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Abstract

Background: Circulating tumor cells (CTCs) are cancer cells that can be isolated via liquid biopsy from blood and can be
phenotypically and genetically characterized to provide critical information for guiding cancer treatment. Current analysis of
CTCs is hindered by the throughput, selectivity and specificity of devices or assays used in CTC detection and isolation.

Methodology/Principal Findings: Here, we enriched and characterized putative CTCs from blood samples of patients with
both advanced stage metastatic breast and lung cancers using a novel multiplexed spiral microfluidic chip. This system
detected putative CTCs under high sensitivity (100%, n = 56) (Breast cancer samples: 12–1275 CTCs/ml; Lung cancer
samples: 10–1535 CTCs/ml) rapidly from clinically relevant blood volumes (7.5 ml under 5 min). Blood samples were
completely separated into plasma, CTCs and PBMCs components and each fraction were characterized with
immunophenotyping (Pan-cytokeratin/CD45, CD44/CD24, EpCAM), fluorescence in-situ hybridization (FISH) (EML4-ALK) or
targeted somatic mutation analysis. We used an ultra-sensitive mass spectrometry based system to highlight the presence
of an EGFR-activating mutation in both isolated CTCs and plasma cell-free DNA (cf-DNA), and demonstrate concordance
with the original tumor-biopsy samples.

Conclusions/Significance: We have clinically validated our multiplexed microfluidic chip for the ultra high-throughput, low-
cost and label-free enrichment of CTCs. Retrieved cells were unlabeled and viable, enabling potential propagation and real-
time downstream analysis using next generation sequencing (NGS) or proteomic analysis.
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Introduction

Circulating tumor cells (CTCs) is a collective term to describe

cancer cells of solid tumor origin found in the blood of cancer

patients. The heterogeneous nature of CTCs provides a compre-

hensive yet non-invasive means for characterizing tumor molec-

ular subtypes, which can be utilized for stratifying patients to

appropriate cancer therapy [1,2]. Current CTC capture platforms

employ flow cytometry [3], fluorescence and magnetic-activated

cell sorting methods [4], gradient centrifugation [5], and filtration

[6,7,8]. These techniques are often limited by lengthy and

complicated processing procedures, low purity and cell viability.

An assay with high throughput, selectivity and specificity for CTC

detection is pivotal for advancing CTC characterization and utility

[9]. At present, Epithelial Cell Adhesion Molecule (EpCAM) is the

most popular epithelial biomarker commonly used in the detection

of CTCs [10]. However, EpCAM may not be expressed in all

CTCs due to epithelial-mesenchymal transition (EMT) [11,12].

PLOS ONE | www.plosone.org 1 July 2014 | Volume 9 | Issue 7 | e99409

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0099409&domain=pdf


There is also growing interest in plasma cell-free DNA (cf-DNA) as

an alternative for a non-invasive biomarker. Initial investigations

suggest a degree of concordance between cf-DNA, CTCs [13],

and disseminated tumor cells (DTCs) in metastatic breast cancer

patients, highlighting the possibility that cf-DNA can be of

prognostic value [11].

We previously developed a novel integrated spiral microfluidic

device for CTC enrichment from whole blood [14]. Here, we

adopted an enhanced and high-throughput multiplexed version

that demonstrated high sensitivity by the consistent detection of

viable putative CTCs (Breast cancer samples: 12–1,275 CTCs/ml;

Lung cancer samples: 10–1,535 CTCs/ml) from 100% of patients’

blood samples (n = 56) of clinically relevant volumes (7.5 ml).

Blood samples were completely fractionated to plasma, CTCs and

PBMCs components for further downstream analysis such as

immunostaining (Pan-cytokeratin+/CD45-), fluorescence in-situ

hybridization (FISH) (EML4-ALK) or targeted somatic mutation

analysis. We also demonstrated the rare presence of EGFR-

activating mutation in isolated CTC-DNA and cf-DNA, as well as

original tumor-biopsy samples via targeted somatic mutation.

Retrieved cells were unlabeled and hence more viable for

propagation and other informative downstream analysis such as

next generation sequencing (NGS) and proteomic analysis.

Materials and Methods

Ethics statement and clinical sample preparation
This study was approved by respective institutional review

boards (IRB) and local ethics committee (National Healthcare

Group (NHG)) (DSRB Reference 2012/00105, 2012/00979,

2010/00270, 2010/00691). Informed and written consent was

obtained from all patients. IRB and ethics committee approval was

also granted for NSCLC samples where retrospective archival

specimens were retrieved (Singhealth 2010/516/B). Ten blood

samples from healthy donors and 58 (56+2) blood samples from

patients with metastatic lung or breast cancer were acquired.

Blood samples were stored in EDTA-coated vacutainer tubes

(Becton-Dickinson, Franklin Lakes, NJ, USA). Plasma was

fractionated from whole blood for the lung samples by centrifu-

gation (15006g, 10 min). Blood samples were then lysed using red

blood cell (RBC) lysis buffer (gBioscience, USA) according to

manufacturer’s recommendations. The nucleated cell fraction was

resuspended with phosphate buffered saline (PBS) to desired

concentration (Fig. 1A).

Device fabrication
The microfluidic chips were fabricated using standard soft-

lithography techniques in polydimethylsiloxane (PDMS) described

elsewhere [14,15]. After fabrication of individual chips, the

multiplexed device was obtained by stacking three separate

devices together using manual alignment and oxygen plasma

bonding. The fluidic inlets and outlets were punched into the

assembly and final device obtained by bonding the whole assembly

to a pre-cleaned microscopic glass slide using plasma machine.

Sample processing
Blood samples at 2X concentration (i.e., 7.5 ml of whole blood

was lysed and resuspended in 3.75 ml of PBS) was placed into a

10 ml BD Luer-Lok syringe (Becton, Dickinson and Company)

and pumped into the multiplexed chip using a syringe pump (NE-

1000, New Era Pump Systems Inc., USA). Sheath consisted of

0.5% BSA in PBS supplemented with 2 mM EDTA and was

similarly introduced into the biochip via a separate syringe pump

(PHD 2000, Harvard Apparatus, USA). Sample and sheath were

introduced into the device at a fixed flow ratio of 1:9 for optimal

separation. Device was connected to syringes and collection tubes

(falcon tubes; Becton, Dickinson and Company) by Tygon tubings

(Spectra-teknik, USA). The enrichment process was visualised with

an inverted microscope (Olympus IX71) linked to a high-speed

CCD camera (Phantom v9, Vision Research Inc., USA) and

operated using the Phantom Camera Control software.

Immunofluorescence staining and enumeration
Enriched cell fractions were fixed with 4% paraformaldehyde

(PFA, Sigma, USA) for 10 min at room temperature, permeabi-

lized with 0.1% Triton X-100 (Sigma Aldrich, USA), mixed and

incubated with fluorescein isothiocyanate (FITC) conjugated pan-

cytokeratin antibodies, allophycocyanin (APC) conjugated CD45

antibodies (1:100, Miltenyi Biotec Asia Pacific, Singapore) and

Hoechst 33342 dye (1M, Sigma) in PBS buffer supplemented with

0.5% BSA on ice for 30 min. Other antibodies used included

EpCAM (APC), CD44 (FITC) and CD24 (APC) (all 1:100, from

Miltenyi Biotec Asia Pacific, Singapore). Stained cells were

concentrated and imaged with an Olympus inverted microscope

(Tokyo, Japan) (Emission filters ET460/50m, ET535/50m and

ET 605/70; Olympus, Tokyo, Japan) equipped with an automated

stage. Enriched cells were placed within the well of a 96-well plate

(Thermo Scientific, USA) and the well was automatically scanned

in a 1 mm61 mm grid format using a programmable stage and

Metamorph software (California, United States). Corresponding

image sets (at 40X magnification) were compared to determine

presence of putative CTCs. Hoechst-positive/pan-cytokeratin-

positive (CK+)/CD45-negative (CD45-) enriched cells generally

(but not exclusively) with round nucleus and high nuclear to

cytoplasmic ratio were considered putative CTCs. Enriched cells

of some samples were also seeded onto 2D Geltrex (Invitrogen)

coated substrates and incubated at 37uC and 5% CO2 to allow

adherence of viable cells. Non-adherent cells were washed and

removed gently with 1X PBS after 72 hr. Adherent cells were then

stained with FITC conjugated pan-cytokeratin antibodies and

APC conjugated CD45 antibodies. Some samples were also

stained for 15 min on ice with potassium iodide (PI) after

microfluidic processing to determine viable proportion of enriched

cells.

DNA extraction and sequencing
DNA extraction was carried out on pooled cells (QIAamp DNA

Blood Minikit (Qiagen, Hilden, Germany)), plasma DNA

(QIAamp circulating nucleic acid kit (Qiagen, Hilden, Germany))

and formalin-fixed paraffin embedded tumour specimens

(QIAamp DNA FFPE tissue kit (Qiagen, Hilden, Germany)).

Absolute number of intact copies of extracted genomic DNA was

determined by Sequenom Sample ID panel (Sequenom Inc, CA,

USA). Targeted somatic mutation analysis was performed by PCR

amplification followed by Single Allele Base Extension Reaction

(SABER) [16] and standard iPlex chemistry [17,18]. Resultant

mutant allele products were detected by mass spectrometry

(Sequenom, CA, USA). PCR amplification was performed with

Sequenom PCR Reagents Set (Sequenom) (95uC, 2 minutes; 45

cycles 295uC, 30 sec; 56uC for 30 sec; 72uC, 60 sec; 72uC,

5 min). Residual dNTPs were dephosphorylated (0.5 units SAP

enzyme (Sequenom)), incubated (37uC, 40 min) and enzyme

deactivated (5 min, 85uC) followed by single base extension

(Sequenom iPLEX Pro Kit (Sequenom) (94 uC, 30 sec; 40 cycles

295uC, 5 sec; 5 internal cycles 252uC, 5 sec; 80 uC, 5 sec; 72 uC,

3 min)). PCR products were de-salted using 6 mg of ion exchange

resin (Sequenom) in 16 ml HPLC water. Cleaned PCR product

was spotted onto MassArray SpectroCHIPS II (Sequenom) using

Spiral Microfluidics for Rare Circulating Tumor Cell Enrichment
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the MassARRAY RS1000 Nanodispenser. MALDI-TOF MS

analysis was performed using the MassArray MA4.

DNA Fluorescence in-situ hybridization (FISH)
Cell spots were prepared with Cytospin centrifuge (Thermo

Scientific, USA) (600 rpm, 6 min), fixed (acetic acid/methanol)

and dehydrated via ethanol series (80%, 90%, and 100%). Slides

were treated with RNase (4 mg/ml) (Sigma, USA) (40 min, 37uC),

washed (1X PBS/0.2% Tween 20 (Sigma, USA)), denatured (70%

formamide/2X SCC; 10 min, 80uC) and quench dehydrated via

ice-cold ethanol series. EML4-ALK probe (Vysis LSI ALK

breakapart, Abbott, USA) hybridization was carried out under

dark and humid conditions (42uC, overnight). Hybridized slides

were washed with 50% formamide/2X SSC and 2X SSC at 45uC,

counterstained with 4’, 6-diamidino-2-phenylindole (DAPI) and

sealed.

Statistical methods
As CTC levels in patients were not normally distributed, results

were presented as counts and medians with the corresponding

percentages and ranges.

Results

Enhanced spiral microfluidic device
The microfluidic device consisted of three stacked spiral

microfluidic chips with two inlets and two outlets (Fig. 1B).

Suspended cells under flow within a curvilinear microchannel

experience inertial lift forces coupled with the rotational Dean

drag force in the fluid regime. The combination of these forces

focuses the cells at certain equilibrium positions of the channel

cross-section [19]. Since these forces are a function of cell size, cells

of different sizes (larger CTCs and smaller hematologic cells)

occupy distinct lateral positions away from the microchannel walls,

and this allows for size-based separation at the outlets [14,20].

Enrichment of putative CTCs from patients with
metastatic breast or lung cancer

Blood samples (7.5 ml) from 10 healthy donors (Table S1 in File

S1) and 58 patients (Table S2 in File S1) with metastatic breast or

non-small cell lung cancer (NSCLC) were processed using the

multiplexed spiral microfluidic chip. Two samples included in the

table were not enumerated for CTCs and their enriched samples

were directly processed for SABER molecular analysis (see section

below). Hoechst positive/pan-cytokeratin-positive (CK+)/CD45-

Figure 1. Overview of sample preparation and processing procedures. (A) Sample processing workflow showing different steps of
enrichment and identification. (i) The blood sample is collected; (ii) Plasma is separated using standard centrifugation (15006g for 10 min) and stored
at 280 degree Celsius for DNA analysis. (iii) RBCs are lysed using ammonium chloride and (iv) sample is processed through multiplexed spiral chip
within 10 min. (v) The isolated CTCs are available for immunostaining using standard markers or FISH (fluorescence in situ hybridization). DNA or RNA
can be extracted from the CTCs and subjected to next-generation sequencing and q-PCR. Viable cells can be released and propagated in cell culture
for various applications including cancer stem cell (CSC) study or drug discovery. (B) Illustration of the design of a multiplexed device (left) and optical
image of an actual multiplexed spiral microfluidic device (middle) for capturing CTCs with two inlets and two outlets. Blood sample and sheath fluid
are pumped through the device using two separate syringe pumps. Under the influence of inertial lift and Dean drag forces in the fluid flow, CTCs
focus near microchannel inner wall (Region A-A) while WBCs and Platelets goes through one Dean cycle and migrate back towards the outer wall
(Region B-B), thus achieving separation.
doi:10.1371/journal.pone.0099409.g001
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negative (CD45-) enriched cells were considered putative CTCs

(Fig. 2A, 2B). These cells generally (but not exclusively) exhibit

round nucleus and high nuclear to cytoplasmic ratio. CTCs were

detected in 100% (n = 56) of all samples, with a varied range of

CTCs isolated for breast cancer samples (12-1,275 CTCs/ml)

(Median: 55 CTCs/ml) and NSCLC samples (10–1,535 CTCs/

ml) (Median: 82 CTCs/ml) respectively (Fig. 2B). CK+/CD45-

cells were detected at significantly lower counts in healthy samples

(2–7 CK+cells/ml). These could be attributed to epithelial cells

present at trace amounts in blood. However, due to their small

number in comparison with that of cancer patients, a detection

threshold at .7 CK+/CD45- cells was thus determined for a

Figure 2. Enumeration of CTC from cancer patients. (A) Immunofluorescence staining of isolated CTCs. CTCs (marked by white arrow) were
identified by the following criteria: Hoechst+, pan-CK+ and CD45-. Scale bar: 20 mm (B) Box plot summary indicating the range of CK+cells/ml
recovered from the sample outlet for blood samples extracted from healthy volunteers, as wells as breast and lung cancer patients. The box plot
presents the median, lower and upper quartiles (25th,75th percentiles). Data points that lie outside the 10th and 90th percentiles are shown as outliers
(Anova, p,0.001). Encapsulated image of PAP stained isolated cells shows a large CTC with high nucleus to cytoplasmic (N/C) ratio (labeled with
white arrow). (C) Staining of CTC for pan-CK and CD45. Upper panel depicts a representative image of cells which were double positive (CK+/CD45+);
while lower panel shows a double negative (CK-/CD45-) cell. Scale bar: 20 mm (D) Staining of CTC for pan-cytokeratin and EpCAM. Scale bar: 20 mm.
doi:10.1371/journal.pone.0099409.g002
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sample to be considered significantly positive for CTCs. Also, a

negligible amount of double positive CK+/CD45+cells (,5%,

data not reported) were detected in our enriched samples, as was

similarly reported elsewhere [21]. However, since the nature of

these cells is yet to be established, they are not considered for

enumeration in our study. We also observed many Hoechst+/

CK-/CD45- cells among the captured putative CTCs (Fig. 2C).

This population varied in distribution across all samples, and was

present at an average proportion of 51.5617.3% of the total

nucleated cells (Table S2 in File S1). Several hypothesis generated

to explain their presence include the theory of cancer cell

intermediates due to EMT [12,22]. Five enriched samples were

also immunostained for EpCAM, and EpCAM-/CK+ and

EpCAM+/CK+ cells were detected in the isolated CTCs

(Fig 2D). These EPCAM- cells constituted more than half of the

enriched cell population (,89.160.6%) (Fig. S1 in File S1) and

are generally CD45-. A portion of CK+ putative CTCs from these

5 enriched samples were also positive for EMT markers such as E-

cadherin and Vimentin (Fig. S2 in File S1). Enriched samples

generally retained viability, as determined by potassium iodide

staining (,87.5%, Fig. S3 in File S1). Furthermore, a fraction of

these enriched viable CTCs maintained on 2D substrates

expressed CD44 (Fig. 3A), and some CD44+ cells also co-

expressed CD24 (,24.761.4%) (Fig. S4 in File S1). The

expression of CD44 is associated with cancer stem cell-like traits

[23].

Head to head comparison with CellSearch assay
Comparisons on the CTC enumeration values between the FDA

approved CellSearch assay and our multiplexed spiral biochip

were conducted with 10 blood samples from patients with breast

or lung cancer. CTCs were detected in 80% (8/10) samples using

CellSearch, and 100% of the samples (10/10) by the multiplexed

spiral microfluidic chip. A significantly lower range of CTC count

was obtained from CellSearch as compared to the multiplexed

spiral device (Fig. 3B), implying loss of EPCAM- CTCs using

CellSearch. Data illustrating similar limitations in detecting lung

CTCs and contrast between CTC counts obtained has been

previously highlighted in comparison study between CellSearch

and ISET [24].

Identifying therapeutically tractable alterations in CTCs
and plasma

Given the challenge with low tissue yield from lung biopsies, we

sought to determine therapeutically tractable alterations in

enriched NSCLC CTCs. EML4-ALK gene translocation is found

in approximately 1 to 6.7% of NSCLC patients [25,26]. In an

index ALK positive NSCLC (sample no 18, Table S2 in File S1),

we demonstrated ALK rearrangement in CTCs (Fig. 3C) using the

ALK Vysis breakapart probe (Abbott Molecular, USA) after

enumeration and fixation of spotted cells. Out of 177 enumerated

cells, 25.4% were found to have positive signals for ALK

rearrangement, with the same fusion signal identified in 54% of

200 cells in the original FFPE sample. We also performed targeted

mutation profiling of both plasma and CTCs in three NSCLC

patients using SABER [16], previously shown to detect rare alleles

down to ,0.5% frequency [18] in a single reaction. Technical

replicates were performed where the amount of input template, as

determined by Sample ID panel, was ,150 intact template copies,

such that a single mutant strand would be observed by the SABER

method. Up to 128 technical replicates were performed, depend-

ing on the amount of intact extracted DNA template isolated from

each sample. In all three samples, EGFR mutations were detected

in diagnostic tumour specimens using the Sequenom massarray

using standard iPlex chemistry. One baseline sample (sample

no 32, Table S2 in File S1) demonstrated concordance across

formalin-fixed paraffin-embedded tumor (FFPE) tumor block,

plasma and CTCs, although at differing mutant allele frequency

(33%, 32% and 1.5% respectively, Fig. 3D). Interestingly, one

patient was sampled serially and showed no mutations in plasma

and CTCs after treatment with gefitinib (sample no 33, Table S2

in File S1), an EGFR TKI inhibitor. In the last sample (sample

no 11, Table S2 in File S1), while no mutation was detected in the

circulating plasma DNA, it was detected at very low concentra-

tions in pooled CTCs (0.05%) (TIL).

Discussion

Progression in CTC characterization critically hinges on the

development of techniques to enrich CTCs under high concen-

trations and purity [27]. The development of label-free and high

throughput assays to obtain reliable ‘real-time’ analysis of the

disease status is necessary to facilitate personalized treatment

strategies [28]. Previously, we demonstrated a novel spiral

microfluidics technique for the detection and enrichment of

CTCs. The multiplexed version presented here had been further

enhanced to provide a device of high throughput (20 times faster)

(7.5 ml in less than 5 min), high sensitivity (100% detection) (3–

1,535 CTCs) and selectivity (Mean: 750 WBCs/ml). Isolated

CTCs remained viable and can be potentially propagated in

culture.

Blood samples can be completely fractionated to plasma, CTCs

and PBMCs components, which provides the opportunity to

interrogate each component with genomic and transcriptomic

tools. We obtained high definition images of immunostained

putative CTCs (Hoechst+/pan-cytokeratin+/CD45-) and further

identified therapeutically tractable genomic alterations (EML4-

ALK translocation) in CTCs, using gold standard FISH assays as

well as a mass spectrometry based method for mutational profiling.

In a patient with paired CTCs and plasma, we demonstrated

concordance in EGFR mutation in both cf-DNA and CTCs.

Despite the low WBC count through the use of the spiral

microfluidic biochips, somatic mutations were found in pooled

CTCs at very low frequencies (1.5% and 0.05%). Possible reasons

Figure 3. Downstream analysis of enriched CTCs. (A) CTC viability demonstrated by attachment to 2D Geltrex (Invitrogen)-coated substrate
(72 hr after seeding). Isolated CTC were enriched for CD44. No cells were stained for CD45, indicating the absence of WBCs which did not adhere to
substrate and were removed after washing with 1X PBS. Some CD44+cells were not stained for Hoechst (white arrows). Scale bar: 20 mm (B)
Comparison of CTC isolation and recovery with CellSearch system. (C) Molecular FISH analysis on enriched CTCs of a patient with NSCLC. Cells were
stained using Vysis ALK Break Apart FISH probe and counterstained with DAPI. The red and green signals demonstrated a distinct separation of the
original fusion signal (arrows), indicating a rearrangement in the 2p23 ALK-gene locus. Scale bar: 16 mm. (D) MassArray spectra for a patient with
NSCLC harboring EGFR L747_P753.S. Trace from FFPE, plasma and pooled CTCs illustrated. Percentage indicates calculated proportion of mutant
allele against wild type allele (UEP: Unextended primer). (i) iPlex bi-allelic spectra on FFPE sample (33% mutant frequency), (ii) iPlex bi-allelic spectrum
on plasma sample (32% mutant frequency), (iii) SABER mutant specific spectrum on plasma sample (Positive – high frequency), (iv) SABER mutant
specific spectrum on CTCs (Positive – low frequency (n = 3/94), estimated mutant frequency of 1.4%) and (v) Representative iPlex & SABER (shown)
spectrum on no-template control sample (Negative).
doi:10.1371/journal.pone.0099409.g003
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include the presence of heterogeneous cell populations in

circulation whose molecular profiles are discordant from the

primary. Given the amount of DNA required for this high

sensitivity assay, multiplexed mutational analysis may be feasible

to reliably obtain genetic patterns of CTCs. The fast processing

time and label-free nature of the spiral microfluidic biochip lends

itself to a broad range of potential genomic and transcriptomic

applications. There are currently ongoing studies to apply RNA-

based single-cell molecular analysis and next generation sequenc-

ing (NGS) on captured CTCs. The improvisation of such

upcoming techniques for CTC enrichment and characterisation

will hopefully shed new light on the CTC biology (origin,

progression) and utilisation for therapeutics and treatment.

Supporting Information

File S1 Contains the following Supporting Information files:

Table S1: List of healthy samples as controls. Table S2: List of

patient samples for clinical validation. Clinico-pathological

characteristics are provided for patients with metastatic lung or

breast cancer who provided samples for CTC enumeration.

Samples may be serially obtained from a single patient and these

are indicated by the patient number. C: Cycle, D: Day. Post sutent

pre AC samples are stated to be ,3 weeks post-treatment. Figure
S1: EpCAM staining of enriched cell populations. (A) Immuno-

staining with EpCAM-FITC and CD45-APC antibodies. (B) Flow

cytometry analysis of EpCAM/CD45 cell populations. Scale bar:

20 mm. Figure S2: CTC images displaying variation in EMT

biomarker expression. (A) CK+ cells can either be E-cadherin+ or

E-cadherin- on breast CTCs. (B) CK+ cells can either be

Vimentin+ or Vimentin- on breast CTCs. Scale bar: 20 mm.

Figure S3: Scattered plot obtained with flow cytometry analysis.

Potassium iodide staining of enriched samples to determine

viability. Figure S4: Flow cytometry analysis of CD44-FITC/

CD24-APC cell populations.

(DOC)
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