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Abstract

In order to realize a digital system with no distinction between “on” and “off,” computational

state must be stored in non-volatile memory elements. If the energy cost and time cost of managing

computational state in nonvolatile memory can be lowered to the microsecond and picojoule per bit

level, such a system could operate from unreliable harvested energy, never requiring a reboot. This

work presents a nonvolatile D flip-flop (NVDFF) designed in 0.13 µm CMOS that retains state in

ferroelectric capacitors during sporadic power loss. The NVDFF is integrated into an ASIC design flow,

and a test-case nonvolatile FIR filter with an accompanying power management unit automatically saves

and restores state based on the status of a one-bit indicator of energy availability. Correct operation has

been verified over power cycle intervals from 4.8 µs to 1 day. The round-trip save-restore energy is

3.4 pJ per NVDFF. Also presented are statistical measurements across 21,000 NVDFFs to validate the

capability of the circuit to achieve the requisite 10 ppm failure rate for embedded system applications.
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I. INTRODUCTION

Nonvolatile processing—continuously operating a digital circuit and retaining state through

frequent power interruptions—creates new applications for portable electronics operating from

harvested energy [1] and high-performance systems managing power by operating “normally

off” [2,3]. To enable these scenarios, energy processing must happen in parallel with information

processing.

The cartoon in Fig. 1 illustrates nonvolatile operation under energy harvesting. When sufficient

energy exists in the system to establish a functional supply level, the circuit computes. When

energy is lost and VDD cannot be maintained, the circuit stops processing and retains state in

its registers. The transition from computing to retention and vice versa involves the automatic

management of state in nonvolatile memory elements. The goal of this work is to minimize the

cost of these transitions in terms of energy and time. Ferroelectric capacitors are a promising low-

power nonvolatile technology for this application. Compared to other nonvolatile technologies,

ferroelectric random access memory (FeRAM) has been shown to consume the least amount of

energy per read or write operation compared to other nonvolatile memory technologies; although,

it has a larger cell area [4]. Several developments in nonvolatile processing have been introduced

[5]–[7], but practical challenges related to system integration prevent their widespread use while

further improvement in save/restore energy and time can still expand the scope of this technology.

As a test-case for nonvolatile operation, the 3-tap FIR filter in Fig. 2 will be implemented.

The following describes its input-output relation:

y[n] = w3 · x[n− 7] + w2 · x[n− 6] + w1 · x[n− 5]. (1)

The registers in this FIR filter will contain embedded nonvolatile memory elements, and the FIR

filter’s continued operation under power interruption will demonstrate the desired nonvolatile op-

eration. First, a nonvolatile D flip-flop (NVDFF) with embedded ferroelectric capacitors (fecaps)

that senses data robustly and avoids race conditions is presented. Next the NVDFF is integrated

into the ASIC design flow with a power management unit (PMU) and a simple one-bit interface

to brown-out detection circuitry . Finally the NVDFF statistical signal margin and the energy

cost of retaining data is characterized.
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II. THE DESIGN OF THE NVDFF

Table I summarizes the properties of the technology used in this work. Embedded ferroelectric

capacitors (fecaps) store data in a charge versus bias voltage hysteresis illustrated in Fig. 3.

Writing data to an fecap requires applying either +VDD or -VDD across its two terminals. By

engineering the fecap hysteresis coercive limits to be compatible with the CMOS transistor supply

voltage, the write operation becomes simple. A register can quickly save its state to ferroelectric

capacitors with simple static CMOS logic. A circuit-level description of the ferroelectric capacitor

can be found in [4].

Reading the ferroelectric capacitors is more challenging because extracting the charge does

not directly produce a full-rail static CMOS voltage output. The conventional approach shown

in Fig. 4 is based on [5] and [6]. A master latch, slave latch, and pair of ferroelectric capacitor

dividers comprise this NVDFF. Either four or two of the capacitors are written to opposite data

states by passing the slave latch node voltages to nodes QT and QC while sequencing PL1 and

PL2 appropriately. When sensing the fecaps1, PL2 is held low while PL1 is pulsed from low

to high. For a supply voltage of 1.5 V and writing all four capacitors to opposite data states,

approximately 400mV of nominal differential signal, VQT − VQC, can be developed between

QT and QC because the effective capacitance of an fecap depends on its state. The common

mode voltage, (VQT+VQC)/2, is near VDD/2. This small signal is passed to the slave latch and

amplified to full-rail CMOS levels by enabling the cross-coupled inverters in the slave latch.

The concept of a NVDFF—based on fecaps or other nonvolatile technologies—has been well

established; however, several challenges to system integration have prevented its widespread

adoption. These challenges are enumerated in Table. II. First, the voltage bias on the ferroelectric

capacitors should be maximized to prevent very slow signal development. Fecap signal dynamics

are exponentially sensitive to voltage bias, so it is important to avoid the performance penalty

associated with sensing at low bias. The data in [8] suggests that the electric field from 0.6 V

of bias in this work’s technology will require over 10µs to develop 80% of the signal. On the

other hand, [9] has shown 1.2 V or higher extracts most signal under 100ns.

Secondly, when the system power supply is in an unreliable brown-out condition, glitches must

1In this paper, the words “sense” and “restore” have very similar meaning. The word “sense” emphasizes the process of
converting the ferroelectric capacitor remnant charge into a logic-level voltage signal; whereas, the word “restore” signifies the
abstract operation of an NVDFF recovering the data it held prior to power-loss.
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be prevented from corrupting the fecap state. Tracing from the capacitor nodes through transistors

in Fig. 4 shows that unreliable voltages on nodes WL and CK can cause unwanted voltage to

develop across the ferroelectric capacitors. Third, to prevent damage and imprint in the sensitive

dielectric of the fecap, zero bias must be maintained across the fecaps during active operation.

Fourth, the sensing operation cannot rely on multiple timing edges that require careful control

with respect to each other. The NVDFFs are interspersed in a sea of digital gates with automated

routing, and must function in an environment just exiting brown-out. Fifth, the peak current

from simultaneously toggling the fecaps in thousands of NVDFFs can far exceed the current

specification during normal operation of the circuit. The peak current is especially constrained

for this work’s targeted microcontroller application. Therefore careful design must ensure that

the peak current during save and restore remains compatible with the current consumption of

normal operation. Sixth, analog circuit techniques to maximize the sensing margin have limited

benefit if they require additional time for bias currents and voltages to settle. Seventh, the digital

circuit should automatically start or stop computation and manage state based on the amount

of available energy for operation. Such a behavior requires that multiple control signals are

internally generated for writing and reading nonvolatile memory elements. Finally, the resulting

solution should be compatible with the ASIC design flow so that the NVDFF can be adopted

without increasing design complexity and cost. The final challenge, poses a significant barrier to

local memory array approaches because the physical designer has to develop a circuit-dependent

approach to integrating the nonvolatile memory elements.

With regards to these eight challenges to system integration, an alternative NVDFF is devel-

oped, based on integrating a nonvolatile latch (NVLATCH) into the slave stage of a conventional

DFF. Shown in Fig. 5(a) is a simplified schematic of the proposed sensing scheme in the

NVLATCH and Fig. 5(b) shows the associated waveforms. Prior to sensing, the fecaps have

been programmed to opposite data states, corresponding to opposite points on the zero bias

voltage points of the hysteresis curve. Identical charging currents integrate the difference in

remnant charge between the two fecaps onto nodes FET and FEC. In other words, both capacitors

experience an identical vertical displacement (charge axis) on the hysteresis of Fig. 3, but different

horizontal displacements (voltage axis) depending on the starting point of “0” or “1.”

The node to first cross the diode voltage drop plus a PMOS threshold will quickly pull the

internal node of the sensing latch high. The incremental capacitance on the ferroelectric capacitor
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nodes is large (roughly 200 fF) compared to the internal node of the sensing latch (roughly 10

fF), so a small voltage difference on the high capacitance nodes FET and FEC is converted to a

large voltage difference on the latch nodes. In addition to being self-timed (solving challenge #4),

this circuit topology ensures sufficient bias (1.1 V) across the fecap before its data is captured

(solving challenge #1).

The schematic of the nonvolatile latch in Fig. 6 shows the additional transistors for saving

data, isolating fecaps during active operation, and protecting fecaps during power loss. This latch

is combined as the slave stage with a clocked CMOS master latch to form the NVDFF in Fig. 7.

Also included, but not shown, are transistors in the master and slave stages to implement an

asynchronous active-low reset. The waveforms in Fig. 8 show how the ports PG, LD, EQ, and

VDDNV need to be sequenced during power interruption.

While active, PG=LD=0, and nodes FET and FEC act as a virtual supply for the slave latch.

The opposite plate of the ferroelectric capacitors, node SN, is also at the same potential as

VDDNV, resulting in 0 V across the fecaps during active operation (challenge #3). The save

operation initiates when PG rises as CK is held low, cutting off VDDNV and enabling a weak

pull-down path (M8-M10) to discharge one of the two fecaps (write “0”) depending on the data

state of the slave latch. The subsequent rise of LD preserves the data in the other fecap, which

has already been written to a “1” during the previous restore operation. Prior to power loss, the

EQ signal assertion clears floating voltages inside the slave latch, and then the VDDNV rail is

discharged to prevent unintentional conducting paths to nodes FET/FEC (solving challenge #

2). A complementary sequence is applied after VDD and VDDNV return high for restore. First,

PG falls low, biasing M1 and M2 into their saturation region through the PMOS diodes M3

and M4. The sense operation completes and the correct value appears on the NVDFF Q output.

When LD falls low, the voltages across the fecaps are cleared and the NVDFF can resume active

operation. The four operating modes of the NVLATCH are summarized in Table. III.

It should be noted that the NVDFF itself has no fundamental disadvantage for active power

consumption relative to a volatile DFF because the fecaps are isolated; however, the performance

is degraded. Under typical process-voltage-temperature (PVT) conditions and small load with

sharp edges, the clock-to-q delay for the falling output (4 x Fo4) is roughly twice the delay for

the rising output transition (2 x Fo4) because the former transition has to first propagate through

the slave stage jam latch before driving the output inverter buffer. The performance degradation
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is tolerable because the microcontroller systems this technology targets operate at clock periods

equal to 150 x Fo4 or larger (800 x Fo4 in this work).

Both the pull-up and pull-down paths for nodes FET/FEC are sized weak so that no more than

10 µA of peak current is drawn by each NVDFF (challenge #5). These issues related to avoiding

race conditions, sensing fecaps at high voltage bias, and minimizing peak current prevent the

adoption of the conventional ferroelectric DFF based on a pair of fecap dividers [5] (challenges

#1, #4, #5). Additionally, Table. IV shows that the proposed NVDFF consumes 40% less energy

(from simulation) because it contains 2 fecaps instead of 4. Finally, the NVDFF still satisfies

challenge #6 because it requires only one low-accuracy bias voltage, generated dynamically

through PMOS diodes within 10ns of the beginning of the microsecond-scale restore operation.

III. SYSTEM-LEVEL NONVOLATILE STATE MANAGEMENT

Figure. 9 shows the architecture of the nonvolatile state management. A test case FIR filter

has all of its volatile DFFs replaced by NVDFFs of the type described in section II. Only

one type of NVDFF—asynchronous active-low reset without scan chain—is employed. Also

added are buffer trees for the PG, LD, and EQ signals and a global rail VDDNV that supplies

current for the toggling of internal slave latch nodes and FET/FEC. This system works with

the energy harvester interface in [10] which provides a VBAT OK signal that rises only if a

sufficient amount of energy exists in the system to restore and save state. Similarly VBAT OK

falls when the system is about to lose its minimum energy reserve. A free running clock that

settles before VBAT OK goes high is also required. An on-chip power management unit (PMU)

takes the VBAT OK signal and generates a control signal sequence (see FSM in Fig. 10) whose

transitions align to the PMU’s clock edges and satisfy the timing constraints in Fig. 8 (solving

challenge #7).

To incorporate the NVDFF into the ASIC design flow (challenge #8), the following modifi-

cations are necessary:

1) Exclude volatile DFFs during synthesis.

2) Add PG, LD, EQ ports to NVDFF instances in the post-synthesis structural netlist.

3) Create nonvolatile related ports PG, LD, EQ in the top-level of the physical design.

4) Create a global power rail for VDDNV, which is a low-current rail without explicit

decoupling capacitance.
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5) Route NVDFFs to the VDDNV rail.

6) Synthesize buffer tree for PG, LD, EQ with a maximum skew constraint of 10ns (targeting

a 200 ns clock period for the PMU).

The modifications above do not influence how the front-end designer writes the behavioral

description of the circuit. In the physical design stage, the most critical timing is the skew

constraint for the PG, LD, EQ signals which easily meets the chosen requirement of 10ns.

The self-timed nature of the sensing operation in the NVLATCH enables this relaxed timing

constraint. Namely, the slave latch automatically senses the fecap state after PG falls low without

the need for an additional control signal. In addition, the VDDNV rail does not require explicit

decoupling capacitance because it supplies very little current. It supplies less than 10µA per

NVDFF during save or restore, and during active operation the VDDNV rail supplies current

for only the dynamic switching of the internal slave latch nodes. Post-layout simulation of the

entire FIR and measurement validate the electrical integrity of the VDDNV rail.

The complete implementation of the nonvolatile FIR filter is shown in Fig. 11. The NVDFFs

are placed and routed among the logic gates. Also, the PMU containing only volatile DFFs is

separately constructed so that its connections to the FIR filter can be bypassed for testability.

Table V estimates the overhead from replacing every volatile DFF with an NVDFF. Based on the

fact that the NVDFF consumes 2.7x the area of a volatile DFF and the relative area of sequential

elements versus logic gates, the current approach incurs a 49% area overhead in the FIR filter in

exchange for nonvolatile processing capability. The significant area overhead motivates selective

DFF replacement as employed with MTCMOS retention registers [11,12]. Also, more NVDFF

library cell types can help reduce the area. The additional NVDFF types can share a common

set of transistors to drive the nodes PBIAS and SN, while careful custom design can potentially

eliminate the EQ signal and its associated transistors.

IV. NVDFF ENERGY AND SIGNAL MARGIN MEASUREMENT

Fig. 12 shows the die micrograph of the test chip. In addition to the nonvolatile FIR filter

with PMU, the chip also contains a bank of 4096 NVDFFs arranged into 8 shift registers of 512

bits. The measurement of the nonvolatile FIR filter will demonstrate the timing of the save and

restore operation, and the NVDFF shift register permits gathering the statistical signal margin
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of the proposed technique. Both structures reveal the breakdown of the energy cost of saving

and restoring state.

The waveform set in Fig. 13(a) shows the measured output of the test-chip during a power

interruption during which all chip power supplies are actively driven to ground. The signals

VBAT OK, CLK, and the 1.5 V chip supply are emulated by a pattern generator during chip

testing. After the power interruption, the FIR filter resumes operation with the correct state.

The waveform set in Fig. 13(b) zooms in on the power-loss event. Prior to power loss, the FIR

values are consistent with the relation in Eq. (1), the provided inputs, and the programmed

coefficients (w1, w2, w3) equal to (87,−77,−98). Namely, the application of a periodic in-

put sequence {120,−2, 90,−75, 60, 45,−111, 72, . . .} produces the expected output sequence

{−13259, 2175, 6645,−19002, 10401, 15774,−16470,−3776, . . .}. The fall of VBAT OK indi-

cates power loss, and this event passes through a two-register synchronizer before the PMU

freezes the FIR filter—in this case, to the output value -3776—and then continues the save

operation by internally generating the PG, LD, and EQ signals. In the eighth cycle after the fall

of VBAT OK, the save completes and the rise of EQ sets all outputs of the FIR filter to “1” (the

NVLATCH node is buffered with an inverter). The PMU waits another 2 cycles to let the internal

VDDNV rail completely discharge as in the timing diagram of Fig. 8. Then, it is safe to cut off

all power to the chip. The waveform set in Fig. 13(c) zooms in on the power-restoration. In the

sixth cycle after VBAT OK rises, the correct data (-3776) has been restored to the FIR filter.

In the tenth cycle after VBAT OK rises, the FIR filter resumes computation with the previously

programmed coefficients. Even in the toy example of the FIR filter, the parallel save and restore

of the NVDFF takes only 10 cycles to resume; whereas, a volatile implementation would have

required 24 cycles to reprogram the three filter coefficients.

The round trip energy cost of save and restore is measured by issuing repeated save and restore

commands at the highest possible frequency (Fig. 14), which turns out to be 208kHz. Under these

conditions, the FIR filter computes for six cycles and captures six new input samples between

power interruption. The average current into the chip (FIR, PMU, SR latches) is measured and

the current drawn by the VDDNV rail is separately recorded. A similar power cycling pattern

is applied to the NVDFF shift register and the average currents associated with the control

signals and VDDNV terminal are separately measured. The average current times the power

supply voltage (1.5 V) divided by the save-restore repetition period and divided once more by
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the number of NVDFFs produces the round-trip energy per NVDFF values in Table VI.

As a result, the contributions from fecap switching, the NVDFF interface, and FIR glitches

plus toggling plus PMU overhead can be determined. The pie chart in Fig. 15 describes this

breakdown of the round-trip save and restore energy for the NVDFF. By measuring the energy

in both the context of a shift register (no logic and little interconnect) and the context of an

FIR filter, the additional energy cost from nodes glitching in the FIR filter, cycle overheads, and

PMU energy can be quantified to 1.780 pJ out of 3.439 pJ. Interestingly, slightly more than half

the energy is associated with the CMOS circuits, which is largely independent of choosing the

ferroelectric capacitor as the nonvolatile memory technology. The measurements of energy, save

time, restore time, and on-off cycling rate are summarized in Table VII and compared to related

work [7]. The improvements in this work’s energy per save/restore operation can come from a

difference in fecap size and circuit topology. Also, the proposed NVDFF has no direct current

paths from power supply to ground; whereas, [7] precharges the slave latch into a metastable

state that can produce significant short circuit current through the cross-coupled inverter pair.

The improved save/restore timing is suspected to come from (1) the larger voltage bias applied to

the ferroelectric capacitors while sensing in the NVDFF and (2) the larger sensing time constant

on the latch nodes in [7] because of loading by the fecaps.

Finally, the statistical signal margin is measured. The FIR filter has 96 NVDFFs and about

500 gates. For a target application of a microcontroller, approximately 5,000 DFFs need to be

retained. The plot in Fig. 17 shows the number of failures induced in the eight shift registers

of 512 NVDFFs (4096 total per chip) when a skew is applied. The test pattern first writes and

saves (0, 1, 0, 1, . . .), then writes and saves the opposite data (1, 0, 1, 0, . . .), then restores the

state under a given skew, and finally reads out the shift register to compare with previously

written data. The NVDFF has a split supply rail (Fig. 16), so the sensing current ramps can

be perturbed from their nominally identical values. In simulation, the relationship between the

skew on VDDNVT/VDDNVC and percentage skew in current ramp rate is roughly linear:

IT − IC
IT

∝ VDDNVT − VDDNVC.

Furthermore, the voltage signal, defined as the voltage difference between nodes FET and FEC,
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is approximated by:

Vsig ≈ Vtrip

(
IT − IC
IT

)
+
Qr

Clin

.

The above relation comes from modeling transistors M1 and M2 in the NVLATCH of Fig. 6

as current sources and the slave latch trip point as an ideal detector of when FET or FEC first

charge up to Vtrip. The remnant charge, Qr, is the charge signal stored in the fecap hysteresis—

the vertical distance between the two remnant points on the charge versus voltage hysteresis

under zero bias in Fig. 3. Clin is dominated by the non-hysteretic component of the ferroelectric

capacitor which determines how much voltage can be generated by a given amount of remnant

charge.

In measurement, the reduction of skew between VDDNVT and VDDNVC results in a Gaussian-

like quadratic decrease of the failure rate on a logarithmic vertical scale in Fig. 17. From zero

skew up to VDDNVT=1.2 V, all NVDFFs in all five measured chips (about 21,000 NVDFFs

total) operate without failure. A wide distribution of failure versus skew relative to the horizontal

separation of the failure curves of individual chips shows that within die variation is dominant,

though non-negligible die to die variation exists. Because several hundred millivolts of skew

between VDDNVT and VDDNVC translates to several hundred millivolts of skew between the

internal nodes FET and FEC, the transistor mismatch is also negligible compared to fecap signal

variation. Conservative extrapolation of the failure distributions (individual chips and total) as

a straight line on a logarithmic scale suggests that an unskewed NVDFF will meet the 10 ppm

requirement for a microcontroller application.

In a production setting, skewing VDDNVT and VDDNVC can screen out marginal chips. In

a digital circuit block with arbitrary DFF placement, a conventional scan chain (data multiplexer

or clock multiplexer-based) can initialize the master stage with the test data during the active

phase. A subsequent save operation would write the test data to the fecaps, after which the

restore operation can take place with a desired skew to check if the correct data appears despite

the signal stress.

V. CONCLUSION

A nonvolatile D flip-flop based on ferroelectric capacitors has been developed with regards

to the key challenges of system integration. It enables an arbitrary digital circuit to save state
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in 2.2µs and reboot in 2µs. A microcontroller having a few thousand NVDFFs that cost 3.44

pJ per bit will be able to power its state management from the decoupling capacitance already

available on its power pin. These scales of time and energy are comparable to the scales of time

and energy during regular computation, and therefore energy processing and computation can

happen in parallel. Finally, the energy breakdown of the round-trip save and restore operation

has revealed that artifacts of the CMOS circuitry can limit further reduction in the energy cost

of managing state, independently of improvements in the nonvolatile technology.
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TABLE I
SUMMARY OF TECHNOLOGY PROPERTIES (REPORTED IN [13]–[15])

Technology 0.13 µm CMOS with
embedded FeRAM

VDD 1.5 V
Ferroelectric Material PZT
Dielectric Thickness 70 nm

Coercive Voltage ≈ 0.5 V
Saturation Voltage ≈ 1.5 V

Remnant Polarization 150 - 200 fC/µm2

TABLE II
THE EIGHT CHALLENGES OF NVDFF SYSTEM INTEGRATION

1 Maximize voltage bias on
FeCap during sensing

2 Prevent glitches on FeCap
during brown-out

3 Apply zero bias on FeCap
during active operation

4 Avoid race conditions and
sensitive high impedance
nodes during sensing

5 Limit peak current during
save and restore

6 Avoid settling time for ana-
log biases and references

7 Control state management
with interface to system en-
ergy information

8 Develop a solution compat-
ible with the ASIC design
flow
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TABLE III
THE FOUR MODES OF THE NVDFF DECODED BY PG & LD

PG LD Mode
1 1 Off
0 1 Restore
0 0 Active
1 0 Save

TABLE IV
SIMULATION-BASED COMPARISON WITH CONVENTIONAL APPROACH FOR NONVOLATILE LATCH OPERATION

conventional proposed
Restore energy (nor-
malized)

0.16 0.38

Save energy (normal-
ized)

0.84 0.20

Total energy (normal-
ized)

1.00 0.58

Nominal differential
signal (static model)

383 mV 309 mV

Voltage bias across
switching capacitor

0.59 ∼ 0.62 V 1.10 ∼ 1.30 V

TABLE V
AREA OVERHEAD OF THE NVDFF

Total standard cell area of nonvolatile FIR 11020µm2

Area of gates 5194µm2

Area of NVDFFs 5826µm2

Area of equivalent number of volatile DFFs 2184µm2

Area of equivalent number of NVDFFs 7378µm2

Overhead based on synthesis area report 49%

TABLE VI
PER-NVDFF ENERGY FOR FIR AND SHIFT REGISTER

Domain Shift Reg. FIR
VDDNV 1.09 pJ 1.20 pJ

VDD 0.46 pJ 2.24 pJ
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TABLE VII
COMPARISON TO RELATED WORK

[7] This work
CMOS Technology 0.13 µm w/ FeRAM 0.13 µm w/ FeRAM
VDD 1.5 V 1.5 V
NVDFF area — 60.69µm2

Standard DFF area — 22.75µm2

NVDFF area over-
head (from synthesis
report)

— 49 %

Placed NVDFF save
& restore energy

19.42 pJ/bit 3.44 pJ/bit

Save time 7µs 2.2µs
Restore time 3µs 2µs
Maximum reported
on-off cycling rate

20kHz 208kHz


