
MIT Open Access Articles

SEARCHES FOR HIGH-FREQUENCY VARIATIONS 
IN THE [superscript 8]B SOLAR NEUTRINO FLUX 
AT THE SUDBURY NEUTRINO OBSERVATORY

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Aharmim, B., S. N. Ahmed, A. E. Anthony, N. Barros, E. W. Beier, A. Bellerive, B. 
Beltran, et al. “ SEARCHES FOR HIGH-FREQUENCY VARIATIONS IN THE [superscript 8] B SOLAR 
NEUTRINO FLUX AT THE SUDBURY NEUTRINO OBSERVATORY.” The Astrophysical Journal 710, 
no. 1 (February 10, 2010): 540–548.

As Published: http://dx.doi.org/10.1088/0004-637x/710/1/540

Publisher: IOP Publishing

Persistent URL: http://hdl.handle.net/1721.1/88431

Version: Original manuscript: author's manuscript prior to formal peer review

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/88431
http://creativecommons.org/licenses/by-nc-sa/4.0/


ar
X

iv
:0

91
0.

24
33

v2
  [

as
tr

o-
ph

.S
R

] 
 1

3 
O

ct
 2

00
9

Searches for High Frequency Variations

in the 8B Solar Neutrino Flux at the Sudbury Neutrino

Observatory

B. Aharmim6, S.N. Ahmed14, A.E. Anthony17,a, N. Barros8, E.W. Beier13, A. Bellerive4,

B. Beltran1, M. Bergevin7,5, S.D. Biller12, K. Boudjemline4, M.G. Boulay14, T.H. Burritt19,

B. Cai14, Y.D. Chan7, D. Chauhan6, M. Chen14, B.T. Cleveland12, G.A. Cox19,

X. Dai14,12,4, H. Deng13, J. Detwiler7, M. DiMarco14, P.J. Doe19, G. Doucas12,

P.-L. Drouin4, C.A. Duba19, F.A. Duncan16,14, M. Dunford13,b, E.D. Earle14,

S.R. Elliott9,19, H.C. Evans14, G.T. Ewan14, J. Farine6,4, H. Fergani12, F. Fleurot6,

R.J. Ford16,14, J.A. Formaggio11,19, N. Gagnon19,9,7,12, J.TM. Goon10, K. Graham14,4,

E. Guillian14, S. Habib1, R.L. Hahn3, A.L. Hallin1, E.D. Hallman6, P.J. Harvey14,

R. Hazama19,c, W.J. Heintzelman13, J. Heise2,9,14,d, R.L. Helmer18, A. Hime9, C. Howard1,

M.A. Howe19, M. Huang17,6, B. Jamieson2, N.A. Jelley12, K.J. Keeter16, J.R. Klein17,13,

L.L. Kormos14, M. Kos14, C. Kraus14, C.B. Krauss1, T. Kutter10, C.C.M. Kyba13, J. Law5,

I.T. Lawson16,5, K.T. Lesko7, J.R. Leslie14, I. Levine4,e, J.C. Loach12,7, R. MacLellan14,

S. Majerus12, H.B. Mak14, J. Maneira8, R. Martin14,7, N. McCauley13,12,f ,

A.B. McDonald14, S. McGee19, M.L. Miller11,g, B. Monreal11,h, J. Monroe11,

B. Morissette16, B.G. Nickel5, A.J. Noble14,4, H.M. O’Keeffe12,i, N.S. Oblath19, G.D. Orebi

Gann12,13, S.M. Oser2, R.A. Ott11, S.J.M. Peeters12,j , A.W.P. Poon7, G. Prior7,k,

S.D. Reitzner5, K. Rielage9,19, B.C. Robertson14, R.G.H. Robertson19, M.H. Schwendener6 ,

J.A. Secrest13,l, S.R. Seibert17,9, O. Simard4, D. Sinclair4,18, P. Skensved14, T.J. Sonley11,m,
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ABSTRACT

We have performed three searches for high-frequency signals in the solar neu-

trino flux measured by the Sudbury Neutrino Observatory (SNO), motivated by

the possibility that solar g-mode oscillations could affect the production or prop-

agation of solar 8B neutrinos. The first search looked for any significant peak

in the frequency range 1/day to 144/day, with a sensitivity to sinusoidal signals

with amplitudes of 12% or greater. The second search focused on regions in

which g-mode signals have been claimed by experiments aboard the SoHO satel-

lite, and was sensitive to signals with amplitudes of 10% or greater. The third

search looked for extra power across the entire frequency band. No statistically

significant signal was detected in any of the three searches.

1. Introduction

Neutrinos are the only way known to directly probe the dynamics of the solar

core (Bahcall and Ulrich 1988), and, through the Mikheev-Smirnov-Wolfenstein (MSW)

effect (Mikheev and Smirnov 1986; Wolfenstein 1977), they can even carry information about

the rest of the solar envelope. To date, however, converting measurements of solar neutrino

fluxes into constraints on solar models has proven to be difficult (Bandyopadhyay et al.

2007), because of the large number of co-varying parameters upon which such models are

built.

A relatively simple signal that could tell us something new about the Sun would be

a time-variation in the neutrino fluxes. Over the past forty years, measurements made

by solar neutrino experiments have therefore been the focus of many studies, ranging

from attempted correlations with the solar sunspot cycle to open searches for signals
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with periods of weeks or months (Sturrock 2003, 2004; Caldwell and Sturrock 2005;

Super-Kamiokande Collaboration 2003; SNO Collaboration 2005a). The shortest period

examined to date is roughly one day, where the MSW effect predicts that neutrinos

propagating through the Earth’s core during the night will undergo flavor transformation

in much the same way they do in the Sun, resulting in a net gain in the flux of electron

neutrinos (νes). Although there have been occasional claims of signals on timescales similar

to known variations in the solar magnetic field, in all cases there have been conflicting

measurements that show the signals to be spurious or absent entirely.

We present in this article the results of a search in a new frequency regime for solar

time variations. Our focus has been on signals whose periods range from 24 hours down

to 10 minutes. The motivation for such a high frequency search is in part the expectation

for solar helioseismological variations on scales of order an hour or less, in particular solar

‘gravity modes’ (g-modes) (Christensen-Dalsgaard 2003). These g-modes are non-radial

oscillations that are predicted to be confined to the solar core, and thus could in principle

affect either neutrino production or neutrino propagation. The neutrinos that SNO detects,

those from 8B decay within the Sun, are particularly well-suited for our search because they

are created very deep within the solar core and because their propagation is known to be

sensitive to variations in the solar density profile through the MSW effect.

The effects of g-modes on solar neutrino fluxes have been examined by Bahcall and

Kumar (Bahcall and Kumar 1993), who sought to determine whether g-mode effects could

explain the apparent solar neutrino deficit, finding that any effect was far too small to

account for the roughly 60% discrepancy. More recently, Burgess et al. (2003) looked at

ways in which a broad spectrum of g-modes could alter the expectation for a solar neutrino

spectral distortion caused by the MSW effect. Nevertheless, there are at this time no

explicit predictions as to whether g-modes or any other short-timescale variations could
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lead to measurable solar neutrino flux variations.

2. Sudbury Neutrino Observatory

SNO was an imaging Cherenkov detector using heavy water (D2O) as both the

interaction and detection medium (Boger et al. 2000). The SNO cavern is located in Vale

Inco’s Creighton Mine, at 46◦28
′

30
′′

N latitude, 81◦12
′

04
′′

W longitude. The detector

resided 1783 m below sea level with an overburden of 5890 ± 94 m water equivalent, deep

enough that the rate of cosmic-ray muons passing through the entire active volume was just

three per hour.

One thousand metric tons of heavy water were contained in a 12 m diameter

transparent acrylic vessel (AV). Cherenkov light produced by neutrino interactions and

radioactive backgrounds was detected by an array of 9456 Hamamatsu model R1408

20-cm photomultiplier tubes (PMTs), supported by a stainless steel geodesic sphere (the

PMT support structure or PSUP). Each PMT was surrounded by a light concentrator

(a ‘reflector’), which increased the light collection to nearly 55%. Over seven kilotonnes

(7000 kg) of light water shielded the heavy water from external radioactive backgrounds:

1.7 ktonne between the acrylic vessel and the PMT support sphere, and 5.7 ktonne between

the PMT support sphere and the surrounding rock. The 5.7 ktonne of light water outside

the PMT support sphere were viewed by 91 outward-facing 20-cm PMTs that were used for

identification of cosmic-ray muons.

The detector was equipped with a versatile calibration deployment system which could

place radioactive and optical sources over a large range of the x-z and y-z planes in the

AV. In addition, periodic ‘spikes’ of short-lived radioactivity (such as 222Rn) were added to

both the light water and heavy water and distributed throughout their volumes to act as
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distributed calibration sources.

SNO detected neutrinos through three different processes:

νx + e− → νx + e− (ES)

νe + d→ p+ p+ e− (CC)

νx + d→ p+ n+ νx (NC)

where νx represents νe, νµ or ντ . For both the Elastic Scattering (ES) and Charged

Current (CC) reactions, the recoil electrons were observed directly by their production

of Cherenkov light. For the Neutral Current (NC) reaction, the neutrons were not seen

directly, but were detected when they captured on another nucleus. In SNO Phase I (the

“D2O phase”), the neutrons captured on the deuterons present within the SNO heavy

water. The capture on deuterium releases a 6.25 MeV γ ray, and it is the Cherenkov light

of the secondary Compton electrons or e+e− pairs which was detected. In Phase II, (the

“salt phase”), 2 tonnes of NaCl were added to the heavy water, and the neutrons captured

predominantly on 35Cl nuclei. Chlorine has a much larger capture cross section (resulting in

a higher detection efficiency) for the neutrons. The capture on chlorine also yields multiple

γs instead of the single γ from the pure D2O phase, which aids in the identification of

neutron events.

Figure 1 shows the incident 8B spectrum of neutrinos from the Sun (dotted line), along

with those that are detected by the CC reaction (dashed) and those that are above the

effective kinetic energy threshold for the resultant electrons in our detector for Phase II,

Teff > 5.5 MeV. Teff is the estimated energy assuming an event consisted of a single electron.

SNO’s depth, very low radioactivity levels, and its ability to perform real-time detection

made it a unique instrument for observing time variations in solar neutrino fluxes, even at
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Fig. 1.— Monte Carlo simulation of the 8B solar neutrino energy spectrum. The dotted

curve is the incident spectrum of neutrinos from the Sun with an arbitrary normalization,

the dashed curve shows the spectrum of those detected by the CC reaction before any cut

on the kinetic energy of the created electron, and the solid curve shows the spectrum of

neutrinos seen after the application of the kinetic energy threshold for Phase II.
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the high frequencies we examine here. Above an energy threshold of 5 MeV, the rate of

events from radioactivity, cosmic ray muons and atmospheric neutrinos, was negligible. The

rate of solar neutrino events above this threshold was roughly 10/day.

3. Data Sets

The event selection for the data sets is similar to that used in our lower-frequency

periodicity analysis (SNO Collaboration 2005a). Events were selected inside a reconstructed

fiducial volume of R < 550 cm and above an effective kinetic energy of Teff > 5 MeV (Phase

I) or Teff > 5.5 MeV (Phase II), and below Teff > 20 MeV. Additional analysis cuts such as

fiducial volume and background rejection for these data sets have been described in detail

elsewhere (SNO Collaboration 2007, 2005b). SNO Phase I ran between November 2, 1999

and May 31, 2001, and with detector deadtimes and periods of high radon removed, we

recorded a total of 306.58 live days, with 2924 candidate neutrino events. SNO Phase II ran

from July 26, 2001 to August 28, 2003 for a total of 391.71 live days and 4722 candidate

neutrino events. Of the 2924 candidate events in the Phase I data, 67% are due to CC

interactions, 20% to NC interactions, and 9% to ES interactions, with the remaining 4%

due to backgrounds. Variations in the 8B neutrino production rate itself will affect all three

neutrino interactions equally, while variations in the electron neutrino survival probability

dominantly affect only the CC rate. For the Phase II data the 4722 events consist of 45%

CC events, 42% NC events, 6% ES events, and 7% backgrounds.

The time for each event was measured with a global positioning system (GPS) clock

to a resolution of ∼ 100 ns, but truncated to 10 ms accuracy for the analysis. The run

boundary times were determined from the times of the first and last events in each run with

a precision of ∼ 50 ms. The intervals between runs during which SNO was not recording

solar neutrino events correspond to run transitions, detector maintenance, calibration
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activities, and any periods when the detector was off. It is also necessary to account for

deadtime incurred within a run; for example, deadtime due to spallation cuts that remove

events occurring within 20 seconds after a muon. This is important for a high-frequency

periodicity search, as the frequency of occurrence of these deadtimes can approach the scale

of interest of our search. Therefore, both the run boundaries, as well as the smaller, discrete

breaks in time due to removal of short-lived backgrounds such as spallation products, define

the time exposure of the data set, which itself may induce frequency components that could

affect a periodicity analysis.

4. Rayleigh Power Approach

The low-frequency searches for periodicities that have been done by ourselves

and others typically group the neutrino time series in bins of one to several

days, and then perform the analysis with methods such as the Lomb-Scargle tech-

nique (Super-Kamiokande Collaboration 2003; Sturrock 2004). In our own low-frequency

study (SNO Collaboration 2005a), we also used an unbinned maximum likelihood technique,

fitting the time series with periodic functions of varying frequencies, phases, and amplitudes,

allowing for the detector deadtimes that occurred during calibration runs, power outages,

and detector maintenance.

For this high-frequency study, we chose to use an unbinned Rayleigh power approach.

The Rayleigh power of a time series for a given frequency ν is defined as

z(ν) ≡
U(ν)2

N
=

1

N
[(Σi cos 2πνti)

2 + (Σi sin 2πνti)
2] (1)

where N is the total number of events in the time series.

The great advantage of the Rayleigh power approach is its speed, as it requires far

fewer function evaluations than other unbinned methods like the maximum likelihood
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technique described above. For this analysis, speed is critical, because to ensure that we do

not miss a signal we use 1.6 million equally-spaced frequencies spanning a range from 1/day

to 144/day (one cycle per 10 minutes). To avoid the possibility of a signal falling between

our sampled frequencies, and thus being missed, the minimum gap between our sampled

frequencies must correspond to two signals that just decorrelate over the course of SNO’s

running period. With this criterion, the minimum number of frequencies needed for our

data set in our region of interest is 400,000, and our choice of 1.6 million frequencies was

made to provide a small degree of oversampling.

For a time series in which the phase coverage is uniform, the distribution of Rayleigh

powers for any given frequency follows e−z, and thus confidence intervals can be easily

calculated. For the SNO data set, there are significant deadtime intervals, whose durations

range from months to milliseconds. The sources of these deadtime intervals include the

period between the Phase I and Phase II data sets (several months), detector calibration

runs (typically hours to days), power outages (of order one day), maintenance periods

(hours), and offline veto periods (15 ms to 20 s) imposed to remove events associated

with the passage of cosmic-ray muons through the detector, interactions of atmospheric

neutrinos, or bursts of instrumental activity.

The deadtime structure of the SNO time series means that not all phases of the

Rayleigh power are equally likely, and thus leads to additional Rayleigh power that is not

associated with any neutrino signal. Quasi-periodic deadtimes (like those associated with

calibration and maintenance) can also lead to peaks in the Rayleigh power spectrum. To

calculate confidence intervals in order to determine the significance of any peaks observed

in the Rayleigh power spectrum, we must account for these known regions of non-uniform

phase coverage.

We have developed an analytic model for the Rayleigh power at a given frequency by
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treating the Rayleigh power series as a two-dimensional random walk. Each detected event

is treated as a step in the random walk, with components X = cos 2πνt and Y = sin 2πνt.

For the case of uniform phase coverage, the central limit theorem implies that for a large

number of steps (N) the distribution of final positions will be given by a two-dimensional

Gaussian, whose means, variances, and covariance are:

µx =
1

2π

∫ 2π

0

dφ cosφ = 0 (2)

and

σ2
x =

1

2π

∫ 2π

0

dφ cos2 φ =
1

2
(3)

cov(x, y) =
1

2π

∫ 2π

0

dφ cosφ sinφ = 0 (4)

leading to a simple distribution of final positions given by

f(X, Y ) =
1

2πNσxσy
exp(−X2/2Nσ2

x) exp(−Y 2/2Nσ2
y)

=
1

Nπ
e−(X2+Y 2)/N

=
1

Nπ
e−U

2/N

The distribution of z = U2/N can then be obtained by integrating over all values of X

and Y which satisfy z < U2/N < z + dz, by changing variables from X and Y to ψ and U :

f(X, Y ) dX dY → f(U, ψ) dU dψ =
1

Nπ
e−U

2/N U dU dψ. (5)

Integrating this expression over dψ from 0 to 2π and changing variables from U to z = U2/N

gives f(z) dz = e−z dz, which is the simple exponential distribution expected for the

Rayleigh power distribution.

For the case of non-uniform coverage, the means and covariance of the distribution are

no longer simple. If we call the normalized phase-weighting function g(φ), where g(φ) = 1
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for uniform phase coverage, then we have

µx =
1

2π

∫ 2π

0

dφ g(φ) cosφ (6)

µy =
1

2π

∫ 2π

0

dφ g(φ) sinφ (7)

σx
2 =

1

2π

∫ 2π

0

dφ g(φ)(cosφ− µx)
2 (8)

σy
2 =

1

2π

∫ 2π

0

dφ g(φ)(sinφ− µy)
2 (9)

cov(x, y) =
1

2π

∫ 2π

0

dφ g(φ)(cosφ− µx)(sin φ− µy) (10)

The function g(φ) is determined by the detector’s deadtime window, with φ = ωt. The

mean for X, for example, is given by

µx =
1

T

runs
∑

j=1

∫ tstop,j

tstart,j

dt cosωt (11)

where T is the total livetime, and the sum is over all data taking runs in the data set,

integrating from the start to the stop time of each run.

The Rayleigh power distribution for the non-uniform phase coverage case is proportional

to e−χ
2/2, and χ2 for the Rayleigh power distribution can be written as

χ2 (X, Y ) = (X −Nµx, Y −Nµy)Vxy
−1





X −Nµx

Y −Nµy



 (12)

The inverse of the covariance matrix is given by
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Vxy
−1 =





Nσx
2 Ncov(x, y)

Ncov(x, y) Nσy
2





−1

making our χ2

χ2 =
(X −Nµx)

2σy
2 + (Y −Nµy)

2σx
2
− 2(X −Nµx)(Y −Nµy)cov(x, y)

Nσx2σy2 −Ncov2(x, y)
(13)

Transforming into our integration variables z = U2/N and ψ gives the rather unwieldy

probability density function for the Rayleigh power at a given frequency:

f(z)dz =
1

C
dz

∫ 2π

0

e−(α1(ψ)/2)Nz−(α2(ψ)/2)N
√
Nz−(α3(ψ)/2)N2

dψ (14)

where

α1(ψ) = σy
2cos2ψ + σx

2sin2ψ − 2 cosψ sinψcov(x, y)

α2(ψ) = −2(σy
2µx cosψ + σx

2µy sinψ + (µx sinψ + µy cosψ)cov(x, y))

α3(ψ) = σy
2µx

2 + σx
2µy

2 + µxµycov(x, y)

and C is a normalization constant. In this formalism the effects of detector deadtime are

entirely accounted for through the means and covariance matrix for the variables X and Y.

In the analysis of data from the two combined SNO data-taking phases, the difference in

event rates between Phase I and Phase II is accounted for by separating the terms of the

analytic form according to phase, or:

Nµx,y → ND2O(µx,y)D2O
+NSalt(µx,y)Salt

(and similarly for all variance and covariance terms). Here, both g(φ) and N have been

separated according to phase, effectively introducing a rate-dependent weighting factor. For

further details on this method, see Ref. Anthony (2008).
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Figure 2 shows the function f(z) describing the Rayleigh power distributions for two

different frequencies. The distributions were generated with a Monte Carlo simulation

including the SNO detector’s full deadtime window. For the plot on the left, the deadtime

contributes a significant amount of power due to the periodicity in SNO’s operations

schedule, while for the high frequency bin on the right the deadtime does not change the

function much from its simple e−z distribution.

To determine a specific confidence level, CL, for a given observed Rayleigh power, z0,

we solve the equation

CL =

∫ z0

0

f(z)dz (15)

As a test of our analytic model, we have calculated the confidence levels for all 1.6

million frequencies of a Monte Carlo simulation that includes the full SNO deadtime

window. Figure 3 shows the distribution of these confidence levels, which is gratifyingly

flat with a mean that is 0.50, thus showing that the analytic random walk model correctly

distributes the confidence levels across the whole Rayleigh power spectrum.

5. Open Single Peak Search

Our first search looked for a significant peak at any frequency in our Rayleigh power

spectrum. While Equation 15 gives the confidence level at any specific frequency, when

testing our 1.6 million sampled frequencies there is a substantial trials penalty, making it

exceedingly likely that at least one of the frequencies will by chance have an apparently

large power. To determine this penalty exactly, we would need to know how many of our

1.6 million sampled frequencies are independent, which is a complex task.

Instead, to address this trials penalty we use 10,000 null-hypothesis Monte Carlo

simulations to determine the probability of observing a statistically significant peak at
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any of the 1.6 million sampled frequency in the absence of a true signal. For a given

null-hypothesis Monte Carlo simulation, we assign a frequency-specific confidence level to

each sampled frequency according to the prescription given above in Section 4 (see Eq. 15).

Then for each null-hypothesis Monte Carlo simulation, we record the peak that has the

highest confidence level, and then plot the resultant distribution of these highest-peak

confidence levels for all 10,000 null-hypothesis Monte Carlo simulations. The resultant

distribution of confidence levels is shown in Figure 4. As seen from this figure, virtually

every simulation yields at least one peak with an apparent significance of at least 99.999%,

just by chance. To determine the true data-wide confidence level, taking into account our

entire sample of 1.6 million frequencies, we place a cut on the distribution of Figure 4

that corresponds to our desired trials-weighted (data-wide, rather than frequency-specific)

confidence level for a significant signal. In Figure 4, the cut shown corresponds to the

frequency-specific confidence level needed by the maximum peak in a power spectrum in

order for it to be above the 90% CL detection threshold. In other words, for a data set that

contains no periodicity at any frequency, there is a less than 10% probability that the most

significant individual peak will have a frequency-specific confidence level in excess of this

cut value.

Figures 5 through 10 show the Rayleigh power spectrum for the combined SNO Phase

I and Phase II data sets, broken up into six segments each corresponding to roughly 267,000

sampled frequencies.

Figure 11 shows the peak with the highest confidence level, and the corresponding

threshold for that peak to be above the data-wide 90% CL to be considered significant. The

data-wide CL of this peak is only 2%, thus we see no evidence of a significant peak in our

data set.

To determine our sensitivity to a signal, we ran Monte Carlo simulations with fake
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sinusoidal signals, of form 1 + A sinωt, of increasing amplitude, looking for the point at

which our method would claim a discovery. In Figure 12 we show our sensitivity for two

criteria: the amplitude required to make a 99%-CL discovery 90% of the time, and the

amplitude for a 99%-CL discovery 50% of the time. We are substantially limited in this

open search by the trials penalty; we need a signal of 12% amplitude to make a 99% CL

detection 90% of the time. The bands shown in Figure 12 indicate the degree of variation

among frequencies of the sensitivity, which is affected by the underlying power spectrum in

each bin as discussed above in Section 4.

6. Directed Peak Search

There have been recent claims by the GOLF/SoHO collaboration of possible

signatures of g-mode oscillations, based on analyses of long-term helioseismological data

sets (Garćıa et al. 2001; Gabriel et al. 2002; Turck-Chièze et al. 2004; Mathur et al. 2007),

as well as supporting claims by the VIRGO/SoHO collaboration(Garćıa et al. 2008).

Looking for such specific signals in our data set using our Rayleigh power approach has an

advantage in that we no longer need the 1.6 million frequencies used above, but rather can

look in a narrow window that has a smaller trials penalty. We have thus taken a narrow

band around the reported persistent GOLF signals (Jiménez and Garćıa 2008), from 18.5

to 19.5/day (roughly 214 to 225 µHz), and have repeated our analysis. We again find no

significant signal, with the highest peak having a trials-weighted CL of just 58%. The

Rayleigh power spectrum around this peak, as well as its superimposed 90% CL are shown

in Figure 13. Figure 14 shows our sensitivity plots for this directed search, which are

slightly better than in Section 5 because of the reduced trials penalty. We conclude that if

the detection claimed by SoHO is in fact evidence of a g-mode, the effect of this particular

mode of oscillation on the neutrino flux is less than 10% amplitude variation, at 99% CL.
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7. Broadband Search

The two searches described above require that the signal be predominantly sinusoidal

and monotonic. It is possible that high frequency behavior in the Sun spans a large band

of frequencies, and in fact may be ‘noisy’. Burgess et al. (2003) have investigated how

such noise might affect the neutrino survival probabilities within the Sun due to the matter

or MSW effect. We have therefore looked at the distribution of confidence levels across

our entire range of 1.6 million frequencies. Like Figure 3, we expect that in the case of

no broadband signal the distribution of confidence levels will be flat, with a mean of 0.50.

Figure 15 shows this distribution now for our combined SNO Phase I and Phase II data

sets. As can be seen clearly in the figure, the distribution is flat, with a mean very close to

the 0.5 expected. As a comparison case, we show in Figure 16 what the confidence level

distribution of a ‘noisy’ sun would look like, for several different amplitudes of Gaussian

white noise. Our white noise model is shown in Figure 17, for the lowest amplitude (0.1%)

shown in Figure 16. We have spread the noise across 400,000 independent frequencies,

roughly the number of independent frequencies we expect in the power spectrum. The

rms noise power from our model is 0.45, in units of SNO’s measured total 8B neutrino

flux (∼ 5 × 106ν cm−2s−1). In terms of power per unit bandwidth, this corresponds to

∼ 6 × 107ν cm−2s−1Hz−1/2. As is evident in Figure 15, the distribution of confidence levels

in the data is consistent with no distortion of signal due to noise.

8. Conclusions

We have performed three searches for high-frequency signals in the 8B solar neutrino

flux, applying a Rayleigh Power technique to data from the first two phases of the Sudbury

Neutrino Observatory. Our first search looked for any significant peak in a Rayleigh Power

spectrum from frequencies ranging from 1/day to 144/day. To account for SNO’s deadtime
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window, we calculated the expected distribution of power in each bin of the Rayleigh Power

spectrum using a random walk model, thus allowing us to assign confidence levels to the

observed powers. We found no significant peaks in the data set. For this ‘open’ peak search,

we had a 90% probability of making a 99% CL detection of a signal with an amplitude of

12% or greater, relative to SNO’s time-averaged neutrino flux.

In a second search, we narrowed our frequency band to focus on a region in which

g-mode signals have been claimed by experiments aboard the SoHO satellite. The examined

frequency range extended from 18.5/day to 19.5/day. Again, no significant peaks in the

Rayleigh Power spectrum were found, and our sensitivity for this ‘directed’ search gave us

a 90% probability of making a 99% CL detection for signals whose amplitudes were 10% or

larger, relative to SNO’s time-averaged neutrino flux.

Our third search examined the entire range of frequencies from 1/day to 144/day,

looking for any evidence that additional power was present across the entire high-frequency

band. To do this, we used the distribution of frequency-specific confidence levels, determined

using our random walk model. We found that, as expected for no high-frequency variations,

this distribution was flat. We showed that for a simple Gaussian white noise model, the

confidence level distribution would be noticeably distorted even when the amplitudes of the

contributing frequencies have an rms as small as 0.1%.
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Fig. 2.— Distribution of specific frequencies’ Rayleigh powers in SNO Monte Carlo data sets

(black) vs predictive analytic form (red line).
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Fig. 3.— Distribution of Rayleigh power confidence levels for all frequencies of a Monte

Carlo simulation of the SNO data set.
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Fig. 4.— Distribution of maximum confidence levels from Rayleigh analysis of 10,000 signal-

free Monte Carlo data sets. By building this distribution of maximum confidence levels,

we can determine a ‘confidence level of confidence levels’ and account for the trials penalty

in our generation of the data-wide confidence level. The frequency-specific confidence level

corresponding to the data-wide confidence level of 90% is shown with the superimposed

dashed red line.
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Fig. 5.— First of six figures. Rayleigh power spectra for first subsection (frequencies between

1 and 15 day−1) of entire range of frequencies sampled (from 1 day−1 to 144 day−1), for

combined SNO Phase I and Phase II data sets. The entire range has been broken down into

six individual frames for easier inspection, with the first frame slightly more zoomed-in due

to the presence of more underlying activity in this region of lower frequencies. The black

line indicates data, and the upper red line designates the level at which a detection would

have a confidence level of 90%. The peaks at low frequencies, specifically those at 1day−1

and 2day−1, represent SNO-specific periodicities due to daily run-taking schedules. (This

is clearly not evidence of a signal, as the red CL=90% line, generated from null-hypothesis

Monte Carlo, also follows these peaks).
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Fig. 6.— Second of six figures. Rayleigh power spectra for second subsection (frequencies

between 15 and 41 day−1) of entire range of frequencies sampled (from 1 day−1 to 144 day−1),

for combined SNO Phase I and Phase II data sets. The black line indicates data, and the

upper red line designates the level at which a detection would have a confidence level of 90%.
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Fig. 7.— Third of six figures. Rayleigh power spectra for third subsection (frequencies

between 41 and 67 day−1) of entire range of frequencies sampled (from 1 day−1 to 144

day−1), for combined SNO Phase I and Phase II data sets. The black line indicates data,

and the upper red line designates the level at which a detection would have a confidence

level of 90%.
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Fig. 8.— Fourth of six figures. Rayleigh power spectra for fourth subsection (frequencies

between 67 and 93 day−1) of entire range of frequencies sampled (from 1 day−1 to 144 day−1),

for combined SNO Phase I and Phase II data sets. The black line indicates data, and the

upper red line designates the level at which a detection would have a confidence level of 90%.

Fig. 9.— Fifth of six figures. Rayleigh power spectra for fifth subsection (frequencies between

93 and 119 day−1) of entire range of frequencies sampled (from 1 day−1 to 144 day−1), for

combined SNO Phase I and Phase II data sets. The black line indicates data, and the upper

red line designates the level at which a detection would have a confidence level of 90%.
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Fig. 10.— Last of six figures. Rayleigh power spectra for sixth subsection (frequencies

between 119 and 144 day−1) of entire range of frequencies sampled (from 1 day−1 to 144

day−1), for combined SNO Phase I and Phase II data sets. The black line indicates data,

and the upper red line designates the level at which a detection would have a confidence

level of 90%.
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Fig. 11.— Zoomed-in region of the Rayleigh power spectrum for the highest-significance peak

in the SNO data set, which was detected at frequency=103.384 day−1, with a confidence level

of 2%. The horizontal red line indicates the frequency-specific powers needed for a peak to

be above the data-wide 90% CL.
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Fig. 12.— SNO’s sensitivities to a high-frequency periodic signal in the combined data sets

(Phase I, or D2O, and Phase II, or salt) for the entire frequency search region. The cyan

band shows the calculated sensitivity at which we detect a signal 50% of the time, with 99%

CL, and the red band shows the calculated sensitivity at which we detect a signal 90% of

the time, with 99% CL. The width of the bands represents the range of variation of the

sensitivity, which varies rapidly with frequency, across the frequency regime.
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Fig. 13.— Rayleigh power spectrum for ‘directed’ high-frequency search, in black. The line

corresponding to detection with 90% CL is shown in red. The highest peak in the power

spectrum is found at a frequency of 19.2579/day with a CL of 58%.
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Fig. 14.— SNO’s sensitivities to a high-frequency periodic signal in the combined data sets

(Phase I, or D2O, and Phase II, or salt) for the directed high frequency search region. The

cyan band shows the calculated sensitivity at which we detect a signal 50% of the time, with

99% CL, and the red band shows the calculated sensitivity at which we detect a signal 90%

of the time, with 99% CL. The width of the bands represents the range of variation of the

sensitivity, which varies rapidly with frequency, across the frequency regime.
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Fig. 15.— Distribution of confidence levels for all 1.6 million frequencies, for the SNO

combined-phase (D2O and salt) data set.
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Fig. 16.— Distribution of confidence levels for all 1.6 million frequencies in a SNO white-

noise Monte Carlo, with several signal amplitudes. The SNO combined-phase (D2O and

salt) data confidence level distribution is shown in black for comparison.
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Fig. 17.— Time domain plot of our Gaussian white noise model, with amplitude of 0.1%,

distributed over 400,000 frequencies. Only ten days are shown here. The rms noise power

for the model shown here is 0.45 in units of SNO’s measured total 8B neutrino flux.



– 36 –

REFERENCES

Aharmim, B. et al., SNO Collaboration, Phys. Rev., D 72, 052010 (2005)

Aharmim, B. et al., SNO Collaboration, Phys. Rev., C 72, 055502 (2005)

Aharmim, B. et al., SNO Collaboration, Phys. Rev., C 75, 045502 (2007)

Anthony, A. E., Ph.D. thesis, University of Texas (2008)

Bahcall, J. and Kumar, P., ApJ, 409, L73 (1993)

Bahcall, J. and Ulrich, R., Rev. of Mod. Phys., 60, 2, 297 (1988)

Bandyopadhyay, A., Choubey, S., Goswami, S. and Petcov, S. T., Phys. Rev. D 75, 093007

(2007)

Boger, J. et al., SNO Collaboration, Nucl. Instrum. Meth., A449, 172 (2000)

Burgess, C.P. et al., ApJ, 588, L65 (2003)

Caldwell, D. and Sturrock, P., ApJ, 550, L101 (2005)

Christensen-Dalsgaard, J., e-Print: http://www.phys.au.dk/∼jcd/oscilnotes/ (2003)

Gabriel, A.H., Baudin, F., Boumier, P. et al., A&A, 390, 1119 (2002)

Garćıa, R. A., Règulo, C., Turck-Chièze, S. et al., Solar Phys., 200, 361 (2001)

Garćıa, R. A., Jiménez, A., Mathur, S. et al., Astronom. Nachrichten, 329, 476 (2008)
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Turck-Chièze, S., Garćıa, R.A., Couvidat, S. et al., ApJ, 604, 455 (2004)

Wolfenstein, L., Phys. Rev., D 17, 2369 (1977)

Yoo, J. et al., Super-Kamiokande Collaboration, Phys. Rev., D 68, 092002 (2003)

This manuscript was prepared with the AAS LATEX macros v5.2.


	Introduction
	Sudbury Neutrino Observatory
	Data Sets
	Rayleigh Power Approach
	Open Single Peak Search
	Directed Peak Search
	Broadband Search
	Conclusions

