit flag, plurality ...

data data fields

M Hard Disk

Figure 3.3 Structure of Recipe File

A recipe editor should provide a user interface (front end) and contain functionalities
(back end) to handle recipes in and out of the recipe files via the recipe objects. The recipe
editor can be decomposed as shown in Table 3.6

The file I/O handler takes care of the data transmission between a file and the
corresponding recipe objects. Because the objects have the built-in file I/O methods, the file
I/O handler simply opens a file, calls the object file I/O methods passing the file name as an
argument, and close the file. The physical data transfer is executed by the object file I/O
methods.

The editor I/O handler performs the data transmission between the editor and the
objects. In a saving event, the user generated data are first stored in the I/O buffer and
written to the objects. In a open event, the data from the objects are fed to the I/O buffer
and the data in the buffer are displayed on the editor user interface. Because the objects do
not have editor I/O methods, the editor I/O handler should have the I/O stream functions
to read from and write to the private array of a recipe object. Figure 3.4 illustrates the I/O
handling from the recipe editor.

68

I - am - --- --- -

__-. -, -

Table 3.6 Decomposition of Recipe Editor

Process Link recipe objects to a recipe file

Process Link recipe objects to the recipe editor

Process Interact with a user

FR21131 FX

FR21132 0

FR21133 LX

00 DP21131

XO DP21132

X X DP21133

Recipe Recipe Editor
File bjcs User Interfi

\ = itor /0 Handler

LFile I/O Handler

Figure 3.4 Object I/O Handling from Recipe Editor

An editor should provide the required functionalities (methods) to process the

information and an appropriate window lay out both for the data display and the input

controls. The editor user interface can be decomposed as in Table 3.7.

The editor methods are a set of procedures to link the recipe information between

the editor window and the back end handlings. The methods will be accessible both by the

pull down menus under the editor title bar and the tool bar buttons. The following are the

minimum set of methods to edit a recipe.

* New: Create a default recipe

* Open: Open an existing recipe

* Save: Save the edited recipe

* Save As: Save the edited recipe under a new name

* Close: Close the current recipe

69

+ Exit: Exit the recipe editor

Other methods, such as Print, may be added if needs arise.

Table 3.7 Decomposition of Editor User Interface

Index: 21133.# Control System Design

Functional Requirements (FRs) Design Parameters (DPs)

Namle Descriplion esrpto

Process Process recipes Editor methods
Process Edit recipe steps Step editor

Process Edit a recipe Main editor

FR211331 XOO 'DP211331

FR211332 0 X 0 DP211332

FR211333 X X X DP211333

Each methods works by calling I/O handlers and executing its own procedures.
Open method, for example, first calls the file I/O handler to extract and create recipe
objects from a specified recipe file, calls the editor I/O handler to load the data to the I/O
buffer, and executes the parameter loading procedures to display the recipe information to
the editor window.

The step editor is displayed on a portion of the main editor. A single step editor will
be used to edit every type of process steps for the program simplicity and the coding
efficiency. The step editor will display the step specific information (tags) and the data view
and editing section.

The main editor houses the step editor and the editor methods buttons. It will
display the recipe file path and its overhead information, and step editor control buttons.
Figure 3.5 shows an example of the recipe editor user interface. The main editor shows the
recipe file directory path and the step-wise information in a table-like format. The user
highlights the step and click Edit button to load the step to the step editor window. Once
finished, the user clicks Update button to save the step parameters to the step objects. A
new step can be inserted and the existing step can be deleted. Clicking the step editing
buttons result in the data transfer to and from the recipe objects only. Data transfer to and
from a recipe file occurs only by clicking the methods buttons of the main editor.

70

Figure 3.5 Recipe Editor User Interface

71

Recipe Editor Title Bar
Menu Bar

Save AsToo] Bar

Step Name: Polish Step Editor Frame
\Operation Directory Tree View Time Last Edited: 13:20, 06/21/00

\Recipe Plurality: I
recipel.rcp

- recipe2.rcp
Parameter Input
W Seep on Yes Boolean Parameters

Current Recipe: C:\Operation\Recipe\recipelrcp

Parameter Unit Range Input

Step Editing Buttons y
Slunry 2 Flow Rate mI/min 0- 1000

Sequence tep StatUs Integer Parameters
0 Load Ready Default

LoadParameter Unit Range Input
WC X Position mm -200 - 200

WC Rotation Speed rpm 0 ~ 125

Recipe Step Information Float Parameters

User: Doug Status Bar Time: 00:00:00

DP22. Process Unit

A wafer is processed by the equipment under one of the modes in the process unit.
On one extreme, the wafer can be treated in a purely manual manner. A user has to click the
corresponding button at every sequence. The user types in the wafer carrier X position and
click Move button, to move the wafer carrier to the nominal x polishing position, and then
punch in the wafer carrier rpm to rotate it at the polishing speed desired, and so on. On the
other end, the user simply edits a recipe and load it in a fully automated environment. Now
the user only has to click Run button to complete the recipe based wafer processing.

Many different levels of automation can exist between the two extremes. However,
the two modes are the most fundamental and necessary- manual and auto. Many
intermediate (or semiauto) modes can be designed by combining the manual and the auto
mode in a certain proportion, along the path of the control system development if needs
arise. The process unit is decomposed to the manual and the auto mode as shown in Table
3.8.

Table 3.8 Decomposition of Process Unit

Index: 22.# Control System Design

Funciona Reqiremnts F~s)Design Parameter
Funciona Reqremets (~s)(DPs)

Namle Desetio1Des1rip11

FR221 X 0 DP221

FR2221 X X_ DP222

DP221. Manual Mode

Running a machine in a manual mode is a fairly straight forward job. A user types in
command variables and click the corresponding command buttons. Then the commands are
transferred to the Machine-level control system, which generates the control outputs in
response to the request. Then, the machine is driven to the desired status by the control
outputs. In the manual mode, the user has a one-to-one access to the machine actuators and
the commands are transferred at each user generated events (Move button click, for
example). The command transfers are unpacked in space and asynchronous in time.

The design of the manual mode is also straight forward. A user interface is required
to interact with a user, and a Machine-level interface to communicate with the Machine-level
control system. Then, a type of overhead control is required to specify and coordinate the
two interfaces. Table 3.9 shows the decomposition of the manual mode.

72

Table 3.9 Decomposition of Manual Mode

Process Structure the manual mode software

Process Interact with a user
Process Communicate with the Machine-level software

Manual mode overhead

User Interface

Machine-level interface

FR2211 X OO DP 22 11

FR2212 = X X0 DP2212

FR2213 { X O X_ DP2213

The manual mode overhead should specify the I/O frequencies of the manual mode
and design the handlers to deal with the two interfaces. Table 3.10 is the decomposition of
the manual mode overhead.

The user input and the subsequent output to the Machine-level are transferred at a
user generated event. In a Visual Basic terminology, this corresponds to a control (button)
'click' event. Thus the user input and the Machine-level output are asynchronous in nature,
and do not have a specified event frequency. On the other hand, the update from the
Machine-level input and subsequent user display should occur in a periodic manner, because
the mating Machine-level control system runs with at least 1 KHz of event frequency.
Because all the closed-loop controls and the safety related actions are contained in the
Machine-level control system, there is no need for the manual mode to sample as fast as the
Machine-level. For the monitoring and supervision, tens of Hz of sampling frequency is
usually good enough. Microsoft operating systems (including Windows NT) provide up to
18 Hz of timer frequency. The manual mode will update inputs from the Machine-level and
display them on the user interface with 18 Hz of event frequency accessible by the Visual
Basic timer control.

The user input handler extracts the values from the user interface input fields,
perform the necessary checks on them, and assigns them to the internal command variables.
The input checks range from a simple limit check to a complicated collision avoidance logic.
Suppose the wafer carrier has the travel range of -800 (sncWCXCmdMin) to +750

(sncWCXCmdMax) mm in X direction. The following procedure will safeguard the
command input against its limits.

sngWCXCmd = CSng(txtWCX.Text)
If (sngWCXCmd > sncWCXCmdMax) Then

sngWCXCmd = sncWCXCmdMax
End If
If (sngWCXCmd < sncWCXCmdMin) Then

sngWCXCmd = sncWCXCmdMin

73

End If

The command input in the text box is first converted to a single (4 byte float, in
Visual Basic) value and assigned to the sngWCXCmd command variable. Then the
command variable goes through the maximum and the minimum check, and is bounded by
them.

Table 3.10 Decomposition of Manual Mode Overhead

Process Designate how often inputs and outputs
are updated

I/O frequencies

Process Process user inputs User input handler
Process Send outputs to the Machine-level Machine-level output handler
Process Update Machine-level inputs Machine-level input handler
Process Update the machine information to the User display handler

user
Process Initialize the manual mode Manual mode initialization

procedure
Process Terminate the manual mode Manual mode termination

procedure

X o o o o o o
XXooooo

XXXoooo

X o o X o o o

XooXXoo

XOXXo 0X

O OO O 0 X

DP22111

DP22112

DP22113

DP22114

DP22115

DP22116

DP22117

A more complicated logical sequence is involved to avoid collision due to the
geometrical constraints. The loading/unloading station and each platen have guard walls to
prevent splashing of slurries and water sprays. Thus when the wafer carrier is within each
guarded zone, if it doesn't have enough clearance in the Z direction and the X direction
command is greater than each zone limit, the wafer carrier will collide with the wall, if
unchecked. Figure 3.6 illustrates this WCXCmd collision avoidance logic. The wafer carrier
Z position is first checked against its transportation clearance. If the Z position is greater
than the clearance, the new X command is OK. If not the X position is checked to see if the

74

FR22111

FR22112

FR22113

FR22114

FR22115

FR22116

FR22117

>=

wafer carrier is within either the Loading/Unloading station, the Platen A, and the Platen B.
If it is within a zone, the X command is bounded by the travel limits of each zone.

Update WCXCmd

Yes CZPos v ZClearanc

No

WCX in LUCo yse? m b WCX in Plate. A M zone? N WCX in Plateface? o

Yes Yes Yes

No
WCXCmd -LUCSLmt

Yes WC XCmnd +LUCSLmt No

WCXCmd =-LUCSLmt]

Yes

WCXCmd =+LUCSLmt

Figure 3.6 Wafer Carrier X Command Collision Avoidance Logic Sequence

The command variables processed by the user input handler are transferred to the
Machine-level output hanleer. The output handler places the commands in certain formats
specified by the Machine-level interface. Then the command packets are transferred to the
Machine-level control system by the interface. The Machine-level interface may want some
servo commands to be placed in a single array packet, so that it can send them at once.
Another example is the bitmap transfer.

Figure 3.7 shows the example of the wafer carrier active membrane assembly(AMA)
vacuum bit carrier handling. Suppo us er selected to apply vacuum to the membrane
except the compartment 3. The corresponding command variables processed by the user
input handler have 'True' Boolean values, while AMA 3 holds 'False.' The bitmap is
initialized on zero and goes through four conditional statements. If the statement is true, the
corresponding bit is set to 1, otherwise it will remain 0. Note that the addition operation is
used instead of the bitwise OR operation and that the suffix -B denotes a binary number
(100B = 4). The Machine-level interface requires the bitmap format, because sending one
bitmap is much more efficient than sending four Boolean commands.

The Machine-level input handler receives the parameter and status inputs from the
Machine-level via the Machine-level interface. The handler unpacks the inputs, analyze them,

75

- -, II - -

and assigns them to the user display handler. The user display handler then displays the
inputs to the designated sections of the user interface window.

WC Vacuum BitMap

Bit AMA4 AMA3 AMA2 AMAl

0: Vacuum Off
1: Vacuum On

Btap = 0

AMA Va = Tue? No

;BitMap =Bit~ap+ I

AMA2Vac = True? No

Yes

BitMap = BitMap + 10B

AMA3Vac

=
True?

No

AMA4Vac = TrE
N

Yes

BitMap = BitMap+ 0B

Return BitMap §

Figure 3.7 Wafer Carrier Vacuum BitMap Handling

Of the prime importance is the error handing in the Machine-level input handling.
Because all the safety related actions are already taken by the Machine-level, no immediate
action is required. The error handler sets and displays the error status, prevents further
command update, and asks the user if he or she wants to continue to run the equipment. If
yes, the user has to reset the error status. If it is successful, the machine becomes the
'running' status again. If the error reset is not successful, the error status is set again at the
next timer event. If the user chose to stop the equipment run, the error handler calls the
manual mode termination procedure. Figure 3.8 summarizes the error handling procedure.

The manual mode initialization procedure is executed when the manual mode is
loaded to the Process-level control system. It simply assigns the constants, initialize the
variables, calls the machine initialization routine of the set up mode if the machine was not
initialized before the manual mode call, and loads the user interface to the screen. Figure 3.9
illustrates the procedure.

The manual mode termination procedure simply unloads the user interface from the
screen. Optionally, it can perform the machine termination procedure. The machine
termination procedure will move the machine components to the parking positions and then
stop the ADwin program, or stop ADwin immediately if requested by an error set.

76

Error Handler

Update Error Carrier

Error Triggered? No

Yes

Set Error Status

Display Err

Fprevent Command Update

Continue Operain No

Yes

Call Terminati

Error Reset byUsr nd of 0

on Procedure

peration

Figure 3.8 Error Handling of Manual Mode Overhead

Request Initialization

Return Initialization

Figure 3.9 Initialization Procedure of Manual Mode

77

Event Timer

t

Machine Initialization
Boot ADwin

Load Machine-level Program to ADwin

Start Program

Select Machine Initialization Mode

? Autonomous Initialization
of the Machine-level System

Initialization Successful? No

Yes Set Status = Error

Set Status = Running

Assign Constants

Initialize Vaabs

Yes Machine Initialized?

__z No

........................ I

The manual mode user interface should be able to display the machine parameters
and the status in real time and accept the command updates at user generated events. Table
3.11 suggests the decomposition of the user interface.

Table 3.11 Decomposition of User Interface

Process Provide a numeric input device for the touch
screen environment

Number pad

Process Accept command inputs Command input boxes
Process Accept mode inputs Mode selector
Process Provide command update controls Function buttons
Process Provide a means to remove error interlocks Error reset button(s)
Process Display the machine parameters Parameter display
Process Display the machine status Status display
Process Display the Process-level status Status bar

FR22121

FR22122

FR22123

FR22124

FR22125

FR22126

FR22127

FR22128

=

X 0 0
XX0

0 o X

000

000

000

000

000

0

0

0

X

0

0

0

0

0

0

0

0
X

0

0

0

0

0

0

0

0
X

0

0

0

0

0

0

0

0

X

0

0

0

0

0

0

0

0

X

DP22121

DP22122

DP22123

DP22124

DP22125

DP22126

DP22127

DP22128

Because the Process-level control system has the touch screen environment and the
user needs to type in commands while the manual mode is running, it is required to provide
an input device on the screen. For alphanumeric inputs, a virtual keyboard is required; for
numeric inputs, a number pad is good enough. A simple number pad layout is shown in
Figure 3.10. The user interface will display the number pad once the user clicks a command
input box to enter a number. Other execution and selection commands can be handled by
the command buttons, the option (radio) buttons, etc.

The user selects a mode, such as Transport, Polishing, Cleaning, etc., using the mode
selector in the manual wafer processing. Function buttons control the transfer of the motion
commands. The motion commands will be updated to the Machine-level once Run button is
clicked. Stop button click triggers the stop sequence in the Machine-level, which stops all the

78

actuators and removes the controller outputs. Error Reset button is used to clear the error
status if the user chooses to continue the machine operation after an error is triggered.

Figure 3.10 Number Pad for Touch Screen

WCX Cmd 100.0 mm

WCZ Cmd -70.0 mm

Current Pos L10.I mm

Current Pos mm

Motion Control

Alarm

Mode Selector

ELIt

User: Doug Status Bar Time: 00:00:00

Figure 3.11 Manual Mode User Interface Screen

79

Number Pad

i 3 cance

Manual Mode Title Bar

Strain Gauge 2.0

EPD Sensor -O.

Parameter Display

IaseI

Slurry A l Flow Rate ml/min

WC Bias Pressure 2.0 psi

Open-loop Control

Status

* Transport

O Polish

Machine parameters related to the motion control are displayed in the motion
control section. Other parameters will be displayed in the Parameter Display section. The
output from sensors, such as the strain gauge, the reflectance sensor, etc., are the examples
of the parameters displayed.

The status parameters are displayed in the Status Watch window. The window will
show the machine status (Running, Stopped, Initializing, etc.) and the alarm status(Normal,
Error, etc.). The Error Reset button is housed in the Status Watch.

The interface may have a status bar to display the information related to the Process-
level control system. User name, current time, time since login, and process time are
examples of the Process-level status parameters which can be displayed. Figure 3.11 shows a
layout of the manual mode user interface screen.

Table 3.12 Decomposition of Machine-level Interface

Send command outputs
Send logic commands
Receive parameter inputs

FR22131

FR22132

FR22133

FR22134

FR22135

X
X

0

0

0

X

0

0

0

0

X

0

0

0

0

X

O O 0 X

0

0

0

0

X

Command output procedure
Logic output procedure

Parameter input procedure

DP22131

DP22132

DP22133

DP22134

DP22135

Machine-level interface deals with the low level serial communication between the
manual mode and the Machine-level control system. Fortunately, the ADwin provides a list
of library functions for the communication between the PC and itself. Thus, to send a set of
commands, the machine-level interface only have to receive the data packet from the
machine-level I/O handler and call an appropriate library function to transmit the packet.

The output from the manual mode can be grouped into: Command output (control
commands) and Logic output (functional commands). For example, to update a set of servo
commands, the command packet is first transferred and then the Run command is
transferred. By the time the Machine-level receives the Run command, all the servo

80

commands are already secured. Thus it can update all the command at a single event.
Otherwise some of the commands may have not been received at the update event.

All the inputs to the manual mode are checked at each timer event. In reality, at
every timer event, the machine-level interface library functions request the inputs from an
ADwin CPU, the global variables designated as 'accessible' in the Machine-level control
system.

Each parameter or status input is carried by a single global and then by a single
transmission variable. A data input is a (time) series of parameters, which is sent as a whole.
The time wise measurement of a reflectance sensor is an example of the data input. An array
is used to house the series in place, and transmitted as a single packet to the manual mode.
The machine-level interface then receives the data and assign them to a corresponding data
array of the manual mode.

DP. 222 Auto Mode

The automatic wafer processing is, in a sense, an extension of the manual wafer
processing. The same set of control actions are used to induce a desired physical change on
the wafer. The auto mode clicks the command buttons, on behalf of a user. The process
commands are transferred in a preprogrammed manner meeting the built-in time and logic
conditions in the auto mode, whereas the commands are transferred asynchronously when
the user clicks the command buttons in the manual mode. In other words, the auto mode
transfers the commands in serial events; the manual mode at user generated events.

Table 3.13 Decomposition of Auto Mode

Structure the auto mode sottware

Connect to the recipe editor
Interact with a user

Communicate with the Machine-level
Designate distinct steps to process
auto mode

FR2221

FR2222

FR2223

FR2224

FR2225

X 0 0 0 0
XX000

XXX 00

X 0 0 X 0

X 0 0 0 X

DP2221

DP2222

DP2223

DP2224

DP2225

81

- - - - - ffi - zm; - - . - - - - __ _-_ - iWaRVENIA __

-, - ~E, i.,..,.."..,,,..* - ~ - - I -

The design of the auto mode is also based on the platform of the manual mode.
Many manual mode procedures can be reused by the auto mode with a slight modification in
details. However each mode contains all the necessary procedures to process a wafer on its
own way. They are independent from each other.

Procedures similar to those of the manual mode will be briefly mentioned during the
decomposition. Procedures unique to the auto mode will receive more attention and
undergo detailed explanations. Table 3.13 shows the first decomposition of the auto mode.

Table 3.14 Decomposition of Auto Mode Overhead

Process Designate how often the input to and the
output from the auto mode are updated

1/U trequency

Process Process user input User input handler

Process Process recipe data Recipe handler

Process Send outputs to the Machine-level Machine-level output handler

Process Update inputs from the Machine-level Machine-level input handler

Process Update the process information to the user User display handler

Process Initialize the auto mode Auto mode initialization
procedure

Process Terminate the auto mode Auto mode termination
procedure

X OO 0 0 0 0 0

XX000000

XXX00000

XXXXOO 00

X00OX000

XOXOXX 00

X00XX0X0

0 0 0 0 0 0 X

DP22211

DP22212

DP22213

DP22214

DP22215

DP22216

DP22217

DP22218

Recipe editor link and Process steps are new to the auto mode. The recipe editor link
connects the auto mode to the recipe editor so that it can load and unload an edited recipe.
Also it invokes the editor screen, if a user decides to edit a recipe at run time. Process steps
are unique to the auto mode. They house sets of sequential procedures to process wafers in a

fully automatic manner in conjunction with a recipe. In an auto run, the auto mode

82

FR22211

FR22212

FR22213

FR22214

FR22215

FR22216

FR22217

FR22218,

=

repeatedly gives process commands contained in a recipe, at each sequential stage specified
by the process steps.

Table 3.14 shows the decomposition of the auto mode overhead. In auto mode, the
user inputs are confined to logic commands (Run, Stop, Error Reset, etc.). The user input
handler extracts these commands from the user interface and pass them to the Machine-level
output handler at user generated events. Other outputs to the Machine-level are sent
periodically at each serial stage of the loaded process step, using the PC timer with the event
frequency of 18 Hz. The input from the Machine-level and the subsequent user display are
updated at every timer event as in the manual mode.

The recipe handler extracts the process commands from the I/O buffer of the recipe
editor link and places them in the packets following the format required by the Machine-
level output handler. The output handler then sends the packets to the Machine-level control
system. Other design parameters in Table 3.14 perform similar functions as those in the
manual mode overhead.

Table 3.15 Decomposition of Recipe Editor Link

Process Load an existing recipe Load method
Process Unload the current recipe Unload method
Process Call the recipe editor to edit a recipe Edit method

FR22221 X 0 O DP22221

FR22222 = 0 X O DP22222

FR22223 0 o X] LDP22223

The recipe editor link provides a link to the recipe editor and the recipe files. It
should be able to load and unload the saved recipe, and invoke the recipe editor to modify
an existing recipe or to create a new recipe at run time without exiting the auto mode. Table
3.15 shows the decomposition of the recipe editor link.

Load method opens up a recipe file as 'read-only' to prevent any accidental
modification to the file data. An recipe overhead object is created by default, and the file
header information is transferred to the overhead object using the file read method of the
object. Then various step objects can be created based on the header information. Each step
object accesses the step section of the recipe file to acquire each step data. Then the recipe
data is loaded to the I/O buffer of the recipe editor link to be used for the wafer processing.
The load method closes the recipe file before finish. Figure 3.12 illustrates the procedures of
the load method in a format of the sequential functional diagram. Unload method simply
empties the I/O buffer and destroy the once created recipe objects.

Load and Unload methods of the recipe editor link access a recipe file directly,
creating and destroying recipe objects, with its own I/O buffer. The methods are

83

-ism

independent from the recipe editor. As a result, the loaded recipe is treated as 'read-only' and
the user can not edit the loaded recipe. He or she can only view the recipe data using the
user interface. On the other hand, the user should be able to call the recipe editor in the auto
mode, otherwise he or she has to terminate the auto mode to access the editor. The user may
have forgotten to edit a recipe in advance or found a need to modify an existing recipe.

Edit method calls the recipe editor and launches its screen on top of the auto mode
user interface. Once the user finishes editing, he or she can go back to the auto mode user
interface, and load the just edited new recipe.

22221.1 Obtain the recipe file name and its directory

PV22221.1: Obtained

22221.2 Open the recipe file

PV22221.2: Opened

22221.3 -Create a recipe overhead object

PV22221.3: Created

22221.4 t oLet the overhead object read the recip e ato heade .

-- PV22221.4: Read

22221.5 Create recipe step objects based on the header information

-PV22221.5: Created

22221.6 Let the step objects read the recipe file step sertei l

PV22221.6: Read

22221.7 Transfer the recipe data from the objects to the editor link /0 buffer

PV22221.7: Transferred

22221.8 Close the recipe file

SPV22221.8: Closed

Figure 3.12 Sequential Functional Diagram of Load Method of Recipe Editor Link

An economical and logical design of the user interface is quite essential, because a
great amount of information needs to be viewed in the auto mode. Table 3.16 shows the
decomposition of the auto mode user interface.

The administrate inrtion includes title, data and time, user name, etc. They will
be displayed on the top portion of the interface screen. In an automated wafer processing,
the interface should show the wafer related information. The wafer tracking section will
display the lot number, the wafer ID (if known), and the wafer count (number of wafer
processed). Recipe name, current recipe step, and run time are the examples of the process
related information. The status display and the function buttons are similar to those in the
manual mode.

In an automated machine run, it is often quite convenient to view the motion of the
equipment in a graphical display. The interface will have a small picture box, which shows a

84

simple animation of the machine movement. The motions of the wafer carrier and the
conditioner, along with the wafer flow will be played in real time.

Table 3.16 Decomposition of User Interface

Process Show the administrative information Administration display

Process Show the wafer related information Wafer tracking

Process Show the process related information Process information display

Process Show the machine and operation statuses Status display

Process Provide means of process control Function buttons

Process Visualize machine movements Graphical machine movement
display

Process Visualize process monitoring Process monitoring graph
Process Display current machine parameters Parameter display

Process Display current commands Command display

Process Allow the user to see the recipe Recipe View

Process Provide access to other modes Navigation buttons

FR2223.1

FR2223.2

FR2223.3

FR2223.4

FR2223.5

FR2223.6

FR2223.7

FR2223.8

FR2223.9

FR2223.10

FR2223.11

>=

x
0

0

0

0

0

0

0

0

0

0

0

x

0

0

0

0

0

0

0

0

0

0

0
x

0

0

0

0

0

0

0

0

00000000

00000000

00000000

x 0 0 0 0 0 0 0

OX O O 0 0 0

0 0 x 0 0 0 0 0

0 0 0 x 0 0 0 0

0 0 0 0 x 0 0 0

0 0 0 0 0 x 0 0

0 0 0 0 0 0 x 0

0 0 0 0 0 0 0 x

DP2223.1

DP2223.2

DP2223.3

DP2223.4

DP2223.5

DP2223.6

DP2223.7

DP2223.8

DP2223.9

DP2223. 10

DP2223.11

Although the interface has the parameter display to view the various machine
parameter values, it is helpful to view the parameter in a graphical form to catch the time-
wise and the space-wise evolution of the parameter signals. The process monitoring graph
can show different types of signals- wafer reflectance, strain gauge, current sensor, etc.

85

The parameter and command displays are standard view panels of the auto mode for
informative purposes. The navigation buttons provide access to other modes, such as
manual mode, recipe editor, database, and set up mode. Figure 3.13 shows the example
screen of the auto mode interface.

- Status:

Alarm:

Machie Graphics

_ Process Monitoring Graph

ParameterI af

WCX Pos mm

Reip itor II Bu] I Navigation Pmel

Figure 3.13 Auto Mode User Interface

The user interface layout in Figure 3.13 follows the general guideline of the
semiconductor industry standard, SEMI E95-0200: Specification for Human Interface for
Semiconductor Manufacturing Equipment[6]. The title panel on the top portion of the
screen houses administration display, wafer tracking, process information display, and status
display. The navigation panel at the bottom of the screen contains the navigation buttons,
which provide links to the other modes and utilities. The two panels will always be present
on the interface screen, regardless of the mode chosen. The command panel houses function
buttons. The list of the function buttons will change depending on the mode or utility
chosen. The information panel at the center of the screen will display the related information
of the selected mode. If a user clicks View Recipe button, the information panel will change
its display to the recipe related parameters. Manual mode launched from the auto mode
interface will display the manual mode interface within the information panel, with a slight
modification from the original manual mode interface design.

Table 3.17 shows the decomposition of the Machine-level interface of the auto
mode. The procedures are basically the same as those of the manual mode, differing slightly
in details. Thus we skip the detailed explanation.

86

L~z

7~]L~i

0135-:

Table 3.17 Decomposition of Machine-level Interface

Send command outputs
Send logic commands
Receive parameter inputs

Command output procedure
Logic output procedure

Parameter input procedure

FR22241 XOOOO DP22241

FR22242 X X OOO DP22242

FR22243 = 0 0 X 0 0 DP22243

FR22244 0 0 0 X 0 DP22244

FR22245 O 0 0 X X DP22245

Processing of a wafer demands hundreds of individual control actions to take place
both in serial and parallel. Thus it is quite necessary to organize these actions so that they can
have a meaning. For example, the wafer carrier motion from x, to X2 doesn't have any
meaning. But if she is driven from x, to x2 and then back to x, with a fixed frequency, it can
be a sweeping motion of the wafer carrier during polishing. Small sets of control actions can
be organized as 'sub-steps' to be used by the bigger 'steps.' The process steps are a sequence
of control actions and sub-steps, which can uniquely de distinguished in the stream of wafer
processing. Then a user can construct his or her own process recipe by choosing the
individual steps in a desired sequence, with the parameters edited for each step. Designing
steps and sub-steps to assemble them to create a new recipe is much like the old good design
technique of 'Divide and Conquer.'

Seven different process steps can be conceived as shown in Table 3.18. They are the
minimum set of steps to create every possible recipe configuration. More steps may possibly
be conceived, such as buffing or wafer carrier transportation. But the buffing is always
conducted after wafer polishing and the wafer carrier transportations are executed at the
beginning and the end of each step. In other words, they are not truly independent and
distinctive steps to form a recipe. Rather, they can be designed as sub-steps to be called
within a step.

StepLoadReady is a waiting step between the wafer unloading and the loading in a
continuous wafer processing. A sequence of the recipe steps are executed from the wafer
loading step to the wafer unloading step, or possibly to the conditioner steps upon user
selection. The ready step simply waits the next wafer to be placed on the loading station.

87

S-- EI...~ U -j!..~UjZ~r~ - - - - -

Either Run button click by a user or the automatic detection of wafer placement will trigger
the run of the recipe based automatic wafer polishing, beginning with StepLoad.

Table 3.18 Decomposition of Process steps

Process Create sets ot control actions repeatedly used in
process steps

Sub-steps

Process Provide a waiting step in automatic wafer processing StepLoadReady
Process Condition polishing pads StepCondition
Process Load a wafer StepLoad
Process Polish a wafer StepPolish
Process Clean a wafer StepClean
Process Unload a wafer Step_Unload
Process Clean the conditioner head StepCondClean

FR2225 1

FR22252

FR22253

FR22254

FR22255

FR22256

FR22257

FR22258

=

x 0 0 0 0 0 0 0
x x 0 0 0 0 0 0

x 0 x 0 0 0 0 0

x 0 x x 0 0 0 0

x 0 x 0 x 0 0 0

x 0 x 0 0 x 0 0

x 0

x 0
x 0
0 0

0

0

0

0

x 0
O X

DP22251

DP22252

DP22253

DP22254

DP22255

DP22256

DP22257

DP22258

Load, Clean, and Unload are fairly simple steps and easy to imagine. StepPolish is a
bit demanding. It is the most important step in wafer processing. The desired physical
change of a wafer surface occurs in this step. In some sense, other steps can be viewed as
supporting steps for the polish step. The detailed decomposition of StepPolish will be

given after the discussion of the sub-steps. Because of the limitation in space, we will take a
look at Step_Polish only, as an example of the step decomposition and design. Other steps
can be designed in a similar fashion by using the techniques to be presented.

StepCondition and StepCondClean are conditioner related steps and can be
distinguished from the rest of the steps, which are wafer (carrier) related ones. The
conditioning step can possibly cause a coupling to other wafer steps, because conditioning
may be performed in parallel to them. However, if we include the conditioning as an

88

U -- - -ii ~ ----- -.---------- ~--.' -

dependent procedures to each wafer related step, we can eliminate the coupling. Either way
is expected to produce an acceptable result, depending on how much emphasis is placed on
the conditioning (If you weigh conditioning more and want to achieve a flexible
conditioning, it is better to design a condition step which can be executed in parallel with
other wafer steps).

A sub-step is a set of control actions, which can be identified within a step. It is
written because it is repeatedly used by many steps or can hide details within a step. For
example, the wafer carrier transportation occurs at every step. Instead of writing procedures
to move the wafer carrier from (x,, Z), to (x, 0), then from (x, 0) to (x2, 0), and finally from
(x2, 0) to (x2, 1) at every place in steps where transportation is required, we can design a sub-
step (or a function in programming sense), which has built-in procedures to drive the wafer
carrier from (x,, !) to (x 2 , 4). The calling step doesn't have to know the detail, the sub-step
will simply return a success flag, once the movement is completed. Then the step moves on
to the next stage. This technique improves the efficiency, reusability, and readability of
program codes. Table 3.19 shows the decomposition of the sub-steps.

Table 3.19 Decomposition of Sub-steps

{FR222511 FXOO]0[DP2225111
FR222512 0 X 2o[DP222512

FR222513JL0 0 X1LDP222513J

The transport sub-steps are used by many steps to move the wafer carrier and/or the
conditioner. They are themost frequently used sub-steps in an automated wafer processing
(although hidden to a user). The wafer polishing sub-steps are a collection of functions solely
used by the polishing step. Similarly, the conditioning sub-steps are for the conditioning
step. We will first take a look at the transport sub-steps. Table 3.20 shows the
decomposition.

There are three possible scenarios in moving the wafer carrier (WC) and the
conditioner arm (CA). Move WC only, move CA only, and move WC and CA at the same
time. Each of the three sub-steps in Table 3.20 is designed to respond to each case. The sub-
steps are mutually exclusive. They can not occur at the same time and no new transportation
sub-step can be initiated before the end of a current transport step. We will take a detailed
look at Sub-step Move-WCCA because it is the most involved and the most general case.

89

Table 3.20 Decomposition of Transport Sub-steps

FR2225111 [X 0 01 DP2225111

FR2225112 = 0 X 0 DP2225112

FR2225113 L0 0 X_ DP2225113

Because WC and CA share the same X axis, it is simply impossible to give position
commands to each actuator and hope nothing to happen. They will surely collide with in a
minute. Thus the sub-step MoveWCCA should contain a series of movements to dissolve
the spatial coupling of the actuators by differential motion dispatching in time. Table 3.21
shows the decomposition of the sub-step.

Table 3.21 Decomposition of Sub-step MoveWCCA

Represent the state of the sub-step
Receive inputs from the higher level program
Generate command values for WC and CA
movements
Return command values and the status to the
higher level

FR22251131

FR22251132

FR22251133

FR22251134

x O OO

x x o

x

x

x

x

xO

x x

DP22251131

DP22251132

DP22251133

DP22251134

90

As in any function design, the input and output and its unique processing (algorithm)
should be specified in the sub-step design. Sequential algorithm is the processing of the sub-
step: it generates motion commands along the time line. The status indicator is the value
returned by the sub-step and indicates the internal stage of the sequential algorithm. For
example, it can have values 1, 2, 3, and so on, which corresponds to the sequential stage 1, 2,
3, etc. of the sub-step. It may return 0 once all the movements are completed. A higher-level
program (step, in this case) will watch the returned status indicator value and decide if the
movements are done and if not at which stage the sub-step is. Table 3.22 shows the
decomposition of the sequential algorithm of the sub-step MoveWCCA.

Table 3.22 Decomposition of Sequential Algorithm

Check the final points of WC and C
Move WC all the way up
Move CA to the up position
Move CA to the desired x position
Move CA to the down if specified
Move WC to the desired x position
Move WC down to the desired z mc

Collision check procedure

FR222511331

FR222511332

FR222511333

FR222511334

FR222511335

FR222511336

FR222511337

X 0 0 0 0 0 0
X X 0 0 0 0 0

X 0 X 0 0 0 0

X X X X 0 0 0

X X X X X OO

X X X X 0 X 0

X X X X X X X

DP222511331

DP222511332

DP222511333

DP222511334

DP222511335

DP222511336

DP222511337

The algorithm first checks the final positions of WC and CA to see if it is safe to
move to the destinations. If either X or Z axis relative distance between the two falls less
than the specified safety clearance, the collision check fails and the rest of the algorithms are
not executed. The indicator returns an error to the calling step.

The machine is designed such that when WC is all the way up, CA can pass
underneath WC. CA has to be in the up position to make an X motion because of the splash
guard walls of the platens and the loading station. However, CA Z position is controlled by
the pneumatic pressure of its bellow. Thus it is impossible to do a precise position control in

91

Z direction for CA. Rather, we can designate two positions for CA- Up and Down. As a first

(motion) stage in the algorithm, both WC and CA are moved to the up positions. Each up
procedure is independent from each other. Thus they can occur parallel in a single stage. The
decoupled nature between FR222511332 and FR222511333 is shown by the corresponding
'O's in the design matrix. However they can occur only after the collision check is successful.
In other words, they are coupled to FR222511331. The first column of 'X's in the design
matrix illustrates this coupling of the rest of procedures to the initial check. Thus after
reading the first three rows of the design matrix, we can design a sequential logic:

Stage 1. Check collision
If OK go to Stage 2.
Else Return Error

Stage 2. Move WC Up AND Move CA Up

- PV2225113: Sub-step MoveWCCA Called

PV22251131(FlagMove _WC CA) = Move_WCCAStart FR'DP2225113: Sub-step Move WCCA

222511331 Check WC and CA final positions against collision 4PV22251131 1

PV222511331: Collision Checked

ollision? Yes

No

222511332 Move WC all the way up 222511333 -Move CA to the up position PV22251131 2

- PV222511332: WC Up Move Done PV222511333: CA Up Move Done

222511334 Move CA to the x destination

PV222511334: CA x Move Done

222511335 Move CA in z direction 222511336 Move WC to the x destination PV22251131 =4

PV222511335: CA z Move Done PV222511336: WC x Move Done

222511337 Move WC down to the z destination

-- PV222511337: WC z Move Done

PV22251131 = MoveWCCADone PV22251131 = MoveWCCA Err

PV2225113: Sub-step MoveWCCA Terminated

Figure 3.14 Sequential Functional Diagram of Sub-step MoveWCCA

Traditionally, sequential logics of a control system have been designed by using a
'sequential functional diagram.' The sequential functional diagram is a graphical
representation of a sequential algorithm in which each control stage is connected serially to
one another with a transition condition between the two stages. We can also form a
sequential functional diagram of the sub-step Move WCCA based on its design matrix,

92

because the matrix contains the information of its sequential logic. Figure 3.14 shows the
sequential functional diagram constructed from the design matrix.

The FR/DP number serves as a stage number. The process variable represents the
corresponding stage transition condition. Thus in the WC move up procedure (DP), the
process variable checks if the condition (WC all the way up?) is met. If satisfied, it returns
True and signals the transition to the next stage, otherwise it gives False and the transition is
prohibited. The 'AND' junction (®) represents the transition from the parallel processes.
Every transition condition should be true to advance to the next stage. The status of each
stage is monitored by the status indicator (DP/PV22251131). In this case, the design
parameter and the process variable are the same.

After WC and CA move up procedures are done, CA is moved to its X destination
position (CA is cleared to move in X direction). Then WC is moved to its X destination
position and CA either remains up or is moved down depending on the Z destination as a
parallel stage. Finally WC is moved to its Z destination. Once the WC Z motion is
completed, the status indicator returns 'Success' and exits the sub-step. Figure 3.15 illustrates
these four motion stages graphically.

z

WCm

CA

WC CA:
x

Stage 1
Move WC up to the transport position
Move CA to Up position

CCA

CA:

x
Stage 3
Move WC to X destination
Move CA to Down position

Z

CA -+C

Stage 2
Move CA to X destination

WC:

~CA~

Stage 4
Move WC to Z destination

Figure 3.15 Four Motion Stages of Sub-step MoveWCCA

A wafer polishing sub-step is a set of procedures, which can be identified to have a
single purpose, used by the polishing step. Because lots of control actions are involved in the
polishing step, it is quite convenient to organize sub steps before and simply call them as
single functions, which eases the design of the polishing step and reduces its complexity.
Table 3.23 shows the decomposition of the wafer polishing sub-steps.

93

z

Z

x

x

- ~.-1---------.----------------- - --- ~-- -~-- - -

Table 3.23 Decomposition of Wafer Polishing Sub-steps

Process Sweep WC during polishing Sub-step SweepWC
Process Profile AMA pressure during polishing Sub-step Profile AMA

Process Profile linear velocity during polishing Sub-step ProfileVel

Process Detect the end point of polishing Sub-step Detect EndPoint

Process Control AMA pressure based on the Sub-step ControlAMA
reflectance sensing of the wafer

Process Buff wafer after polishing Sub-step BuffWafer

FR2225121

FR2225122

FR2225123

FR2225124

FR2225125

FR2225126

x 0 0

0

x

x

x

x

x 0
O X

O X

x x

00

000

0

0

x

x

0

0

0

0

x

0

0

0

0

0

x

DP2225121

DP2225122

DP2225123

DP2225124

DP2225125

IDP2225126

Material removal rate (MRR) of a CMP process is often described by Preston
equation.

MRR =K P v

MRR: material removal rate (nm/min)
K,: Preston Constant (kPa')
P: Pressure (kPa)

v. Velocity (m/sec)

Thus, the material removal rate is directly proportional to the product of pressure and
velocity. Preston constant depends on the set up of the equipment: slurry (chemistry,
abrasive, etc.), pad (elastic modulus, porosity, etc.), tool configuration (wafer carrier head
design, platen design, etc.). It can also depend on pressure and velocity beyond a certain
region.

In an advanced process handling, it is desirable to have a capability to adjust pressure
and velocity during polishing instead of keeping single ones through out the processing. We
may design a velocity profiler which adjusts rotational speeds of the head and the platen
depending on the X position of the head to give a uniform relative velocity on the wafer

94

surface. Also we may want to give a slight ramp profile of velocity. For example, 0.7 m/sec
at the beginning, 1.0 m/sec by the end of a polishing with linear increase in between. The
sub-step ProfVel will adjust the velocity components of the machine to create a user
specified velocity profile. Similarly, ProfAMA is used to implement a user specified
pressure profile, both in time and space (radial variation), during polishing.

The duration of polishing is usually preset for a certain amount of time, with the
assumptions that the material removal rate is known and that the material removal rate does
not change during polishing. But the material removal rate usually varies a little with each
run, and as a result the time based wafer polishing is not accurate. In industry, they usually
adjust polishing time based on the inspection of the test wafers after a batch of wafer run.
Fluctuation of the material removal rate result in either an overpolished wafer or an
underpolished wafer. If overpolished too excessively, it is scraped. If underpolished, it goes
back to the equipment and goes through recycle. Both reduce the productivity of the tool
significantly.

It is quite essential to have a sensing and subsequent control technique, which can
detect the end of polishing while the polishing is actually taking place. Various sensing
techniques can be used- optical, acoustic, electrical, etc. In the a machine, an optical sensor
which measures the reflectance of the wafer surface is installed as a primary end point
detection sensor. A current sensor, which measures the current input to the platen motor
amplifier complements the end point detection. The current is proportional to the torque
generated by the motor. At the end of polishing, there usually is a change in the friction
coefficient between the pad and the wafer, which result in the change of motor torque. The
sub-step DetectEndPoint actually is an interface to a huge program which use signal
processing, statistics, database, and model based decision to single out an endpoint. A whole
new thesis may be written about this subject. Due to the limitation in space, we will omit the
detailed explanation of the endpoint detection.

The reflectance sensor can also provide quantitative (though limited) information
about the layer thickness being polished on a wafer. Thus it is possible to adjust the head
membrane chamber pressures during polishing to enhance the uniformity of the surface. It
simply reduces the pressures of a section which shows a faster polishing than the rest. The
sub-step ControlAMA is a part of the advanced process handling, which actively controls
the chamber pressure based on the real-time surface profile obtained from the reflectance
sensor to enhance the polishing uniformity. We stop further discussion at this point because
of its involvement.

The wafer carrier usually goes through a cyclic radial motion, or sweeping, during
polishing. Sweeping is normally performed to even out the pad wear (and hence increase pad
life), and possibly to help slurry transport to the polishing interface. The design of the
sweeping sub-step is a little different from the design of the sequential sub-steps. It is
periodic in nature. The sweeping motion should occur repeatedly throughout the whole
polishing step, possibly in parallel with other sub-steps and procedures. The sweeping sub-
step requires a 'cyclic' algorithm. Table 3.24 shows the decomposition.

The SweepWC sub-step also has a status indicator which represents the internal
stage of itself. The inputs to the sub-step are sweep amplitude, cycle time, current time, input
shaping selection, previous status indicator, etc. The WC X command is also transferred to
the sub-step by reference, so that any update in the sub-step can be delivered to a higher
step. The sub-step returns the value of the status indicator at the end of its execution. The
sub-step can not terminate itself. Once at steady state in the cyclic algorithm, it repeatedly

95

gives sweep commands with the specified cycle time. The higher level program simply stops
calling the sub-step to terminate sweeping.

Table 3.24 Decomposition of Sub-Step SweepWC

Process Represent the internal state of the sub-
step

Status indicator

Process Receive inputs from a higher level step Input procedure
Process Generate a reference velocity based on Reference velocity computation

the inputs procedure
Process Generate cyclic position commands Cyclic position command

based on the inputs generator
Process Update cycle time information Cycle time updater
Process Return outputs Output procedure

FR22251211

FR22251212

FR22251213

FR22251214

FR22251215

FR22251216

=

x 0
x x

x x

x x

x x

x x

0000

0000

x 0 0 0

0 x 0 0

0 x x 0

x x x x

DP22251211

DP22251212

DP22251213

DP22251214

DP22251215

DP22251216

A user simply selects the amplitude, the cycle time, and possibly the input shaper of a
sweeping motion. Then the sub-step first calculates the reference velocity based on the
amplitude and the cycle time for a specific input shaper chosen. As shown in Figure 3.16, the
reference velocity is computed by the following formula, in the case of the ramp plus
sinusoid input shaping.

v,.= (2 + gf)-x/ T

v, reference velocity (mm/sec)
x,: amplitude (mm)
T: cycle time (sec)

The reference velocity and X position commands generated by the sub step are then
transferred to the Machine-level control system to produce the sweeping motion.

96

x 2

X+

xC

Ta
......-

to

tpospeakO

z1/2- Ta

Vr

T
tnegpeak0

Xa

tpospeakl

t

tnegpeakl

(1 + Tr/2)Ta = T/2
1/Ta = (2 +)z)/T
v, = xa/Ta = (2 + ir)-xa/T

Figure 3.16 Wafer Sweep Command Profile with Ramp Plus Sinusoid Input Shaper

start
Compute the reference velocity
Compute initial peak times (tpospeak 0, tnegpeak o)

i= 1

Xcmd = Xc + Xa

t > tpospeak
0

Xcmd = Xc - Xa

t> tnegpeak 0

steady
i=i+ 1

t > tnegpeak i

Xcmd Xc + aXcmd =Xc Xa

t > tpospeak

PV22251211 = 1

+PV22251211 = 2

-+PV22251211 = 3

+ PV22251211 = 4

Figure 3.17 Cyclic Position Command Generation Algorithm of sub-step SweepWC

97

state

/00,
\

............

The cyclic position command generator alternatively generates the positive peak
command (x+) and the negative peak command (x) with the interval of the half cycle time
between them. Figure 3.16 illustrates this alternative peak command generation at tpospeak or

tnegpeaki. The interval betweentpopea and tpospeak i+1 is the sweep cycle time.
The cyclic algorithm first calculates the reference velocity and the first positive and

negative peak times. Then it generates the positive peak position command (x,). Once the
current time passes the positive peak time, it starts to give the negative peak command (x).
Again once the time passes the negative peak time, it sends the positive peak command.
Then it reaches the steady state. It gives the positive peak command until the time reaches
the positive peak time, then the negative peak command until the negative peak time. This
cycle is repeated. At each transition, the next peak time is calculated by the following simple
formula.

tpospeak i tpospeak 0 +iT or tnegpeak i ~ tnegpeak 0 + iT

Figure 3.17 summarizes the cyclic algorithm.

Table 3.25 Decomposition of Sub-Step BuffWafer

Dispense DI water DIW dispense procedure
Process Spin WC and Ptn at a buffing speed WC/Ptn spin procedure
Process Apply buffing pressures to AMA AMA pressurization procedure
Process Set buffing timer Timer set procedure
Process Sweep WC if selected Sub-step SweepWC
Process Signal the end of buffing Timer up procedure
Process Stop DIW DIW off procedure
Process Turn sweep off Sweep off procedure

X 0 0 0 0 0 0 0
X X 0 0 0 0 0 0

X 0 X 0 0 0 0 0

X X X X 0 0 0 0

X X X X X 0 0 0

X X X X X X 0 0

X
X

X
X

X
X

X

X

X

X
X
X

X
0

0

X

DP22251261

DP22251262

DP22251263

DP22251264

DP22251265

DP22251266

DP22251267

DP22251268

Process

FR22251261

FR22251262

FR22251263

FR22251264

FR22251265

FR22251266

FR22251267

FR22251268

98

Wafer buffing is performed at the end of polishing with deionized (DI) water only,
to finish and clean up the wafer surface. The wafer is usually buffed with a higher velocity
and a lower pressure than the ones in polishing. In the viewpoint of process design, the
buffing sub-step is a small cousin of the polishing step with reduced number of sequential
stages involved. Table 3.25 shows the decomposition of the sub-step.

The polishing step brings the wafer carrier to the nominal polishing position and
stops the slurry dispensation before it calls the buffing sub-step. The sub-step starts itself by
dispensing DI water to the platen. Then, the wafer carrier and the platen are ramped up to
the buffing speed (rpm), and the membrane compartments in the wafer carrier are
pressurized to the buffing pressures in parallel. Once the velocities and the pressures reach
the specified values, the software timer is set to the specified buffing time.

Sweeping is also usually performed during buffing. To sweep, the sub-step simply
calls the sub-step SweepWC, which we have just designed. The end of buffing is signaled
by the timer. The sub-step stops DI water dispensing and wafer sweeping, before returning
'finish' to the polishing step. Figure 3.18 shows the sequential functional diagram of the
buffing sub-step.

PV2225126(FlagBuff Wafer)= Start

22251261 Dispense DI water

+ PV22251261: DI water valve on

22251262 Spin WC and Ptn at a buffing speed

PV22251262: Speeds ramped up

22251264 Set buffing timer

PV22251264: Timer set

Sweep? Nc
Yes

22251265 Sweep WC

PV22251265: Sweep on

22251266 Signal the end of buffing

+ PV22251266: Timer up

FR/DP2225126: BuffWafer

22251263 Apply buffing pressures to AMA

PV22251263: Pressure settled

22251267 Stop DI water 22251268 Turn sweep off

PV22251267: DI water valve off PV22251268: Sweep off

T PV2225126(FlagBuffWafer) = Finish

Figure 3.18 Sequential Functional Diagram of Sub-Step Buff Wafer

Conditioning requires bringing the conditioner to the condition position, spinning
CA and the platen at condition speeds, applying pressure to CA, dispensing DI water (and
slurry), etc. In terms of control sequence design, the condition step is much similar to the

99

+PV2225126 =2

polishing step. The conditioning sub-steps are reduced sets of the polishing sub-steps. Table
3.26 shows the conditioning sub-step decomposition.

Table 3.26 Decomposition of Conditioning Sub-steps

Sweep the conditioner durng conditioning
Profile the conditioner head pressure c
conditioning
Profile the conditioner head velocity c
conditioning

IFR22251311 X 0 0 DP2225131

FR2225132 = OX 0 DP2225132

FR2225133 L0 0 X_ DP2225133

Table 3.27 Decomposition of StepPolish

Represent stages of the step

Send command and status outputs

FR222551

FR222552

FR222553

FR222554J

x oO 0
x x o

x x x O

x x x x

DP222551

DP222552

DP222553

DP222554

The conditioner is swept during conditioning to cover the entire pad surface, and
hence to generate a uniform wear profile. The conditioner is typically 4 inches in diameter,
where as the platen is at least 24 inches in diameter. The wear of the pad during conditioning

100

is also a function of pressure and velocity. Profiling of pressure and velocity is then

necessary to create an even pad surface. We will skip the detailed explanation of the

conditioning sub-steps because they are much similar to the polishing sub-steps in nature.
With the requested sub-steps at our disposal, now we can go forward to design the

process steps. However, due to the volume and complexity involved in step design, we will
select Step_Polish as an example and take a detailed look at it. The polishing step is the
longest and complex, yet the most important of the steps because the core physical process
occurs in this step. The other steps can be designed in a similar fashion.

Table 3.28 Decomposition of Sequential Algorithm (StepPolish)

Process Move WC to the nominal polishing
position and CA to the home position

Sub step MoveWC_CA

Process Spin WC and Platen at a touch down WC/Ptn spin procedure
speed

Process Supply slurry Slurry supply procedure
Process Move WC to the z polish position WC z polish acquisition procedure
Process Turn spray and drain valves on Spray/drain valves on procedure
Process Change AMA to positive(low) pressures AMA pressurization procedure
Process Spin WC and Platen at a full polishing WC/Ptn spin procedure

speed
Process Apply full polishing pressures to AMA AMA pressurization procedure
Process Set timer for polishing Timer procedure
Process Sweep WC if selected Sub step SweepWC
Process Detect end point of the polishing End point detection procedure
Process Turn sweep off Sweep off procedure
Process Turn slurry off Slurry off procedure
Process Buff wafer if selected Sub step BuffWafer
Process Bring WC to the nominal x polish WC x move procedure

position
Process Reduce WC and Platen rotations to a WC/Ptn spin procedure

lift up speed
Process Change AMA to vacuum to pick up AMA vacuuming procedure

wafer
Process Move WC up to the z clearance WC z move procedure

position for transportation

Process Turn spray and drain valves off Spray/drain valves off procedure
Process Move WC to the finish position Sub step MoveWC

101

Table 3.28 Decomposition of Sequential Algorithm (StepPolish), continued

FR222553.1

FR222553.2

FR222553.3

FR222553.4

FR222553.5

FR222553.6

FR222553.7

FR222553.8

FR222553.9

FR222553.10

FR222553.11

FR222553.12

FR222553.13

FR222553.14

FR222553.15

FR222553.16

FR222553.17

FR222553.18

FR222553.19

FR222553.20

X0000000000000000000
X X 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
XOX00000000000000000

XXXXO0000000000
XXXOXOOOOOO 0000
XXXXXXO00000000

XXXXXXXO 0000000

X X X X X X O X 0 0 0 0 0 0 0

XXXXXXXXXO 0000

00000

00000

00000
00000
00000
00000

XXXXXXXXXXO 000000000

XXXXXXXXXXXO 00000000

XXXXXXXXXXXXOO O
XXXXXXXXXXXOX00

XXXXXXXXXXXXXXO

00000
00000
00000

XXXXXXXXXXXXXXXO 000 0

XXXXXXXXXXXXXXXXO 00 0

XXXXXXXXXXXXXXXXXOOO

XXXXXXXXXXXXXXXXXX O O
XXXXXXXXXXXXXXXXXO X O

XXXXXXXXXXXXXXXXXXXX

I

The design of the polishing step is simple to begin with. It requires a status indicator
to represent the internal stage, the input and the output procedures, and the sequential
algorithm. The sequential algorithm is unique to StepPolish. Actually the process steps
differ only by their sequential algorithms. They all have their status indicators and the input
and the output procedures, which are more or less similar to one another. Table 3.27 shows
the decomposition of the polishing step.

The sequential algorithm of StepPolish is decomposed in Table 3.28. Although
demanding in the number of stages involved, each stage once decomposed is fairly easy to
grasp and implement. Any polishing first starts by moving the wafer carrier to the nominal
polishing position and moving the conditioner to its safe home position to avoid any
possible collision with the wafer carrier. To accomplish this, the step simply calls the sub-
step Move WCCA.

The wafer carrier and the platen are rotated at a slow speed so that when the wafer
makes contact with the pad, less friction can develop. Making a static contact and then
ramping up the rotational velocity can induce a significantly high initial friction coefficient,
which is not desirable. The slurry is dispensed in advance to wet the pad surface enough.

Because of the wear of the pad surface and the retaining ring of the wafer carrier, it is
impossible to set a fixed Z polishing position. Instead, at the beginning of each polishing,

102

DP2225 53.1

DP222553.2

DP222553.3

DP222553.4

DP222553.5

DP222553.6

DP222553.7

DP222553.8

DP222553.9

DP222553.10

DP222553.11
DP222553.12

DP222553.13

DP222553.14

DP222553.15

DP222553.16

DP222553.17

DP222553.18

DP222553.19

DP222553.20

the Z polishing position needs to be acquired. For this purpose, the retaining ring has strain
gauges imbedded. Moving the Z position against the pad result in compressing the retaining
ring and hence the strain change in the strain gauges. With the known relationship between
the gauge strain and the retaining ring pressure, it is possible to find the Z position so that
the retaining ring pre-compresses the pad with the specified pressure. Reading the change of
the gauge strain, the Z position acquisition procedure 'hunts' the polishing position. The
drain and the DI water spray valves are turned on in parallel.

The wafer is held by applying vacuum to the wafer carrier membrane chambers
during transportation. A low pressure is applied to the chambers so that the wafer can make
a partial contact with the pad surface. Once the low pressure is settled, the wafer carrier and
the platen are spun at the full polishing speeds. The chamber pressures are also ramped up
to the polishing pressures.

The timer is set for the specified polishing time. Even in the case of the end point
detection based on the reflectance and current sensing, an override time is set to prevent an
infinite polishing. The endpoint detector may fail to send the end signal. The step calls the
sub-step Sweep_WC, if the sweep is selected. The end of polishing is signaled either by the
timer or the end point detector. Then the step turns the slurry pump off and halts the
sweeping sub-step.

Buffing is optional to the user. If buffing is selected, the step calls the sub-step
Buff _Wafer. All the stages for buffing are taken care of by the sub-step. The step watches
the status indicator of the buffing sub-step. Once it returns 'Finish,' it moves to the next
stage.

Because of the sweeping, the wafer carrier at the end of either polishing or buffing
may not be at the nominal polishing position. The step moves the wafer carrier back to the
nominal position to prepare the transportation. The wafer carrier and the platen may
optionally spun at a low speed during the wafer 'lift.' There exists a large amount of adhesion
force between the wafer and the pad, because of the surface tension of water. Spinning at a
low speed usually helps to reduce the surface tension. After the rotation, vacuums are
applied to the membrane chambers to pick up the wafer from the pad surface. Once the
vacuum is settled, the wafer carrier slowly moves up to the Z clearance position to lift the
wafer. The spray and the drain valves are turned off.

After the wafer carrier reaches the Z clearance position for transportation, the step
calls the sub-step MoveWC to transport the wafer carrier to the specified finish position,
which is typically the top of the loading/cleaning station. However, user may select to move
to the other platen for a multi step polishing. The completion of the movement signals the
end of the polishing step. The step returns 'end'to a higher level program, the auto mode in
this case The auto mode terminates the step and calls the next step based on the recipe
loaded. Figure 3.19 shows the sequential functional diagram of StepPolish.

The Process-level control system has been designed throughout this chapter. The
major design parameters are shown in Figure 3.20 as a summary of the chapter.

103

FR/DP22255: StepPolish

+..................... P -22 5 5 =.......

PV222551(FlagStepPolish)= Start

222553.1 H Move WC and CA to the specified positions

+ PV222553.1: Move done

222553.2 - Spin WC and Ptn at a touch-down speed 222553.3 Supply slurry

PV222553.2: Speeds ramped up - PV222553.3: Slurry on

222553.4 Move WC to the z polish position 222553.5 Turn spray and drain valves on

PV222553.4: Z position acquired PV222553.5: Valves on

222553.6 Apply low pressures to AMA

PV222553.6: Pressurized

222553.7 Spin WC and Ptn at a polishing speed

PV222553.7: Speed ramped up

222553.9 Set timer for polishing

PV222553.9: Timer set

weep? No

Yes

222553.10 SweepWC

PV222553.10: Sweep on

'42

222553.8 Apply polishing pressures to AMA

- PV222553.8: Pressurized

PV222551 = 3

+ PV222551 =4

+ V251= 5

222553.11 Detect the end of the polishing

- PV222553.1 1: Detected

222553.12 Stop sweeping 222553.13 Turn slurr3

PV222553.12: Sweep off PV222553.13: Sl

Buff? No
Yes

222553.14 Perform sub step BuffWafer

PV222553.14: Buffed

222553.15 - Move WC to the nominal x polish position

PV222553.15: Move done

222553.16 Reduce WC and Ptn rotations to a lift up speed

PV222553.16: Speeds ramped down

222553.17 Apply vacuum to AMA to pick up wafer

- PV222553.17: Vacuum settled

222553.18 Move WC up to the z clearance position 222553.19 Turn spra

PV222553.18: Move done PV222553.19:

222553.20 Move WC to the finish position

PV222553.20: Move done

± PV222551(FlagStep Polish) = Finish

off

urry off

*V~j~si=io

~55t=l3

and drain valvesf

Valves off

Figure 3.19 Sequential Functional Diagram of StepPolish

104

DP2
Process-level Control System

DP21 DP22
Supportive Unit Operative Unit

DP211 DP212 DP213 DP221 DP222
Recipe Builder Equipment Database Set Up Mode Manual Mode Auto Mode

DP2111 DP2112 DP2113 DP2211 DP2212 DP2213
Recipe Classes Recipe File Recipe Editor Manual Mode Overhead User Interface Machine-level Interface

DP21121 DP21122 DP2221 DP2222 DP2223
Overhead Section Step Section Auto Mode Overhead Recipe Editor Link User Interface

DP2131 DP21132 DP21133 DP2224 DP2225
File I/0 Handler Editor I/O Handler Editor User Interface Machine-level Interface Process Steps

SI I E _ I I
DP211331 DP211332 DP211333 DP22251 DP22252 DP22253 DP22254

Editor Methods Step Editor Main Editor Sub-steps Step LoadReady StepCondition StepLoad

DP22255 DP22256 DP22257 DP22258
Step Polish StepClean StepUnload StepCondClean

Figure 3.20 Design Parameter Tree of Process-level Control System

105

Chapter 4. Servo Controller Design

The CMP (x machine has eight servo controllers. Four of them are position servos
with reference velocity input: wafer carrier X, wafer carrier Z, conditioner X, and wafer
aligner 0. The rest of them are velocity servos with reference acceleration input: wafer carrier
O, platen A o, platen B o, and conditioner o. A general guide for digital servo controller
design was given in the closed-loop controller design part in Chapter 2. In this chapter, we
go into the details of designing and implementing a digital servo for a specific drive. The
eight servo drives of the machine all have interesting characteristics, and the design of
mating controllers are equally demanding.

Showing the details of all of eight controllers will take simply be too much. Instead,
we will focus on a single controller to examine thoroughly the issue of designing and
implementing a digital controller. As the example, we select the wafer carrier X controller,
which has the interesting characteristic of the dual axes motion synchronization. The wafer
carrier is attached to the gantry frame and its transportation is achieved by the gantry
motion. The wafer carrier X control is a synonym to the gantry X control. Because of its
construction, the gantry has two ballscrew axes, one at each supporting column, each
powered by a brushless DC servo motor with gear reduction. The two axes need to be
perfectly synchronized, otherwise a great amount of torque unbalance and subsequent
distortion on the gantry structure will result. The positioning accuracy of the wafer carrier is
not guaranteed without a harmonious coordination of two axes.

The design of gantry X controller requires not only an accurate position servo but
also a harmonious synchronization between the two axes. The design first begins with
modeling the system. A controller is designed in the continuous domain based on the model.
The controller is then transferred to the digital domain with modifications and
improvements in the digital domain. Finally, the controller is implemented and its
performance is evaluated.

1. System Modeling

Figure 4.1 shows the simple schematic of the gantry X axes drive mechanism. The
output speed from each motor is reduce by the gearhead and transmitted to the gantry by
the ballscrew. The ball housing on each side of the gantry then converts the rotary motion of
the ballscrew to the linear motion of the gantry. We are interested in the system dynamics
viewed from the motor side, because it is the servo motor which we control. However
modeling first starts from the linear motion of the gantry and will be reduced to the
equivalent rotary motion observed by the motor.

For simplicity, we model the gantry as a second order mass-damper-spring system.
Although a higher order dynamics may present, the second order is good enough because
the gantry has a high mass (1100 Kg) and a high structural rigidity (welded stainless steel
tubular structure). The following differential equation describes the linear dynamics of the
gantry (in X direction).

mg5 + bg* + kgx+ F = F (1)

106

mg: gantry mass [Kg]
bg: viscous damping [N/(m/sec)]
kg: spring constant [N/m]
F: Coulomb friction [N]
F: force applied to the gantry [N]

bearing support

y

x

z

x

gantry

motor 2

motor 1

F-.' F5 x

T2, 02 Ti, 01

gear head

Figure 4.1 Schematic of Gantry X Axes Drive

We note that there exist two stages of energy transformation from the motor to the
gantry- the gearhead and the ballscrew. The gearhead has the reduction ratio of n: 1, where n
= 5. Thus the angular position ratio of the gearhead output shaft to the motor shaft is given
by the reciprocal of the reduction ratio.

dO2 _1

dO, n

The ballscrew convers the angular input to the linear output. The ratio of the output linear
position to the input rotary position is called a pitch () of the ballscrew.

dx

dO
2

107

.., gantry

.. ball housing gear head

Suppose T2 is the torque transmitted to the gearhead. T is then used to supply the
force F to the gantry and to overcome its own parasitic dynamics. We can form the
following integral equation from the energy conservation argument.

fT2 d02 = F dx+ f(J292 +b 29 2 +k 20 2 ±Tf2)d0 2

By differentiation both sides with respect to 02, we get:

dx
T2 = F -+(J2 2 + b2 2 + k202 ±T 1 2)dO2 (2)

= F +(J2 2 +b 2d2 +k 20 2 ±Tf)

J2, b2, 02, and T are the rotary dynamics of the gearhead and the ballscrew.
By similar argument, the output torque from the motor T, is used to supply T2 and

overcome its parasitic dynamics.

JT do1 = fT2 dO2 + J(JN +b9,j +k0, ±Tf1)d,

dO
T,=T2 2 +(J 1 +b,0+k0 1 ± T 1)

dO1 (3)

=T2 +(Jj1O+ b01 + kO1 T± 1)
n

Again, J,, b1, 0, and T are the rotary dynamics of the motor.
We insert the equation (1) to the equation (2) and then insert the resulting equation

to (3). Using the relationships 02 = (1/n)01 and x = 02 = (1/n)01 , we obtain the following
system equation viewed from the motor shaft.

T, =K u = Jj +b01 + k0± T (4)

J =J, + J2+ 2 2

n 2 n

b=b +b b
b ,+-j- +g

n n

k~1 k k
k = k, +-2-+ k92

n n

T F

n n

108

J, b, k, and T are the equivalent inertia, viscous damping, spring constant, and friction
torque, respectively, viewed from the motor side. K is the numerical torque constant of the
motor and Ud is the 16 bit integer output of the digital controller.

The numerical values for the system constants can be either calculated or measured.
The inertia jcan be computed from the known mass and inertias. The viscous damping b
and the friction torque T are usually unknown and need to be estimated by testing. The
spring constant k is also unknown, but we can assume it negligible because the ballscrew
drive is fairly rigid.

The 16 bit numerical output of a controller is first converted to the DAC voltage
with the voltage gain K,. The servo amplifier converts the command voltage to the armature
current with the current gain Ka. The motor finally transforms the electrical current to the
mechanical torque with the torque constant KT. The numerical torque constant is the
product of these three constants and is the direct gain from the 16 bit integer controller
output to the motor torque.

K = KT - Ka - K,

K: numerical torque constant [Nm]
Kr: torque constant [Nm/A]
Ka: armature current gain [A/V]
KV: DAC voltage gain [VI

The numerical torque constant can easily be computed from the three known constants.
The friction torque T is measured by increasing the output Ud from zero to the point

that the gantry starts to move. The output multiplied by the numerical torque constant gives
the estimation of the friction torque. The viscous damping b is obtained by giving a constant
Ud to the system and measuring the rotational speed at steady state. At steady state, the
acceleration is zero. Thus the governing equation reduces to:

K ud =b, +T

Once we measure the speed cw, we can compute b with other known quantities.

b Kud - T
C01I

To obtain the numerical values of the system constant, we assume that the load of
the gantry is equally distributed to the two axes and that each axis has the identical dynamics.
We assume the mass of each axis is the half of the gantry mass. Table 4.1 shows the
numerical values of the system both computed and measured.

Figure 4.2 shows the system dynamics modeled in block diagram for each axis. From
now on, the subscript 1 represents the axis 1; 2 represents the axis 2. In the next session, we
will see how to design a controller, which generates ud, the input to the plant, and how to fill
up the voids of the block diagram by crisscrossing inputs and outputs.

109

Table 4.1 Numerical Values of Gantry X Control System Constants (for each axis)

Effective Gantry Mass M9 Kg 0.5x1100
Screw/Gearhead Inertia 2 Kg-m2 4.07x104 (SC) + 5.Ox1OA (GH)
Motor Inertia J, Kg-m2 13.9x10-5

Effective Inertia i Kg-m2 5.348x104
Effective Viscous Damping b N-m/(rad/sec) 4.51x10-3

Effective Friction Torque Tf N-m 5.61 x 10-'
Numerical Torque Constant K N-m 2.23x 10 4

Tf

+ K1 co 1 X

Ud lid Js+b ' S

Tf2

+ - K2 * 1 2 X2

Ud lid *J2S+ S

Figure 4.2 Block Diagram Model of Each Gantry X Axis

2. Controller Design

Synchronized motion control of multiple axes has been an interesting problem in the
industry. Paper, sheet metal, textile, and other industries which manufacture products from a
flexible web of material have been benefited from the motion synchronization of multiple
axes. In a typical manufacturing process, a web of material is stretched over a multitude of
rollers with its position, velocity and tension controlled by them. In early days, the rollers
were connected by mechanical devices- shafts, gears, chains, etc., in part to transmit the

110

mechanical energy and in part to achieve the synchronization. With the advance of the
electronics and the advent of the microprocessors, the mechanical coupling was replaced by
electric motors and drives, individually placed at each roller. Since then, the motion
synchronization has been a challenging subject.

TfSlave

Xcmd d +1 1 X
+ Gpi(s) Gvi(s)

Ud d JIS s

(a) S ate c p
K2_

+ + + - K2 C02 02 X,

Gpi(s)] Gi1(s) - >
Ud ad 2s 2 S n

(b)Maser-lav Tooloy (he ottd lnerepesets he elaivestifnes fedase)

Xcmd hd + a tr)smi 01 x
Gei(s Go(s) w ef, >

(b)d sslave

-2

+ + - K2 2 02 x

Gpi(s) Gis d $

Figure 4.3 Block Diagram of Synchronization Topologies Applied to Gantry Twin Axes
with Velocity Minor and Position Major Control Loop

(a) Synchronized Master Reference Topology
(b) Master-Slave Topology (the dotted line wereisents the relative stiffness feedback)

In general, there are two synchronization techniques widely used in the industry:
Synchronized Master Reference (SMR) topology and Master-Slave topology[7]. SMR uses a

synchronized master command generator to create and transmit a motion command to
multiple slave axes simultaneously. Error tracking is left to each slave axis. In construction,
each axis will perfectly be synchronized with the reference, but the relative errors between
the axes are not addressed. SMR works best when the slave axes have an identical dynamics.

Master-Slave topology is typically used where minimizing relative errors between the
axes are important. A slow moving, some times open-loop controlled axis is used as a master
motion generator. A fast moving, high performance slave axis tracks the motion of the
master axis. The relative error between the master and the slave reduces significantly. But
there is a large amount of tracking error and a significant delay between the input command
and the slave output, because of the master who works as a 'middleman.'

111

An improvement from the Master-Slave topology is the relative-stiffness or the
virtual shaft topology[8], in which a virtual torque feedback is connected from a slave to the
master. The output from a slave controller, which is proportional to the torque being
generated at the slave axis, is fed to the master axis. If the slave axis generates more output
than the master, the master will feel the 'stiffness' of the slave axis and reduce its output. The
reduced master output is then fed to the slave as an input, which eventually reduces its
output. It is analogous for two axes being connected by a 'virtual' shaft with a certain
torsional stiffness. However, there still are delays for the master to feel and adjust its output,
for the output to be transmitted to the slave, and for the slave to adjust its output based on
the input transmitted.

Figure 4.3 shows the block diagram of each technique applied to the gantry axes with
a velocity minor and a position major control loop in place.

f I
K

Xcmd Oc d I- + + I K co[0 7 x,

n

02
X2

nf

Figure 4.4 Block Diagram of Adjustable Cross Compensation for Motion Synchronization
Applied to Gantry Twin Axes

Instead of choosing between the slave/slave or the master/slave topology, we
propose a new scheme: the Adjustable Cross Compensation for dual axes synchronization,
or the master/master topology. It is the combination of the command referencing in SMR
topology and the reciprocal output referencing in the extended Master-Slave topology. A
servo command is referenced by both axes, and at the same time the relative output between
two axes is amplified by the cross compensator (controller) and then directed to each axis
with adjustable gains. Figure 4.4 shows the block diagram of the Adjustable Cross
Compensation scheme applied to the gantry twin axes.

112

Gkiis) GLV ks) -
d Ud S

Adjustable N + C01 - C02

10 - Oa2

--- GVC(s) GPC(s)

T

+~ 2

Gp2(s Gv2(s)0
Ud + lid ,2Sk

S

The command reference 0 cmd is directed to the both axes, and each position and
velocity controllers do a routine job to drive itself toward the reference. The position and
the velocity outputs are also sampled by the compensator and the relative errors are fed to its
own position and velocity controllers. The output from the compensator is adjusted by the
gain cc (0 a 1) and added to the reference controller output. The sum is transmitted to
the plant. By varying the gain a, we can configure the system from the master/slave to the
master/master. If we set a = 1, all the compensation is directed to the axis 2 resulting in
Axis 1- Master/Axis 2- Slave configuration. If a = 0.5, the equal amount of compensation is
directed to each axis, resulting in Master/Master set up. If a = 0, the axis 2 becomes the
master.

The Adjustable Cross Compensation minimizes the relative error by the cross
compensation, an advantage over the SMR topology, and reduces the tracking delay by the
direct referencing of each output, an advantage over the Master/Slave topology. If the axis 1
experiences a disturbance, at the next sampling event the axis 2 will respond by reducing its
controller output while the axis 1 will increase its output to overcome the disturbance. The
cross compensation reduces the relative errors during the transient period or under a
disturbance, where command reference eventually drives the axes to the desired final state.

The cross compensation is ideal for the twin axes system where the dynamics are the
same. But the compensation technique still can do a good job where the dynamics are not
equal by adjusting the gain a. If one axis has a faster dynamics than the other, the gain is
increased for the axis so that the axis can respond more readily to the change. The other
axis, on the other hand, doesn't see much change because of the muted gain and simply
follows the command reference.

The Adjustable Cross Compensation technique can be extended for a system having
more than two axes. Two options may be possible: centralized compensator with a weighted
error; distributed compensators with a single error for each compensator. The centralized
compensator computes the compensation based on the weighted error. Suppose we have a
three axes system. The error can be given by the following formula.

e = a0, + b0 2 + c03

a, b, and c are arbitrary constants tunable based on the system dynamics. We may choose (1, -
0.5, -0.5) for example.

The distributed compensator scheme has a compensator for every possible axes pair.
For three axes, we need three compensators for three relative errors.

e,= 0,-2

e2 = 02 - 03
e3 = 03 - 01

For a multiple axes system, the number of the distributed compensator can grow quickly.
For a system with more than five or six axes, the central compensation with a weighted error
will be more suitable.

The performance target or specification needs to be set up before a controller can be
designed. Although many indices can be used, we employ the following three.

113

+ Rise time (or bandwidth): A measure of how quickly the system responds to a change.
The rise time is roughly proportional to the system bandwidth.

* Maximum overshoot: A percentage deviation of the motion output from the reference
input during the transient period. It can be conceived as a transient tracking error.

+ Steady state error: The deviation of the motion output from the reference. If the reference
is the command input, it is the tracking error. If the reference is the other axis, it is the
relative error.

Ideally, it is desirable to have an infinite bandwidth, so that the system has an almost
zero rise time. In reality, the drive (amplifier) quickly saturates and can not provide an
infinite output required for the infinite bandwidth. Instead of shooting a fixed number of
bandwidth for the gantry controller, we will design the controller which achieves the
maximum bandwidth without saturating the drives. The overshoot needs to be minimized as
small as possible. The overshoot is particularly problematic when the object is traveling to its
maximum and there exist a barrier at the end. Even though the command is less than the
travel maximum, if the overshoot is large enough, the object will collide to the barrier during
the transient period. We will minimize the overshoot through the input shaping and other
available techniques.

The steady state error needs to be zero. But in a real system, there can exist an offset.
In a digital servo system, the positioning accuracy is quantized by the resolution of the
encoder. The gantry system has the 4000 counts/rev quadrature counter for each axis. The

position quantum A is given by the following formula.

A = 9- Xn

b: angular position quantum, 2n/4000 rad

4: ballscrew pitch, 4.04x 10- m/rad
n: gear ratio, 5

A: position quantum computed, 1.27 pm

Thus, it is impossible to control the position with an accuracy less than A. In reality, we set

the target to control the position within a fewA. We set the following performance target for
the gantry controller design.

1. Maximum bandwidth without amplifier saturation
2. Maximum overshoot < 0.5 %

3. Steady state error (tracking and relative) < ±5 pm

4. Relative error during transient period < ±50 pm

We first design the controllers for the velocity minor loop and the position major
loop and move on to the design of the compensator. A filter G'f(s) can be placed on the
velocity feedback line. The velocity filter is especially useful in a sampled system, where the
sampling and the difference approximation of differentiation cause a noise amplification and
a velocity quantization. However for the design in the continuous domain, we set Ga(s) is 1
for each velocity feedback loop.

114

Although many different types of controllers can be designed for each loop, we
design proportional controllers for each loop. We set G,(s) = k, and G,(s) = k, for each axis.
The proportional controller on the velocity loop can be viewed as a type of differential
controller from the position loop. We will add an integrator on the position loop during the
digital implementation.

A velocity minor loop is typically designed to have a bandwidth 3 to 7 times greater
than that of the position major loop. We propose 90 rad/sec for the velocity loop and 30
rad/sec for the position loop. The crossover frequency of a loop transfer function is a good
approximation of the closed loop transfer function bandwidth. Thus we design for the
crossover frequencies.

The loop transfer function of the velocity minor loop GvLm(s) can be obtained from
the block diagram (Figure 4.4).

K
GvLTF(S) = k J

vJs +b

K,J, and b are know constants from Table 4.1. From the condition that I GvLT(orj) I at
Ocr = 90 rad/sec, we obtain kv = 218. The whole velocity loop can be reduced to a transfer
function Gvminor(s).

k K
Gvminor(s) =" b K

b b

The loop transfer function of the position major loop GpLTF(s) is given by the
following formula.

GpLTh(S) k- Gvminor(s)-1/s

With ocr = 30 rad/sec and I GpLTh(Ocri) = 1, we get kP = 34.2.
The output of the controller begins to saturate the amplifier at 32768 (2's). The

cascaded position and velocity controller (k,-k,) will saturate at approximately 5 rad step
input command, which corresponds to 4 mm of linear step input. Due to the inputshaping
the controller will not see this much of step height. With 1 msec of sampling interval, this
corresponds to 4 m/sec of input command slope. The machine will typically run with 0.07
m/sec and with an approx maximum 0.3 m/sec, which is at least one order of magnitude
less than the saturation velocity. The design is acceptable. We set

kvi = kv2 = k,
kP1 = kP2 = k,

The compensator dynamics is a linear superposition of each axis dynamics (01 - 02).

Thus it is assumed that the compensator behavior is similar to the axis dynamics. Thus
instead of designing whole new controllers for the compensator, we simply copy the axis
controllers with a scaling factor. We set

115

GP(s) = k, = 8-k,
GVC(s) = kv = I.kv

We choose/I = 1.5. With the selection of the adjustable gain cX = 0.5, the compensator has a
slightly less dynamics than each axis controller (w-i < 1). The overall gantry X controller
composed of each axis controller and the compensator is expected to meet the performance
target balancing the command reference tracking and the relative error compensation.

3. Digital Implementation

In old days, the controllers were implemented by hard wired electrical circuits.
Operational amplifiers and supporting RC networks often constructed first or second order
controllers and filters. However, nowadays, with the introduction of cheap microprocessors
and the advance of ASICs, the controllers are implemented in the digital domain as software
programs which run on powerful computers with appropriate peripherals (A/D, D/A
converter, etc.). Digital controllers provide more versatility and flexibility compared to the
analog controllers. But there are special concerns because of its discrete nature in dealing
with signals and representing them as quantized values in software. In this section, we
implement the digital gantry X controller designed in the continuous domain in the previous
section. We will take a look at a few issues involved in implementing the controller in the
discrete domain.

Without a tachometer feedback, the velocity of a motor can be computed by
differentiating the position signal. Any of the difference techniques mentioned in Chapter 2
can be used in the discrete domain to emulate the differentiation in the continuous domain.
Concerns are that the differentiation (difference) usually amplifies the imposed noise signal
and that the velocity is quantized. In the previous section, we saw the position quantum A of
the gantry X controller is 1.27 Itm. If we are sampling at 1 KHz, the velocity quantum X is
1.27 mm/sec (1.27 ptm/1msec). A faster sampling rate will increase the magnitude of X. The
velocity quantum is especially problematic, when we want to set a low reference velocity.
Suppose we give 1 mm/sec of reference velocity, the velocity loop controller output will
swing from zero to something as the computed velocity ripples between zero and 1.27
mm/sec.

A digital filter is required to reduce the noise and to reduce the effect of the velocity
quantum. We install a 3-point moving average filter on the velocity loop.

1
o(kh) =-{co(kh) + co[(k - 1)h] + c[(k - 2)h]}

3

Due to the averaging, the velocity quantum reduces to X/3 = 0.423 mm/sec. The averaging
filter will inherently cause a delay in signal (velocity) transmission. With the 3-point
averaging, an average delay of 1.5 sampling interval is expected. With 1 KHz sampling rate,
this corresponds to 1.5 msec. The decision concerning the amount of averaging is a trade off
between filtering (smoothness in signal) and delay (responsiveness to signal). Because it is

116

rare to have a low velocity referencing, 0.423 mm/sec of velocity quantum will be smooth
enough for the gantry X controller, and 1.5 msec of delay is expected to be tolerable.

Inputshaping was introduced in Chapter 2 as means of preventing sudden changes in
the input and the resulting controller and plant output, and providing a way to indirectly
control the velocity. We add an input shaper after the input command conversion (xa,, -+

0,,,d). Although many different input profiles are possible, we will use the ramp plus sinusoid
inputshaper for the gantry X controller.

An integrator is often added to the position loop to reduce the steady state error. But
the integrator often contributes to the large amount of overshoot during the transient
period, because it adds up the error signal and gives an inertial effect to the system behavior.
Thus it makes sense to design an integrator which engages during the steady state period
only, because its main functionality is to minimize the settling error. It is an example of
digital controller's flexibility, because you simply enable and disable the integrator code in
the program based on time. In analog controllers, you may have to install a relay to connect
and disconnect the integrator signal. We program the 'time differential integrator'so that it
engages after the inputshaper starts to give a constant command input, i.e. at the very end of
the sine part of the input form.

Another concern in the digital integrator is the windup. If there is an error signal for
a prolonged time because of a disturbance in the plant, the integrator simply adds up the
error and accumulates a large amount of controller output. Once the disturbance disappears,
the integrator output is released, often more than enough to bring the plant to the command
reference. As a result it will make large swings back and forth until it finally settles on the set
point. In the analog controllers, the controllers also saturate beyond certain points, thus the
amount of 'windup'is typically bound by the hardware limit. In software, there virtually is no
limit in the controller output. A four byte float variable can hold a value up to 3.40x 10" and
a four byte integer up to 2 billion, whatever their units are. Thus it is quite necessary to limit
the integrator output so that remains reasonable and does not saturate the amplifier. This
limitation scheme is called an 'anti-windup.'

We set ±0.07 rad-sec of anti-windup limit with 200000 of the integrator gain (k) for
the fast error correction purpose. Then the integrator output will be bound at 14000, which
is slightly less than the half of the maximum acceptable controller output (32768). The
integrator is designed not to overwhelm other controllers. The time differential anti-wound
integrator is solely designed for the steady state error correction.

Another practical concern for the digital integrator comes from the quantization in
the position signal. Suppose the command reference (x,,d) of 1 pim is delivered to the system.
Because of the position quantization (A = 1.27 [tm), the position feedback will report either
x = 0 pm or 1.27 pm. Even though the position can not settle on 1 pm, the integrator will
keep giving an output to the system by integrating the error signal.

J(Xcmd - x)dt

As a result, the output will swing between 0 and 1.27 pm and never settle on 1 pm with
frequency depending on the integrator gain. In worst case, it can lead to a vibration or an
instability when linked to an unknown or minor dynamics.

The singing of the integrator due to the position quantum can be prevented by
equally quantizing the command input. Also it is desirable to perform the integration at the

117

encoder counter level (integer), because the conversion to position (float) undermines the
precision of the variable. The position x is represented by the original encoder counter c,.
The command x,,,d is converted and rounded to a corresponding counter variable c, which
is an integer. The integrator does its job at the counter level.

J(ccrd -Cenc)dt

The output is multiplied by an appropriate gain to convert to [rad-sec] dimension.
As in the anti-windup of the integrator, the resulting output of the controller needs

to be limited. Otherwise the combination of the integrator output, the position and the
velocity loop controller output, and the compensator output can exceed the DAC output
limit (32768) and saturate the card and the mating drive. We add an output clipping with the
limit of ±32768 after the controller. Figure 4.5 shows the block diagram of the gantry X
controller with added features for the digital implementation.

intgrko T

Xcmd acd G s)] G1~)

K -1 X,
> Qs) + Gv(S/\n + + >

- G-c~) GPcs)

L+ _ - K2 C02
G,2(s) G,2(s) :- -

G,2K~s)

WupcIN pn

I
/

/

{t X2

C -

Figure 4.5 Block Diagram of Gantry X Controller Implemented in Discrete Domain

4. Performance Evaluation

Having written the program for the gantry X control with the parameters and the
methods designed from the sections 2 and 3, we now have to evaluate the performance of
the controller. The gantry typically runs at 70 mm/sec of reference velocity. The transient

118

response is expected to depend on how fast it is ramped up, whereas the steady state
response is expected to be independent of the reference velocity. We select two reference
velocity conditions: 50 mm/sec and 100 mm/sec. We will compare the transient responses
in two cases and verify that both the transient responses and the steady state responses
satisfy the performance target set up at the section 2.

120

100

80

0

0

60

40

20

0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time(sec)

Figure 4.6 Inputshaped Command and Each Axis Position Output
100 mm Step Command and 50 mm/sec Reference

100.005

0
100

99.995

99.99

3.55 3.6 3.65 3.7

time (sec)
3.75

of Gantry X Axes with
Velocity

Figure 4.7 Steady State Response of Gantry X Axes with
mm/sec Reference Velocit

100 mm Step Command and 50

119

.

GX1

...........................

....... i 7 i................ i

...................I............

position output
GXI, GX2.................... :

............... ?

Figure 4.6 shows both the inputshaped command to the controller and the each axis
position output at 100 mm step command with 50 mm/sec reference velocity. The ramp
plus sinusoid input profile is used. It is the ramp profile up to 50 mm (1 sec) and then the
sine profile follows. The input profiler reaches the steady state command of 100 mm after
approximately 2.6 sec ((1 + E/2)- 1 sec). We can see from the graph that the position outputs
follow the command profile well and that there virtually is no overshoot because of the
smooth sine profiling at the end of the transient period.

Figure 4.7 shows the exploded view of Figure 4.6 around t = 3.6 sec to examine the
steady state error. We can see that GX1 (axis 1) is at 100 mm and GX2 (axis 2) is off only by
1.27 pxm, which is the position quantum of the system.

Figure 4.6 also suggests that the relative error between GX1 and GX2 will be quite
small both in transition and steady state. Figure 4.8 displays the relative error between the
two axes. The relative error is bounded by 35 pm during transition, and once the integrator
is engaged after t = 2.6 sec the error is reduced significantly and settles within a few position
quanta. The error graph is biased on the positive side, which means the axis 1 almost always
lead the axis 2. To balance the dynamics, the compensator gain to the axis 1 may be
increased slightly, although acceptable as it is. The graph shows a little singing after t = 4.5
sec. But it is within two position quantum, and disappeared as time went by without creating
any vibration problem in the physical observation.

0.035

0.03

N 0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)

Figure 4.8 Relative Error between Two Axes of Gantry with 100 mm Step Command and
50 mm/sec Reference Velocity

Figure 4.9 shows the trajectory when 200 mm step command with 100 mm/sec
reference velocity is applied to the gantry X controller. Although the reference velocity is
increased by twofold, the output response is almost identical to the case of 50 mm/sec
reference velocity.

120

.. -.

....... -

.. -

..... V.

.....
.............

................... -

2 00- inputshaped
command

1 5 0 ... -

position output

1 0 0 -................ --..............................

GX3 4GX2

50

0 ~ ~~~~~~~~~~~ A___ C______ ______ ___ ___ _____

time (sec)

Figure 4.9 Inputshaped Command and Each Axis Position Output of Gantry X Axes with
200 mm Step Command and 100 mm/sec Reference Velocity

0A

109

108

107

106

105

104

103

102

101

100

99

I I -
.........1............ - i -..-......

.:................................

S.

inputshaped.
command

......
......

position output
GX1, GX2 ~

1.

.....
1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09

time (sec)

Figure 4.10 Exploded View of Command and Output Trajectory from Figure 4.9 (200 mm
Step Command and 100 mm/sec Reference Velocity)

Figure 4.10 is the exploded view of Figure 4.9 around xa = 105 mm. The position
outputs lag the command by about 3.5 mm. In time scale, the lagging is approximately 0.034
sec. Interestingly, the inverse of the time lag gives 1/0.034 = 29.4 rad/sec, which is very

121

0

M,
0

.5 . 3U V.5 I 1.5 2 2.5 3 7

1.1 1.11

close to the position major loop bandwidth of the gantry X controller. This can be an
indication that the modeling is very close to the real physical nature of the system and that
the controller design is reasonably performed.

102.85

0

0

GX2

102.7

..2.6..-....

. 0 2 .65 : 2

102.55

1.06 1.0605 1.061 1.0615 1.062 1.0625

time (sec)

1.063 1.0635

Figure 4.11 Exploded View of Gantry X Position Trajectory from Figure 4.10
(200 mm Step Command and 100 mm/sec Reference Velocity)

Figure 4.11 is again the exploded view of Figure 4.10 around t = 1.062 sec to see the
position outputs in detail. The graph reveals that the axis 1 is leading the axis 2 during the
transient period by approximately 20 ptm and that this phenomenon seems to be well
sustained throughout the period. The relative error of 20 pim is within the performance
target.

0

0

0.03 5

0.03

0.025

0.02

0.015

0.01

0.005

0

-0.005

4 1

..

2 0.5 125 3 35 4 .45 5

time (sec)

Figure 4.12 Relative Error between Two Axes of the Gantry with 200 mm Step Command
and 100 mm/sec Reference Velocity

122

7

710

7-,
1-1

7

.............
28

The time evolution of the relative error is shown in Figure 4.12. The overall trend is
the same as in the 50 mm/sec reference velocity case. The error seems to be a bit increased
but still bound by 0.035 mm and falls within a few position quanta once the integrator error
correction loop is engaged after t = 2.6 sec. Hence we verify again that the relative error
between the two gantry axes satisfies the performance target (±50 pm for transient period,
±5 pm at steady state)

The gantry X controller has been designed in this chapter through system modeling,
individual axis controller design, and adjustable cross compensator design for the twin axes
synchronization. The controller is implemented in the discrete domain with augmentative
digital techniques for the performance enhancement. From the several trajectory graphs
presented in this section, we confirm that the controller meets the performance targets-
Maximum bandwidth, Virtually zero overshoot, Steady state error less than ±5 pm, and
Transitional relative error less than ±50 pm.

The design of other position servos can be done following the similar fashion as in
the gantry X controller design, except the adjustable cross compensator. Table 4.2 lists a few
relevant numerical values for the position servo controllers. GX represents the gantry X, GZ
the gantry Z, CX the conditioner X, and WA the wafer aligner angle.

Table 4.2 Numerical Values of Position Servo Controllers

PAineter(- 'ab U' GX GZ .X %W
Inertia(/) K gm 2 5.348x10 4 3.13x10 3 1.17x10 4 5.20x10-6

Viscous Damping(b) N-m/(rad/sec) 4.51x 10- 3.98x 103 8.92x1i04 2.63x1i04
Friction Torque(T) N-m 5.61x101 6.10x10' 1.74x101 2.44x10-2
Torque Constant(K) N-m 2.23x104 2.39x10 4 1.20x104 9.77x10-6
Position Gain(k) 34.2 15.5 44.6 81.3

218 981 116.7 152.1

123

Chapter 5. System Integration

All the components necessary to constitute the CMP a machine control system have
been designed in the previous chapters- the Machine-level control system in Chapter 2, the
Process-level control system in Chapter 3, and servo controllers in Chapter 4. With all the
constituents designed, we are ready to implement them. This chapter deals with the system
integration and the embodiment of the control system. We will first take a look at how the
system is wired up, which is the physical foundation of the control system. Then we will see
a few snapshots of the machine with the control system in action.

1. Hardware Interface

In the CMP a machine, all the required powers are transmitted to the machine by
the means of electricity. Every information in the control system is communicated as a form
of electrical signal. Thus in the viewpoint of the control system development, hardware
interfacing means electrical wiring of the system components. Power wiring is often
performed first to draw the electrical energy and distribute it to the individual components.
Signal (logic) wiring then follows to connect each component to the control system.

The control system has a separate cabinet apart from the machine to house ADwin,
servo amplifiers, DC supplies, filters, switch panels, etc. The operator console (touch screen)
and the host PC are located outside the cabinet, close to the machine.

The cabinet has a contact box which houses heavy duty contactors to relay the AC
input to the cabinet and subsequently to the machine. The contactors are controlled by the
master on and off switches in the front panel of the cabinet, and also by the emergency off
(EMO) switches located on the machine.

The electrical power relayed by the contact box is distributed to each components at
the AC switch panel located at the lower front of the cabinet. The panel has individual
circuit breakers for each component (amplifier, pump, etc.). The circuit breaker protects the
corresponding component from the overloading and also works as a switch to turn on and
off it individually.

From the AC switch panel, the AC power is delivered to motor amplifiers, pumps,
DC supplies, etc. The amplifiers generate DC bus voltages to drive the brushless DC servo
motors. All the amplifiers are pulse-width modulation (PWM) type drives. The DC voltages
generate from DC supplies are fed to pressure regulators, valves, indicators, sensors, filters,
etc. which run at DC voltages.

All these components are connected to the ADwin via a network of signal wiring.
The host PC and the ADwin exchange information by serial communication. Figure 5.1
shows the general overview of the control system interface.

One concern in the wiring of a measurement and control system is to provide a
strong ground immune to any noise or fluctuation. Because the noise from the PWM drives
is particularly problematic, the good grounding system is a must. The cabinet has a ground
bus made of " x " copper bar. The ground bus is connected to the earth line of the AC
input on one end, and various components reference the bus on the other end. As shown in
Figure 5.1, the signal ground of ADwin and the DC ground of the DC supplies are separate
from the AC ground. But they are connected to the same ground bus at the end. The
separation of the ground and connection at the very front of a sink (earth) is required for

124

noise immunity. Any noise on the AC ground line will find a low impedance path to the
eatrh instead of propagating through the signal ground line. The Ac ground and the frame
ground are virtually the same.

Machine/Control Cabinet:
Host PC serial communication ADwin

CPUI CPU2 SIG GND

encoder feedback sensor signal Analog Filter

torque command indication command

on/off command
flow conmad

pressure comm and,

Pressure Valves/ Indicators Sensors

FilerRegulators Switches

5/15/24 VDC
DC GND

power-
Motors/ Servo Pumps DC
Encoders lgcAmplifiersl Supplies

ACJ 110/220 V

Frame GND

Figure 5.1 Overview of CMP a Machine Control System Interface

The contact box, the on/off switch panel, the EMO switches, and the AC switch
panel forms the electrical power distribution system. Figure 5.2 shows the schematic of the
distribution system. The first three also composes the safety system, which disconnects the
electrical power to the load components once any of the EMO switch is pushed. Note one
110 VAC line of 20 A rate bypasses the contact box. This line is used as an uninterruptible
power source for the logic components of the system- the host PC and the ADwin.

Machine tools typically have a single 480 VAC of power line and have various types
of transformers to step down to whatever voltages desired. However, the machine requires 3
phase 208 VAC to power up the platen amplifiers and various types of single phase 110/220
VAC lines are readily available at the lab where the machine is installed. Based on the
circumstance, the contact box is designed to accommodate various types of AC line inputs
and distribute them accordingly.

The contact box accepts four line inputs- one line of 3 phase 208 VAC, 100 A; one
line of 1 phase 220 VAC, 20 A; two lines of 1 phase 110 VAC, 30 A. 208 VAC is used to
power up the two platen amplifiers. Each can consume up to 50 A. Three amplifiers for the
gantry motion, GX1 (gantry X1), GX2 (gantry X2) and GZ (gantry Z), can accept either 110
VAC or 220 VAC. Because they can consume a great amount of current, it is preferable to
connect them to the 220 VAC line (higher voltage can transmit the same amount of power

125

with lower current). One of the 110 VAC lines is used by the rest of amplifiers- CX

(conditioner X), CR (conditioner rotation), WR(wafer carrier rotation) and WA (wafer
aligner). The other 110 VAC line supplies power to the rest of control system components-
slurry pumps, DC supplies, fans, etc.

LINE

208 VAC contact box
3 phase 100 A

A

B

C

N

G

220 VAC

H lphase 20 A

N

G

110 VAC

H phase 30 A

N

G

110 VAC

H lphase 30 A

110 VAC
I lphase 20 A

Hi I

switch
panel

ON OFF EMO LOAD

AC switch panel

4-L

____L3

24 VACH GX1

4-- -H GZ
N

H C

N

PAwn

HWA

--(D H

N

Figure 5.2 Schematic of Electrical Power Distribution of CMP a Machine Control System

Active lines are connected to a set of relay contacts, which are powered by the
internally transformed 24 VAC and controlled by the On/Off/EMO switches. Figure 5.2
also shows how ON and OFF switches activate and deactivate the solenoids which in turn
connect and disconnect the contact relays. Pressing ON switch (normally open) closes the
24 VAC circuit and the solenoids in turn close the contacts supplying power to the AC
switch panel. Pressing either OFF switch or EMO switch (both normally closed) opens'the
circuit and solenoids breaks the contact cutting the power supply to the AC switch panel. In
the actual system, more latching relays are involved in conjunction with the switches. But the
above schematic is good enough to give an idea how the switch panel works.

Passive (neutral, ground) lines simply bypass the contact box (electrically) and shows
up at the AC switch panel. The single phase neutral lines are tied together, because they are
supposed to have the same potential. The neutral line is then distributed again at the switch
panel. The ground lines are also tied together at the internal ground bar, which is connected
to the ground bus of the control cabinet via a heavy duty wire (6 AWG). The ground lines
are connected to the earth at the line side.

126

GJ - W

H
X7

logicl

power

motor

shield
ferrite toroid 7 to 10 turn

5 VDC A

DC GND B

hall A C
hail B

halliC
ENC A g

ENC /A

ENC B

ENC /B H

ENC I N
ENC /I line filter

torque command

enable/disable logic

servo amplifier

Figure 5.3 Schematic of Brushless DC Motor/Encoder/Amplifier Wiring

The electricity is then delivered to each load component from the AC switch panel.
Among them, motor drives consume most of the electrical energy. The servo amplifier then
generates a DC bus voltage for its mating motor and DC voltages to power up its own
circuit and the mating encoder. The motor/encoder/amplifier wiring is a mix of power and
logic wiring. Figure 5.3 shows the example of a brushless DC servo motor wiring.

A line filter is placed between the AC switch panel and the amplifier to prevent the
PWM noise to propagate through the power line. Unfiltered, the high energy noise will affect
other components, such as DC supplies, connected via the power line. The filter dumps the
attenuated noise signal to its ground line. The ground line is connected to the ground bus,
which is also connected to the frame grounds of the motor and the amplifier.

A PWM amplifier creates a DC bus voltage to drive the mating brushless DC servo
motor. The bus voltage ranges from 40 to 350 VDC. The amplifier drives the motor by
sending 3 phases of pulse train usually at 20 KHz. The height of a pulse is its DC bus
voltage. The width of a pulse is determined by the input torque command. The higher is the
command, the larger is the width. The pulse-width modulation refers to this change in the
pulse width to achieve the change in the torque output. The inductance of the motor coil
then converts the DC voltage train to the armature current, which in turn generates the
output torque in the presence of the magnetic field. For more detail about how brushless
DC motors and PWM drives work, refer to Moreton[9].

127

round bus

H
N:

AC switch panel

S 2 13 1 7 9 2 5

ADwin counter

[[I hr

ENC A _

ENC B --

ENC filter

ADwin DAC T>

limit sensor

sensing
circuit

'1 1

The switching from the DC bus voltage to zero typically occurs within 50 nsec with
20 KHz of switching frequency. This switching can generate electromagnetic interference
(EMI) noise with several mega hertz bandwidth. In addition to the shielding and grounding
of wires to protect their signal from the attack of EMI noise, ferrite cores are often placed
on the motor power line close to the amplifier. The power leads are turned 7 to 10 times
along the toroid to create a small inductance. This inductance in conjunction with the motor
lead resistance forms a type of LR filter, which is quite effective in suppressing the EMI
noise.

Encoders are usually powered up by the onboard 5 VDC supply of amplifiers. The
encoder then sends the hall effect signals for commutation, and the square wave encoder
signals to the amplifier and to the counter board. Hall effect signals are square waves which
are in phase with the rotor position. Based on the hall effect sequence (HA-HB-HC, HA-
HC-HB, etc.), the amplifier decides which phase (A, B or C) of the armature coil needs to be
energized. The amplifier energizes (commutates) each phase in synchronization with the hall
effect feedback. Some amplifiers use the encoder signal to interpolate the hall effect signal
and hence to perform a finer commutation. With the hall effect signal only, there are six
commutation steps per one magnet pole pair in a motor. Each step is separated by 600. With
the encoder feedback, the amplifier can refine the step resolution, depending on the encoder
resolution. Typical motors/encoders have four magnet pole pairs and 4000 counts/rev,
which allows the amplifier to refine the commutation step resolution down to 0.36*.
Compared to the six-step commutation, the refined one is called the 'sinusoidal
commutation.'

Encoders give a complimentary signal (/A) to each (A) of its channel outputs. When
the channel A is high, the channel /A is low, and vice versa. The complimentary signal is
often used to filter out the noise signal imposed on the encoder signal. If A and /A has the
same routing, they are supposed to have picked up the same amount of noise. By subtracting
/A from A to obtain the difference between the two, we can eliminate the noise. Differential
operational amplifiers with appropriate resistor and transistor networks are used for this
purpose. In the control system wiring, the encoder filter built from the differential op amps
is placed between the amplifier and the ADwin counter card. It accepts differential inputs
and sends a single ended output for each channel.

Torque command is typically an analog voltage signal ranging from -10 V to 10 V.
The ADwin DAC card is used to send the torque commands to the amplifiers. Servo
amplifiers typically have an enable/disable logic input, which removes power stages from the
drives. It may require logic high or low to disable the amplifier depending on the
configuration. The enable line is typically connected to a limit sensor or a limit switch, which
sends the appropriate active output once triggered.

Wiring other components is relatively easy and the whole control cabinet can be
wired up without any great difficulty. Figure 5.4 shows the picture of the control cabinet
completely assembled and wired. The AC power lines are from the lab ceiling and directed
to the back side of the cabinet. Although not shown in the picture, the contact box is located
on the back side. The contact box relays the AC power to the AC switch panel located at the
lower front portion of the cabinet. The AC power is distributed to amplifiers and DC
supplies located on the back panel The front panel houses the DC distribution panel which
is the terminal of various DC supplies to ease the connection to the various DC
components.

128

Contact Box
on the back side of the cabinet

Encoder Filter

DC Distribution Panel

& Servo Amplifiers & DC Supplies
on the Back Panel

AC Switch Panel

Figure 5.4 Photograph of Control Cabinet Assembled & Wired

The encoder filter is housed inside an aluminum alloy box and mounted on the 19"
rack on top of the DC panel. Figure 5.5 shows the detailed view of the cabinet top portion,
where the switch panel, the ADwin and some of the servo amplifiers are located. The switch
panel has the ON switch and the OFF switch, which turns on or off the whole machine.
Each switch has a light bulb inside as an status indicator. The ADwin is also mounted on the
19" rack and acts as a brain and nerve of the Machine-level control system. Every signal wire
is linked to the ADwin. Processed outputs are sent to the machine via the output module of
the ADwin, and processed signals are sent to the PC via the serial link.

The servo amplifiers are shown in detail in Figure 5.6. Seven (one hidden) amplifiers
are located on the top portion of the back panel. The two heavy amplifiers for two platens
are located at the bottom portion of the back panel, because of their weight. The figure
shows the line filters placed on the AC lines. Toroids can be found along the power lines.
Amplifiers typically have D25-Sub connectors for the logic interface. Mating D-Sub
connectors and cables were fabricated to connect to the encoders and the ADwin.

Having wired up the control cabinet, we established the physical layer of the
equipment control system. Now we are ready to implement the control system.

129

Figure 5.5 Photograph of Switch Panel & ADwin

Figure 5.6 Photograph of Servo Amplifiers

130

2. System Implementation

Once the completion of wiring, the software program for each level of the control
system has been written and tested. The Machine-level control system software is complete
and fully functional. However, a few minor upgrades, such as incorporating more process
measurement sensors, can be expected. Due to the time constraint, the Process-level
software is still under development. The manual mode is in place. Thus moving the
individual machine components and processing wafers in a primitive fashion are possible.
To ease testing, a semiauto mode has been developed. It is based on the manual mode, but
has a link to Step Polish. It has the polish step editor. After a user edits its parameter and
click OK button, it loads the parameter to the semiauto mode buffer. Once the click of
START button, it performs the sequential stages of StepPolish.

It is an automation in a very limited scale. Other steps, such as loading, conditioning,
etc., are not included. And the step parameters are volatile. It does not have a capability to
save in them as a file. With the design in Chapter 3, the development of recipe editor and
auto mode is still in process.

Figure 5.7 Photograph of CMP cc Machine, oblique view

Figure 5.7 shows a photograph of the machine. The control cabinet is placed to a
side of the machine with its front facing the machine. The picture shows one of the
emergency off (EMO) switch located at the corner of the machine. The machine has a signal
tower (Red/Yellow/Green/Blue) to indicate its status. Green means 'running,' yellow
'initializing' or 'warning,' red 'error,'and blue indicates the 'ready'status in auto mode. The
gantry, which houses the wafer carrier, is shown with its X motor and ballscrew drive
mechanism. The conditioner is moved next to the gantry.

131

Figure 5.8 Photograph of CMP a Machine, front view

Figure 5.8 is another picture of the machine, viewed from a different angle. The
operator console with the touch screen and the keyboard is located at the left side of the
machine. It shows the gantry Z axis motor located on the top of the gantry, and its
ballscrew. The two platens and the loading/unloading station are also visible.

Figure 5.9 Semiauto Mode User Interface

132

The semiauto user interface is developed based on the manual mode interface design
in Chapter 2, with a slight modification to accommodate features specific to the semiauto
mode. Figure 5.9 shows the image of the semiautomode user interface taken while the
machine is running.

All the servo command boxes and the servo parameter displays are located inside
Motion Control frame. Users can type in position and velocity commands, and also can
choose the rotational direction. Motion commands are delivered to the Machine-level by
clicking RUN button. Clicking STOP button triggers the stop routine in the Machine-level,
which resets the servo commands and removes all the controller outputs.

All the open-loop controls- pressure, slurry, DI water and drain, are located inside
the Open-loop Control tab. Here users can type in or select commands. Open-loop controls
have their own update and stop buttons independent from the function buttons.

Process Mode frame provides a way for a user to select among Transport, Polish and
LUCS, which adjusts the wafer carrier Z axis travel limit. Conditioning can also be selected
from the Process Mode which activates the conditioner pneumatic pressure control.

Machine parameters, other than servo control parameters, can be seen from
Parameter Display. It displays the reflectance sensor reading, the strain gauge reading and the
outputs of a few controllers. Users can watch the controller outputs to see if the amplifiers
are getting saturated.

Figure 5.10 StepPolish Editor and Number Pad

Status window shows the status of the machine (Running, Initializing, Stopped, etc.).
The status color is synchronized with the signal tower lights of the machine. The error status

133

shows if an error is set. Once an error is triggered, it will change to red and shows an error
message box. Depending on the type of the error, the user will have an option to restore the
machine operation by clicking Error Reset button or simply will have to terminate the
operation.

The screen components mentioned so far constitutes the manual mode user
interface. Wafer Monitoring link and Step Polish link are the additions to the manual mode
to upgrade to the semiauto mode. Clicking START button in Wafer Monitoring link initiates
the wafer reflectance measurement and signal processing routine in the second processor of
the ADwin. The routine calculates the reflectance vs. the wafer radius, zone averages, mean
and standard deviation of the reflectance signal, etc, and sends the information to the host
PC. Clicking VIEW button displays the wafer monitoring window which shows the various
information obtained from the routine.

Step Polish link has EDIT and START button. Clicking EDIT button will display
the polish parameter editor shown in Figure 5.10. There the user enters polishing
parameters- platen selection, slurry flow rate, pressure, velocity, sweeping selection, etc. The
figure also shows the number pad, which is automatically displayed once the user touches a
command input field. Clicking OK of the number pad updates the content of the command
input field with the number pad text. Clicking Cancel simply unloads the number pad from
the screen without changing the current value of the command input field.

Clicking OK button of the polish editor loads all the polish data input to the
semiauto mode process parameter buffer. Clicking Cancel unloads the editor without
changing the content of the buffer. Clicking START button initiates the polishing step
(changes the operation mode from manual to semiauto). It first disables all the user interface
controls except STOP and EXIT button. Based on the preprogrammed sequential
algorithm, the polishing step sends the process commands from the parameter buffer step
by step. The user can always abort the polishing step by clicking STOP button. Clicking it
terminates the polishing step and restores the manual mode. At the end of polishing, the
step terminates itself and returns the process control to the manual mode.

Using the interface introduced so far, a user can drive the machine the way he or she
wants to process wafers and to support wafer processing. Figure 5.11 shows the picture of
the machine, performing pad conditioning prior to wafer polishing. The conditioner is
brought to the top of the platen, and both of them start to rotate. The dispense tube starts to
flush DI water to lubricate the interface and carry the debris away. The user enters the
conditioner pressure to bring it down to the pad surface. Then the conditioner can be
moved radially either constantly or intermittently zone by zone to cover up the whole pad
surface.

Figure 5.12 shows the machine engaged in polishing. The wafer is first loaded to the
wafer carrier and held by vacuum. The wafer carrier is brought to the nominal polishing
position, and starts to hunt the Z polishing position by measuring the change in the strain
gauge reading. Once the Z position is settled, the wafer carrier and the platen starts to spin at
low speed, slurry is being dispensed, the wafer carrier releases the vacuum and apply low
positive pressures to the membrane. Once the low pressure is settled, the rotational speeds
are ramped up to the polishing speeds and at the same time the membrane pressures are
increased to the polishing pressure. The polishing is fully engaged and the timer starts to
tick. Sweeping the wafer carrier radially may optionally be performed.

At the end of polishing, the wafer carrier and the platen are slowed down to the pick
up speed, and slurry dispensing is stopped. The pressures are released and vacuum is applied
to the membranes to hold the wafer. Once the vacuum settles the wafer carrier picks up the

134

wafer by moving upward to the point it can clear the transportation clearance. Then the
wafer carrier is transported to the specified finish position.

Figure 5.11 Photograph of CMP a Machine in Conditioning

Figure 5.12 Photograph of CMP a Machine in Polishing

135

Figure 5.13 Photograph of CMP a Machine in Platen Cleaning

Polishing leaves lots of slurry and wear particles from the wafer on top of the platen.
Platen usually needs to be cleaned after polishing, unless a reasonable amount of buffing has
been done. During platen cleaning, DI water is dispensed to the center of the platen, which
spins at a very high speed (- 100 rpm). The centrifugal flow of DI water will clean up the
pad surface. With approximately 2000 ml/min of flow rate, a platen can be cleaned within 20
seconds. Figure 5.13 show the platen being cleaned.

This chapter dealt with the wiring of the individual control system components to
establish the hardware interface and the programming and implementation of the control
system. As we have seen from the photographs of the machine in action. The system is fully
integrated and successfully implemented.

136

Chapter 6. Conclusion

The CMP Yx machine control system has been developed successfully using the
framework of Axiomatic Design. Although the development is not fully completed, the
machine is functional to be able to process wafers in manual mode. A limited scale of
automation is also in place.

The wiring of the control system components has been completed, ensuring the
safety of the machine operation and minimizing the effect of noise. The interface to the
ADwin is well established. It can detect every signal correctly and send outputs promptly.
Signal processing is robust, and open-loop controllers and sensors work precisely due to the
good calibration. The design and implementation of closed-loop controllers has been
successful. All the servo controllers meet the design specification and ensure the precision
and effectiveness of the machine operation.

The development on the host PC side also has been satisfactory. It can load, start,
stop and unload the Machine-level software. The Process-level control system provides
access to every control elements of the machine to the user both for the maintenance and
the operation purpose. It acts as a supervisor of the Machine-level control system and as a
messenger to the user. It has provided a solid basis for a further development in process
control, including the fully automated wafer processing.

Axiomatic Design has been very effective in structuring the overall control system.
Starting from the highest level functional requirements, appropriate design parameters were
selected, and based on the selected design parameters, lower level functional requirements
were established enabling subsequent decomposition. Higher level design parameters are
identified with the higher level systems, such as the Machine-level control system and the
Process-level control system. Subsequent decompositions specify the necessary subsystems,
such as the recipe editor and the user interface. The Axiomatic decomposition is the very
process to structure the whole control system, which simply starts from the root at the
mission statement.

Axiomatic Design has been effective not only in designing the system at higher level
but also in designing a small constituent. For example, Axiomatic Design specifies the
general structure of closed-loop controllers.

Axiomatic Design has also been used to design the sequence of a software program
and the sequential algorithm of a recipe step for automatic wafer processing. The
initialization, the event and the termination procedure sequences of the Machine-level
software are clearly enumerated by Axiomatic Design. The sequential stages of the polish
step are explicitly stated in the design equation. The sequential functional diagram can easily
be constructed from the design equation. The above example shows that Axiomatic Design
can be used to design sequential procedures of a software or a control program as well as the
structure of them. Axiomatic Design can expand its horizon not only in space (structure) but
also in time (sequence).

A good software design often involves grouping a certain class of functionalities and
forming an instance (object) to substantiate its associated functionalities. Related details are
hidden to the viewer (abstraction). Different levels of functionalities are conceived and the
objects are formed with in a level. The mess of functionalities, specifications, methods and
technique are transformed to a building of objects, with its floor identified by associated
functionalities. A hierarchically well structured software program is easy to visualize,
understand and maintain.

137

Axiomatic Design is by nature hierarchical. A software design based on Axiomatic
decomposition identifies its layers by stating functional requirements. The layers are realized
by forming their classes (templates of objects), which are design parameters to be sought.
The layer based on its functionality is substantiated at run time by the objects created from
the classes. Axiomatic decomposition of software innately leads to the hierarchical
structuring and abstraction of details, producing classes and objects to represent each layer
along the way, which eventually guides to the good software design.

Although Axiomatic Design is used to develop a specific machine control system in
this work, the decompositions and methodologies presented so far can universally be applied
to any type of machine control system. Higher level decompositions, such as the Machine-
level control system, the Process-level control system and the recipe editor, are not intrinsic
to a CMP machine. The same structure can be applied to develop control systems for other
types of machines, with possible modifications in lower level decompositions.

The design of a sequential functional diagram based on Axiomatic decomposition is
a general methodology applicable to any sequential control process design. Any software
sequence can also be designed by Axiomatic design. The structure of the recipe editor
proposed in Chapter 3 can be used to design an editor for any different type of wafer
processing machine.

A universal template of the machine control system has been designed in this thesis,
based on Axiomatic Design.

138

Chapter 7. Future Work

Even though the machine is functional and simple wafer polishing tests can be
performed on it, there still are many upgrades required. The auto mode development has the
highest priority. The designs of the auto mode and the accompanying recipe editor are
already completed in Chapter 3. Based on the design, small working models will be
developed first to see if they can perform all the required functionalities. Then the full scale
systems will be developed with possible modifications in design parameter selection
depending on the results of the model testing.

The existing semiauto mode also needs minor upgrades such as adding more
measurement sensors for process control and improving force and position control of wafer
carrier polishing interface.

Advanced process handling is also an issue in the Process-level. End point detection
based on the reflection and the motor current sensing needs to be implemented. Active
adjustment of wafer carrier membrane pressure from the reflectance sensing feedback is an
interesting in-situ process control issue. The process control software also should be able to
adjust its parameters from the measurement of processed wafers (ex-situ). Prescanning of a
wafer surface before polishing will also allow to adjust the process parameters (pre-situ).
Ultimately, the process control software will have a database to store the previous and
current measurement results and a decision model to direct when and how the parameters
are adjusted. We may call it an intelligent process control system.

Higher level system integration is also an interesting subject. In an actual production
environment, the machine hardly works as a stand alone device. It is usually grouped with
several identical equipments and has either shared or its own wafer transfer robot, cleaning
station, measurement station, etc. The grouping often result in cluster or bay type
configuration. The equipment control system now has to collaborate with others. We may
call it an operation-level control system. It may reside in the same hardware as in the
machine host PC or in a different central computer.

Eventually there is a fab or factory level control system which supervise each
equipment group and schedules their operation. How to integrate an individual machine
control system to a group control system and then to a higher level management system is a
subject worth to investigate. It will invoke Axiomatic Design to decompose the whole
system, which will simply cite the CMP cx machine control system as one of its lower level
design parameters.

139

Reference

1. The National Technology Roadmap for Semiconductors, Semiconductor Industry
Association(SIA), San Jose, CA, 1997.

2. Semiconductor International, Des Plaines, IL, November 1998.

3. N. P. Suh, The Principles of Design, Oxford University Press, New York, NY, 1990,
ISBN 019-504346-6.

4. N. P. Suh, Axiomatic Design: Advances and Applications, to be published by Oxford
University Press, New York, NY, 2000.

5. ADbasic, Jiger Computergesteuerte Mefltechnik GmbH, Rheinstrafle 4, 64653 Lorsch,
Deutschland, August 1998

6. SEMI E95-0200: Specification for Human Interface for Semiconductor Manufacturing
Equipment, Semiconductor Equipment and Materials International(SEMI), San Jose, CA,
2000

7. Kevin Payette, "The Virtual Shaft Control Algorithm for Synchronized Motion Control",
Proc. of the American Control Conference, 1998, vol. 5, pp. 3008-3012.

8. R. D. Lorenz and P. B. Schmidt, "Synchronized Motion Control for Process
Automation", IEEE-IAS Conf. Rec. 1989, pp. 1693-1698.

9. Peter Moreton, "Industrial Brushless Servomotors", Newnes, Oxford, England, 2000

10. Gustaf Olsson, "Computer Systems for Automation and Control", Prentice Hall,
Englewood Cliffs, NJ, 1992, ISBN 013-457581-4.

11. Katsuhiko Ogata, "Modern Control Engineering", Prentice Hall, Englewood Cliffs, NJ,
1990, ISBN 013-598731-8

12. ADwin-Pro: System and Hardware Manual, Jiger Computergesteuerte Mefltechnik
GmbH, Rheinstrafle 4, 64653 Lorsch, Deutschland, September 1998

140

