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Abstract

The impact of two dimensional (2D) effects of energy transport on impurity radiation fronts in a

tokamak Scrape off Layer (SOL) plasma is considered. It is shown that 2D effects significantly

alter both the physics of the fronts and the radiation loss from the SOL plasma, explain the

experimental observations of impurity radiation region jumps from the target to the X-point after

transition to a detached regime, and suggest an explanation for the easier access to a detached

divertor regime in "vertical" target geometry in comparison with the "horizontal" case.
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Energy loss due to impurity radiation plays an important role in the physics of such interesting

phenomena in laboratory and astrophysical plasmas as: regimes with Multifaceted Asymmetric

Radiation from Edge (MARFE) [1] and radiative and detached divertor regimes [2, 3] in tokamak

plasmas; and the dynamics of solar prominences and formation of interstellar clouds [4]. Even

though the effects of energy radiation loss on plasma dynamics were investigated theoretically quite

intensively [4], the nonlinear stages were mainly treated in one dimensional (iD) approximation.

Often, however, two dimensional (2D) effects can qualitatively change the results of an analysis.

Here we consider analytically the impact of 2D effects on impurity radiation fronts in a

tokamak Scrape off Layer (SOL) plasma. We show that 2D effects significantly alter the physics of

fronts and the radiation loss from the SOL and allow us to explain the experimental observations of

an impurity radiation region jump from the target to the X-point after transition to a detached

regime, and the impact of divertor geometry on improved access to a detached divertor regime. A

more detailed paper also containing numerical results confirming our analytic findings will be

published elsewhere [5].

One can distinguish between two topologicaly different regions in a tokamak SOL: i) the

divertor region (below the X-point), and ii) the rest of the SOL (see Fig. 1). The divertor region

has no direct contact with the bulk plasma. When radiation loss is localized in the divertor, the heat

flux from the bulk plasma first enters the SOL and then flows to the divertor region before

radiating. In this case the radial broadening of the heat flux profile mainly occurs upstream from

divertor, as determined by a competition between parallel and perpendicular heat conduction, and

depends very weakly on the divertor plasma parameters. However, when the radiation region

moves to the X-point, the heat flux from the bulk flows directly into the radiating region,

preventing, as experiment suggests [2], further movement of the radiation region upstream. In

what follows we focus on the factors affecting the localization of the radiation region within the

divertor and assume that the front can not move above the X-point.

We start with an analysis of a 2D diffusion-reaction equation for a slab model of a tokamak

divertor region assuming that plasma heat conduction is the dominant mechanism of energy
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transport:

ax(K axT) + Dy (ip a YT) = R(T, x), (1)

where T is the plasma temperature; x and y are the "radial" and "poloidal" (along the magnetic

flux surface) coordinates; icP = (BP/B) 2 ic1 (T) and Ki(T) are the poloidal and radial heat

conduction coefficients; K11 (T) is the parallel heat conduction coefficient; and the projection factor

Bp/B=constant is the ratio of poloidal to total magnetic field strength. The function R(T,x)

describes the plasma energy loss due to impurity radiation and models the peaked impurity

emissivity at low temperatures in the coronal approximation [6] by assuming R(T, x)> 0 in a small

interval BTR around the temperature TR so that R behaves somewhat like a delta function.

In Eq. (1) we neglect the influence of perpendicular heat conduction on poloidal heat flux

assuming that Kp(T) is much larger than icj (T) in the temperature range of interest. However,

we will see that high poloidal heat conductivity results in a strong poloidal extension of the front

and in a sharp radial variation of the temperature within the front which can lead to a strong impact

of radial transport on the radiation loss in spite of the inequality iCp(T)>>i (T). We will find

that the role of radial transport is sensitive to the temperature dependence of the function

ic(T)= Kp(T)/xL(T).

To begin, we make a qualitative estimate of the impact of radial and poloidal heat

conduction on the radiation loss without taking into account any specific geometrical factors in the

SOL. Assume that the radiation function does not depend on x, and the V-shaped radiation front

(defined by T(x,y)= TR) has a poloidal length length L and a radial extent w. Assuming that the

radial broadening of the SOL mainly occurs in the hot upstream region which contacts the bulk

plasma, the relation between L and w, found from Eq. (1), is

w/L ~ (K(Tup)) 1 <<1 , (2)

where Tup>> T R is the plasma temperature in that upstream hot region. The radiation loss from
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the front, WR, can be written as

WR ~ Ltor R(TR)JA( )d4, (3)

where A and Ltor are the width and toroidal length of the radiation front (A<< w, L), and we

introduce the 4 coordinate to integrate along the projection of the front in the (x, y) plane. We can

estimate A and WR for the cases when either poloidal or radial heat transport is dominant within

the front and the radiation of the heat flux entering the front is nearly complete. From Eq. (1) we

find the front width in the poloidal direction, 5 =(8TR"Kp(TR)/R(TR))1/2, when poloidal

transport is dominant; and the front width in the radial direction, 8 = (8TRK_±(TR)/R(TR)) 1/2,

when radial transport dominates. Recall that the front is very extended along the poloidal

coordinate ( L >> w) so that it makes (on average) a small angle - w/L to poloidal direction and is

approximately perpendicular to radial direction. Therefore, we find A - Ap - (w/L) 5p for the

case when poloidal transport is dominant within the front, and A -> A1  8j for the radial case.

Then, using relation (2), we find

W R/±W(P ~ A/Ap - (c(Tup)/(TR ))1 (4)

where W(P) (W(-)) is the radiation loss for the case when poloidal (radial) transport is dominant

within the front.

Since the actual front width and radiation loss are determined by both poloidal and radial

transport we can estimate WR - W(RP)+W-) and A - AP+ A1 . Then, from Eq. (4) one sees that

the impact of the poloidal and radial heat conduction on the radiation loss and front width is

determined by the function -K(T). When ic(T) increases (decreases) with increasing temperature

then both WR and A are determined by radial (poloidal) heat transport. This behavior has a simple

physical explanation. Fast poloidal heat conduction provides the heat transport from hot upstream

region with T - TUP to the front and, simultaneously, makes a small angle between the front and

poloidal direction. In the case when ic(T) is an increasing function of temperature this small angle

has a strong impact on the radial heat conduction because of the strong radial gradient at T - TR
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and thereby on the radiation loss. As a result of the radial conduction induced widening of the front

the radiation loss is much higher [7] than the estimate from Ref. [6] where only poloidal heat

conduction was taken into account in the radiation front. For example, in tokamak SOL plasmas it

is usually assumed [6] that K1q is the Spitzer-Harm parallel heat conduction, icp(T) c Tc/2, and

that the perpendicular heat diffusivity, X_, (iq=nX±, where n is the plasma density) is

constant, resulting in K1 (T) - T- 1 for a constant plasma pressure (n - l/T). Therefore, in this

case ic(T) - T 7/ 2 . Then from Eq. (4) we find that for a reactor relevant upstream temperature of

TUP ~ 100 eV and TR -6 eV (corresponding to the peak of carbon emissivity at low temperatures

[6]) the effect of radial heat conduction on the radiation front width results in a more than 100 fold

increase in the radiation loss from the front.

To obtain quantitative solutions of Eq. (1) in the divertor region in a slab approximation

(see Fig. 2) we use as boundary conditions fixed temperature Tt at the target (y=O), and a

prescribed radial profile of the poloidal component of the heat flux, qy (x, y) = -Kp ayT, at the

upstream boundary: qy(x,y = Ld)=-qL(x) 0, where Ld is the poloidal extent of the divertor

region. We will assume that Tt<<TR<<qL(x)Ld/Kp(TR), so that the radiation region is always

located within the slab 0< y < Ld -

First, we consider the case when qL (x)= qL=constant and R(T,x)= R(T). Neglecting the

radial derivatives in Eq. (1) and assuming P - Tall, where a 11>0 is constant, we write energy
TL

balance as (see for example [6]) (qt )2 = (qL 2 -2 J.fp(T)R(T)dT, where TL is the temperature at
Tt

the upstream boundary, qt = KP(TR)TR/((cXii +1)yR} is the heat flux to the target, YR is the

poloidal coordinate of the radiation front T(yR)= TR. Recalling the inequalities Tt<<TR<<

qL(x)Ld /p(T R) we note that how completely the heat flux qL is radiated is determined by the

size of Q p , where (Q p) 2 = 2Jcp (T)R(T)dT. For qL>>Qp the impact of the radiation loss on
0

the heat flux is small (qt = 9L), the radiation front is localized near the target (YR =0), and

TL>>TR. In the opposite case, when qL<Qp, the radiation of the entering heat flux is almost

complete (qt<< qL) and to maintain the energy balance the radiation front is shifted close to the

upstream boundary (YR = Ld) so that TL - TR -Consequently, the transition of the radiation front
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from near target to the upstream boundary occurs for a rather small variation of qL about Q P.

Thus, in the radial homogeneous case complete radiation is only possible for qL Q p -

Next, we consider the case when the incoming heat flux qL(x) and radiation function

R(T, x) vary slowly in the radial direction and any re-distribution of the poloidal heat flux profile

due to radial heat conduction between upstream and the radiation front is weak, qy (x, y) =- qL (x).

Assuming that radial broadening of poloidal heat flux mainly occurs at high temperatures, the

corresponding requirement of weak radial re-distribution of qy (x,y) is

w/eq(x) 5 (K(TL (x))) 112 , (5)

where w is the radial scale length of qL (x) and R(T, x), and tq(x) is the distance from the front

to upstream boundary.

Consider the situation when the radiation of the heat flux qL(x) is practically complete

(qt<< qL). Then assuming a weak radial variation of qL(x) and R(T,x) we can treat the radiation

front yR(x) (corresponding to the solution T(x,yR)= T) in a local approximation as a straight

line making an angle xV to y direction as shown in Fig. 2. Notice that radial heat conduction affects

re-distribution of the heat flux only at the radiation front where the radial gradients are strong.

Taking into account the effects of both poloidal and radial heat conduction and integrating Eq. (1)

normal to the radiation front we find that complete radiation occurs when

qL(X)=Q(WX) (Qp (x))2 + (Qj (x)/tan XV) 2 } , (6)

00 

0

where (Qp (x)) = 2fcp (T)R(T,x)dT and (Qi(x))2 = 2 JK(T)R(T,x)dT. However, from Fig.
0 0

2 we expect the radial extent of the front (iq tan V) to be less than the radial scale of qL(x):

tan y 5 w/eq (x). Then inequality (5) restricts the allowed values of tan V to tan > (ic(TL ))-1/2

and imposes the constraint

Q(N,x) < Qp(x) {1 + 1(TL)/-K(TR)1 112 . (7)
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Since TL can be much higher that TR, from Eq. (7) one sees that for the case when K(T)

increases with increasing temperature and the front makes a small angle to poloidal direction, the

impact of radial heat conduction on the radiation of the heat flux entering the divertor region can be

substantial, in agreement with our qualitative estimate (4).

Recalling that tan x is related to the shape of radiation front by tan1V = (dyR/dx)-, we

find from Eq. (6) for qL (x)> Qp (x)

C dyR (q 2X) _ 2 Q (X) 1-_L()2 8

Interestingly, Eq. (8) allows a sign switch in dyR/dx which may occur at either a maximum or

minimum of yR(x). In practice such a sign switch in dyR/dx is only possible at a minimum of

YR(x). We can analyze the heat transport at the minima and maxima of the radiation front by

assuming that boundary effects can be neglected and qL (x)> Qp (x). There is no problem with the

energy balance at the minima of yR(x) where the heat flux arriving at the tip of yR(x) from

upstream is re-distributed (by radial heat conduction) to the side regions of the front where

dyR/dx #0. The re-distribution results in a sharp bending of yR(x) which on the scale length of

qL(x) profile can be described by a sign switch in dyR/dx with the value of (dyR/dx) 2

determined by Eq. (8).

At a maximunm of yR(x) there is no depletion of the incoming heat flux caused by a re-

distribution to the side regions with dy R /dx #0 since there is no radiation in the upstream vicinity

of a maximum of yR (x). Therefore, at a maximum of yR(x) complete radiation of the heat flux is

only possible when the heat flux entering the radiation front, is smaller than Qp. Analysis of the

location of a maximum of yR(x) at qL ~ Qp shows [5] that for a very weak radial dependence of

qL(x) and R(T,x) the maximum of yR(x) can be located between the target and the upstream

boundary, but a rapid transition of the maximum of yR(x) from near target to the upstream

boundary occurs for small variation of qL about Qp (as in radial homogeneous case considered

before) and looks similar to a bifurcation. For stronger radial dependencies of qL (x) and R(T, x),
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but still compatible with Eq. (5), the maximum of the radiation front can only be located near the

target or at the upstream boundary. In this case the transition of the maximum of YR (x) between

these two locations occurs as a real bifurcation (caused by radial re-distribution of the poloidal heat

flux) and results in a jump of the maximum of yR(x). In what follows we do not distinguish

between these two cases and refer to them as to a bifurcation of the maximum of Y R (x)

We can find a constraint on the existence of the radiation front with complete radiation of

the heat flux qL(x)> Qp(x) which is imposed by the poloidal length of the divertor and because

2of the finite value of (dyR /dx) . Consider two close points xI< x2 corresponding to solutions of

the equation qL(xl,2 )=Qp(xl,2) such that qL(X)> Qp(x) for x1 < x < x 2 . There can be only

one minimum of yR(x) between points x, and x 2 , and it should be located above the target. Then

from Eq. (8) we find the condition for the existence of such minimum to be

X~2 {(X))2 _ (QP (x))2 ]/(Q_ (x))2} d1 2 L 9

9 [(L( pX22 /dx!5 2Ld. (9)
xl

When inequality (9) is satisfied a V-shaped, radial heat conduction widened (even though K-L<<

Yp) radiation front can be formed in this region of the slab resulting in complete radiation of even

high heat flux qL (x)>>Qp(x). In the opposite case the heat flux from upstream hits the target.

Next, we consider the evolution of the radiation front when the magnitude, R0 , of the

radiation function increases (here for simplicity we take R(T, x)= R(T) c RO). As an example we

analyze the evolution of the radiation front with increasing Ro for a smooth, periodic (in the radial

direction) profile of heat flux qL(x) as shown in Fig. 3 (qmin qL(X) qmax, and qmin <

qmax). At low R0 , radiation of the heat flux is incomplete even for qL(x) =min and the

radiation front stays very close to the target (curve a). When Ro reaches the level where

qmax>>Qp > qmin, bifurcation of the front in the regions with qL(x) = qmin occurs and two

scenarios of the subsequent front evolution are possible. The first scenario ("jump") corresponds

to the case when inequality (9), written as an integral over the period of qL (x), is satisfied. Then,

bifurcation in the regions with qL(X) = qrin triggers formation of a strongly shaped, radial
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conduction widened radiation front leading to complete radiation of the heat flux qL (x) = max>

Qp. As a result, the entire radiation front jumps to the upstream region (curve b). The second

scenario ("gradual") corresponds to the case when inequality (9) is not satisfied. Then bifurcation

of the radiation front occurs only in regions with qmax>> qL(x) ~ qmin . Outside these regions the

radiation is weak and qt =q (x). With a further increase of Ro the regions that incompletely

radiate the heat flux shrink and gradually disappear resulting in the formation of a front with a

strongly modulated shape which radiates the heat flux qL(x) q max>>Qp (curve c).

Finally, we discuss how our results are related to tokamak experiments. The experiments

show that during the transition from a radiative to a detached divertor regime the impurity radiation

region shifts abruptly away from the target to the X-point [2]. Recall now that the radiation

function is proportional to the plasma and impurity density denoted by n(x). The typical radial

structure of the poloidal heat flux qL(x) and n(x) profiles in the divertor region is as follows.

Near the separatrix (x=0) both qL (x) and n(x) reach their maximum values and decrease as one

moves away from the separatrix to the "wings" of the profiles, x ~ xW. Now assume that the

magnitude of the radiation function is an increasing function of plasma density of the form

R(T,x) = Ro(n(x))R(T) and recall Qp(x) oc Ro(n(x)). For typical experimental conditions the

heat flux is very high near the separatrix where most of the heat flux streams to the target. As a

result, F()>>1, where F(x) = qL(X)/Qp(n(x)). This high heat flux can only be radiated by

forming a V shaped radiation front with radial heat conduction setting the front width. However,

our analysis shows that a V shaped front can only be formed when: i) it is triggered somewhere

outside separatrix region (which means qL(x) - Qp at the wings) and ii) the inequality (9) is

satisfied. Assuming that the main contribution to the integral (9) is from the region near the

separatrix having a width w, the two requirements for the formation of a V shaped front in the

divertor become: i) F(xw)~<A and ii) F(O)< Ld/(w K(TR)) (we assume that

Ld/(w lc(TR))>>1, which can only be true for ic(T) an increasing function of T, recall the

estimate (5)). Then, as in the preceding example, two scenarios of the front abruptly jumping to the

X-point and the gradual formation of a V shaped radiation front can be envisioned depending on
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whether (i) or (ii) is satisfied first as Ro increases. A "jump" scenario, similar to experimental

observations, occurs when F(0)<Ld/(w'K(TR)) (inequality (9) is satisfied) and then

F(xw)-+1, corresponding to relatively high heat flux at the "wings", F(xw)/F(O)>

(wV1(TR))/Ld . In this case the radiation front jumps towards the X-point causing strong

radiation loss, which leads to the plasma detaching from the target [8]. The "gradual" scenario

corresponds to the case when F(xw)<l before inequality (9) is satisfied, causing a gradual

formation of a V shaped front, and plasma detachment if Ro is increased further. Presumably, the

"jump" scenario can be avoided by intensive neutral gas puffing into the divertor from the

sidewalls over a large poloidal distance to reduce the heat flux at the "wings" and switch the front

evolution to the "gradual" scenario. Thus we see that the plasma parameters at the "wings", where

the heat flux is very small, play a crucial role in the dynamics of the radiation front in a tokamak

divertor!

Another way to assist formation of a V shaped front having strong radiation loss is to use

geometrical effects due to the sidewalls and the target. So far, we have considered a so-called

"horizontal" target where the separatrix magnetic flux surface (SMS) makes a 900 angle with the

target. However, the target may be turned in a such a way that it will make a grazing angle with

SMS (a so-called "vertical" target [3]). For a "vertical" target radial heat conduction enhancement

of radiation loss is automatically switched on. The grazing angle between the SMS and the target

ensures a V shaped radiation front allowing radial heat conduction to increase the radiation loss.

This mechanism may explain the easier access to detached divertor regimes for a "vertical" target

configuration as compared to a "horizontal" one as observed in experiments [3].

The author thanks P. J. Catto and D. J. Sigmar for many helpful discussions and useful

comments. Work performed under the USA DOE grant DE-FG02-92ER-54109 at MIT.
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Figure Captions

Fig. 1. Poloidal cross section of tokamak core and SOL-divertor regions.

Fig. 2. Geometry of the radiation front yR (x) in the divertor region (x and y are the "radial" and

"poloidal" coordinates, qL(x) is the poloidal heat flux at the entrance to the divertor).

Fig. 3. The evolution of the radiation front with increasing radiation function for periodic radial

profile of the poloidal heat flux qL (x)
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