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Abstract: Oscillating diurnal rhythms of gene transcription, metabolic activity and behavior are 21 

found in all three domains of life.  Diel cycles in naturally occurring heterotrophic bacteria and 22 

archaea however, have rarely been observed. Here we report time-resolved whole genome 23 

transcriptome profiles of multiple, naturally occurring oceanic bacterial populations sampled in 24 

situ over three days.	  As anticipated, the cyanobacterial transcriptome exhibited pronounced diel 25 

periodicity.   Unexpectedly however, several different heterotrophic bacterioplankton groups also 26 

displayed diel cycling in many of their gene transcripts. Furthermore, diel oscillations in 27 

different heterotrophic bacterial groups suggested population-specific timing of peak transcript 28 

expression in a variety of metabolic gene suites. These staggered multispecies waves of diel gene 29 

transcription may influence both the tempo and mode of matter and energy transformation in the 30 

sea. 31 

 32 

  33 
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Main Text:  34 

The coordination of biological activities into daily periodic cycles is a common feature of 35 

eukaryotes and is widespread among plants, fungi, and animals, including man (1). Among 36 

single celled non-eukaryotic microbes, diel cycles have been well documented in cyanobacterial 37 

isolates (2-4), one halophilic archaeon (5), and in bacterial symbionts of fish and squid (6, 7).  38 

Some evidence for diel cycling in microbial plankton has also been suggested on the basis of 39 

bulk community amino acid incorporation, viral production, or metabolite consumption (8-10).  40 

The existence of regular diel oscillations in free-living heterotrophic bacterial species however, 41 

has rarely been assessed.   42 

Microbial community RNA sequencing techniques now allow simultaneous 43 

determination of whole genome transcriptome profiles among multiple co-occurring species (11, 44 

12), enabling high frequency, time resolved analyses of microbial community dynamics (12, 45 

13).  To better understand temporal transcriptional dynamics in oligotrophic bacterioplankton 46 

communities, we conducted a high-resolution multi-day time series of bacterioplankton sampled 47 

from the North Pacific Subtropical Gyre (14). 48 

To facilitate repeated sampling of the same planktonic microbial populations through 49 

time, automated Lagrangian sampling of bacterioplankton was performed every two hours over 50 

three days using a free-drifting robotic Environmental Sample Processor (ESP; (13, 15); Fig. S1).  51 

Following instrument recovery, planktonic microbial RNA was extracted, purified and converted 52 

to cDNA to assess whole genome transcriptome dynamics of predominant planktonic microbial 53 

populations (Table S1, Table S2). The recovered cDNAs were dominated by transcripts from 54 

Prochlorococus and several proteorhodopsin-containing or photoheterotrophic bacteria, 55 
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including members of the Pelagibacter (SAR11), Roseobacter, SAR116, SAR86, and SAR324 56 

clades (Fig. S2).    57 

Phylogenetic analysis of gene transcripts in the most abundant taxa revealed the presence 58 

of some microdiversity (Figs. S3-8).  The most abundant transcripts sampled at any given time 59 

point however, were dominated by only a few genotypes within each population that persisted 60 

throughout the sampling period.  An exception was Roseobacter, with transcripts for two 61 

different genes (groEL and dnaK) indicating the presence of a genotype that started at a very low 62 

abundance and increased in representation over the course of the time series.  This variability 63 

could be due to an injection of a new population as water masses mixed during the latter portion 64 

of the time series, or possibly to an alteration in the relative transcriptional activities of two 65 

ecotypes that are responding to changes in the surrounding environment.  66 

Transcriptional activity in Prochlorococcus was highly dependent on the time of day.  67 

Harmonic regression analyses indicated that nearly half (1,491) of all Procholorococcus 68 

population transcripts were significantly periodic (Table 1; Table S3; Fig 1).  The expression 69 

patterns observed were similar to those of monocultures growing in controlled laboratory settings 70 

(4) but there were also notable differences (Fig. 1).  For example, photosystem I gene expression 71 

exhibited a double peak in the wild Prochlorococcus transcriptome around noon (Fig. 1).  In 72 

contrast, under laboratory conditions most photosystem I genes, i.e. psaL and psaF, were found 73 

to peak just before noon, while psaA and psaB peaked shortly after noon (4). 74 

The largest discrepancy between Prochlorococcus laboratory studies and our field 75 

observations was that a considerable number of Prochlorococcus transcripts in our field 76 

populations peaked around midday (Fig. 1). Some of these genes did exhibit periodicity in 77 

cultures, but peaked at a different time of day in field populations.  A larger fraction of these 78 



 5 

mid-day peaking transcripts were either not periodically expressed, or were not present in the 79 

culture experiments.  In addition, 62% of the 10am - 4pm peaking transcripts in our field study 80 

lacked KEGG orthology annotations, as opposed to those peaking in the evening or late at night.  81 

A number of factors may be responsible for differences in transcript dynamics between in 82 

laboratory cultures versus field Prochlorococcus populations. Maximal light levels at our study 83 

site at 23 m depth were frequently two fold higher (450 umol Q/m-2/s-1) than those used in 84 

laboratory microarray experiments (232 umol Q/m-2/s-1) (4). Fundamental genetic differences 85 

between our field populations and the Prochlorococcus strain used in laboratory culture 86 

experiments likely also contribute to the differences we observed. Other variables, including 87 

nutrient composition and organismal interactions, may also be a factor in the observed 88 

differences.  While we could not identify obvious trends in the type or function of transcripts 89 

showing peak expression during the mid-day period, they did include a wide range of enzymatic 90 

functions that are more consistent with nutrient-responsive metabolic changes rather than a 91 

simple high-light stress response.   92 

An abundant Roseobacter population also showed strong diel oscillations in its 93 

transcriptome profile, most notably in expressed genes involved in bacteriochlorophyll-94 

associated aerobic anoxygenic photosynthesis (AAnP). Overall, a large fraction of Roseobacter 95 

transcripts were periodically expressed (Table 1).  Of these, the majority peaked during daylight 96 

hours, with only a few gene transcripts peaking at night (Fig. 2).  While this pattern contrasts 97 

with that observed in Prochlorococcus, where most diurnally regulated transcripts peaked at 98 

dawn or dusk, it was consistent with transcriptional regulation recently reported in 99 

Dinoroseobacter shibae (16).   100 
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Thirty five of the forty significantly periodic Roseobacter transcripts that peaked between 101 

11 pm and 7 am encoded genes belonging to a large photosynthetic “superoperon”  (Fig. S9).  102 

Nightly expression of these genes, followed by immediate repression upon light onset, is 103 

consistent with the D. shibae study (16), and may be preparing cells for efficient solar energy 104 

harvest in the early morning hours.  Functions that peaked during the day-time hours included 105 

ribosomal proteins, respiratory transcripts, genes involved in amino acid metabolism, and 106 

transporters (Fig. 2). 107 

Proteorhodopsin-containing photoheterotrophs including members of the SAR11, 108 

SAR116, and SAR86 also showed evidence of diel periodicity in many of their gene transcripts 109 

(Fig. 2, Table 1). Interestingly, all opsin-containing bacteria analyzed (SAR11, SAR116, SAR86, 110 

and SAR324) exhibited statistically significant diel oscillations in their proteorhodopsin gene 111 

transcripts (Table S3; Fig. S10). Peak expression of the opsin transcripts occurred near dawn in 112 

all these populations (Fig. S10), potentially optimizing solar energy capture by the light-driven, 113 

proton-pumping rhodopsins.   114 

Principal components analysis distinguished time series samples for each heterotroph by 115 

time of day (Fig. 3) and showed significant correlation with the light-driven behavior of 116 

Prochlorococcus (Table 1). Overall, this data is consistent with profound, genome-wide 117 

transcriptional changes across the day-night cycle for each population.  In addition, co-clustering 118 

of transcripts using GeneARMA (GA; (14, 17)) revealed suites of gene transcripts that exhibited 119 

similar expression patterns among different taxa (Fig. 4; Fig. S11-14; Table S4).  For example, a 120 

group of transcripts that that fit highly similar GA expression models across multiple species 121 

included Pro GA5, Pro GA7, Pro GA9, Pro GA23, SAR11 GA6. SAR11 GA18, SAR116 GA2, 122 

and Roseobacter GA8 (Fig 4; Fig S14; Table S4).  These multispecies, day-peaking transcripts 123 
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(Fig S14; Table S4) included gene products associated with respiration (Procholorococcus, 124 

SAR11, SAR116, Roseobacter), nitrogen metabolism (Procholorococcus, SAR11, SAR116), 125 

glycine metabolism (Procholorococcus, SAR11, Roseobacter), carbon monoxide metabolism 126 

(SAR116, Roseobacter) and DNA synthesis (Procholorococcus, Roseobacter).  This co-127 

clustering of gene transcripts reveals a complex pattern of expression through the day and across 128 

the time series, and provides evidence for parallel trends in gene expression across multiple 129 

species (Fig. 4, Fig. S11-14, Table S4).  130 

Together, the transcriptional profiles of Roseobacter, SAR11, SAR116 and SAR86 131 

indicate diel cycling of metabolic gene transcripts, and suggest a multispecies wave-like 132 

progression of upregulated gene suites across the day/night cycle (Fig. 4). Most conspicuously, a 133 

regular diel succession of translational, transcriptional and respiratory gene transcripts was 134 

followed by peaks in transporter transcripts that possibly reflect a metabolic recovery phase (Fig. 135 

2). Many of these metabolic pathway transcripts peaked earlier in the day in Roseobacter field 136 

populations relative to other bacterial heterotrophs (Fig. 2, Fig 4, Table S4).     137 

The overall transcriptional profile of SAR324 did not show as many transcript diel 138 

oscillations as other heterotrophic taxa.  Instead, principal components analysis clustered 139 

SAR324 transcripts according to the day that they were collected (Fig. 3). In particular, the 140 

SAR324 group showed a strong separation between the first portion of the time series and the 141 

second in principal components analysis (Fig. 3).  This split appears to be associated with the 142 

increases in temperature and salinity observed across the time series (Fig. S1).  143 

The diurnal patterns reported here for open ocean heterotrophic bacterioplankton were 144 

different from those observed in a previous study of phylogenetically related coastal 145 

bacterioplankton using similar methods (12). For example, coastal versus open ocean SAR11 146 
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populations revealed differential expression levels among several orthologous transcript 147 

categories (Fig. S15). Additionally, while the open ocean SAR11 populations reported here 148 

exhibited statistically significant diel oscillations for many gene transcripts (Fig. 2), the coastal 149 

SAR11 populations did not.  150 

Currently available data are insufficient to provide definitive mechanistic explanations 151 

for the diel behaviors we observed in different heterotrophic bacterioplankton species.  It is 152 

possible that photoreceptors in these bacteria are involved in regulating light-dark cycles of 153 

transcriptional activity.  Marine Roseobacter species have previously been shown to regulate 154 

their global transcriptional behavior in response to light (16), and laboratory cultures of 155 

Pelagibacter also exhibit light-responsive metabolic behaviors (18). Differences between the 156 

behaviors of SAR11 coastal versus open ocean field populations however (Fig. S15), as well as 157 

comparisons of several taxa in our field study versus laboratory experiments on related cultivated 158 

isolates (Fig. 1), suggest that other factors may be at play in regulating diel behavior among these 159 

different bacterioplankton populations.    160 

Previous studies have proposed that tight metabolic coupling between primary producers 161 

and consumers in microbial plankton might elicit conspicuous diel cycling in heterotrophic 162 

bacterial activities (8).  The diel cycling we observed among different bacterioplankton species is 163 

consistent with this hypothesis, with multiple co-existing heterotroph populations exhibiting 164 

diurnal oscillations resembling those of their photoautotrophic neighbors.  We postulate that the 165 

tightly coupled multispecies temporal expression patterns observed may elicit corresponding 166 

waves of species-specific metabolic responses at regular time intervals, potentially coordinating 167 

diverse biogeochemical activities in these complex microbial communities.  Such temporal 168 

coordination of biogeochemical activities among multiple species may be important regulators of 169 
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both the tempo and mode of microbial matter and energy transformation in the sea.   170 

 171 
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 269 

Fig. 1.  Laboratory versus field comparisons of periodic expression patterns in Prochlorococcus 270 
populations.  A.  Scatter plot shows time of peak abundance for 973 transcripts identified as 271 
significantly periodic in both studies.  Histograms show the total number of genes peaking in 1-272 
hour intervals in this study (top) and the laboratory experiment (side).  Black bars represent 273 
genes identified as significantly periodic in both studies, grey bars represent genes expressed in 274 
both studies but significantly periodic in only one, and white bars represent significantly periodic 275 
transcripts that were not detected in the other dataset.  For this comparison, we used published 276 
significance cutoffs from the laboratory study (4), but for consistency generated new peak times 277 
using our harmonic regression approach and the published normalized mean expression levels 278 
for each time point.   In general, the peak times generated using our approach closely matched 279 
published values for that dataset.  B-C.  Plots showing relative expression (normalized to mean 280 
expression level) over time for our metatranscriptome (top trace) and in microarray data (bottom 281 
trace) for selected transcripts.  For comparison, experimental midnights (24 hr and 48hr) from 282 
the microarray study are aligned with the 12:00AM samples from 9/9 and 9/10, respectively.  All 283 
ATP synthase subunits (B) and selected subunits from photosystem I (C) are shown. 284 

 285 

Fig. 2.  Timing of periodically expressed transcripts.  For each population, a histogram 286 
showing the number of periodically expressed diel transcripts with peak expression within 1-hr 287 
intervals throughout the day is shown (left).  On the right, time of peak expression of all 288 
transcripts assigned to selected KEGG pathways is plotted (grey).  Red circles denote transcripts 289 
identified as significantly periodic (24 hour period).  The “transporters” category includes both 290 
the ABC Transporters KEGG pathway and the Transporters BRITE hierarchy, the 291 
“photosynthesis” category includes both the Photosynthesis KEGG pathway and the BRITE 292 
Photosynthesis Proteins categorizations.  “Carbon Fixation” refers to genes assigned to the 293 
Carbon Fixation in Photosynthetic Organisms KEGG Pathway.  The photosynthesis and carbon 294 
fixation categories are present in heterotrophic organisms due to cross-assignment of ATP 295 
Synthase genes and pentose phosphate cycle genes.  Black and yellow bars depict the daily 296 
photoperiod (based on sunrise and sunset times). 297 

 298 

Fig. 3.  Principal Component analysis of population transcriptional profiles. Transcript 299 
abundances were normalized to total transcripts assigned to each population at each time point, 300 
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and arcsin transformed to approximate normality (19). Symbol color denotes time of day and 301 
shape denotes day of collection. Grey lines connect samples to centroids for selected sample 302 
groupings that separate points well. Roseobacter SAGs: samples collected between 7am and 9pm 303 
(vs. 9pm to 7am); SAR11, SAR116 and SAR86 cluster, samples collected between 9am and 6pm 304 
(and vice versa); SAR324 cluster, samples collected before or after 9/9 4pm. All factor 305 
correlations shown were highly significant (p = 0.001). Alternative time of day categories were 306 
also highly significant for Roseobacter SAGs, SAR11, SAR116 and SAR86. SAR116 (r2 0.10, p 307 
0.037) and SAR86 (r2 0.12, p 0.019) also correlated weakly with the grouping shown for 308 
SAR324.  All analyses carried out using functions in the vegan software package (20). 309 

 310 

Fig. 4.  Timing of expression of functional gene clusters in different taxa clustered by similarity.  311 
Heatmap shows cluster models for all geneARMA clusters, colored by mean-centered relative 312 
expression (red=high, blue=low).  Black and yellow bars show the daily photoperiod.  Each box 313 
represents a single sampling event, for sample times see Table S1.  Dendrograms show cluster 314 
model similarity (Pearson correlations, average linkage clustering, scale bar at upper right 315 
represents a correlation of 0.5).  The total number of genes (A), significantly periodic genes (B), 316 
and genes associated with Photosynthesis (C), Ribosome (D), Oxidative Phosphoryloation (E), 317 
Amino Acid Metabolism (F), and Transport (G) (defined as for Figure 2), are listed for each 318 
cluster. 319 
  320 
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Table 1:  Harmonic Regression Results 321 

 Prochlorococcus Roseobacter 
SAGs SAR11 SAR116 SAR86 SAR324 

Sequence reads1 2886677 177982 774064 200368 151468 118098 
Transcripts2 3045 2604 2802 2618 2367 4732 
Periodic3 1491 426 201 80 10 8 
Constrained PCA vs 
24-hour clock4 

0.68 
(p = 0.005) 

0.49 
(p = 0.005) 

0.24 
(p = 0.005) 

0.15 
(p = 0.005) 

0.13 
(p = 0.005) 

0.10 
(p = 0.01) 

Procrustes Test vs. 
Prochlorococcus 
PCA5 

 0.78 
(p < 0.001) 

0.55 
(p < 0.001) 

0.70 
(p < 0.001) 

0.52 
(p < 0.001) 

0.36 
(p = 0.031) 

Mantel Test vs. 
Prochlorococcus6  0.63 

(p < 0.001) 
0.40 

(p < 0.001) 
0.31 

(p = 0.003) 
0.26 

(p = 0.005) 
0.27 

(p = 0.002) 
1 The total number of sequence reads assigned to each taxon bin 322 
2 The total number of unique ortholog clusters (see Database S1) with at least one mapped sequence. 323 
3 The total number of sequences identified as showing 24-hour periodicity using harmonic regression. 324 
4 Proportion of variance explained by 24-hour periodicity in constrained principal components analysis. 325 
5 Procrustes correlation between the first two principal components from Prochlorococcus and other taxa 326 

(unconstrained principal components analysis as shown in Fig. 3).  P-value based on 999 permutations. 327 
6 Correlation between pairwise sample similarities from Prochlorococcus and heterotrophic taxa based on Mantel 328 

test on Euclidean distance matrices. P-value based on 999 permutations. 329 
 330 
  331 
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