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Weak identification commonly refers to the 
failure of classical asymptotics to provide a good 
approximation to the finite sample distribution of 
estimates and t- and Wald statistics in point-iden-
tified models where the data contain little infor-
mation. There are several commonly accepted 
ways of modeling this situation, which include 
the drifting objective function approach of Stock 
and Wright (2000) and the drifting parameter 
approach used in Andrews and Cheng (2012). 
Unfortunately there are empirically relevant 
contexts, for example many Dynamic Stochastic 
General Equilibrium (DSGE) models, where 
simulation evidence strongly suggests weak iden-
tification, but it is unclear how to cast the model 
into either of these frameworks. Concerns about 
weak identification in DSGE models were raised 
in a number of papers (see, for example, Canova 
and Sala 2009 and Schorfheide 2013). At the 
same time, due in part to the analytical intracta-
bility of these models, the sources and nature of 
weak identification and the routes through which 
weak identification distorts nonrobust approaches 
to inference are not yet clear.

Here we highlight a previously overlooked fea-
ture common to many weakly identified models 
which plays an important role in the behavior of 
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the maximum likelihood estimator (MLE). The 
usual approximations for the MLE rely critically 
on the assumption that two approaches to estimat-
ing Fisher information, through the quadratic vari-
ation of the score and the negative Hessian of the 
log-likelihood, provide nearly identical answers. 
We show that in many weakly identified contexts 
the appropriately normalized quadratic variation 
of the score converges to the normalized Fisher 
information, but that the normalized negative 
Hessian remains volatile even in large samples. 
To capture this effect, we introduce a measure of 
the disparity between the two estimators of infor-
mation, which will converge to zero in strongly 
identified contexts but can otherwise distort the 
distribution of the MLE. Using simulations in a 
stylized DSGE model we show that this discrep-
ancy between information measures becomes 
large precisely when the classical asymptotic 
approximations are especially unreliable.

This article is closely related to Andrews 
and Mikusheva (forthcoming)—henceforth, 
AM—where we provide additional examples 
and discuss tests which are insensitive to the dis-
parity between the two estimates of information 
and are robust to weak identification.

I.  Likelihood Theory

Let ​X​T​ = (​x​1​, … , ​x​T​) be the data available at time 
T, and let ​​T​ be the sigma-algebra generated by ​
X​T​. We consider parametric models where the 
log-likelihood ℓ(​X​T​; θ) = log  f (​X​T​; θ) is known 
up to the k-dimensional parameter θ which has 
true value ​θ​0​. We further assume that ℓ(​X​T​; θ) is 
twice continuously differentiable with respect to 
θ. If we have correctly specified the model, the 
score ​S​T​(θ) = ​  ∂ _ 

∂​θ​ ′​ ​ ℓ(​X​T​, θ), evaluated at the true 

parameter value ​θ​0​, is a martingale with respect 
to filtration ​​t​ under mild conditions.

http://dx.doi.org/10.1257/aer.104.5.195
http://dx.doi.org/10.1257/aer.104.5.195
mailto:iandrews@mit.edu
mailto:amikushe@mit.edu


MAY 2014196 AEA PAPERS AND PROCEEDINGS

We consider two measures of informa-
tion based on observed quantities. The first 
one, observed information, equals the nega-
tive Hessian of the log-likelihood ​I​T​(θ)  
= − ​  ​∂​2​ _ ∂θ∂​θ′​ ​ ℓ(​X​T​; θ). The second, incremental 

observed information, equals the quadratic vari-
ation of the score,

	​ J​T​(θ)  =  [S(θ)​]​T​  = ​ ∑​ 
t=1

 ​ 
T

  ​ ​s​t​(θ)​s​ t​ ′​(θ),

where ​s​t​(θ) = ​S​t​(θ) − ​S​t−1​(θ). In what follows 
we will take ​I​T​ and ​J​T​, written without argu-
ments, to denote ​I​T​(​θ​0​) and ​J​T​(​θ​0​). If the model 
is correctly specified both ​I​T​ and ​J​T​ may serve as 
estimates of the (theoretical) Fisher information 
for the whole sample, and by the second infor-
mational equality E​( ​I​T​ )​ = E​( ​J​T​ )​.

In the classical context ​I​T​ and ​J​T​ are asymp-
totically equivalent, which plays a key role in 
the asymptotics of maximum likelihood. The 
asymptotic normality of the MLE is driven by 
two key assumptions: (i) that the log-likelihood 
is asymptotically locally quadratic and (ii) that 
the difference between the two measures of 
information ​I​T​ and ​J​T​ is small asymptotically 
(see Geyer 2013). Specifically, using the first-
order condition for likelihood maximization one 
can show that for ​  θ ​ the MLE,

(1) ​ J​ T​ 1/2​(​  θ ​ − ​θ​0​)  = ​ J​ T​ −1/2​ ​S​T​(​θ​0​)

	 + ​ J​ T​ −1/2​(​I​T​ − ​I​T​(​θ​∗​))​J​ T​ −1/2​ ​J​ T​ 1/2​(​  θ ​ − ​θ​0​)

	 + ​ J​ T​ −1/2​(​J​T​ − ​I​T​)​J​ T​ −1/2​ ​J​ T​ 1/2​(​  θ ​ − ​θ​0​),

where ​θ​∗​ is a point in between ​  θ ​ and ​θ​0​ which 
may differ across rows of ​I​T​(​θ​∗​). The first term, ​
J​ T​ −1/2​​S​T​(​θ​0​), is asymptotically standard normal 
under quite general conditions as discussed 
in AM. Provided ​J​ T​ 1/2​(​  θ ​ − ​θ​0​) is stochasti-
cally bounded the second term in (1) is small 
so long as the log-likelihood is close to qua-
dratic on a neighborhood containing both ​θ​0​ 
and ​  θ ​. In this article we will focus on the third 
term in (1), and in particular on the standard-
ized difference between information measures 
​J​ T​ −1/2​(​J​T​ − ​I​T​)​J​ T​ −1/2​, which can render the usual 
asymptotic approximations to the behavior of 
the MLE quite poor if it is large. We argue that in 
weakly identified models the difference between 

the two observed measures of information may 
not be negligible compared to observed incre-
mental information ​J​T​ and that the third term in 
(1) thus plays an important role in the behavior 
of the MLE under weak identification.

II.  Two Estimates of Information

Here we highlight the importance of the 
standardized difference between information 
measures, ​J​ T​ −1/2​(​J​T​ − ​I​T​)​J​ T​ −1/2​, under weak iden-
tification. We begin by noting that this term is 
asymptotically nontrivial in a number of weakly 
identified examples, including a simple linear 
instrumental variables model.

Example.—Consider a homoskedastic linear 
instrumental variables model

	​ { ​Y  =  βZπ  +  U      
X  =  Zπ + V

 ​ 
​
​,

where Y and X are endogenous variables, while 
Z is a T × k matrix of exogenous instruments. 
We assume that ​Z′​ Z/T converges in probability 
to Q and ​Z′​[U, V ]/​√ 

_
 T ​ converges in distribution 

to N(0, Σ ⊗ Q) as the sample size T increases, 
for Q a full rank matrix and Σ the covariance 
matrix of the reduced form errors. We consider 
a Gaussian likelihood as a function of the struc-
tural parameters θ = (​π′​, β​)′​. Weak instruments 
are usually modeled by considering a sequence 
of models in which the correlation between 
the instruments and the endogenous regressor 
drifts towards zero as the sample size increases, 
π = ​π​T​ = c/​√ 

_
 T ​, with the consequence that 

information about the value of β does not 
increase with the sample size. Under such weak 
sequences, for a (k + 1) × (k + 1) normaliza-
tion matrix ​K​T​ = diag(1/​√ 

_
 T ​, … , 1/​√ 

_
 T ​, 1), 

​K​T​ ​J​T​​ K​T​ converges in probability to a nonrandom 
positive definite matrix  while ​K​T​ ​I​T​ ​K​T​ con-
verges in distribution to a random Gaussian 
matrix with mean . To characterize the 
asymptotic disparity between the two estima-
tors of the Fisher information we can consider 
M = ​J​ T​ −1/2​​( ​I​T​ − ​J​T​ )​ ​J​ T​ −1/2​. Under weak instru-
ment asymptotics the trace of M converges in 
distribution to a mean zero Gaussian random 
variable with variance equal to the inverse of the 
concentration parameter (which measures the 
informativeness of the instruments; see Staiger 
and Stock 1997) multiplied by a measure of the 
degree of endogeneity. In particular, when the 
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instruments are nearly irrelevant M will be (sto-
chastically) large.

This asymptotic disparity between the two 
estimates of the Fisher information also appears 
in a number of other weakly identified models. 
In AM we showed that this issue arises in an 
ARMA(1,1) model with nearly canceling roots, 
VAR models with weakly identified dynam-
ics, weakly identified exponential family mod-
els, and weakly identified mixture models. In 
all of these models, ​J​T​ is positive-definite with 
probability one and, appropriately normalized, 
converges in probability to a nonrandom posi-
tive definite matrix. If one applies the same nor-
malization to ​I​T​ then in the strongly identified 
case it converges to the same limit as ​J​T​, but in 
the weakly identified case it converges in distri-
bution to a random matrix. This random matrix 
has mean equal to the limit of the normalized ​J​T​, 
as suggested by the second informational equal-
ity but has nontrivial variance.

We emphasize four important points. First, 
the question of how to define, model, and mea-
sure weak identification is still open in many 
contexts. There are some models, like homo-
skedastic weak IV, in which we know how to 
directly measure identification strength (the 
concentration parameter). There are other mod-
els, like those studied by Stock and Wright 
(2000), where we have theoretical approaches 
to model weak identification but have no way to 
measure whether weak identification is a prob-
lem in a given empirical application. Finally, 
there are many contexts, like DSGE models (see 
Canova and Sala 2009), in which we strongly 
suspect that weak identification is a problem but 
still largely lack tools to model or measure it. 
We suggest that the size of matrix,

	 M  = ​ J​ T​ −1/2​​( ​I​T​ − ​J​T​ )​ ​J​ T​ −1/2​,

is an important reflection of identification 
strength in parametric models. As already dis-
cussed M is asymptotically nontrivial in a num-
ber of weakly identified examples and, as we 
can see from expansion (1), large values of M 
can introduce distortions in the classical MLE 
asymptotics.

Second, while it is common to associate 
weak identification with the Fisher information 
E​J​T​ = E​I​T​ being nearly degenerate or the like-
lihood being nearly flat along some directions, 

we argue that these are misleading character-
izations, as neither the Fisher information nor 
the Hessian of the likelihood are invariant to 
reparameterization. In particular, if we linearly 
reparameterize a model in terms of τ = ​ θ _ k ​ then 
both measures of information scale by a fac-
tor ​k​2​. Hence, by linear reparameterization one 
can produce a model whose Fisher information 
is arbitrarily small (or large) without changing 
the quality of the classical ML approximation. 
Consequently, any approach which detects weak 
identification by assessing how close the infor-
mation is to degeneracy, for example Iskrev 
(2010), is misleading. In our examples weak 
identification is associated with the curvature 
of the objective function (the negative Hessian ​
I​T​) being different from ​J​T​ even in very large 
samples, so we think it is potentially more fruit-
ful to associate weak identification with a low 
signal-to-noise ratio, treating ​J​T​ as the signal and ​
I​T​ − ​J​T​ as noise, suggesting the measure M = ​
J​ T​ −1/2​​( ​I​T​ − ​J​T​ )​ ​J​ T​ −1/2​.

Third, this disparity between two estimates 
of the Fisher information is not a sign of mis-
specification, as even in correctly specified mod-
els these two measures may differ substantially 
if identification is weak. Correct specification 
implies that E​J​T​ = E​I​T​, and it is this restriction 
that is tested by the Information Matrix Test of 
White (1982). In contrast, weak identification is 
related to ​I​T​ − ​J​T​ being volatile relative to ​J​T​, 
but the restriction E​J​T​ = E​I​T​ continues to hold 
under correct specification.

Fourth, the classical asymptotic approxima-
tions for the MLE and Wald statistic require that 
the disparity measure M be small. By contrast, 
the distribution of the robust score (LM) tests 
discussed in AM is insensitive to the behavior 
of M, and these tests remain well behaved in 
weakly identified settings.

III.  A Small DSGE Model

In this section we examine the effects of weak 
identification on estimation and inference in a 
simple DSGE model. Most DSGE models must 
be solved numerically, and it is typically diffi-
cult to say which parameters are weakly iden-
tified and what aspects of the model give rise 
to weak identification. To overcome these dif-
ficulties, here we study a highly stylized DSGE 
model which can be solved analytically, allow-
ing us to explicitly model weak identification.
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Assume we observe inflation ​π​t​ and a measure 
of real activity ​x​t​ which obey

⎧
⎪
⎨
⎪
⎩

b​E​t​​π​t+1​ + κ​x​t​ − ​π​t​ = 0,

​r​t​ − ​E​t​​π​t+1​ − ρΔ​a​t​ = ​E​t​​x​t+1​ − ​x​t​,

​ 1 _ b ​ ​π​t​ + ​u​t​ = ​r​t​ ,

where ​E​t​ denotes E[· | ​​t​]. The first equation is a 
linearized Phillips curve, while the second is a 
Euler equation. We assume that the interest rate ​
r​t​ is unobserved, and that the exogenous shocks 
Δ​a​t​ and ​u​t​ are generated by

  Δ​a​t​ = ρΔ​a​t−1​ + ​ε​a, t​; ​ u​t​ = δ​u​t−1​ + ​ε​u, t​;

(​ε​a, t​, ​ε​u, t​​)′​ ∼ iid N(0, Σ);  Σ = diag(​σ​ a​ 2​, ​σ​ u​ 2​).

The model has six unknown scalar parameters: 
the discount fact b, the Calvo parameter κ, the 
persistence parameters ρ and δ, and the standard 
deviations ​σ​a​ and ​σ​u​. AM show that the model is 
point identified for κ > 0, ​σ​ a​ 2​ > 0, ​σ​ u​ 2​ > 0, and 
−1 < δ < ρ < 1. By contrast, when ρ = δ the 
model is not point identified. We can think of 
ρ − δ as controlling identification strength: the 
model is weakly identified when this difference 
is small.

To explore the effects of weak identifica-
tion in this context, we simulate data from 
the model for different values of ρ − δ. 
In particular, we calibrate the parameters 
(b, κ, δ, ​σ​a​, ​σ​u​) to their values in the simulation 
section of AM, (0.99, 0.1, 0.1, 0.325, 0.265), 

and consider a range of values for ρ − δ, where 
for each value of this difference we simulate 
samples of size 200 from the model. To avoid 
issues arising from the fact that b is close to 
its upper bound (b = 1), we fix this parameter 
at its true value and take θ = (κ, ρ, δ, ​σ​u​, ​σ​v​)  
to be the unknown structural parameter. In 
each sample we calculate the maximum likeli-
hood estimator ​  θ ​, the (nonrobust) Wald statistic 
(​  θ ​ − ​θ​0​​)′​I(​  θ ​)(​  θ ​ − ​θ​0​), and the (robust) score 
statistic L​M​e​ discussed by AM. The correspond-
ing tests reject when the appropriate statistic 
exceeds a ​χ​ 5​ 2​ critical value. We assess the nor-
mality of the MLE by considering the normal-
ized statistic  = ​J​ T​ 1/2​(​  θ ​ − ​θ​0​), which converges 
to a five-dimensional standard normal vector 
under strong identification. We calculate the 
simulation mean and variance of  and report 
the deviation of these quantities from zero and 
the identity matrix, respectively, which should 
be small if this term is approximately standard 
normal. Note that while the population mean 
and variance of  need not exist, its sample mean 
and variance in our simulations are always well 
defined. Finally, we report some summary statis-
tics for the disparity measure M, in particular the 
standard deviation of trace(M) and the median 
of the largest eigenvalue of M in absolute value, 
both of which should be small if identification is 
strong. All results are reported in Table 1.

As we can see in Table 1, the standard normal 
approximation to  = ​J​ T​ 1/2​(​  θ ​ − ​θ​0​) breaks down 
for small values of ρ − δ, as does size control 
for Wald tests. The behavior of M is similarly 
sensitive to identification strength, and this term 

Table 1—Behavior of Tests and Information Estimators as a Function of ρ − δ in DSGE Model 
with 200 Observations

ρ − δ 0.05 0.1 0.2 0.3 0.5 0.7

​‖ ​  E​​(    )​ ‖​ 2,015 309 4.25 1.43 0.57 0.49

​‖ ​̂  Var​​(    )​ − I​d​5​ ‖​ 1.7  · 1​0​10​ 8.5  · 1​0​8​ 23.3 3.14 0.43 0.78

​̂  Std​​( tr​( M )​ )​ 212 57.8 11.9 3.14 0.85 0.60

Median of || M || 129 35.4 7.17 2.10 0.82 0.70

Size of 5 percent Wald test (%) 88.9 79.8 52.5 28.1 12.1 9.8

Size of 5 percent L​M​e​ test (%) 5.3 5.4 5.1 5.5 5.2 5.9

Notes: All quantities based on 10,000 simulation replications, and ​  E​(·), ​̂  Std​(·), ​̂  Var​(·) are simulation mean, standard deviation, 
and variance, respectively. For X a vector ∥ X ∥ denotes the Euclidean norm, while for X a square matrix ∥ X ∥ denotes the larg-
est eigenvalue of X in absolute value.
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is large precisely when the conventional strong-
identification approximations break down. The 
range of values ρ − δ which qualify as “small” 
is surprisingly large: even for ρ − δ equal to 0.3 
the Wald test exhibits substantial size distortions, 
with rejection probability exceeding 25 percent. 
By contrast, the L​M​e​ test is largely insensitive 
to identification strength. Thus, we can again 
see that the scaled difference between the two 
measures of information is (stochastically) large 
when identification is weak, and that even in this 
very simple DSGE model weak identification 
leads to poor behavior for classical inference 
procedures over much of the parameter space.
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