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Large-scale data sets of human behavior have the potential to fundamentally transform the

way we fight diseases, design cities, or perform research. Metadata, however, contain sensi-

tive information. Understanding the privacy of these data sets is key to their broad use and,

ultimately, their impact. We study 3 months of credit card records for 1.1 million people and

show that four spatiotemporal points are enough to uniquely reidentify 90% of individuals.

We show that knowing the price of a transaction increases the risk of reidentification by 22%,

on average. Finally, we show that even data sets that provide coarse information at any or all

of the dimensions provide little anonymity and that women are more reidentifiable than men

in credit card metadata.

Large-scale data sets of human behavior have the potential to fundamentally transform the

way we fight diseases, design cities, or perform research. Ubiquitous technologies create personal

metadata on a very large scale. Our smartphones, browsers, cars, or credit cards generate infor-
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mation about where we are, whom we call, or how much we spend. Scientists have compared this

recent availability of large-scale behavioral data sets to the invention of the microscope (1). New

fields such as computational social science (2–4) rely on metadata to address crucial questions such

as fighting malaria, studying the spread of information, or monitoring poverty (5–7). The same

metadata data sets are also used by organizations and governments. For example, Netflix uses

viewing patterns to recommend movies, whereas Google uses location data to provide real-time

traffic information, allowing drivers to reduce fuel consumption and time spent traveling (8). The

transformational potential of metadata data sets is, however, conditional on their wide availability.

In science, it is essential for the data to be available and shareable. Sharing data allows scientists

to build on previous work, replicate results, or propose alternative hypotheses and models. Several

publishers and funding agencies now require experimental data to be publicly available (9–11).

Governments and businesses are similarly realizing the benefits of open data (12). For example,

Boston’s transportation authority makes the real-time position of all public rail vehicles available

through a public interface (13), whereas Orange Group and its subsidiaries make large samples of

mobile phone data from Côte d’Ivoire and Senegal available to selected researchers through their

Data for Development challenges (14, 15). These metadata are generated by our use of technology

and, hence, may reveal a lot about an individual (16, 17). Making these data sets broadly avail-

able, therefore, requires solid quantitative guarantees on the risk of reidentification. A data set’s

lack of names, home addresses, phone numbers, or other obvious identifiers [such as required, for

instance, under the U.S. personally identifiable information (PII) “specific-types” approach (18)],

does not make it anonymous nor safe to release to the public and to third parties. The privacy of
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such simply anonymized data sets has been compromised before (19–22). Unicity quantifies the

intrinsic reidentification risk of a data set (19). It was recently used to show that individuals in a

simply anonymized mobile phone data set are reidentifiable from only four pieces of outside in-

formation. Outside information could be a tweet that positions a user at an approximate time for a

mobility data set or a publicly available movie review for the Netflix data set (20). Unicity quanti-

fies how much outside information one would need, on average, to reidentify a specific and known

user in a simply anonymized data set. The higher a data set’s unicity is, the more reidentifiable

it is. It consequently also quantifies the ease with which a simply anonymized data set could be

merged with another. Financial data that include noncash and digital payments contain rich meta-

data on individuals’ behavior. About 60% of payments in the United States are made using credit

cards (23), and mobile payments are estimated to soon top $1 billion in the United States (24).

A recent survey shows that financial and credit card data sets are considered the most sensitive

personal data worldwide (25). Among Americans, 87% consider credit card data as moderately

or extremely private, whereas only 68% consider health and genetic information private, and 62%

consider location data private. At the same time, financial data sets have been used extensively

for credit scoring (26), fraud detection (27), and understanding the predictability of shopping pat-

terns (28). Financial metadata have great potential, but they are also personal and highly sensitive.

There are obvious benefits to having metadata data sets broadly available, but this first requires

a solid understanding of their privacy. To provide a quantitative assessment of the likelihood of

identification from financial data, we used a data set D of 3 months of credit card transactions for

1.1 million users in 10,000 shops in an Organisation for Economic Co-operation and Development
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Figure 1: Financial traces in a simply anonymized data set such as the one we use for this work. Ar-

rows represent the temporal sequence of transactions for user 7abc1a23 and the prices are grouped

in bins of increasing size.

country (Fig. 1). The data set was simply anonymized, which means that it did not contain any

names, account numbers, or obvious identifiers. Each transaction was time-stamped with a resolu-

tion of 1 day and associated with one shop. Shops are distributed throughout the country, and the

number of shops in a district scales with population density (r2 = 0.51, P < 0.001) (fig. S1).

We quantified the risk of reidentification of D by means of unicity ε (19). Unicity is the risk

of reidentification knowing p pieces of outside information about a user. We evaluate εp of D as

the percentage of its users who are reidentified with p randomly selected points from their financial

trace. For each user, we extracted the subset S(Ip) of traces that match the p known points (Ip).
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A user was considered reidentified in this correlation attack if |S(Ip)| = 1. For example, let’s say

that we are searching for Scott in a simply anonymized credit card data set (Fig. 1). We know two

points about Scott: he went to the bakery on 23 September and to the restaurant on 24 September.

Searching through the data set reveals that there is one and only one person in the entire data set

who went to these two places on these two days. |S(Ip)| is thus equal to 1, Scott is reidentified,

and we now know all of his other transactions, such as the fact that he went shopping for shoes and

groceries on 23 September, and how much he spent. Figure 2 shows that the unicity of financial

traces is high (ε4 > 0.9, green bars). This means that knowing four random spatiotemporal points

or tuples is enough to uniquely reidentify 90% of the individuals and to uncover all of their records.

Simply anonymized large-scale financial metadata can be easily reidentified via spatiotemporal

information.

Furthermore, financial traces contain one additional column that can be used to reidentify

an individual: the price of a transaction. A piece of outside information, a spatiotemporal tuple

can become a triple: space, time, and the approximate price of the transaction. The data set

contains the exact price of each transaction, but we assume that we only observe an approximation

of this price with a precision a we call price resolution. Prices are approximated by bins whose

size is increasing; that is, the size of a bin containing low prices is smaller than the size of a bin

containing high prices. The size of a bin is a function of the price resolution a and of the median

price m of the bin. Although knowing the location of my local coffee shop and the approximate

time I was there this morning helps to reidentify me, Fig. 2 (blue bars) shows that also knowing

the approximate price of my coffee significantly increases the chances of reidentifying me. In fact,
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Figure 2: The unicity of the credit card data set given p points. The green bars represent unicity

when spatiotemporal tuples are known. This shows that four spatiotemporal points taken at random

(p = 4) are enough to uniquely characterize 90% of individuals. The blue bars represent unicity

when using spatial-temporal-price triples (a = 0.50) and show that adding the approximate price

of a transaction significantly increases the likelihood of reidentification. Error bars denote the 95%

confidence interval on the mean.
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adding the approximate price of the transaction increases, on average, the unicity of the data set by

22% (fig. S2, when a = 0.50, 〈∆ε〉 = 0.22). The unicity ε of the data set naturally decreases with

its resolution. Coarsening the data along any or all of the three dimensions makes reidentification

harder. We artificially lower the spatial resolution of our data by aggregating shops in clusters

of increasing size v based on their spatial proximity. This means that we do not know the exact

shop in which the transaction happened, but only that it happened in this geographical area. We

also artificially lower the temporal resolution of the data by increasing the time window h of a

transaction from 1 day to up to 15 days. Finally, we increase the size of the bins for price a from

50 to 75%. In practice, this means that the bin in which a $15.13 transaction falls into will go

from $5 to $16 (a = 0.50) to $5 to $34 (a = 0.75) (table S2). Figure 3 shows that coarsening the

data is not enough to protect the privacy of individuals in financial metadata data sets. Although

unicity decreases with the resolution of the data, it only decreases slowly along the spatial (v),

temporal (h), and price (a) axes. Furthermore, this decrease is easily overcome by collecting a

few more points (table S1).For instance, at a very low resolution of h = 15 days, v = 350 shops,

and an approximate price a = 0.50, we have less than a 15% chance of reidentifying an individual

knowing four points (ε4 < 0.15). However, if we know 10 points, we now have more than an 80%

chance of reidentifying this person (ε10 > 0.8). This means that even noisy and/or coarse financial

data sets along all of the dimensions provide little anonymity.

We also studied the effects of gender and income on the likelihood of reidentification. Fig-

ure 4A shows that women are easier to reidentify than men, whereas Fig. 4B shows that the higher

somebody’s income is, the easier it is to reidentify him or her. In fact, in a generalized linear
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Figure 3: Unicity (ε4) when we lower the resolution of the data set on any or all of the three

dimensions; with four spatiotemporal tuples [(A), no price] and with four spatiotemporal-price

triples [(B), a = 0.75; (C), a = 0.50]. Although unicity decreases with the resolution of the

data, the decrease is easily overcome by collecting a few more points. Even at very low resolution

(h = 15 days, v = 350 shops, price a = 0.50), we have more than an 80% chance of reidentifying

an individual with 10 points (ε10 > 0.8) (table S1).
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Figure 4: Unicity for different categories of users (v = 1, h = 1). (A) It is significantly easier

to reidentify women (ε4 = 0.93) than men (ε4 = 0.89). (B) The higher a person’s income is,

the easier he or she is to reidentify. High-income people (ε4 = 0.93) are significantly easier to

reidentify than medium-income people (ε4 = 0.91), and medium-income people are themselves

significantly easier to reidentify than low-income people (ε4 = 0.88). Significance levels were

tested with a one-tailed t test (P < 0.05). Error bars denote the 95% confidence interval on the

mean.

model (GLM), the odds of women being reidentified are 1.214 times greater than for men. Simi-

larly, the odds of high-income people (and, respectively, medium-income people) to be reidentified

are 1.746 times (and 1.172 times) greater than for low-income people. Although a full causal anal-

ysis or investigation of the determinants of reidentification of individuals is beyond the scope of

this paper, we investigate a couple of variables through which gender or income could influence

unicity. A linear discriminant analysis shows that the entropy of shops, how one shares his or

her time between the shops he or she visits, is the most discriminative factor for both gender and

income.
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Our estimation of unicity picks the points at random from an individual’s financial trace.

These points thus follow the financial trace’s nonuniform distributions (Fig. 5A and fig. S3A). We

are thus more likely to pick a point where most of the points are concentrated, which makes them

less useful on average. However, even in this case, seven points were enough to reidentify all of

the traces considered (fig. S4). More sophisticated reidentification strategies could collect points

that would maximize the decrease in unicity.

Although future work is needed, it seems likely that most large-scale metadata data sets—for

example, browsing history, financial records, and transportation and mobility data—will have a

high unicity. Despite technological and behavioral differences (Fig. 5B and fig. S3), we showed

credit card records to be as reidentifiable as mobile phone data and their unicity to be robust to

coarsening or noise. Like credit card and mobile phone metadata, Web browsing or transportation

data sets are generated as side effects of human interaction with technology, are subjected to the

same idiosyncrasies of human behavior, and are also sparse and high-dimensional (for example, in

the number of Web sites one can visit or the number of possible entry-exit combinations of metro

stations). This means that these data can probably be relatively easily reidentified if released in a

simply anonymized form and that they can probably not be anonymized by simply coarsening of

the data. Our results render the concept of PII, on which the applicability of U.S. and European

Union (EU) privacy laws depend, inadequate for metadata data sets (18). On the one hand, the

U.S. specific-types approach—for which the lack of names, home addresses, phone numbers, or

other listed PII is enough to not be subject to privacy laws—is obviously not sufficient to protect

the privacy of individuals in high-unicity metadata data sets. On the other hand, open-ended defini-
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Figure 5: Distributions of the financial records. (A) Probability density function of the price of a

transaction in dollars equivalent. (B) Probability density function of spatial distance between two

consecutive transactions of the same user. The best fit of a power law (dotted line) and an expo-

nential distribution (dot-dashed line) are given as a reference. The dashed lines are the diameter of

the first and second largest cities in the country. Thirty percent of the successive transactions of a

user are less than 1 km apart (the shaded area), followed by, an order of magnitude lower, a plateau

between 2 and 20 km, roughly the radius of the two largest cities in the country. This shows that

financial metadata are different from mobility data: The likelihood of short travel distance is very

high and then plateaus, and the overall distribution does not follow a power-law or exponential

distribution.
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tions expanding privacy laws to “any information concerning an identified or identifiable person”

(29) in the EU proposed data regulation or “[when the] re-identification to a particular person is

not possible” (30) for Deutsche Telekom are probably impossible to prove and could very strongly

limit any sharing of the data (31). From a technical perspective, our results emphasize the need

to move, when possible, to more advanced and probably interactive individual (32) or group (33)

privacy-conscientious technologies, as well as the need for more research in computational pri-

vacy. From a policy perspective, our findings highlight the need to reform our data protection

mechanisms beyond PII and anonymity and toward a more quantitative assessment of the likeli-

hood of reidentification. Finding the right balance between privacy and utility is absolutely crucial

to realizing the great potential of metadata.
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