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Abstract—This paper presents a technique to evaluate the
timing variation of SRAM. Specifically, a method called loop
flattening that reduces the evaluation of the timing statistics in
the complex, highly structured circuit to that of a single chain of
component circuits is justified. To then very quickly evaluate the
timing delay of a single chain, a statistical method based on Im-
portance Sampling augmented with targeted, high-dimensional,
spherical sampling can be employed. The overall methodology
has shown 650X or greater speed-up over the nominal Monte
Carlo approach with 10.5% accuracy in probability. Examples
based on both the large-signal and small-signal SRAM read path
are discussed and a detailed comparison with state of the art
accelerated statistical simulation techniques is given.

Index Terms—Cache memories, CMOS memory, random ac-
cess memory, sense-amplifier, SRAM, process variation

I. INTRODUCTION

Embedded SRAM is a vital component of digital integrated
circuits and often constitutes a dominant portion of chip
area [1]. Therefore, the specifications of embedded SRAM
have significant implications on the overall chip cost, power,
performance, and yield. Shown in Fig. 1(a) is a plot of
reported cell areas in fully functional SRAM macros versus
the technology node for the past few years. The cell area has
scaled with the scaling of the critical feature size. Fig. 1(b)
plots an unconventional metric—the number of SRAM bits per
mm2 of silicon in high performance microprocessor chips—
that reveals reduced SRAM cell area does not readily translate
into increased SRAM utilization.

This discrepancy in trends is due to a number of limitations
of SRAM, all related to local variation: SRAM often needs
a separate, elevated power supply; excessive SRAM timing
variation degrades performance; and, uncertain aging effects
show up first in the highly integrated and highly sensitive
SRAM cells. As the overarching goal of this work, we seek
to increase the SRAM utilization by propagating the physical
trend of shrinking cell area into the overall system-on-chip
improvement. This goal can be achieved if designers have
a way to quickly assess the impact of circuit solutions on
the operating constraints (e.g., minimum VDD, frequency) to
ultimately preserve the overall chip yield.

This work focuses on read access yield because it has
been observed in measurements that AC fails, manifested as
too slow of an access time from one or more addresses, are
encountered before DC failures, manifested as the corruption
of data at one or more addresses [2]. Therefore, DC stability
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Fig. 1. (a) SRAM cell area scaling and (b) utilization of SRAM in recent
high performance microprocessors

(write and read margin) is necessary but not sufficient for
yielding a memory chip. A significant degree of additional
margin must be inserted to meet performance requirements.

In general, the exact distributions of the relevant SRAM
performance metrics are not known. As a consequence, any
statistical simulation method unavoidably resorts to numerical
solvers such as SPICE. Classical approaches like the Monte
Carlo method require too many iterations of such SPICE
evaluations because of the circuit complexity and extremely
low tolerable failure probabilities of individual components
(10−8 and below). Thus, the primary challenges to any sta-
tistical simulation method are: (a) dealing with the structural
complexity of the timing delay evaluation problem, and (b)
estimating timing delay statistics to a very high accuracy.

Prior Work: A lot of exciting recent work has made important
progress towards the eventual goal of designing generically
applicable, efficient simulation methodologies for circuit per-
formance evaluation. To begin with, in [3–7], the authors
developed efficient sampling based approaches that provide
significant speedup over the Monte Carlo method. However
these works do not deal with the interconnection complexity,
i.e., do not address the challenge (a) stated above.

Other work has addressed the issue of structural complexity.
In [8], by modeling the bitline signal and the sense amplifier
offset (and the timer circuit) with Gaussian distributions, the
authors proposed a linearized model for the read path. As this
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Fig. 2. (a) a representative SRAM array and (b) a simplified schematic of
the small signal read path

model can be simulated in MATLAB, the SRAM structure
can be emulated and the evaluation time can be significantly
improved. Additional approaches such as [9] and [10] apply
more sophisticated techniques involving Gumbel distributions
and sensitivity analysis but still do not incorporate a full-
scale SPICE functionality check to directly evaluate extreme
delay statistics, which remains generally necessary to handle
all possible operating scenarios (e.g., low-voltage operation).

Contributions. In this paper, we show how to overcome the
two challenges for the timing delay analysis of SRAM by
means of two proposed methods of Loop Flattening and Spher-
ical Importance Sampling respectively. These techniques were
introduced in [11], and in this paper we add (1) a theoretical
justification of Loop Flattening, (2) new evidence of the Loop
Flattening accuracy in the large signal SRAM read path under
general conditions of non-Gaussian delays, multiple levels of
nested sampling, and correlated fluctuations, (3) a detailed
break-down of the simulation cost of Spherical Importance
Sampling, and (4) a quantitative comparison with other works
regarding simulation cost versus failure probability level and
dimensionality.

II. LOOP FLATTENING FOR TIMING VARIATION

In this section, we describe the problem of statistically
analyzing the SRAM read path which contains circuit blocks
repeated at different rates. Then we introduce and justify the
Loop Flattening approximation to enable the application of
accelerated statistical simulation techniques. In the represen-
tative block diagram of an SRAM array of Fig. 2(a), there
are highly repeated structures: memory cells, sense amplifiers,
row decoders and drivers, and timing circuits. There are
several distinct, cascaded circuit stages, some of which may
be correlated. The circuit is also big. A straightforward way
to simulate this circuit is to take a complete schematic and
address each location in simulation while noting the behavior
for each address location. This method would cost too much
computational resources, so a circuit designer turns to a
simulation of a critical path by taking a representative member
of each group of circuits and adding appropriate parasitic
loading in parallel.

A statistical analysis of a memory critical path requires
additional insight into the architecture. For now, consider a
single column of 256 memory cells as in Fig. 2(b) with
R = 256. When the wordline goes high at time t = 0, the
memory cell develops a differential signal (voltage difference
between BLT and BLC), and when the enable signal goes high
at time t = T , the sense amplifier resolves that differential
signal to a logic-level output (voltage difference between SAT
and SAC). One can represent the bitcell signal of cell i as
TXi = T (σXX̃i + µX) and the sense amplifier offset as
Y = σY Ỹ ( Ỹ and X̃i are N (0, 1)). The failure of this
read operation is determined by the interaction of two random
variables sampled at different rates. The probability Pf that
this single column memory fails for a given strobe timing T is
the probability that the sense amplifier offset overpowers the
bitcell signal for one or more paths in the column:

Pf := Pr

(
R⋃
i=1

{Y − TXi > 0}

)
(1)

≤ R · Pr (Y − TX1 > 0) =: Pu, (2)

where Pu is the conservative union bound estimate of Pf .
Because of the different rates of repetition, a proper Monte

Carlo simulation on a critical path with one cell and one sense
amplifier must sample variables in a nested for loop: for each
sense amplifier, simulate over 256 cells and check for one
or more failing paths, then sample a new sense amplifier and
repeat over 256 new cell realizations and so on, as suggested in
[8]. If one wishes to apply an accelerated statistical simulation
to evaluate the failure of this circuit, the “for loop” sets an
unfavorable lower bound on the number of simulations needed
just to emulate the architecture.

We observed that the simple union-bound estimate Pu
provides an accurate way to bypass this requirement. Just
the path failure probability is simulated and the result is
multiplied by R. The estimate is guaranteed to be conservative
and in practice agrees very well at low levels of failure
probability. In [11] this loop flattening estimate was shown
to be accurate for the small signal SRAM read path. As
in [8] the bitline signal development and sense amplifier
offset were parametrized by Gaussian random variables—
{µX = 1mV/ps, σX = 0.10 × µX , R = 256, σY = 25mV }
for the expression in Eq. 1. Specifically, the loop flattening
estimate was only 1.9% pessimistic in strobe timing for a
modestly sized 512 kb memory (2048 memory columns) at
a yield of 99%, and increased in accuracy at even lower levels
of failure.

The schematic in Fig. 3(a) is the schematic tree of the
large signal read path. For the case of cascaded random
delays, we can also see the applicability of the loop flattening
estimate. This circuit is simulated in a production quality 45
nm CMOS technology, where each shaded transistor (or gate
input) exhibits local mismatch modeled as a fluctuation of
its threshold voltage. Fig. 4 shows the Monte Carlo SPICE
simulation result of this circuit for eight cells per local bitline
(NLBL = 8) and 16 local evaluation networks (NSEG = 16).
In this picture, there is a delay Zi (1 ≤ i ≤ 256) associated
with each of the 256 cells on the column and the probability
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Fig. 3. (a) Schematic tree of the large signal read path and (b) a simple tree
for analyzing loop flattening

of failure associated with a target delay t is

Pf := Pr

(
R⋃
i=1

{Zi ≥ t}

)
(3)

with R = 256. The solid curve gives the conventional, nested
Monte Carlo simulation result by sampling random variables
in proportion to the rate of repetition of their associated tran-
sistors. The dashed curve gives the loop flattening estimate in
which a simple chain of representative transistors is simulated
with all random variables sampled at the same rate. Even for
this example, in which the delays are not perfectly normal
and delay stages are correlated, the loop flattening technique
produces a tight estimate. The single, solid black dot gives a
specific example for how an Importance Sampling (IS) sim-
ulation with an appropriately chosen mean shift can evaluate
the loop flattening (dashed curve) with significant speedup,
consuming approximately 1.1 thousand SPICE simulations in
this example. The loop flattening approximation suggests that
this IS estimate in turn will match the result produced by a
proper Monte Carlo simulation with nested sampling, which
requires 1.7 million SPICE simulations to observe the 1%
failure probability of this single column memory.

For the case of independent, random additive delays, it can
be shown analytically that the loop flattening estimate con-
verges to the true failure. Consider the simple tree in Fig. 3(b)
where this time the random variables Xi and Y represent
delays, and the overall delay of any path is Zi = Xi + Y ,
associated with the node whose delay is Xi. Then, given a
time, t, the failure probability is defined as the probability
that one or more paths in the tree exceeds t as in Eq. (3).
The proposed loop flattening estimate treats these paths as
independent at low probabilities and approximates the failure
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Fig. 4. SPICE simulation of the large signal read path

probability with the upper bound:

Pu := R · Pr (Z1 ≥ t) . (4)

For Xi and Y independent normal random variables, the
result in the Appendix shows that:

lim
t→∞

Pu − Pf
Pf

= 0 . (5)

A similar argument can be developed for the sense amplifier
strobe timing case.

For finite t, the ratio in Eq. (5) represents the overestimate of
the column failure probability as a fraction of the true failure
probability (Pu = Pf (1+ ε) with ε→ 0). For a memory with
M independent columns, the overall memory failure estimate
from the loop flattening approximation is:

1−(1−Pf (1+ε))M ≈ 1−(1−MPf−MεPf ) =MPf (1+ε).

Therefore, the failure of the overall memory is also overes-
timated by only ε × 100%. For a variety of cases including
numerical examples and a formal proof, the loop flattening
estimate has been justified. This approximation eliminates the
constraint of nested sampling which would set an unfavorable
lower bound on the required number of Monte Carlo simula-
tions. Accelerated statistical methods such as those described
in Section III can be directly applied to quickly determine the
value of the loop flattening estimate which produces an accu-
rate, conservative value for the memory failure probability.

III. SPHERICAL IMPORTANCE SAMPLING COST ANALYSIS

In this section, we introduce the Monte Carlo method and
then we introduce the Spherical Importance Sampling method
with the purpose of significantly reducing the number of
SPICE simulations required. Suppose one is given a circuit
that fails with probability p, and wishes to identify the value
of this failure with a Monte Carlo simulation that produces
an estimate p̂MC. Based on a Chernoff bound, the number of
required Monte Carlo simulation runs is given by:

NMC >
2 ln

(
1
δ

)
pε2

(6)

where δ = Pr (p̂MC < (1− ε)p). In plain English, Eq. (6) says
that with probability 1 − δ, the Monte Carlo estimate p̂MC

will not underestimate the true failure p by more than ε ×
100%. For typical values of δ (0.01 to 0.1) and ε (0.05 to
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0.3), this expression indicates NMC > 100/p to 1000/p. To
accurately estimate low failure probabilities—10−6 to 10−10

for embedded SRAM—the standard Monte Carlo approach
would require too many (108 to 1013) SPICE simulations as
seen from Eq. (6).

Fortunately, Importance Sampling provides a way to speed
up such a simulation, with a simple implementation (one
needs only to provide an indicator of pass/fail from the
SPICE simulation). This work focuses on identifying the most
likely region of failure in the parameter space, relying on the
well-known notion of a worst-case point [12]. The Spherical
Importance Sampling approach defines a dominant point of
failure as the point that minimizes the quadratic norm (in a
parameter space normalized by the standard deviation along
each coordinate). This point is then used as a mean shift in an
IS simulation to quickly evaluate the circuit failure probability
[5]. The detailed implementation of the method is described
in [11] and it is used to evaluate the read timing failure
of the small signal SRAM read path (Fig. 2(b)), comprised
of a critical path netlist with 12 transistors exhibiting local
mismatch variation.1 Failure is evaluated from a transient
SPICE simulation, checking for a polarity of sense amplifier
differential output that is consistent with the bitcell data.

In step 1 of the method, the parameter space of threshold
voltage fluctuation is sampled on concentric spherical shells,
whose radii are adjusted until a sufficient number of failures
are observed. For a radius that exhibits sufficient failures (1
to 250 for this work), the failing parameters are averaged to
produce an initial IS mean shift that is refined in step 2 of the
method. In step 2, threshold voltage parameters are selected
in the neighborhood of the current mean shift estimate and are
evaluated by a SPICE simulation. The updating of the IS mean
shift is designed to gravitate to points of minimum quadratic
norm that reside in the failure region. Subsequent trails in
step 2 sample within a shrinking neighborhood around the
current IS mean shift to increase the resolution of parameter
space exploration. Finally, step 3 of the method consists of
a conventional Importance Sampling run. As a consistent
stopping criterion, empirically validated by accuracy against
Monte Carlo and not to be mistaken for the overall variance
of the process, the relative sample variance of the IS run is
monitored until it falls to 0.1 [5].

The SRAM read path setup and has been discussed in
detail in [11], and here we present a full cost break down
of the method in Table I. Across a range of probabilities
from 9 · 10−6 to 2 · 10−9, the exploration cost of Spherical
Importance Sampling varied from 1000 to 1,500 simulation
runs. The subsequent Importance Sampling stage took 660 to
923 runs. Compared to the previous ISNM work [5], at half the
dimensionality (6 instead of 12) and higher probability levels,
the previous simulation method remains costlier. This work’s
improvement comes from the two-step spherical exploration
finding a better shift for the Importance Sampling run. It is
also worth highlighting that the local exploration in step 2

1Global variation from one chip to another is modeled as a common shift
in the mean of threshold voltage distributions. This type of variation is also a
concern (but does not dominate simulation cost). It must be separately treated
after the impact of local variation is evaluated.

TABLE I
COMPARISON OF SIMULATION COST BETWEEN THIS WORK AND [5]

1 

Simulation cost breakdown 

This Work  

12 Dimensions 

2-step Spherical Samples 

[Dolecek 2008 ICCAD]  

6 Dimensions 

Uniform Exploration 

P  9.08×10-6 1.33×10-7 1.91×10-9 4.9×10-3 4.4×10-4 3.0×10-6 

Step 1 500 1000 1000 - - - 

Step 2 500 500 500 - - - 

Total 

Exploration 
1000 1500 1500 1000 1000 2000 

IS run 660 714 923 1000 2000 2000 

Total 1660 2214 2423 2000 3000 4000 
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Fig. 5. Simulation cost comparison. Not shown is a point for evaluating a
failure probability of 1.8 · 10−7 in 300,000 simulations in a 24 dimensional
space by [6].

is computationally less costly than the directional search in
step 1. The two-stage Spherical search effectively handles the
dimensionality of 12, considering that over 4,000 simulations
are needed just to check all the corners of a 12D cube. With
Spherical Importance Sampling much fewer directions are
examined while still identifying a suitable mean shift.

A general comparison across a variety of simulation meth-
ods [3, 5–7, 13] is presented in Fig. 5. The y-axis gives failure
probability levels and the horizontal axis gives the number
of total circuit simulations (e.g., SPICE runs) to evaluate
the failure probability. Also indicated is the dimensionality
of the problem (number of random variables). All methods
require less than 10,000 circuit evaluations to identify failure
probabilities from 10−3 to 10−9, and the relation between
failure probability and number of simulation trials is much
steeper than the Monte Carlo behavior of ≈ 100/p. The
Spherical Importance Sampling method compares favorably
with other works. Indeed, Monte Carlo simulation is much
less sensitive to dimensionality than the accelerated statisti-
cal evaluation techniques in Fig. 5 which all rely on some
type of classification of the parameter space. Developing
an accelerated simulation method for a higher dimensional
parameter space (e.g., 50) will broaden the applicability of
quick statistical simulation techniques.

IV. CONCLUSION

This paper discussed two techniques—Loop Flattening and
Spherical Importance Sampling—and a method to synthesize
them to reduce the statistical analysis of an SRAM block to
an Importance Sampling simulation of a chain of component
circuits. The key challenge of searching for the most likely
failure mechanism in a high dimensionality (12 in this work)
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parameter space is addressed by a two-stage process in which a
coarse direction is obtained first, followed by a local sampling
of increasing resolution. As future work, this method can be
extended to the complete, global row and column path of
large embedded SRAM, as well as to other highly structured
circuits such as adders, FIR filters, and FFT accelerators. Such
highly symmetric, multiplexing structures will become more
prevalent in the ascent of multi-core chip design.

APPENDIX A
PROOF OF THE LOOP FLATTENING APPROXIMATION

Here, Eq. (5) is shown for the case where Xi and Y are
N (0, 1) and independent additive delays (Zi = Xi+Y ).2 Re-
call that failure is given by Eq. (3) and the conservative loop
flattening estimate Pu is defined in Eq. (4).

By the union bound,

Pf := Pr

(
max
1≤i≤R

Zi ≥ t
)

= Pr

(
R⋃
i=1

Zi ≥ t

)

≤
R∑
i=1

Pr (Zi ≥ t) = R · Pr (Z1 ≥ t) =: Pu .

Then, by incorporating the pair-wise intersection probabilities,
we can introduce an optimistic (lower bound) estimate Px:

Pf = Pr

(
R⋃
i=1

Zi ≥ t

)

≥
R∑
i=1

Pr (Zi ≥ t)−
1

2

R∑
(i,j)
i 6=j

Pr
(
Zi ≥ t

⋂
Zj ≥ t

)

≥ Pu −
R(R− 1)

2
Pr
(
Z1 ≥ t

⋂
Z2 ≥ t

)
=: Px .

This implies
Pu − Pf
Pf

≤ Pu − Px
Px

=
1

2
R−1

Pr(Z1≥t)
Pr(Z1≥t

⋂
Z2≥t) − 1

. (7)

We use the following well-known bound on the tail probability
of the standard Gaussian (let W ∼ N (0, 1), w > 0):

1√
2πw

(
1− 1

w2

)
e−

w2

2 < Pr (W ≥ w) ≤ 1

2
e−

w2

2 . (8)

Since var(Zi) = 2,
1√
πt

(
1− 2

t2

)
e−

t2

4 < Pr (Z1 ≥ t) . (9)

We now examine the intersection probability
Pr (Z1 ≥ t

⋂
Z2 ≥ t). Conditioning on Y = y, the two

events Z1 ≥ t and Z2 ≥ t are independent. Therefore the
joint probability can be written as:

Pr
(
Z1 ≥ t

⋂
Z2 ≥ t

)
=

∫ ∞
−∞

fY (y) [Pr (X1 + y ≥ t)]2 dy

≤ Pr (Y ≤ 0) [Pr (X1 ≥ t)]2 +∫ t

0

fY (y) [Pr (X1 + y ≥ t)]2 dy + Pr (Y ≥ t) . (10)

2This proof assumes zero mean standard normal variables. The same
arguments can be applied for the general case of non-zero mean normal
random variables of different variance and will hold for generally well-
behaved distributions that decay sufficiently fast.

The inequality above follows from partitioning the region
of integration into (−∞, 0), (0, t), and (t,∞). For the first
and third terms, the maximum value for Pr (X1 + y ≥ t) is
substituted and fY (y) is integrated. The first term is bounded
by 1

8 exp−t
2 and the third term is bounded by 1

2 exp−
t2

2 . The
middle term can be bounded through bounds on the integrand:∫ t

0

fY (y) [Pr (X1 + y ≥ t)]2 dy

≤
∫ t

0

1

2
e−

y2

2
1

4
e−(t−y)

2

≤ t

8
· max
y∈(0,t)

e−
y2

2 e−(t−y)
2

.(11)

From elementary calculus, the right hand side bound evaluates
to t

8e
− t2

3 . This bound on the middle term decays the slow-
est, and therefore the ratio Pr (Z1 ≥ t) /Pr (Z1 ≥ t

⋂
Z2 ≥ t)

grows at least as fast as 1
t2 e

t2

12 , which grows arbitrarily large,
causing the right-hand side in Eq. (7) to go to zero and in turn
verifies the limit in Eq. (5).
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