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Strongly interacting Fermi gases
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Abstract. Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for
many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly,
we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across
the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical
potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body
theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from
three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence
of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge
states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit
coupling in Fermi gases and the creation of fermionic molecules of 2Na“K that will feature strong dipolar
interactions in their absolute ground state.

1. INTRODUCTION

Strongly interacting Fermi gases are ubiquitous in Nature. We find them as electron gases in modern
materials, such as high-temperature superconductors or colossal magneto resistance materials, as
neutrons in neutron stars, or as quarks in the quark-gluon plasma of the Early Universe. Ultracold
gases of fermionic atoms near Feshbach resonances realize a unique form of fermionic matter where
interactions between fermions can be tuned at will. This allowed the observation of pairing and
superfluidity in the crossover between Bardeen-Cooper-Schrieffer (BCS) superfluidity of long-range
pairs and Bose-Einstein condensation (BEC) of tightly bound molecules [1-3].

While fermionic superfluidity was directly demonstrated throughout the BEC-BCS crossover via the
observation of quantized vortices [4], without any precise knowledge of the equation of state the field
lacked reliable thermometry. In recent years, the thermodynamics of this novel form of fermionic matter
has been a focus of great attention [5—11]. We have recently developed a new technique, discussed in
section 2 below, that allows to determine the homogeneous (i.e. not trap-averaged) equation of state of
any gas directly from the density profile [11]. This allowed the direct observation of superfluidity in
the thermodynamics of the unitary Fermi gas, where interactions are as strong as allowed by quantum
mechanics.

To enhance the role of interactions even further, one can confine the paired gas in optical lattices.
This allowed us to study the evolution of fermion pairing from three to two dimensions, see section 3,
and confirm that pairing is strongly enhanced in lower dimensions [12].

Going beyond s-wave pairing might allow the realization of topological superfluidity with cold
atoms that carry Majorana edge states, relevant for quantum computation [13]. Our group is pursuing
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several directions towards this goal, namely spin-orbit coupling of Fermi gases [14] (section 4) and the
formation of fermionic molecules of 2*Na*X that possess a strong dipole moment (section 5).

2. THERMODYNAMICS OF A STRONGLY INTERACTING FERMI GAS

Fermi gases right at the Feshbach resonance are universal, as there is no length scale set by the
interaction strength [15]. The only remaining length scales are the interparticle spacing, set by the
density n, and the de Broglie wavelength Z, set by the temperature. At low temperatures, the system’s
properties will be closely related to that of dilute neutron matter, where the scattering length has also
much larger magnitude than the interparticle spacing. In the superfluid phase, the coherence length of the
fermion pairs must necessarily be on the order of the interparticle spacing, a limit that high-temperature
superconductors are closely realizing as well [16]. Theoretical studies of strongly interacting Fermi
systems are difficult due to the absence of a small parameter. The unitary Fermi gas thus becomes a
benchmark system that allows tests of various many-body approaches.

The entire thermodynamic information of a given system is encoded in its equation of state (EoS), the
relation between its thermodynamic variables. A precision measurement of the EoS will also reveal the
location of phase transitions, the nature of phases (e.g. whether the normal phase of strongly interacting
Fermi gases contains preformed pairs or whether it is a Fermi liquid) and the ground state energy.

In our work, we directly obtain the compressibility, density and pressure of the gas, and show that
these three thermodynamic quantities directly yield the full equation of state of the unitary Fermi
gas [11]. We directly observe the superfluid phase transition in the compressibility, the chemical
potential, the entropy, and the heat capacity. Our measurements provide benchmarks to current many-
body theories of strongly interacting fermionic matter.

The initial step in obtaining the equation of state is to obtain an accurate measurement of the density
n as a function of the local potential V. For this, the column density in our cylindrically symmetric atom
trap is inverted via the inverse Abel transform to yield the 3D density [17]. The potential along the axial
direction is harmonic, given by a magnetic field curvature, and is precisely known. Using the fact that
equidensity lines correspond to equipotential lines one obtains the equipotential contours also along
the radial direction. Averaging along these equipotential lines results in increased signal to noise in the
density # as a function of the potential V.

Knowing n(V'), we can obtain the local pressure at each potential value ' by a simple integral:
P(V) = f VOO dV’n(V'). We find one more thermodynamic variable by taking the derivative of n(V'),
the change of the density with respect to the potential, which yields the compressibility: k(') =
—n~2dn/dV . The density, pressure and compressibility together give the compressibility equation of
state k(n, P). Note that our method is general, it is not restricted to the unitary Fermi gas, and it does
not rely on any fit or external thermometer, as in [9, 10].

For the unitary Fermi gas, the absence of an interaction-dependent length scale dictates that all
thermodynamic quantities can be expressed by those for a non-interacting Fermi gas at zero temperature,
times universal functions of n/3. We thus define the normalized compressibility & = /Ky and the
normalized pressure p = P/ Py, where o = 3/2(nEr)~! and Py = 2/5nE are the compressibility
and pressure at same density for a non-interacting Fermi gas at T = 0, with E» = #?(3n°n)*/3/(2m)
the Fermi energy. Thanks to universality at the Feshbach resonance, any measurement on an atomic
cloud at any temperature, atom number, and trapping potential must produce the same universal curve
i(p). By averaging over numerous profiles, we obtain a low noise measurement of the compressibility
equation of state K(p).

The method is tested on a non-interacting Fermi gas, shown in Fig. 1(a), demonstrating good
agreement with the known EoS of a non-interacting gas. Our measurement for the strongly interacting
Fermi gas validates the high-temperature (high p) virial expansion that is known to third order [19].
A jump in the compressibility signals the normal-to-superfluid transition at around p = 0.55. In the
T = 0 limit, the chemical potential is proportional to the Fermi energy, 4 = ¢E, with ¢ the Bertsch
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Figure 1. (a) Normalized compressibility & as a function of normalized pressure p (red) at unitarity. Black open
squares (black curve): experimental measurement (theory) for non-interacting Fermi gas. Black dashed curve:
p = 1/& on which the EoS #(p) terminates at 7 = 0. (b) Heat capacity per particle, Cy /Nkg, as a function of
T/ Tr.Red: experimental measurement at unitarity. Black curve: theory for a non-interacting gas. In both (a) and (b):
the blue solid line is the third-order virial expansion; the blue dashed curve is a model incorporating diagrammatic
Monte Carlo [18] above 7., and BCS theory including phonons and pair-breaking excitations below 7; the Green
curve shows the effect of 2 ym imaging resolution on the model.

parameter [20]. This implies thatat 7 = 0, K = 1/& = 1/ p. This yields the black dashed curve in Fig. 1
that is approached by the compressibility equation of state at low temperatures (low p).

From the universal function %(p), we obtain all other thermodynamic quantities via thermodynamic
relations [11]. For example, the reduced temperature 7'/7r, where Tr = Er/kp is the Fermi
temperature, follows from a simple integral of the measured compressibility equation of state. The

i ja & = 1 2E =3 _dp _5Ir(p_1
specific heat then follows via N =GN GT |y, = 5a0/T) = 27 (p K) where we have used the

relation £ = %PV valid at unitarity, with V being the volume. The specific heat is shown in Fig. 1(b)
as a function of 7'/ Tr. For high temperatures, the heat capacity tracks that of a non-interacting gas,
approaching the ideal gas value 3/2Nkp. A dramatic rise and fall in the heat capacity signals the
superfluid transition, reminiscent of the A-transition in superfluid *He [21, 22]. Jumps in the specific
heat are also well-known from superconductors [23] and He [24]. To our knowledge, this is the first
time that a specific heat jump has been directly measured in an ultracold atomic gas. Previously, such
jumps had only been inferred from derivatives to fit functions that implied a jump [8, 25]. We measure
a critical temperature 7, = 0.167(13)7Tr. Scaled to the density of electrons in metals, this corresponds
to a critical temperature for superfluidity far above room temperature.

We further obtain the chemical potential u, energy E, free energy F, and entropy S of a strongly
interacting Fermi gas. In Fig. 2(a), we show u/Ep, E/Ey, and F/E, as a function of T/ Tr, where
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Figure 2. (a) Normalized chemical potential u/Er (red circles), energy E/E, (black circles), and free energy
F/E, (green circles) as a function of 7'/ Tr. Dashed curves: corresponding quantities for a non-interacting gas
at same 7'/ Tr shifted by &, — 1, where &, = 0.45. (b) Entropy per particle S/Nkp (red circles) as a function of
T/ Tr. Black curve: non-interacting entropy. Black open squares: 7'-matrix calculation [26]. Normalized density (c)
and pressure (d) as a function of chemical potential i and temperature 7. Red circles: experimental measurement.
Blue dashed curves: low-7" behavior with ¢ = 0.364 (upper), 0.376 (middle), and 0.388 (lower). Black dashed
curve: low-7 lowerbound given by the upperbound of ¢ < 0.383 [27]. Green solid circles (black fine dashed line):
experimental measurement (theory) for the ideal Fermi gas. Blue solid squares: diagrammatic Monte Carlo (DMC)
calculation [18] for density. Blue curve: DMC pressure, with blue dashed curves denoting the uncertainty bands.
Solid green line: third-order Virial expansion [19]. Open black squares: 7"-matrix calculation [26]. Open green
circles: lattice calculation [28]. Orange star and blue triangle: critical point from the Monte Carlo calculations [29]
and [30], respectively. Solid diamonds: ENS experiment [9]. Purple open diamonds: Tokyo experiment [10].

Ey = 3/5N Er is the energy of a non-interacting gas at same density and 7 = 0. The chemical potential
reaches a maximum at 7. and then drops again, consistent with the expectation of a superfluid of
paired fermions. At unitarity, these quantities satisfy the following bound E(7T) > E(0) = 3/5¢NEr =
F(0) > F(T) for all T [31]. All three quantitites approach ¢ as 7" — 0. Our measurements yield the
Bertsch parameter ¢ = 0.376(4).

Fig. 2(b) shows the entropy per particle as a function of temperature. At high temperatures, the
entropy tracks closely that of a non-interacting gas, and drops dramatically around the critical point,
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which we interpret as the freezing out of single-particle excitations due to pair formation. We obtain a
critical entropy S, = 0.73(13)Nkp. The lowest entropy we achieve is less than 0.04k g per particle.

In Fig. 2(c) and (d), we show the density » and pressure P as a function of the chemical potential x
and temperature 7', normalized by the corresponding density no(7, 1) and pressure Py(7, 1) at same
and T for a non-interacting gas. This representation allows for a direct comparison with several theories
for the unitary Fermi gas (see figure caption for Fig. 2).

In conclusion, we have performed a precise measurement of the equation of state of a strongly
interacting Fermi gas that directly revealed the superfluid phase transition. The method developed in
this work does not require an external thermometer nor a fitting procedure, and can be applied to other
atomic systems such as 2D Bose or Fermi gases and fermions in optical lattices. Our measurements
provide a stringent benchmark for theories of strongly interacting Fermi gases.

3. EVOLUTION OF FERMION PAIRING FROM THREE TO TWO DIMENSIONS

In two dimensions, two particles will form a bound state for arbitrarily weak interactions. In three
dimensions, there is instead a threshold for binding, as the interaction needs to overcome the kinetic
energy cost of forming the bound state. As Cooper has shown [32], two fermions on top of a filled
Fermi sea can still form a bound state for arbitrarily weak attractive interactions because the Fermi
sea restricts the density of available scattering states to a constant, like in 2D. In that case, the binding
energy depends on the Fermi energy. How, then, does the binding energy evolve as the system is tuned
continuously from three dimensions to two dimensions? How does the presence of the Fermi sea modify
the binding energy? We address these questions experimentally using a gas of fermionic °Li atoms
loaded into an optical lattice [12].

The binding energy is measured using radio frequency (rf) spectroscopy. Atoms are transferred
from one of two initial hyperfine states into a third state by an rf pulse. In addition to response at a
frequency corresponding to the atomic hyperfine splitting, we observe an asymmetric peak resulting
from the dissociation of pairs (Fig. 3). The threshold of the dissociation spectrum relative to the atomic
resonance gives the binding energy Ep.

Binding energies are measured for several lattice depths and scattering lengths (Fig. 4). At each
scattering length, the binding energy increases with increasing lattice depth. At negative scattering
lengths, where no low-energy bound state exists in 3D, non-zero binding energies are observed for
sufficiently large lattice depths, in agreement with the prediction of Orso et al. [33] for two particles
in a 1D lattice. At unitarity, the two-body binding energy is expected to approach 0.244%w, for deep
lattices, where o, is the harmonic approximation of the trapping frequency in a lattice well [34]. For a
finite lattice depth of 20 E¢, a two-body binding energy of 0.22% w, is expected at unitarity [33]. We find
an average binding energy of 0.232(16)% w, for lattice depths between 17 and 30 E, in agreement with
the two-body prediction in a deep lattice.

The agreement of the measured binding energies in 2D with those predicted for two isolated particles
is surprising since the measurements are performed on a many-body system. This, however, is consistent
with mean field theory, which predicts that in 2D, the threshold for single particle excitations from the
many-body ground state is exactly given by the two-body binding energy [12, 35]. Mean field theory,
however, is not expected to be accurate in the strongly-correlated regime, where the two-body binding
energy is on the order of the Fermi energy. Our measurements indeed show that the measured binding
energies deviate from the predicted two-body value in the center of the crossover, indicating possible
beyond mean-field corrections [12].

In similar experiments at Cambridge University rf spectroscopy was applied with momentum
resolution [36]. Further experiments across the dimensional crossover could elucidate the role of
dimensionality in the phase diagram of strongly interacting Fermi gases and provide insight into high-7,
superconductivity.
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Figure 3. Evolution of fermion pairing in the 3D to 2D crossover in a one-dimensional optical lattice, observed
via rf spectroscopy. (a) Spectra at the Feshbach resonance at with d/a = —0.01(4). Lattice depths from top to
bottom in units of Ex: 1.84(3), 4.8(2), 6.1(2), 9.9(4), 12.2(4), 18.6(7), and 19.5(7). (b) Spectra on the BCS-side
with d /a = —1.15(2). Lattice depths in units of Eg: 2.75(5), 4.13(7), 4.8(1), 6.0(2), 10.3(2), and 18.1(4).
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Figure 4. Binding energy £, versus lattice depth Vj at several values of the 3D scattering length a. £}, is normalized
via the lattice frequency .. Red circles: results from spectra at 690.7(1) G and d /a = —0.01(4). Green triangles:
720.7(1) G, d/a = —1.15(2). Blue squares: 800.1(1) G, d/a = —2.69(1). Curves show predictions from Orso
et al [33]. Black dashed line: harmonic approximation result for 1/a = 0 (see Ref. [12]).
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4. SPIN-ORBIT COUPLING IN FERMI GASES

The superfluid phase of strongly interacting fermions is distinguished from the normal phase by
spontaneous breaking of gauge symmetry. Other phases of matter, including those studied in the context
of the fractional quantum Hall effect and certain spin liquids, cannot be distinguished by broken
symmetries but rather by their topological order [37, 38]. The discovery of topological insulators
spurred interest in topological phases that do not break time-reversal symmetry [39-42]. Such phases
can be realized in lower dimensional Fermi gases with strong spin-orbit coupling in the presence of
Zeeman fields. In a non-interacting 2D gas, a non-Abelian spin-orbit gauge field gives rise to topological
insulators with protected edge states. Interactions lead to much richer physics; even for purely contact
interactions, spin-orbit coupling gives rise to effective p-wave interactions, resulting in topological
superfluids that host Majorana fermions at the interface to topologically trivial phases [43, 44].

Spin-orbit coupling, the key ingredient required for engineering these exotic phases, can be
realized in atomic gases by Raman dressing of electronic states. This was demonstrated in pioneering
experiments from the NIST group with Bose-Einstein condensates [45, 46] following theoretical
proposals of the concept [47-51]. A simple geometry for obtaining spin-orbit coupling consists of
two counter-propagating laser beams with a frequency difference chosen close to the energy splitting
between two hyperfine states of the atom. In presence of this Raman dressing, the Hamiltonian of the
system is given by

212 2

K 2 ke, + 280 1 2, 1)
where k is the momentum of the atom, Q is the momentum transferred by the Raman beams, Qp is
the coupling strength and ¢; measures the pseudospin along the ith direction. The Doppler shift term in
the Hamiltonian above can be interpreted as a momentum-dependent magnetic field coupling the spin
and the momentum of the atom. In condensed matter, this type of coupling is referred to as an equal
part Rashba-Dresselhaus coupling and naturally arises for example in one-dimensional quantum wires
[52, 53]. In the absence of the Zeeman field, the eigenstates of this Hamiltonian are two parabolas shifted
in momentum space by Q corresponding to the dispersion of each spin state. Introducing the Zeeman
field opens a spin-orbit gap and the dressed states form two helicity bands with a spin texture. A Bose-
Einstein condensate resides in the minima of the dispersion, while a degenerate Fermi gas explores a
wide range of momenta and the corresponding part of the spinful dispersion.

We have engineered spin-orbit coupling in a degenerate Fermi gas [14] of lithium by coupling
the second and third lowest hyperfine states with Raman beams detuned by 3.96 GHz to the blue of
the Dj line (also see [54] for spin-orbit coupling in a “°K Fermi gas). The difference in wavevectors
of the two lattice beams is Q = 27 x (1 um)~!, corresponding to a recoil energy Ez = h>0?%/2m =
h x 32(1)kHz. We have focused on studying the single particle physics in this system by working at a
field of 11.6 G where the scattering length between the two spin states is very small (20ay). By pulsing
on the Raman beams, we observe Rabi oscillations with a frequency that depends on the momentum of
the atom in the Fermi sea because of the Doppler detuning.

In order to reveal the bandstructure of the spin-orbit coupled Fermi gas, we introduce the technique
of spin-injection spectroscopy which relies on energy-selective injection of fermions from reservoir
states into an empty spin-orbit coupled system. We start with a spin-polarized Fermi gas occupying
either the first or fourth hyperfine state and use a radio frequency (1f) pulse at a given energy to transfer
fermions into the Raman-dressed states (Fig. 5(a)). Subsequently, the momentum and spin-composition
of the transferred atoms is measured by spin-selective imaging after time of flight. The spinful dispersion
is reconstructed from the measured spectra and the known free-particle dispersion in the reservoir
states [55]. The reconstructed dispersions for different strengths of the Rabi coupling are shown in
Fig. 5(b), showing the opening of the spin-orbit gap. If the chemical potential is chosen inside this gap,
the gas is in a semimetallic state and the system acts as a spin diode.

H =
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Spin-injection spectroscopy can be used to characterize more complicated spinful bandstructures. As
an example, we have created a lattice with such a bandstructure by adding a radio frequency coupling
between the bare states in the experiment described above [56]. In the previous scheme, each spin-state
can only acquire or lose a momentum equal to O from the Raman process. In the presence of the rf, the
atom that underwent a Raman spin-flip can be brought back into its original spin-state without changing
its momentum and acquire even higher momenta through further Raman processes. The spin-orbit
bandstructure described above is thus periodically reproduced in momentum space, resulting in a spinful
lattice. The rf coupling opens gaps in the bandstructure, enabling it to support fully insulating states.
Figure 6(a) shows the experimentally reconstructed bandstructure for the lattice and the associated spin
texture for the lowest band is seen in Fig. 6(b) and (c). While the bandstructure we have studied does
not possess a Zak phase, the spin-injection spectroscopy technique we have demonstrated is capable
of measuring such topological invariants if they exist, although it would have to be combined with
rf-induced rotations on the Bloch sphere to obtain all three spin components.
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5. TOWARDS FERMIONIC GROUND-STATE MOLECULES WITH STRONG
DIPOLAR INTERACTIONS

Quantum gases with dipolar interactions offer another intriguing avenue for the creation of novel phases
of matter. Dipolar interactions are anisotropic, long-range in character, and can be attractive or repulsive
depending on the mutual orientation of the dipoles. As a consequence, dipolar matter can show non-
trivial order, such as crystallization and supersolidity, support the emergence of topological phases,
and enable quantum simulation and computation on the grid of a lattice structure. A promising route
for the experimental realization of dipolar quantum gases is the formation of fermionic ground-state
molecules with a large electric dipole moment. Pioneering experiments have succeeded in creating a
gas of “K®’Rb ground-state molecules near quantum degeneracy [57]. However, KRb molecules are
chemically unstable in their ground state, limiting their lifetimes and hampering studies of many-body
physics.

Our efforts are directed towards the realization of chemically stable, fermionic ground state mol-
ecules of »*Na*’K. In addition to its chemical stability, the NaK molecule possesses a large induced
electric dipole moment of 2.72 Debye. Therefore, fermionic ground state molecules of NaK can form
a Fermi sea with strong, long-range anisotropic dipolar interactions, with an interaction energy that can
exceed 30% of the Fermi energy.

Our recent studies on Bose-Fermi mixtures of *Na and *°K have revealed a quantum gas mixture
with unique properties. As a first step, we have demonstrated that >*Na is a highly efficient coolant
for °K [58]. When sodium is in the hyperfine state |1, 1)n, and potassium in any hyperfine state of
the ' = 9/2 manifold, three-body losses are strongly suppressed. Together with a large background
scattering length (ap, ~ —700 ay, see below) and a favorable balance of forces in the optical dipole trap,
this results in the predominant evaporation of sodium and efficient cooling of °K.

As a second step, we located Feshbach resonances by mapping out simultaneous atom loss of both
species as a function of magnetic field [58]. We identified more than 30 s- and p-wave Feshbach
resonances for low magnetic fields (below 200 G) in the spin channels of |1, 1)n, and [9/2,mr)x
with mp = —-9/2,—7/2,—5/2,—3/2. Following a characteristic pattern, a wide s-wave resonance is
found in each of these state combinations, the widest being located at 140 G with an exceptional
width of 30 G between |1, 1)n, and |9/2, —5/2)x atoms. We further resolved p-wave multiplet
resonances whose multiplet structure is owed to their location at low magentic fields. The character,
the position, and the widths of the resonances were validated on the basis of the asymptotic bound-state
model.

The wide s-wave Feshbach resonances make 2*Na—*’K an ideal Bose-Fermi mixture to study many-
body physics, such as Bose or Fermi polarons, boson-mediated interactions between fermions or novel
phases of matter in optical lattices. Furthermore, the creation of open-channel dominated and, therefore,
long-lived Feshbach molecules are within reach.

Radio frequency (rf) association is a particularly clean way to form Feshbach molecules from
ultracold atomic samples. It intrinsically yields accurate information on the molecular binding energy
E}, [59] and works particularly well in the vicinity of wide Feshbach resonances, where the molecular
wavefunction can have a large extent and offer good overlap with two unbound atoms. We performed rf
spectroscopy in the vicinity of the |9/2, —3/2)x to |9/2, —5/2)k hyperfine transition (see Fig. 7b, inset)
using a balanced mixture of about 150.000 atoms of both |1, 1)x, and [9/2, —3/2)k. The temperature of
the mixture was close to the critical temperature for Bose-Einstein condensation.

A typical rf spectrum is shown in Fig. 7a, measured on the molecular side of the wide Feshbach
resonance between |1, 1)n, and |9/2, —5/2)k. It has two characteristic features: an atomic peak near the
unperturbed hyperfine transition, and a molecular peak revealing “°K atoms that have been associated
into NaK molecules. We typically create 20 x 10°> molecules, corresponding to a conversion efficiency
of about 15% of the initial °K atoms. The distance between the atomic and the molecular peak yields
the binding energy Ej.

01002-p.9
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19/2, —5/2)k hyperfine transition reveals two distinct features: Free “°K atoms repulsively interacting with the >*Na
bosonic bath near zero rf offset, and, near 85 kHz rf offset, associated Feshbach molecules. A fit to the molecular
association spectrum (inset), which takes into account the Franck-Condon factor and the probability density for pair
formation, yields a binding energy of £, = h x 84(6) kHz. The magnetic field was 129.4 G. (b) Binding energies
of NaK Feshbach molecules at the wide Feshbach resonance between |1, 1)n, and |9/2, —5/2)k. Binding energies
E), below 200 kHz (circles) are obtained by direct detection of molecules (see (a)); larger binding energies are
measured via simultaneous atom loss in |1, 1)n, and [9/2, —5/2)k.

The shape of the molecular peak is determined by the thermal distributions of Na and K, the Franck-
Condon factor between bound and unbound Na-K pairs, as well as the finite experimental resolution.
A fit including these effects (see inset of Fig. 7(a)) allows us to obtain an accurate value for the binding
energy at a given magnetic field. The molecular binding energy as a function of magnetic field is shown
in Fig. 7(b). The quadratic dependence of the binding energy reflects the open-channel character over a
wide magnetic field range, where the binding energy follows Ej, o< 1/(a — @) with the mean scattering
length @ = 51 ap and a(B) ~ ays [1 + AB/(B — By)]. Based on the asymptotic bound-state model we
determine a large and negative background scattering length ap, = —6901’?20 ap, a resonance position
of By = 139.7%7} G, and a width of AB = 29(2) G.

Studying the time-of-flight expansion of NaK Feshbach molecules via direct absorption imaging, we
determined an effective temperature of 500 nK, corresponding to a degeneracy factor of 7'/ Tg o1 = 1.7.
Additionally, we observed a remarkably long molecular lifetime of about 8 ms (at £, = & x 32kHz)
even in the presence of unassociated, remaining Na and K atoms. Utilizing the species-selectivity of
the depth of our optical dipole trap (4 = 1064 nm), we were able to remove bosonic Na atoms from
the sample and observed strongly enhanced molecular lifetimes of more than 100 ms in the vicinity
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of the Feshbach resonance. The corresponding loss rate due to collisions of molecules with leftover
19/2,—3/2)k atoms is B = 8(2) x 10~'2cm?/s. This is three times lower than the lowest loss rate
measured for KRb molecules.

In our studies we have created near-degenerate, long-lived fermionic Feshbach molecules of NaK, a
molecule that is chemically stable in its absolute ground state. From our measurement of the molecular
binding energies, we deduce that the Feshbach molecules are open-channel dominated over a large
magnetic field range, which goes along with significant singlet character. The observed conditions are
ideal to perform a two-photon STIRAP transfer into the rovibrational ground state. In view of an induced
dipole moment of 2.72 Debye and chemical stability, NaK constitutes an ideal candidate to create
a strongly dipolar Fermi gas with dominating long-range anisotropic interactions — a novel quantum
resource with yet unforeseen possibilities in quantum simulation, quantum computation and quantum
chemistry.

6. CONCLUSION AND OUTLOOK

These proceedings summarize our recent experiments on Fermi gases, with the unifying theme of
understanding and creating strong interactions. Our method for determining the thermodynamics of
ultracold gases can be applied to a variety of novel systems under current investigation, such as the lower
dimensional Fermi gases (section 3) and spin-orbit coupled Fermi gases (section 4). Generally, in the
quest to go beyond s-wave pairing, towards novel states of fermionic matter that might have topological
properties, a variety of possibilities open up, from using laser beams to modify the dispersion relation
in spin-orbit coupling (section 4) to harnessing dipolar interactions between fermionic molecules
(section 5). Each method comes with their own challenges, but also their own advantages, and the more
interesting systems are found, the larger the probability that we find new, exotic, but stable and robust
states of matter.
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