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Abstract

We suggest a simple method for improving the security of
hashed passwords: the maintenance of additional “hon-
eywords” (false passwords) associated with each user’s
account. An adversary who steals a file of hashed pass-
words and inverts the hash function cannot tell if he has
found the password or a honeyword. The attempted use
of a honeyword for login sets off an alarm. An auxiliary
server (the “honeychecker”) can distinguish the user pass-
word from honeywords for the login routine, and will set
off an alarm if a honeyword is submitted.
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1 Introduction

Passwords are a notoriously weak authentication mecha-
nism. Users frequently choose poor passwords. An adver-
sary who has stolen a file of hashed passwords can often
use brute-force search to find a password p whose hash
value H(p) is equal to the hash value stored for a given
user’s password, thus allowing the adversary to imperson-
ate the user.

A recent report by Mandiant1 illustrates the signifi-
cance of cracking hashed passwords in the current threat
environment. Password cracking was instrumental, for in-
stance, in a recent cyberespionage campaign against the
New York Times [32]. The past year has also seen nu-
merous high-profile thefts of files containing consumers’

1http://intelreport.mandiant.com/

passwords; the hashed passwords of Evernote’s 50 million
users were exposed [20] as were those of users at Yahoo,
LinkedIn, and eHarmony, among others [19].

One approach to improving the situation is to make
password hashing more complex and time-consuming.
This is the idea behind the “Password Hashing Competi-
tion.”2 This approach can help, but also slows down the
authentication process for legitimate users, and doesn’t
make successful password cracking easier to detect.

Sometimes administrators set up fake user accounts
(“honeypot accounts”), so that an alarm can be raised
when an adversary who has solved for a password for such
an account by inverting a hash from a stolen password file
then attempts to login. Since there is really no such le-
gitimate user, the adversary’s attempt is reliably detected
when this occurs. However, the adversary may be able to
distinguish real usernames from fake usernames, and thus
avoid being caught.

Our suggested approach can be viewed as extending
this basic idea to all users (i.e., including the legitimate
accounts), by having multiple possible passwords for each
account, only one of which is genuine. The others we
call “honeywords.” The attempted use of a honeyword to
login sets off an alarm, as an adversarial attack has been
reliably detected.

This approach is not terribly deep, but it should be
quite effective, as it puts the adversary at risk of being
detected with every attempted login using a password
obtained by brute-force solving a hashed password.

Thus, honeywords can provide a very useful layer of
defense.

2https://password-hashing.net/index.html
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We are not sure whether this approach is new; we have
not seen any literature describing precisely the same pro-
posal. (Let us know if you have!) Perhaps the closest
related work we’re aware of is the Kamouflage system of
Bojinov et al. [6]. See Section 8 for further details. To
the best of our belief, the term “honeyword” first ap-
peared in that work. Also closely related to our proposal
is the anecdotally reported practice of placing whole, bo-
gus password files (“honeyfiles”) on systems and watching
for submission of any password they contain as signalling
an intrusion.

In any case, our hope is that this note will help to
encourage the use of honeywords.

2 Technical Description

2.1 Context

We assume a computer system with n users u1, u2, . . . , un;
here ui is the username for the ith user. By “computer
system” (or just “system” for short) we mean any system
that allows a user to “log in” after she has provided a
username and a password; this includes multi-user com-
puter systems, web sites, smart phones, applications, etc.

We let pi denote the password for user ui. This is the
correct, legitimate, password; it is what user ui uses to
log in to the system.

In current practice, the system uses a cryptographic
hash function H and stores hashes of passwords rather
than raw passwords. That is, the system maintains a
file F listing username / password-hash pairs of the form

(ui, H(pi))

for i = 1, 2, . . . , n. On Unix systems the file F might be
/etc/passwd or /etc/shadow.

The system stores password hashes rather than raw
passwords so that an adversary with access to F does
not find out the passwords directly; he must invert the
hash function (compute pi from H(pi)) to find out the
password for user ui (see Evans et al. [1] and Purdy [33]).

The computation of the hash function H may (should!)
involve the use of system-specific or user-specific parame-
ters (“salts”); these details don’t matter to us here. When
a user attempts to log in, the file F is checked for the pres-
ence of the hash of the proffered password in the user’s
entry (see Morris and Thompson [26]).

2.2 Attack scenarios

There are many attack scenarios relating to passwords,
including the following six:

• Stolen files of password hashes: An adversary
is somehow able to steal the file of password hashes,
and solve for many passwords using offline brute-
force computation. He may more generally be able
to steal the password hash files on many systems, or
on one system at various times.

• Easily guessable passwords: A substantial frac-
tion of users choose passwords so poorly that an ad-
versary can successfully impersonate at least some
users of a system by attempting logins with com-
mon passwords. (See Bonneau [7, 8].) Schecter et
al. [36] suggest fighting this threat by requiring users
to use uncommon passwords.

• Visible passwords: A user’s password is com-
promised when an adversary views it being entered
(shoulder-surfing), or an adversary sees it on a yel-
low stickie on a monitor. A one-time password gen-
erator3 such as RSA’s SecurID token provides good
protection against this threat.

• Same password for many systems or services:
A user may use the same password on many systems,
so that if his password is broken on one system, it is
also thereby broken on others.

• Passwords stolen from users: An adversary may
learn user passwords by compromising endpoint de-
vices, such as phones or laptops, using malware or
by perpetrating phishing attacks against users.

• Password change compromised: The mecha-
nism for allowing users to change or recover their
passwords is defective or compromised, so an adver-
sary can learn a user’s password, or set it to a known
value.

We focus on the first attack scenario where an adver-
sary has obtained a copy of the file F of usernames and
associated hashed passwords, and has obtained the values
of the salt or other parameters required to compute the
hash function H.

In this scenario, the adversary can perform a brute-
force search over short or likely passwords, hashing each
one (with salting if necessary) until the adversary deter-
mines the passwords for one or more users. (See for ex-
ample Weir et al. [40].) Assuming that passwords are the

3http://en.wikipedia.org/wiki/One-time_password
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only authentication mechanism in place, the adversary
can then log in to the accounts of those users in a reliable
and undetected manner.

In this paper, we assume that the adversary can invert
most or many of the password hashes in F .

We assume that the adversary does not compromise the
system on a persistent basis, directly observing and cap-
turing newly created passwords and honeywords. (Cer-
tainly, the adversary risks detection the first time he tries
logging in using a cracked password, since he may be us-
ing a honeyword; after that, the ability of the system to
detect further attempts to login using cracked passwords
may be compromised if the adversary is able to modify
the login routine and its checks, or the password-change
routine.)

Although our methods are directed to the first attack
scenario, some of our approaches (e.g., the take-a-tail
method) also have beneficial effects on password strength,
thus helping to defeat the other attacks as well.

2.3 Honeychecker

We assume that the system may utilize an auxiliary secure
server called the “honeychecker” to assist with the use of
the honeywords.

Since we are assuming that the computer system is vul-
nerable to having the file F of password hashes stolen, one
must also assume that salts and other hashing parameters
can also be stolen. Thus, there is likely no place on the
computer system where one can safely store additional
secret information with which to defeat the adversary.

The honeychecker is thus a separate hardened com-
puter system where such secret information can be stored.
We assume that the computer system can communicate
with the honeychecker when a login attempt is made on
the computer system, or when a user changes her pass-
word. We assume that this communication is over ded-
icated lines and/or encrypted and authenticated. The
honeychecker should have extensive instrumentation to
detect anomalies of various sorts.

We also assume that the honeychecker is capable of
raising an alarm when an irregularity is detected. The
alarm signal may be sent to an administrator or other
party different than the computer system itself.

Depending on the policy chosen, the honeychecker may
or may not reply to the computer system when a login
is attempted. When it detects that something is amiss
with the login attempt, it could signal to the computer
system that login should be denied. On the other hand it
may merely signal a “silent alarm” to an administrator,

and let the login on the computer system proceed. In
the latter case, we could perhaps call the honeychecker a
“login monitor” rather than a “honeychecker.”

Our honeychecker maintains a single database
value c(i) for each user ui; the values are small integers
in the range 1 to k, for some small integer parameter k
(e.g. k = 20). The honeychecker accepts commands of
exactly two types:

• Set: i, j
Sets c(i) to have value j.

• Check: i, j
Checks that c(i) = j. May return result of check to
requesting computer system. May raise an alarm if
check fails.

Design principles. The computer system and honey-
checker together provide a basic form of distributed secu-
rity. A distributed security system aims to protect secrets
even when an adversary compromises some of its systems
or software. Diversifying the resources in the system—for
example, placing the computer system and honeychecker
in separate administrative domains or running their soft-
ware on different operating systems—makes it harder to
compromise the system as a whole.

We have designed the protocol so that compromise of
the honeychecker database by itself does not allow an ad-
versary to impersonate a user. In fact, the honeychecker
only stores randomly selected integers (the index c(i) for
each ui).

Indeed, one of our design principles is that compromise
(i.e. disclosure) of the honeychecker database at worst
only reduces security to the level it was at before the intro-
duction of honeywords and the honeychecker. Disclosure
of the file F then means that an adversary will now no
longer be fooled by the presence of the honeywords; he
will just need to crack the users’ actual passwords, since
he now knows which hash values are for the real pass-
words, and which hash values are for the honeywords.

As we discuss in Section 8, other distributed ap-
proaches to password protection are possible. Distributed
cryptographic protocols for instance can prevent disclo-
sure of passwords and even password hashes completely
against compromise of the computer system. Unlike such
schemes, though, honeywords can be incorporated into
existing password systems with few system changes and
little overhead in computation and communication.

We also design the honeychecker interface to be ex-
tremely simple, so that building a hardened honeychecker
should be realistic. Importantly, the honeychecker need
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not interact with the computer system. If configured to
send “silent alarms” to administrators or trigger defenses
such as we consider in Section 2.5, it need not even pro-
vide input to user authentication decisions.

The honeychecker could be a product, using a stan-
dardized interface. The honeychecker could serve a num-
ber of computer systems.

2.4 Approach – Setup

This subsection describes how honeywords work, in sim-
plest form.

For each user ui, a list Wi of distinct words (called
“potential passwords” or more briefly, “sweetwords”) is
represented:

Wi = (wi,1, wi,2, . . . , wi,k) .

Here k is a small integer, such as our recommended value
of k = 20. For simplicity we assume that k is a fixed
system-wide parameter, although k could be chosen in a
per-user manner—for example, ki = 200 for the system
administrator(s). Values as low as k = 2 or as large as k =
1000 might be reasonable choices in some circumstances.

Exactly one of these sweetwords wi,j is equal to the
password pi known to user ui. Let c(i) denote the “cor-
rect” index of user ui’s password in the list Wi, so that

wi,c(i) = pi.

Although we call the wi,j entries “potential pass-
words,” they could be phrases or other strings; a potential
password could be a “potential passphrase” or a “sweet-
phrase.”

The correct password is also called the “sugarword.”
The other (k− 1) words wi,j are called “honeywords,”

“chaff,” “decoys,” or just “incorrect passwords.”
The list Wi of sweetwords thus contains one sugarword

(the password) and (k − 1) honeywords (the chaff).
We also allow a sweetword to be what we call a “tough

nut”—that is, a very strong password whose hash the
adversary is unable to invert. We represent a tough nut

by the symbol ‘ ? ’. A honeyword, or the password itself,
may be a tough nut.

The definition of the file F is changed so that it now
contains an extended entry for each user ui, of the form:

(ui, Hi) ,

where
vi,j = H(wi,j)

is the value of the hash of the user’s jth sweetword wi,j ,
and

Hi = (vi,1, vi,2, . . . , vi,k)

is the list of all these hash values.
The file F is now larger by a factor of roughly k.

Given the rapidly decreasing cost of storage this expan-
sion should not cause any problems on a typical computer
system, even for k as large as our recommended value of
k = 20. Many systems already store hashes of ten or more
old passwords per user to limit password reuse [17].

The user only needs (as usual) to remember her pass-
word pi; she does not need to know the values of the hon-
eywords or even know about their existence.

We let Gen(k) denote the procedure used to generate
both a list Wi of length k of sweetwords for user ui and
an index c(i) of the correct password pi within Wi:

(Wi, c(i)) = Gen(k)

Here Gen is typically randomized and must involve inter-
action with the user (otherwise the user cannot create or
know the password). We may represent this user interac-
tion in some cases by allowing an additional argument in
the form of a user-supplied password pi to Gen, so that
Gen(k; pi) ensures that pi is the password in Wi; that is,
pi = wi,c(i).

The table c is maintained in a secure manner; in the
proposal of this note it is stored on the honeychecker.

Salt. Again, we omit discussion of per-system or per-
user salts or other parameters that may be included in the
hash computation. We do, however, strongly urge the use
of per-user salts.

Additionally, we recommend that hashing of wi,j now
also take j as an additional parameter. Such distinct per-
sweetword salting prevents an adversary from hashing a
password guess once (with the per-user salt) and then
checking the result simultaneously against all of the user’s
hashed sweetwords.

2.5 Approach – Login

The system login routine needs to determine whether a
proffered password g is equal to the user’s password or
not. (Here mnemonics for g are “given” or “guess.”) If g
is not the user’s password, the login routine needs to de-
termine whether g is a honeyword or not.

If the user—or perhaps the adversary—has entered the
user’s correct password, then login proceeds successfully
as usual.
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If the adversary has entered one of the user’s honey-
words, obtained for example by brute-forcing the pass-
word file F , then an appropriate action takes place (de-
termined by policy), such as

• setting off an alarm or notifying a system adminis-
trator,

• letting login proceed as usual,

• letting the login proceed, but on a honeypot system,

• tracing the source of the login carefully,

• turning on additional logging of the user’s activities,

• shutting down that user’s account until the user es-
tablishes a new password (e.g. by meeting with the
sysadmin),

• shutting down the computer system and requiring
all users to establish new passwords.

How does the login routine determine whether g = pi
(that is, that the given word is the password)?

If the hash H(g) of g does not occur in the file F in
the user ui’s entry Hi, then word g is neither the user’s
password nor one of the user’s honeywords, so login is
denied.

Otherwise the login routine needs to determine
whether g is the user’s password, or it is merely one of
the user’s honeywords. The login routine can determine
the index j such that H(g) = vi,j , but the login routine
doesn’t know whether j = c(i), in which case g is indeed
the password, or not, in which case g is just a honeyword.

The table c is maintained securely in the separate se-
cure “honeychecker” server described in Section 2.3. The
computer system sends the honeychecker a message of the
form:

Check: i, j

meaning: “Someone has requested to login as user ui and
has supplied sweetword j (that is, wi,j) in response to the
login password prompt. Please determine if j = c(i), and
take the appropriate action according to policy.”

The honeychecker determines whether j = c(i); if not,
an alarm is raised and other actions may be taken. The
honeychecker may (or may not, depending on policy) then
respond with a (signed) message indicating whether login
should be allowed.

It may be desirable for a “Check” message to be sent
to the honeychecker, even when the proffered password g
is not on the list Wi of sweetwords; in this case the check
message could specify j = 0. In this variant the honey-
checker is notified of every login attempt, and can observe
when a password guessing attack is in progress.

It might also be desirable for a “Check” message to
include additional information that might be forensically
useful, such as the IP address of the user who attempted
to log in. We don’t pursue such ideas further here.

Many systems suspend an account if (say) five or more
unsuccessful login attempts are made. With our ap-
proach, this limit is likely to be reached even if the ad-
versary has access to Wi: The chance that the user’s
password does not appear in the first five elements of a
random ordering of a list Wi of length 20 containing the
user’s password is exactly 75%. However, when failed at-
tempts are made with honeywords rather than arbitrary
non-sweetwords, a reduced limit may be appropriate be-
fore lockout occurs and/or additional investigations are
undertaken.

2.6 Approach – Change of password

When user ui changes her password, or sets it up when
her account is first initialized, the system needs to:

• use procedure Gen(k) to obtain a new list Wi of k
sweetwords, the list Hi of their hashes, and the
value c(i) of the index of the correct password pi
in Wi.

• securely notify the honeychecker of the new value
of c(i), and

• update the user’s entry in the file F to (ui, Hi).

We emphasize that the honeychecker does not learn
the new password or any of the new honeywords. All it
learns is the position c(i) of the hash vi,c(i) of user ui’s new
password in the user’s list Hi in F . To accomplish this,
the computer system sends the honeychecker a message
of the form:

Set: i, j

meaning: “User ui has changed or initialized her pass-
word; the new value of c(i) is now j.” (This message
should of course be authenticated by the system to the
honeychecker.)

3 Security definitions

We define the security of a honeyword generation algo-
rithm Gen, using an adversarial game, an algorithm or
thought experiment that models the capabilities of the
adversary.
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For simplicity, we consider a honeyword generation
scheme of the form Gen(k; pi), with user input pi. (The
definition may be adapted to other forms of Gen.)

The game proceeds as follows:

• Gen(k, pi) is run, using a user-provided input con-
sisting of a proposed password pi chosen according
to a probability distribution U over passwords that
meet a specified password-composition policy.

The output of Gen(k; pi) is a list Wi of sweetwords
and an index c(i) such that the password pi is in the
c(i)-th position of Wi.

• The adversary is given Wi, with the exception
that some randomly chosen honeywords output by
Gen(k; pi) may be “tough nuts”; for those honey-

words the adversary only sees the symbol ? and
not the underlying (hard) honeyword.

• The adversary must now either “pass” (refuse to play
further) or else submit a guess j ∈ {1, 2, . . . , k} for
the index c(i).

The outcome is three-way:

• The adversary “wins” the game (or “succeeds”) if he
guesses and his guess is correct (j = c(i)).

• The adversary is “caught” if he guesses but his guess
is a honeyword.

• The adversary “passes” if he doesn’t play.

Flatness. Let z denote the adversary’s expected prob-
ability of winning the game, given that the adversary does
not pass. This probability is taken over the user’s choice
of password pi, the generation procedure Gen(k; pi), and
any randomization used by the adversary to produce its
guess j. Observe that z ≥ 1/k, since an adversary can
win with probability 1/k merely by guessing j at random.

We say a honeyword generation method is “ε-flat”
(“epsilon-flat”) for a parameter ε if the maximum value
over all adversaries of the adversary’s winning probabil-
ity z is ε.

If the generation procedure is as flat as possible (i.e.,
1/k-flat), we say it is “perfectly flat” (for a given distri-
bution U). If it is ε-flat for ε not much greater than 1/k,
we say that it is “approximately flat.”

Our recommended value of k = 20 means that an ad-
versary who has compromised F and inverted H success-
fully k times to obtain all 20 sweetwords has a chance of
at most 5% of picking the correct password pi from this
list, if Gen is perfectly flat. In this ideal case, ε = 1/20.

Note that if honeyword-generation is ε-flat, then an
adversary who plays has at least a (1−ε) chance of picking
a honeyword, being caught, and setting off an alarm. So
a method that is perfectly flat ensures that an adversary
who plays has a chance of least (k−1)/k of being caught.

In some cases, even a modest chance of catching an ad-
versary, e.g., 1−ε = 1/4 (a 25% chance of detecting sweet-
word guessing), would be sufficient to detect systemic ex-
ploitation by the adversary of a compromised password
file—and perhaps even deter the adversary from attack-
ing the system altogether. So while a flat Gen is ideal,
Gen may be effective even if not flat.

4 Honeyword Generation

This section proposes several flat (or approximately flat)
generation procedures Gen for constructing a list Wi of
sweetwords and for choosing an index c(i) of the actual
password within this list.

The procedures split according to whether there is an
impact on the user interface (UI) for password change.
(The login procedure is always unchanged.) We distin-
guish the two cases:

• With legacy-UI procedures, the password-change UI
is unchanged. This is arguably the more impor-
tant case. We propose two legacy-UI procedures:
chaffing-by-tweaking (which includes chaffing-by-
tail-tweaking and chaffing-by-tweaking-digits as spe-
cial cases), and chaffing-with-a-password-model.

• With modified-UI procedures, the password-
change UI is modified to allow for better pass-
word/honeyword generation. We propose a
modified-UI procedure called take-a-tail. With
take-a-tail, the UI change is really very simple:
the user’s new password is modified to end with a
given randomly-chosen three-digit value. Otherwise
take-a-tail is the same as chaffing-by-tail-tweaking.

We explain the legacy-UI scenario and associated meth-
ods in Section 4.1, and the modified-UI scenario and the
take-a-tail method in Section 4.2.

Many other approaches are possible, and we consider it
an interesting problem to devise other practical methods
under various assumptions about the knowledge of the
adversary and the password-selection behavior of users.

4.1 Legacy-UI password changes

With a legacy-UI method, the password-change proce-
dure asks the user for the new password (and perhaps
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asks her to type it again, for confirmation). The UI does
not tell the user about the use of honeywords, nor interact
with her to influence her password choice.

A nice aspect of legacy-UI methods is that one can
change the honeyword generation procedure without
needing to notify anyone or to change the UI.

We start with a password pi supplied by user ui.
The system then generates a set of k − 1 honeywords

“similar in style” to the password pi, or at least plausible
as legitimate passwords, so that an adversary will have
difficulty in identifying pi in the list Wi of all sweetwords
for user ui.

• Chaffing: The password pi is picked, and then
the honeyword generation procedure Gen(k; pi) or
“chaff procedure” generates a set of k− 1 additional
distinct honeywords (“chaff”). Note that the honey-
words may depend upon the password pi. The pass-
word and the honeywords are placed into a list Wi,
in random order. The value c(i) is set equal to the
index of pi in this list.

The success of chaffing depends on the quality of the
chaff generator; the method fails if an adversary can easily
distinguish the password from the honeywords.

We propose two basic methods for chaffing (and one
method for embellishing chaff). They are somewhat
heuristic; the chaffing approach in general offers no prov-
able guarantee that the honeyword generation procedure
Gen is flat—particularly if the user chooses her password
in a recognizable manner.

We note (but do not discuss further) the obvious fact
that if there are syntax or other restrictions on what is
allowed as a password (see Section 6.1), then honeywords
should also satisfy the same restrictions.

4.1.1 Chaffing by tweaking

Our first method is to “tweak” selected character posi-
tions of the password to obtain the honeywords. Let t
denote the desired number of positions to tweak (such
as t = 2 or t = 3). For example, with “chaffing-by-tail-
tweaking” the last t positions of the password are chosen.

The honeywords are then obtained by tweaking the
characters in the selected t positions: each character in a
selected position is replaced by a randomly-chosen charac-
ter of the same type: digits are replaced by digits, letters
by letters, and special characters (anything other than a
letter of a digit) by special characters.

For example, if the user-supplied password is
“BG+7y45”, then the list Wi might be (for tail-tweaking

with t = 3 and k = 4):

BG+7q03, BG+7m55, BG+7y45, BG+7o92.

We call the password-tail the “sugar”, while the hon-
eyword tails we call “honey” (of course).

Other tweaking patterns could also be used, such as
choosing the last digit position and the last special-
character position. With “chaffing-by-tweaking-digits”
the last t positions containing digits are chosen. (If there
are less than t digits in the password, then positions with
non-digits could also be selected as needed.) Here is an
example of chaffing-by-tweaking-digits for t = 2:

42*flavors, 57*flavors, 18*flavors (1)

Chaffing-by-tweaking-digits is typical of the “tweaks”
users often use to derive new passwords from old ones;
see Zhang et al. [42] for extended discussion of password
tweaks and a model of tweaks used by users in practice
to change their passwords.

The positions to be tweaked should be chosen solely on
the pattern of character types in the password, and not
on the specific characters in the password, otherwise the
password might be easily determined as the only sweet-
word capable of giving rise to the given list Wi.

For chaffing-by-tail-tweaking we consider each word wij

to consist of a head hij followed by a t-character tail tij .
For example, “Hungry3741” has head “Hungry3” and tail
“741”. The value of t need not be the same for all users.
There does not need to be any separating character be-
tween the head and the tail; the parsing of a password into
password-head and password-tail need not be obvious.

If the user picks the last three characters of her
password randomly, then tail-tweaking is impossible to
reverse-engineer—an adversary cannot tell the password
from its tweaked versions, as all tails are random. Other-
wise, an adversary may be able to tell the password from
the honeywords: in the following list, which is the likely
password?

57*flavors, 57*flavrbn, 57*flavctz (2)

The take-a-tail method of the next section fixes the
problem of poorly-chosen password tails by requiring new
passwords to have system-chosen random password tails.

Chaffing-by-tweaking works pretty well as a legacy-UI
honeyword generation method: it doesn’t require users
to follow any password syntax requirements, other than
having enough characters in the password.
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We now give another view of tweaking. Let T (p) denote
the class of sweetwords obtainable by tweaking p for the
selected character positions.

Clearly p is in T (p), since the randomly-chosen char-
acters may be the same as the originals—in general p is
always in T (p). Note that T () should have the property
that tweaks don’t change the class of a password: For any
p∗ ∈ T (p), T (p∗) = T (p). The classes T (p) are seen to
form a partition of the set of all passwords into disjoint
sets of “similar” passwords.

We then define Gen to start with the singleton set
{p}, and to repeatedly add elements chosen randomly
from T (p) to it until k distinct elements have been cho-
sen. (Of course, the class T (p) needs to contain at least k
elements for this to work.)

The list W is then just a randomly chosen ordering of
the elements in this set, and c(i) is the position of p in
this list.

Tweaking is perfectly flat in the case that each word
in T (p) was equally likely to be chosen as the password
by the user—that is, U(p∗) is constant for each word p∗

in T (p). In practice, users tend to favor some character
strings more than others. (For instance, it’s observed
in [40] that for one-digit numbers in passwords, users
choose ‘1’ about half the time.) So perfect flatness may be
difficult to achieve, and it may be helpful to bias selection
of honeywords from T (p) toward those most likely to be
chosen by users.

4.1.2 Chaffing-with-a-password-model

Our second method generates honeywords using a prob-
abilistic model of real passwords; this model might be
based on a given list L of thousands or millions of pass-
words and perhaps some other parameters. (Note that
generating honeywords solely from a published list L as
honeywords is not in general a good idea: such a list may
also be available to the adversary, who could use it to help
identify honeywords.) Unlike the previous chaffing meth-
ods, this method does not necessarily need the password
in order to generate the honeywords, and it can generate
honeywords of widely varying strength.

Here is a list of 19 honeywords generated by one simple
model (see Appendix for details):

kebrton1 02123dia

a71ger forlinux

1erapc sbgo864959

aiwkme523 aj1aob12

9,50PEe]KV.0?RIOtc&L-:IJ"b+Wol<*[!NWT/pb

xyqi3tbato a3915

#NDYRODD_!! venlorhan

pizzhemix01 dfdhusZ2

sveniresly ’Sb123

mobopy WORFmgthness

Note the presence of one “tough nut,” a very hard (length
40) password that the adversary will be unable to crack.

See Weir et al. [40] for a presentation of an interesting
alternative model for passwords, based on probabilistic
context-free grammars.

Modeling syntax. Bojinov et al. [6] propose an in-
teresting approach (based on [40]) to chaffing-with-a-
password-model in which honeywords are generated us-
ing the same syntax as the password. (Note that with
this method, unlike the one above, honeywords do de-
pend on the password.) In their scheme, the password
is parsed into a sequence of “tokens,” each representing
a distinct syntactic element—a word, number, or set of
special characters. For example, the password

mice3blind

might be decomposed into the token sequence
W4 |D1 |W5, meaning a 4-letter word followed by
a 1-digit number and then a 5-letter word. Honeywords
are then generated by replacing tokens with randomly
selected values that match the tokens. For example, the
choice W4 ← “gold,” D1 ← ‘5′, W5 ← “rings” would
yield the honeyword

gold5rings.

Replacements for word tokens are selected from a dic-
tionary provided as input to the generation algorithm.
Further details are given in [6]

4.1.3 Chaffing with “tough nuts”

One might also like to have some honeywords that are
much harder to crack than the average—so much so that
they would probably never be cracked by an adversary.
(These “honeywords” might not even be passwords; these
“honeyword hashes” might just be long, e.g., 256-bit, ran-
dom bitstrings.) So, the adversary would not then (as we
have been assuming) be faced with a completely broken
list of sweetwords, but rather only a partial list. There
may possibly be some uncracked hashes (represented by

‘ ? ’ here) still to work on, with the correct password
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possibly among them. For example, what should the ad-
versary do with the following list?

gt79, tom@yahoo, ? , g*7rn45, rabid/30frogs!, ?

Having some “tough nuts” among the honeywords might
give the adversary additional reason to pause before div-
ing in and trying to log in with one of the cracked ones.
To ensure that the adversary can not tell whether the
password itself lies among the set of “tough nuts,” both
the positions and the number of “tough nuts” added as
honeywords should be random.

4.2 Modified-UI password changes

We now propose another method, “take-a-tail,” which uti-
lizes a modified UI for password-changes; the password-
change UI is just a slight variant of the standard one.

The take-a-tail method is identical to the chaffing-by-
tail-tweaking method, except that the tail of the new
password is now randomly chosen by the system, and re-
quired in the user-entered new password.

That is, the password-change UI is changed from:

Enter a new password:

to something like:

Propose a password: • • • • • • •
Append ‘413’ to make your new password.

Enter your new password: • • • • • • • • • •
Thus, if the user proposes “RedEye2,” his new password
is “RedEye2413.” This is a very simple change to the UI,
and shouldn’t require any user training. The required
tail (“413” in this example) is randomly and freshly gen-
erated for each password change session. It could even
be by chance the same as the tail of the user’s previous
password. (The login routine will normally prevent the
user from trying to use his old password as his new pass-
word; the system might generate a new, different tail in
this case.)

Once the password has been determined, the system
can generate honeywords in same manner as chaffing-by-
tail-tweaking.

With take-a-tail the head of the password is chosen by
the user, thus increasing memorability, while the pass-
word tail is picked randomly to ensure that the password
and honeyword generation procedure is perfectly flat.

A user might try to reset her password repeatedly to
obtain a preferred tail, undermining the property of flat-
ness. Most systems, however, prohibit frequent password
changes (to prevent users from cycling through passwords
and thus bypassing policies on old-password reuse).

4.3 Comparison of methods

Our proposed methods for generating honeywords have
various benefits and drawbacks, as shown in Table 4.3.
The hybrid method is described in Section 5.5.

5 Variations and Extensions

We now consider a few other ways of generating honey-
words and some practical deployment considerations.

5.1 “Random pick” honeyword gener-
ation

We now present a modified-UI procedure that is perfectly
flat. At a high level, a good way of generating a pass-
word and honeywords is to first generate the list Wi of
k distinct sweetwords in some arbitrary manner (which
may involve interaction with the user) and then pick an
element of this list uniformly at random to be the new
password; the other elements become honeywords. As an
example of user involvement, we might just ask the user
for k potential passwords. The value c(i) is set equal to
the index of (randomly chosen) password pi in this list.

For example, the user may supply k = 6 sweetwords:

4Tniners all41&14all i8apickle

sin(pi/2) \{1,2,3\} AB12:YZ90

and the system could then inform the user that password
c(i) = 6 (the last one) is her password.

The random pick method is perfectly flat, no matter
how the list Wi of sweetwords was generated, since the
given procedure is equivalent to choosing c(i) uniformly
at random from {1, 2, . . . , k} independent of the actual
sweetwords; there is thus no information in Wi that can
aid in determining c(i).

It is probably a bad idea, however, to ask the user for k
sweetwords. Not only is this burdensome on the user, but
the user may remember and mistakenly enter a sweetword
supplied by her and used by the system as a honeyword.

The random pick approach is probably better applied
to a set of k sweetwords generated by an algorithmic pass-
word generator.

5.2 Typo-safety

We would also like it to be rare for a legitimate user to
set off an alarm by accidentally entering a honeyword.

9



Honeyword Flatness DoS Storage Legacy Multiple-
method resistance cost (# -UI? system

of hashes) protection
(§3) (§7.5) (§5.4) (§4) (§7.6)

Tweaking (§4.1.1) (1/k) if U constant over T (p) weak 1 yes no
Password-model (§4.1.2) (1/k) if U ≈ G strong k yes no
Tough nuts∗ (§4.1.3) N/A strong k yes no
Take-a-tail (§4.2) (1/k) unconditionally weak k no yes

Hybrid (§5.5) (1/k) if U ≈ G and strong
√
k yes no

U constant over T (p)

Table 1: Comparison of honeyword-generation methods. All methods can achieve excellent (1/k)-flatness
under some conditions. By “weak” DoS (denial of service) resistance, we mean that an adversary can with
non-negligible probability submit a honeyword given knowledge of the password; by “strong” DoS resistance
we mean that such attack is improbable. Multiple-system protection is the property that compromise of the
same user’s account in different systems will not immediately reveal pi. Finally, G denotes the probability
distribution of honeywords generated by chaffing-with-a-password-model. (Thus U ≈ G means that these
honeywords are distributed like user passwords in the view of the adversary.) The ∗ means “tough nuts”
are not useful on their own; they are best used together with other methods. The storage costs assume
generation of k − 1 honeywords. For further details, see the indicated sections.

Typos are one possible cause of such accidents, especially
for tweaking methods.

With tail-tweaking, it could thus be helpful if the pass-
word tail were quite different from the honeyword tails,
so a typing error won’t turn the password into a honey-
word. (The honeyword tails should also be quite different
from each other, so the password doesn’t stand out as the
sweetword that is the “most different” from the others.)

One can use an error-detection code to detect typos
(as for ISBN book codes). Let q denote a small prime
greater than 10, such as q = 13. Suppose tails are three-
digit numbers; let tij denote the tail of wij . Then we just
require that the difference (tij − tij′) between any two
sweetword tails is a multiple of q. This property is easy
to arrange, even if (at most) one of the words is chosen
arbitrarily by the user. This property allows detection
of a substitution of any single digit for another, or of a
transposition of two adjacent digits, in the tail.

5.3 Managing old passwords

Many password systems, particularly for government and
industry users, store hashes of users’ old passwords—
usually the last 10, as stipulated in, e.g., [17]. When

a user changes her password, she is prohibited in such
systems from reusing any stored ones.

We feel strongly that a system should not store old
passwords or their hashes. The motivation of this paper
is that the hashes are frequently inadequate protection for
the passwords themselves; hash functions can be inverted
on weak passwords, and most passwords are pretty weak.
Moreover, the reason a user may have decided to change
her password is that she decided it was indeed weak, and
moreover she is using it on several systems. If the system
keeps around her old password, it may be placing her
account on the other system(s) at risk.

A better option is to not store old passwords on a per-
user basis and instead record previously used passwords
across the full user population. A newly created password
that conflicts with any password in this list may then be
rejected. The list should not consist of explicitly hashed
passwords, but should be represented in a more compact,
efficiently checkable data structure, such as a Bloom filter,
that does not reveal passwords directly [37]. The related
proposal by Schechter, Herley, and Mitzenmacher [36],
which relies on a similar data structure called a “count-
min sketch,” allows one to reject new passwords that are
already in common use within a user population.
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When storing old passwords is required, however, we
recommend storing them in a protected module strongly
isolated from the basic functionality of the computer
system—perhaps in a special server. A weaker alternative
helpful for achieving legacy compatability might reside in
the computer system itself. In this case, the set Oi of old
passwords for user ui should be encrypted, when not in
use, under a user-specific key κi. When the system must
access Oi for a password change, it decrypts Oi. The
key κi should not, of course, be stored in the computer
system itself, but might be stored in the honeychecker,
which releases κi to the computer system only after suc-
cessful authentication by the user using current pass-
word pi. After reading and updating Oi, the computer
system then re-encrypts it and immediately erases κi.

Alternatively, of course, old passwords could them-
selves be stored with honeywords.

5.4 Storage optimization

Some honeyword generation methods, such as tweaking
and take-a-tail, can be optimized to reduce their storage
to little more than a single password hash. Consider tail-
tweaking where the tails are t-digit numbers.

Suppose that T (pi) is of reasonable size—for example,
with t = 2 digit tails we have |T (pi)| = 100. Let k =
|T (p)| and let Wi = T (pi) = {wi,1, . . . , wi,k}, sorted into
increasing order lexicographically.

We select a random element wi,r of T (pi) and store
H(wi,r) on the computer system. (We pick this element
by selecting the index r ∈ {0, 1, . . . , k − 1} uniformly at
random.) To verify a proffered password g, the computer
system computes the hash of each sweetword in T (g); if
one is found equal to H(wi,r) then wi,r is known, so Wi

can be computed, as can the position j of g in Wi. The
honeychecker operates as usual: The computer system
sends j to the honeychecker to check whether j = c(i).

We can also handle cases where k < |T (pi)|. To do
so, we restrict the set of sweetwords Wi to a subset of k
passwords from T (pi). Suppose here that T (pi) is sorted
into increasing lexicographical order as above. Then we
might choose Wi = {wi,1, . . . , wi,k} to be a set of k con-
secutive elements (with wraparound) from T (pi) that in-
cludes pi. Randomly selecting c(i) ∈ {1, . . . , k} and set-
ting wi,c(i) = pi yields such a set Wi with pi in a random
position. In this case the computer system should store
both wi,1 and the index of wi,1 in the list T (pi), so it
knows exactly what the relevant segment of T (pi) is.

5.5 Hybrid generation methods

It is possible to combine the benefits of different hon-
eyword generation strategies by composing them into a
“hybrid” scheme.

As an example, we show how to construct a hybrid
legacy-UI scheme that combines chaffing-by-tweaking-
digits with chaffing-with-a-password-model. We assume
a password-composition policy that requires at least one
digit, so that tweaking digits is always possible.

Here is a simple hybrid scheme:

1. Use chaffing-with-a-password-model on user-supplied
password p to generate a set of a (≥ 2) seed sweet-
words W ′, one of which is the password. Some seeds
may be “tough nuts.”

2. Apply chaffing-by-tweaking-digits to each seed sweet-
word in W ′ to generate b (≥ 2) tweaks (including
the seed sweetword itself). This yields a full set W
of k = a× b sweetwords.

3. Randomly permute W . Let c(i) be the index of p
such that p = wc(i), as usual.

Note the importance of the ordering of steps 1 and 2.
The alternative approach of tweaking first and then
chaffing-with-a-password-model would likely reveal p to
an adversary as the sole tweaked password.

As an example, suppose we have a = 3, b = 4, and
k = 12. The list Wi might look as follows:

abacad513 snurfle672 zinja750

abacad941 snurfle806 zinja802

abacad004 snurfle772 zinja116

abacad752 snurfle091 zinja649

A convenient choice of parameters is a = b =
√
k. We

assume this choice in describing the properties of the hy-
brid scheme; concretely, a = b = 10 is a possible choice,
given that T (p) ≥ 10.

To detect a DoS (denial of service) attack against this
scheme (see Section 7.5) we might disregard submission
of honeywords in T (p), and raise an alarm for all other
k− b honeywords. DoS attacks, then, are very unlikely to
succeed. An adversary that has stolen F and guesses a
honeyword, though, will still be caught with probability
1− 1/a = 1− 1/

√
k. (For a = b = 10, this is 90%.)

The storage costs can be optimized along the lines of
Section 5.4 if desired, storing only a hashes.

Table 4.3 illustrates how this hybrid honeyword scheme
inherits desirable characteristics from both component
methods. Note that the scheme is flat only if both flatness
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conditions given in the table hold. But if either condition
is met, the scheme is still reasonably secure: it is ε-secure
for ε = 1/min (a, b) = 1/

√
k. (For a = b = 10, an adver-

sary is caught with 90% probability.)

Because the hybrid method is legacy-UI, achieves ex-
cellent flatness under reasonable assumptions, and pro-
vides resistance to DoS attacks, it is our recommended
honeyword generation method.

6 Policy choices

6.1 Password Eligibility

Some words may be ineligible as passwords because they
violate one or more policies regarding eligibility, such as:

• Password syntax: A password may be required
to have a minimum length, a minimum number of
letters, a minimum number of digits, and a mini-
mum number of special characters. The initial char-
acter may be restricted. See [25] for an example of
a common password-syntax (or “password complex-
ity”) policy. Cheswick [13] calls such rules “eye-of-
newt” rules, because they are promulgated as if they
had magical properties. We agree that today such
rules seem to be more trouble than they are worth.

• Dictionary words: A password may not be a word
in the dictionary, or a simple variant thereof.

• Password re-use: A password may be required to
be different than any of the last r passwords of the
same user, for some policy parameter r (e.g. r=10).

• Most common passwords: A password may not
be chosen if it is on a list of the 500 most com-
mon passwords in widespread use (to prevent online
guessing attacks).

• Popular passwords: A password may not be cho-
sen if m or more other users in a large population of
users are currently using this password.

6.2 Failover

The computer system can be designed to have a “failover”
mode so that logins can proceed more-or-less as usual
even if the honeychecker has failed or become unreach-
able. In failover mode, honeywords are temporarily pro-
moted to become acceptable passwords; this prevents
denial-of-service attacks resulting from attack on the hon-
eychecker or the communications between the system and

the honeychecker. The cost in terms of increased pass-
word guessability is small. Temporary communication
failures can be addressed by buffering messages on the
computer system for later delivery to and processing by
the honeychecker.

6.3 Per-user policies

We can have policies that vary per-user; this is not un-
common already.

• Honeypot accounts: The use of honeypot accounts,
as mentioned in the introduction, is a useful addi-
tion to honeywords. Such accounts can help identify
theft of F and distinguish over a DoS attack (see
Section 7.5). Which accounts are honeypot accounts
would be known only to the honeychecker.

• Selective alarms: It may be helpful raise an alarm
if there are honeyword hits against administrator
accounts or other particularly sensitive accounts,
even at the risk of extra sensitivity to DoS attacks.
Policies needn’t (and perhaps shouldn’t) be uniform
across a user population.

6.4 Per-sweetword policies

The “Set: i, j” command to the honeychecker could have
an optional third argument ai,j , which says what action
to take if a “Check: i, j” command is later issued. The
actions might be of the form “Raise silent alarm,” “Allow
login,” “Allow for single login only,” etc... There could
be k different entries for a given user, with potentially k
different policies, one per sweetword. This feature could
be used, for example, with the take-a-tail strategy to note
which honeywords have small edit distance to the pass-
word (e.g., a single transposition or change of character),
so that user typos invoke a less severe reaction. This gives
added flexibility to the policies enabled by the use of the
honeychecker.

7 Attacks

This section reviews more carefully various attacks possi-
ble against the methods proposed here.

7.1 General password guessing

Legacy-UI methods don’t affect how users choose pass-
words, so they have no beneficial effect against adversaries
who try common passwords in an online guessing attack.

12



We do favor methods such as those proposed by
Schecter et al. [36] requiring users to choose uncommon
passwords.

Modified-UI methods like take-a-tail also affect the
choice of password—appending a three-digit random tail
to a user-chosen password effectively reduces the proba-
bility of the password by a factor of 1000.

7.2 Targeted password guessing

Personal information about a user could help an adver-
sary distinguish the user’s password from her honeywords.
It is often feasible to deanonymize users, that is, ascertain
their real-world identities, based on their social network
graphs [27] or just their usernames [31]. Given a user’s
identity, there are then many ways to find demographic
or biographical data about her online—by exploiting in-
formation published on social networks, for example [5].

Knowing a user’s basic demographic information,
specifically his/her gender, age, or nationality, is known to
enable slightly more effective cracking of the user’s hashed
password [7, 8]. Similarly, attackers often successfully ex-
ploit biographical knowledge to guess answers to personal
questions in password recovery systems and compromise
victims’ accounts [35]. (The hacking of Governor Sarah
Palin’s Yahoo! account is a well known example.) As
chaffing-with-a-password-model creates honeywords inde-
pendently of user’s password, this method of honeyword
generation may enable adversaries to target data-mining
attacks against users and gain some advantage in distin-
guishing their passwords from their honeywords.

7.3 Attacking the Honeychecker

The adversary may decide to attack the honeychecker or
its communications with the computer system.

The updates (“Set” commands) sent to the honey-
checker need to be authenticated, so that the honey-
checker doesn’t incorrectly update its database.

The requests (“Check” commands) sent to the honey-
checker also need to be authenticated, so that the adver-
sary can’t query the honeychecker and cause an alarm to
be raised.

The replies from the honeychecker should be authen-
ticated, so that the computer system doesn’t improperly
allow the adversary to login.

By disabling communications between the computer
system and the honeychecker, the adversary can cause
a failover (see Section 6.2. The computer system then ei-
ther has to disallow login or take the risk of temporarily

allowing login based on a honeyword and buffering mes-
sages for later processing by the honeychecker.

While our intention is that the honeychecker should be
hardened and of minimalist design, the deployment of the
computer system and the honeychecker as two distinct
systems itself brings the usual benefits of separation of
duties in enhancing security. The two systems may be
placed in different administrative domains, run different
operating systems, and so forth.

7.4 Likelihood Attack

If the adversary has stolen F and wishes to maximize
his chance of picking pi from Wi, he can proceed with a
“likelihood attack” as follows.

We assume here that we are dealing with an approach
based on generating honeywords using a probabilistic
model. Let G(x) denote the probability that the hon-
eyword generator generates the honeyword x.

Similarly, let U(x) denote the probability that the user
picks x to be her password. (This may not be mathemat-
ically well-defined; it can be interpreted as a Bayesian
prior for the adversary on such probabilities, and may or
may not be user-specific.)

Let Wi = {wi,1, . . . , wi,k}. The likelihood that c(i) =
j, given Wi, is equal to

U(wi,j)
∏
j′ 6=j

G(wi,j′) = C R(wij)

where

C =
∏
j′

G(wi,j′)

and where

R(x) = U(x)/G(x)

is the relative likelihood that the user picks x compared
to the honeyword generator picking x. Note that it is
desirable that for all eligible x, G(x) > 0 (that is, the
honeyword generator is capable of generating all possi-
ble words); otherwise the password may be recognizable
as one the honeyword generator could not possibly have
produced.

The adversary wants to maximize his likelihood of
picking the password, so he will pick the one maximiz-
ing R(wij). This is the password that is maximally more
likely to be picked by the user than to be generated by
the honeyword generator. As an example, a password like

NewtonSaid:F=ma
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is not very likely to be generated by a honeyword
generator, but is plausibly generated by a (physics-
knowledgeable) user. An adversary might easily notice
this password in a set of honeywords.

In this context, a user might be well advised either
to (a) choose a very strong password that the adversary
will never crack, or (b) choose a password of the sort
that the honeyword generator might generate. That is,
don’t pick a password that has “obvious structure” to
a human of a sort that an automatic generator might
not use. Alternatively, a generator might take as input a
private, handcrafted list of such distinctive passwords for
(one-time) use as honeywords; “obvious structure,” then,
wouldn’t always signal a true password to an adversary.

The above theory about relative likelihood is incom-
plete: it doesn’t tell an adversary what to do when only
some of the sweetword hashes are solved, as happens when
“tough nuts” are used.

7.5 Denial-of-service

We briefly discuss denial-of-service (DoS) attacks—a po-
tential problem for methods such as chaffing-by-tweaking
that generate honeywords by predictably modifying
user-supplied passwords. (In contrast, chaffing-with-a-
password-model and the hybrid scheme of Section 5.5 of-
fer strong DoS resistance.)

The concern is that an adversary who has not compro-
mised the password file F , but who nonetheless knows a
user’s password—e.g., a malicious user or an adversary
mounting phishing attacks—can feasibly submit one of
the user’s honeywords. For example, with chaffing-by-
tweaking-digits, with t = 2, such an adversary can guess
a valid honeyword with probability (k − 1)/99. A false
appearance of theft of the password file F results.

An overly sensitive system can turn such honeyword
hits into a DoS vulnerability. One (drastic) example is
a policy that forces a global password reset in response
to a single honeyword hit. Conversely, in a system inad-
equately sensitive to DoS attacks, an adversary that has
stolen F can guess passwords while simulating a DoS at-
tack to avoid triggering a strong response. So a policy of
appropriately calibrated response is important. Reducing
the potency of DoS attacks can help.

Mitigating DoS attacks To limit the impact of a
DoS attacks against chaffing-by-tweaking, one possible
approach is to select a relatively small set of honeywords
randomly from a larger class of possible sweetwords. For
example, we might use take-a-tail with a three-digit tail

(t = 3), yielding |T (pi)| = 1000. Setting k = 20, then,
means randomly picking k − 1 = 19 honeywords from
T (pi). Knowing the correct password pi only gives an ad-
versary (or malicious user) a chance of (k−1)/1000 ≈ 0.02
of hitting a honeyword in this case, greatly reducing her
ability to trigger an alarm. The vast majority (≈ 98%) of
her attempts will be passwords in T (pi), but not in Wi.

7.6 Multiple systems

As users commonly employ the same password across dif-
ferent systems, an adversary might seek an advantage in
password guessing by attacking two distinct systems, sys-
tem A and system B—or multiple systems, for that mat-
ter. We consider two such forms of attack, an “intersec-
tion” attack and a “sweetword-submission” attack.

Intersection attack. If a user has the same pass-
word but distinct sets of honeywords on systems A and
B, then an adversary that compromises the two password
files learns the user’s password from their intersection.
(Of course, without honeywords, an attacker learns the
password by compromising either system.) We would aim
instead that an intersection attack against systems using
honeywords offer an adversary no advantage in identify-
ing the password on either system.

Our favored approach, in the case where management
of multiple systems is of concern, would be the take-a-tail
generation approach of Section 4.2 on each system. Al-
though the compromise of the password-hash file F would
reveal the password-head to an adversary, the user’s sugar
would be independently and randomly generated on each
system.

A significant advantage for system-chosen tails is that
it becomes very likely that the user’s password will be
different on different systems, even if the user chooses the
same password-head. This should increase overall secu-
rity, as users can no longer use the exact same password
on each system.

The burden on memory is increased, but in our judg-
ment this increase is well worth the cost—too many sys-
tems are compromised by having user passwords cracked
on other systems.

Note that this ability of ensuring that a user has dif-
ferent passwords on different systems is achieved without
coordination between the systems—it is a statistical guar-
antee. An adversary who discovers a user’s password on
system A may still be caught trying to a login with a
honeyword on system B.
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The definition of flatness for a generation procedure
Gen can be extended to handle this case: An adversary
gets the outputs (Wi, c(i)) from multiple invocations of
Gen, and then has to guess c(i) for an additional, last
invocation of Gen in which the adversary sees Wi (but
not c(i)). Even with this additional information, the ad-
versary’s chance of guessing c(i) should be at most 1/k.

The take-a-tail method also protects users against an
adversary who monitors changes in the password-hash
file F over time. (In contrast, chaffing-with-a-password-
model doesn’t help much if the password is changed only
slightly, but entirely new chaff is chosen.)

We note too that if system A and B make use of the
same tweaking method, they will automatically generate
identical sweetwords for a given password. For exam-
ple, if both systems employ chaffing-by-tweaking-digits
with t = 1 digit, they will both output the same ten
tweaks (including the original password) as sweetwords.
Under a suitable parameterization, our recommended hy-
brid scheme, which includes tweaking, may generate par-
tially intersecting honeyword sets across systems.

Emerging laws in the United States, such as the Cyber
Intelligence Sharing and Protection Act (CISPA)[28], en-
courage the exchange of cybersecurity intelligence across
organizations. Honeyword generation methods might be
shared in this context to help prevent intersection attacks.

Sweetword-submission attack. It is possible, as
above, that the user has the same password on systems A
and B, but distinct corresponding sets of honeywords;
alternatively, system B may not use honeywords at all.
In either case, an adversary that compromises the pass-
word file on system A can submit the user’s sweetwords
as password guesses to system B without special risk of
detection: To system B, system A’s honeywords will be
indistinguishable from any other incorrect passwords. We
call this a “sweetword-submission” attack.

If system B uses honeywords, then, the same coun-
termeasures to intersection attacks—particularly take-a-
tail—can also provide resistance to sweetword-submission
attacks. Even if system B doesn’t use honeywords,
though, it still benefits somewhat from the presence of
honeywords on system A in a sweetword-submission at-
tack: The adversary will have to submit more than k/2
sweetwords on average before successfully guessing the
password (assuming system A uses a flat Gen).

If the adversary compromises a system B that doesn’t
use honeywords, he can of course learn the user’s pass-
word and impersonate her on system A, even if system A
does use honeywords.

8 Related Work

Password strength. The current, state-of-the-art
heuristic password cracking algorithm, due to Weir et al.,
is based on probabilistic, context-free grammars [40]. In a
recent study, Kelley et al. [23] characterize the vulnerabil-
ity of user-generated passwords to Weir-style cracking at-
tacks under various password-composition policies. One
such policy is a common, weak one dubbed “basic8,” in
which users are instructed, “Password must have at least
8 characters.” One billion guesses suffice to crack 40.3% of
such passwords. Recent work shows that cracking speeds
for some hash functions (e.g., MD5) can approach three-
billion guesses per second on a single graphical-processing
unit (GPU); see, e.g., Table 15 of [3]. Also in recent work,
Bonneau develops a framework to assess the strength of
passwords (and other user secrets). Based on study of
published password corpora, including one representing
70 million Yahoo! users, he estimates that a majority of
passwords have little more than 20 bits of effective en-
tropy against an optimal attacker [7, 8].

Together, these results underscore the weakness of cur-
rent password protections even with the use of sound
practices, such as salting. There is good reason to be-
lieve that many systems don’t even make use of salt [29].
While the reason for this lapse is unclear, we emphasize
that honeywords may be used with or without salt (and
even in principle with or without hashing).

Bonneau and Preibusch [9] offer an excellent survey of
current password management practices on popular web
sites, including password composition requirements and
advice to users, account lockout policies, and update and
recovery procedures. Herley and van Oorschot [21] argue
that use of passwords will persist for many years, and
highlight key research questions on how to create strong
passwords and manage them effectively.

Password strengthening. The take-a-tail method may
be viewed as a variant on previously proposed password
strengthening schemes. Forget et al. [18], randomly inter-
leave system-generated characters into a password. The
user may request a reshuffling of these characters until she
obtains a password she regards as memorable. The extra
characters here are essentially sugar. (Rejected or unpre-
sented interleavings could serve as honeywords.) Housh-
mand and Aggarwal [22] recently proposed a related sys-
tem that applies small tweaks to user-supplied passwords
to preserve memorability while adding strength against
cracking, specifically via [40]. Various schemes, e.g., Pwd-
Hash [34], have also been proposed to strengthen pass-
words within password managers.
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Password storage and verification. There are
stronger approaches than honeywords for splitting
password-related secrets across servers. Some proposed
and commercialized methods employ distributed cryptog-
raphy to conceal passwords fully in the event of a server
breach [11, 12, 15]. While such methods are perferrable
to honeywords where practical, they require substantial
changes to password verification systems and, ideally,
client-side support as well. Honeywords may be seen as
a stepping stone to such approaches.

Password-authenticated key-exchange methods, such
as the Secure Remote Password Protocol (SRP)4, provide
another approach towards verifying that a remote party
knows a correct password. However, the remote party
must have a trusted computer to perform the necessary
mathematical operations. If successful, both parties end
up with the same secret key, which they may use to en-
crypt and/or authenticate further communications.

Decoys. The use of decoy resources to detect security
breaches is an age-old practice in the intelligence com-
munity. Similarly, honeypots are a stock-in-trade of com-
puter security. A survey of the use of honeypots and
related decoys and of pertinent history and theory may
be found in [14]. It is a common industry practice today
to deploy “honeytokens,” bogus credentials such as credit
card numbers [38], to detect information leakage and de-
grade the value of stolen credentials. (Honeywords could
likewise reduce the value of stolen passwords.) Similarly,
fabricated or decoy files have been proposed as traps to
detect intrusion [41] and insider attacks [10].

Honeywords also bear some resemblance to duress
codes, plausible-looking but invalid secrets that users may
submit to trigger a silent alarm.5 A related idea are “col-
lisionful” hash functions [2, 4]; these yield hash values
with multiple, feasibly computed pre-images, thus creat-
ing ambiguity as to which pre-image is correct.

Most closely related to our proposed use of honeywords
is the Kamouflage system of Bojinov et al. [6]. The
setting in that work differs from ours, though. Kam-
ouflage aims to protect a user’s list of passwords in a
client-side password manager against misuse should the
user’s device (e.g., laptop or tablet) be stolen or other-
wise compromised. Kamouflage conceals the correct pass-
word list within a set of decoy lists, which contain honey-
words created using the scheme described in Section 4.1.2.
Password-consuming servers need not be aware of Kam-

4http://en.wikipedia.org/wiki/Secure_Remote_

Password_protocol
5http://en.wikipedia.org/wiki/Duress_code

ouflage deployment. (The authors do note, though, that
servers might store some honeywords to facilitate detec-
tion of compromise.)

9 Open Problems

This paper is just an initial stab at the issues surround-
ing the use of honeywords to protect password hash files;
many open questions remain, such as:

• How should an adversary act optimally when some
“tough nuts” are included among the honeywords?

• What is the best way to enforce password-reuse poli-
cies?

• Can the password models underlying cracking al-
gorithms (e.g., [40]) be easily adapted for use in
chaffing-with-a-password-model?

• How effective is targeted password guessing in dis-
tinguishing passwords from honeywords?

• How can a honeyword system best be designed to
withstand active attacks, e.g., code modification, of
the computer system (or the honeychecker)?

• How well can targeted attacks help identify users’
passwords for particular honeyword-generation
methods?

• How user-friendly in practice is take-a-tail?

10 Discussion and Conclusion

Someone who has stolen a password file can brute-force
to search for passwords, even if honeywords are used.

However, the big difference when honeywords are used
is that a successful brute-force password break does not
give the adversary confidence that he can log in success-
fully and undetected.

The use of an honeychecker thus forces an adversary to
either risk logging in with a large chance of causing the
detection of the compromise of the password-hash file F ,
or else to attempt compromising the honeychecker as well.
Since the honeychecker’s interface is extremely simple,
one can more readily secure the honeychecker.

The use of honeywords may be very helpful in the cur-
rent environment, and is easy to implement. The fact
that it works for every user account is its big advantage
over the related technique of honeypot accounts.

One could imagine using an auxiliary server in other
ways in support of password-based authentication. How-
ever, the architecture proposed here is clean and simple,
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reverts to current practice if auxiliary server files are com-
promised, and is even robust against auxiliary server fail-
ure (if one allows logins with honeywords).

Honeywords also provide another benefit. Published
password files (e.g., one stolen from LinkedIn [30]) pro-
vide attackers with insight into how users compose their
passwords. Attackers can then refine their models of user
password selection and design faster password cracking al-
gorithms [23]. Thus every breach of a password server has
the potential to improve future attacks. Some honeyword
generation strategies, particularly chaffing ones, obscure
actual user password choices, and thus complicate model
building for would-be hash crackers. It may even be use-
ful to muddy attacker knowledge of users’ composition
choices intentionally by drawing some honeywords from
slightly perturbed probability distributions.

Despite their benefits over common methods for pass-
word management, honeywords aren’t a wholly satisfac-
tory approach to user authentication. They inherit many
of the well known drawbacks of passwords and something-
you-know authentication more generally. Eventually,
passwords should be supplemented with stronger and
more convenient authentication methods, e.g., [16], or
give way to better authentication methods completely,
as recently predicted by the media [24, 39].

In the meantime, honeywords are a simple-to-deploy
and powerful new line of defense for existing password
systems. We hope that the security community will ben-
efit from their use. (See our note below on IP.)
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Appendix. Chaffing with a pass-
word model

This appendix describes a simple way to generate hon-
eywords; this method is one way to implement chaffing-
with-a-password-model. It is just a simple example of such
a probabilistic model; better models certainly exist.

This method uses a list L of sample passwords. Hon-
eywords are not taken from this file; rather, this list is
used as an aid to generate plausible-looking honeywords.
This list is intended to look like plausible passwords users
might generate; it is not intended to be a list of “high-
strength” passwords.

Thus, this honeyword generation scheme is qualita-
tively different than the process of tweaking a password
to generate a new password: it is OK for a honeyword to
be much weaker than the true password in an attempt to
trick the adversary. However, it should not be so weak
that high-probability (i.e. very common) passwords are
generated, as this would cause an online guessing attack
to hit honeywords.

A simple model for generating a single hon-
eyword: The password list L is initialized to a list of
many thousands of real passwords, as well as some truly
random passwords of varying lengths.

A “tough nut” is generated with some fixed probability
(e.g. 8%).

Otherwise a honeyword is generated as follows. A tar-
get length d is first determined by picking a random pass-
word w from L and measuring its length.

Let the characters of the new password be denoted c1,
c2, . . . , cd. These are determined sequentially. The first
character c1 is just the first character w1 of w. Let w =
w1w2 . . . , wd.

To determine the jth character of c, for j = 2, 3, . . . , d:

• With probability 0.1, replace w by a randomly cho-
sen password in L of length t. Then let cj = wj .

• Else with probability 0.4, replace w by a randomly
chosen password in L of length t that has wj−1 =
cj−1. Then let cj = wj .

• Else with probability 0.5, let cj = wj .

If the honeyword c is ineligible (§6.1), then begin again
to generate c (excluding the tough-nut option this time).

Write us for python code implementing this model.
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