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Abstract Proteins of the striatin family (striatins 1–4; sizes
ranging from 90 to 110 kDa on SDS-polyacrylamide gel
electrophoresis) are highly homologous in their amino acid
sequences but can differ in their cell-type-specific gene
expression patterns and biological functions. In various cell

types, we have found one, two or three polypeptides of this
evolutionarily old and nearly ubiquitous family of proteins
known to serve as scaffold proteins for diverse protein
complexes. Light and electron microscopic immunolocal-
ization methods have revealed striatins in mammalian cell-
cell adherens junctions (AJs). In simple epithelia, we have
localized striatins as constitutive components of the plaques
of the subapical zonulae adhaerentes of cells, including
intestinal, glandular, ductal and urothelial cells and hepato-
cytes. Striatins colocalize with E-cadherin or E–N-cadherin
heterodimers and with the plaque proteins α- and β-caten-
in, p120 and p0071. In some epithelia and carcinomas and
in cultured cells derived therefrom, striatins are also seen in
lateral AJs. In stratified epithelia and in corresponding
squamous cell carcinomas, striatins can be found in plaques
of some forms of tessellate junctions. Moreover, striatins
are major plaque proteins of composite junctions (CJs;
areae compositae) in the intercalated disks connecting
cardiomyocytes, colocalizing with other CJ molecules, in-
c luding plec t in and ankyr in-G. We discuss the
“multimodulator” scaffold roles of striatins in the initiation
and regulation of the formation of various complex parti-
cles and structures. We propose that striatins are included in
the diagnostic candidate list of proteins that, in the CJs of
human hearts, can occur in mutated forms in the pathogen-
eses of hereditary cardiomyopathies, as seen in some types
of genetically determined heart damage in boxer dogs.

Keywords Adherens junctions . Tessellate junctions .

Composite junctions . Intercalated disks . Arrhythmogenic
ventricular cardiomyopathy (AC) . Dilated cardiomyopathy
(DC)

With regards to general nomenclature, we prefer the use of striatins 1–4
instead of the names striatin, SG2Naα, SG2Naβ, and zinedin (for details,
see review of Hwang and Pallas 2013).
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Introduction

The adhering junctions, i.e. desmosomes (maculae
adhaerentes) and adherens junctions (AJs), are major and
important elements of the cell-cell connection system in tis-
sues (Farquhar and Palade 1963; for a recent review, see
Franke 2009). In the last two decades, the list of the various
subtypes of these junctions has been extended by several cell-
type-specific forms, including the complexus adhaerens of
endothelial cells in certain types of lymph vessels (e.g.
Schmelz and Franke 1990, 1993; Schmelz et al. 1994; for a
review, see Moll et al. 2009) and the taproot junctions
(manubria adhaerentia) of various mesenchymal cells
(Wuchter et al. 2007). Of special physiological and medical
interest are the myocardiac composite junctions (CJs; areae
compositae) that form during the late fetal and postnatal heart
development of diverse mammals and that represent dense-
packed amalgamated arrays of molecules known as desmo-
somal, peridesmosomal and AJ components of simple epithe-
lia (e.g. Borrmann et al. 2000, 2006; Franke et al. 2006, 2013,
2014; Pieperhoff and Franke 2007; Pieperhoff et al. 2008).
The importance of this type of junction became evident from
developmental studies of gene knock-out mice lacking
plakoglobin or plakophilin-2 (Bierkamp et al. 1996; Ruiz
et al. 1996; Grossmann et al. 2004) and from discoveries of
specific, genetically determined cardiomyopathies in human
and animal hearts (e.g. Gerull et al. 2004; Antoniades et al.
2006; Heuser et al. 2006; van Tintelen et al. 2006, 2007;
Oxford et al. 2007a, b; Posch et al. 2008; Gehmlich et al.
2011; Gaertner et al. 2012; for the recent avalanche of litera-
ture, see reviews by Delmar and McKenna 2010; Murray
2012; Rickelt and Pieperhoff 2012; Patel and Green 2014).

In this context, a series of findings concerning hereditary
cardiomyopathies in boxer dogs is remarkable; these have
been reported to be based on a genetic predisposition for
special forms of dilated cardiomyopathy (DC) or arrhythmo-
genic cardiomyopathy (AC). So far, this seems to be the only
pathogenic situation known to involve mutations in a gene
encoding a myocardiac member of the striatin family (“striatin
mutations”; e.g. Meurs et al. 1999, 2007, 2010, 2013; Oxford
et al. 2007a, 2011). Striatin 1 has repeatedly been reported to
be specific for neural cells and functions (e.g. Castets et al.
1996, 2000; Bartoli et al. 1998, 1999; Kachidian et al. 1998;
Salin et al. 1998; for other striatins, see also Muro et al. 1995;
Moreno et al. 2000; for reviews, see Benoist et al. 2006;
Hwang and Pallas 2013). On the other hand, Meurs et al.
(2013) have claimed that myocardiac striatin is a desmosomal
protein, whereas Breitman et al. (2008) have reported that
striatins do not occur in desmosomes but in other kinds of
junctions of epithelia and carcinoma cells (for a review, see
Hwang and Pallas 2013). The elucidation and examination of
possible pathogenic roles of mutated striatins is obviously
necessary as these proteins are known as architectonic

scaffold molecules able to form oligomers and complexes
with other proteins, including kinases and phosphatases, cal-
modulin and specific Ca2+-binding proteins, cortactin-binding
proteins and signal formation, transduction or vesicle translo-
cation proteins (e.g. Muro et al. 1995; Kachidian et al. 1998;
Salin et al. 1998; Bartoli et al. 1999; Moreno et al. 2000;
Gaillard et al. 2001, 2006; Yu et al. 2001; Blondeau et al.
2003; Lu et al. 2004; Benoist et al. 2006; Goudreault et al.
2009; Gordon et al. 2011; Bobik 2012; Chen et al. 2012; Tanti
et al. 2014; for a review, see Hwang and Pallas 2013).

As the members of the striatin family are highly homolo-
gous in their amino acid sequences, and as these isoforms and
their splice variants can occur in cell-type-specific patterns,
we have decided to address the family of striatin molecules in
general in this report and will deal with the diverse cell-type-
specific polypeptide isoforms, splice variants and biosynthesis
details of striatins in a subsequent protein-chemical-oriented
publication.

Materials and methods

Tissues and cell cultures

Bovine tissue samples were obtained from the regional
slaughterhouse (Mannheim, Germany) and murine (rat and
mouse) tissues were from animals of the laboratory-animal
facilities of the German Cancer Research Center (Heidelberg,
Germany; for details, see Franke et al. 2006). In addition,
tissue specimens from fetal German landrace pigs and 3-
year-old boars were obtained from the Institute of Farm An-
imal Genetics (Friedrich-Loeffler-Institute, Mariensee, Ger-
many; see Rickelt et al. 2011). Cryopreserved human tissue
samples, including tumour tissues, were obtained from mate-
rial taken and examined for diagnostic pathology (Franke
et al. 2006; Moll et al. 2009) or were provided by the National
Center for Tumor Diseases (NCT, Heidelberg, Germany). In
general, the samples were fixed either with 4 % formaldehyde
in phosphate-buffered saline (PBS) and embedded in paraffin
or were snap-frozen in isopentane that had been precooled in
liquid nitrogen and were then stored at −80 °C until use.
Protein lysates of frozen tissues were used for SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) of peptides
(see Franke et al. 2013).

Monolayer cell cultures of various human cell lines were
examined, including the breast-adenocarcinoma-derived line
MCF-7, HaCaT keratinocytes, the colon-adenocarcinoma-
derived lines CaCo2 and HT29 and the hepatocellular-
carcinoma-derived cell lines PLC, HepG2, Hep3b and
HuH7. Bovine epithelium-derived cell lines included
mammary-gland-derived cells of lines BMGE, BMGE+H,
BMGE+HE and KE-5. For comparison, rat liver hepatocellu-
lar carcinoma cells of the lineMH1C1were studied in parallel.
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The non-epithelial cell lines tested included the human cell
lines U333/MG, K562, RPMI 8226, HL-60, SV80, WI-38
and RD, the bovine cell line B1, the rat cell line RVFSMC and
the mouse cell lines 3 T3 and L929 (for further information,
see Boda-Heggemann et al. 2009; Straub et al. 2011;
Pieperhoff et al. 2012; Franke et al. 2013). In addition, freshly
prepared cultures of human endothelial cells (HUVECs) and
rat cardiomyocytes were used as described (cf. Pieperhoff
et al. 2012).

Antibodies

Primary monoclonal antibodies (mAbs) and guinea pig poly-
clonal antibodies (pAbs) were generated against several ami-
no acid sequences (Table 1) of striatin family members ob-
tained as polypeptides synthesized by PSL (Peptide Speciality
Laboratories, Heidelberg, Germany). The peptides, coupled
via cysteines to keyhole limpet haemocyanin (KLH), were
used for the immunization of animals, in particular mice and
guinea pigs. Further antibodies against proteins of the striatin
family or other molecules used in biochemical and immuno-
localization experiments are listed in the Electronic supple-
mentary material (Table S1) and in the publication by Straub
et al. (2003).

The protocols in which murine mAbs, guinea pig pAbs and
other antibodies were used for immunofluorescence micros-
copy or for immunoblotting analyses of PAGE-separated
polypeptides against AJ molecules or against diverse cyto-
skeletal proteins were as described elsewhere (Rickelt et al.
2011). The newly generated mAbs and pAbs were routinely
compared with “anti-striatin” and “anti-SG2NA” mAbs pur-
chased from Becton-Dickinson (Heidelberg, Germany) or
Millipore (Temecula, Calif., USA) and with commercially
available polyclonal rabbit antibodies against striatin 4
(“zinedin”; Acris Antibodies, Herford, Germany). Antigen-

bound primary Abs were visualized with secondary antibodies
coupled to Cy3 (Dianova, Hamburg, Germany) or Alexa 488
(MoBiTec, Göttingen, Germany). For immunoblot analysis,
horseradish-peroxidase-conjugated secondary antibodies
were applied (Dianova).

Gel electrophoresis and immunoblotting

Protein lysates were analysed by SDS-PAGE, followed by
immunoblotting, as described (Rickelt et al. 2011; Pieperhoff
et al. 2012; Franke et al. 2013).

Immunofluorescence and immunoelectron microscopy

Methods for immunofluorescence and electron microscopy
were as previously described (Franke et al. 2006, 2013;
Rickelt et al. 2011; Pieperhoff et al. 2012; Rickelt 2012).

Results

Characterization of striatin proteins and antibodies

At least three genes encoding striatins of highly homologous
amino acid sequences (striatins 1, 3, 4) have been identified,
each with a series of introns. These genes and introns can
result in different cell-type expression patterns of the various
isoforms and splice variants. In the present report, we have
therefore tried to generate certain polypeptide-sequence-
specific antibodies, including some that are specific for certain
unique sequence epitopes and others that cross-react between
different striatins (see Materials and methods, Table 1).

Using the above antibodies and several that were commer-
cially available, we identified striatins in all normal and tu-
mour cells examined, including single blood cells and tissue
cells and in cultured cells and tumour cells (Fig. 1a, b).
Whereas some of these antibodies revealed the presence of
at least two polypeptide bands of approximately 110 and
100 kDa (Fig. 1a), other sequence-specific antibodies reacted
with only one polypeptide (cf. Fig. 1b, b’). The common
bands identified by some of the antibodies often appeared
rather faint on some tissues, notably those of liver and heart,
but were much more intense at higher protein loads or after
extended immunoblot exposure times (see also Electronic
supplementary material, Fig. S1). When various preparations
of mammalian heart tissue or murine cardiomyocyte cell
cultures were compared, a band with an Mr of approximately
110 kDa was always seen and, in some preparations, was
accompanied by a (mostly minor) band of a lower Mr (the
obvious difference with respect to the SDS-PAGE immuno-
blot data of Castets et al. 2000, who reported only cardiac

Table 1 Synthetic peptides (amino acid sequences) of striatin 1 used
for coupling to keyhole limpet haemocyanin (KLH) protein and antibody
production in guinea pigs (NT aminoterminal sequence, CT
carboxyterminal sequence, h human). The same KLH-coupled peptides
were used in a second immunization series. The dot in the aminoterminal
sequence (N P) stands for a histidine residue left out at this position in the
antigenic peptide. “Striatin mix” (see text) is a mixture of equal portions
of all four antisera

Name Amino acid sequence Amino acid (aa)
numbers

Striatin-hNT MDEQAGPGVFFSNN P-C-
KLH

aa 1-16

Striatin-h268 RKKALPDSGEDRD-C-KLH aa 268-280

Striatin-h301 SRSAGDGTDWEKEDQ-C-
KLH

aa 301-316

Striatin family-
hCT

KLH-C-YIASAG
ADALAKVFV

aa 765-780
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polypeptides of lower Mr values, i.e. approximately 94 and
100 kDa, cannot yet be explained).

Colocalization experiments

Because of the dense-packing of cytoskeletal and cell junction
components, special and carefully controlled antibody binding
and differential washing protocols are needed to distinguish
true and specific epitope binding from the various forms of
structure and protein “stickiness”. In the present study, we
have generally included diverse washing steps to remove non-
specifically bound (“sticky”) material from the structures in
question, and in a series of cases, this required brief (5, 10 or
15 min) rinsing with mild detergent-containing buffers and/or
acetone solutions. To illustrate the importance of such differ-
ential washing steps, we include here, as an example, the
binding and release reactions of desmoplakin and plectin
(Electronic Supplementary Material, Fig. S2). Whereas des-
moplakin is known as an extraction-resistant, intensely

binding component of the CJs in the intercalated disks of the
myocardium, plectin is, in addition, known for its marked
“sticky” behaviour, i.e. binding that is not immunologically
determined. Consequently, the plectin reaction with the sarco-
meric Z-lines can (and should) be removed by differential
washing (Fig. S2; cf. Fig. S2a, b). On the other hand, in the
course of these washing steps, a significant portion of the
plectin antibodies remain bound to the CJs, thus resulting,
together with established CJ markers, such as desmoplakin, in
a typical yellow merged reaction colour (Fig. S2a’’, b’’). For
example, the differential localization reaction of a “sticky”
protein and a CJ-specific plaque protein is shown in Fig. S3,
comparing striatin as a CJ-specific protein with α-actinin as a
“sticky” sarcomeric Z-line protein (Fig. S3; cf. Bennett et al.
2006). By contrast, various types of antibodies against α-
actinin colocalize with high precision and intensity (see the
yellow merged patttern in Fig. S4). Consequently, extensive
differential washing treatments have been included in the
immunolocalization experiments of this study.

Fig. 1 Results of SDS-polyacrylamide gel electrophoresis (SDS-PAGE)-
separated polypeptides as obtained by immunoblot reactions (a, b, b’, c’)
or Coomassie blue staining (c). The antibodies used were monoclonal
antibody (mAb) “Striatin” (Becton-Dickinson; a, b, c’) and polyclonal
antibody (pAb) raised in guinea pig (gp), namely “striatin mix” of NTB,
268B, 301B and CTB (b’). The tissue and cell lysis protein preparations
used were from human heart (lane 1), tonguemucosa (lane 2), liver tissue
(lane 3) and the following human cell culture lines: PLC (lane 4), HaCaT
(lane 5), SV80 (lane 6), A498 (lane 7), CaCo2 (lane 8), A431 (lane 9),
HeLa (lane 10), HUVEC cells (secondary cell culture; lane 11), K562
culture 01 (lane 12), K562 culture 02 (lane 13) and RPMI 8226 culture 01
(lane 14). In the results shown in c and c’, the following materials were

used: human heart tissue (lane 1), bovine heart tissue (lane 2), murine
heart tissue (mouse; lane 3), murine HL-1 culture line of cardiomyocytes
(lane 4), and a primary cell culture of neonatal rat cardiomyocytes (lane
5). Note the dominant immunoblot polypeptide band at approximately
110 kDa in all tissues and cell cultures, except for the weak reaction in
lane 1 of a, which is, however, more noticeable at higher protein loadings.
In addition, an immunoreactive band at approximately 100 kDa is seen in
most lanes of a, b and in lanes 2, 4 of c’. In specific lanes of a and in lane
8 of b, additional bands are notable that have not yet been characterized.
Further reaction bands are seen at approximately 100 kDa (a, b, lanes 2, 4
in c) and at approximately 142 kDa (lanes 4, 5 in a, lane 8 in b)
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Light microscopic immunolocalization in simple epithelial
tissues

Using various antibodies against members of the striatin fam-
ily on cryostat sections of diverse forms of simple epithelia,
we have obtained a distinct immunolocalization pattern mark-
ing the upper portion in the zonula adhaerens. Figure 2a-a’’’,
for example, presents bovine intestinal epithelium. At the
limited resolution in such semithin sections, the striatin reac-
tion, for the most part, overlaps with that of the apical-most
desmosomes (yellow merger colour), whereas the desmo-
somes lying more basally on the lateral cell membranes do
not react at all or overlap optically with striatin antibodies (e.g.
Fig. 2b). In thin sections, however, one can even locally often
distinguish a specific thin apical striatin-positive zonula-like
structure from the subjacent general zonula adhaerens region
reacting, for example, with α-catenin, β-catenin, p120, p0071
and protein ZO-1 (for β-catenin, see Fig. 2c–e). In such thin
sections, the striatin andβ-cadherin-positive zones can also be
distinguished from the adjacent occludin- and claudin-positive
zonulae occludentes of tight junctions (TJ; not shown). This
subapical zonula region is also different from the zonula
reaction sites of the 21-kDa transmembrane protein PERP
(Fig. 2’’’; the apical zone under discussion here is demarcated
by the bracket symbol in Fig. 2b). Similar results have been
obtained in diverse tissues with adluminal simple epithelia,
including salivary and other glandular epithelia, duct epithelia
and pulmonary epithelium, bladder urothelium and the semi-
niferous and excurrent duct epithelia of the testis (cf. Domke
et al. 2014). In bovine muzzle epithelial glands and ducts
(Fig. 3), the marked striatin zonula immunostaining is seen
in both the secretory and the ductal cells. Essentially identical
results have been obtained in all five mammalian species
examined.

As the polar organization of the hepatocytes in mammalian
liver tissue represents an especially complex junction, and as
liver physiology and diseases are of special importance, we
have performed detailed double- and triple-label high-resolu-
tion immunolocalization reactions on cryostat liver sections of
the five mammalian species used, namely mouse, rat, pig,
cattle and human. Figure 4 presents the results obtained by
double-label immunofluorescence microscopy, comparing the
punctate, rather regularly spaced desmoplakin reaction sites
along the bile canaliculi with the thin and distinct, but also
intensive, striatin reaction of the apical zonula adhaerens
structures (Fig. 4a-a’’, b-b’’). Moreover in cross-sections
through the bile canaliculi, we could demonstrate (Fig. 4c-
c’’) the entire subapical plasma membrane reaction of striatin
in direct comparison with the surrounding desmosomes. The-
se results were identical in all five species and were also
similar to those obtained for other zonula adhaerens markers,
including the proteins myozap (Rickelt et al. 2011) and LU-
MA (Franke et al. (2014).

Light microscopic immunolocalization in stratified epithelia

Epithelia of this category are characterized by variously sized
and variously structured interdesmosomal regions that can be
studded not only with “gap junctions”, but also with single
molecules or “islands” of TJ and/or AJ molecules (“tessellate
junctions”; cf. Franke and Pape 2012; Franke et al. 2013). The
patterns of these interdesmosomal cell-cell junction structures
vary markedly not only between the various types of epithelia,
but also in the various cell layers.

Punctate and fascia-like striatin immunolocalization reac-
tions have also been noted in the various stratified epithelia
examined. For example, the distribution of striatin-containing
portions in tessellate junction layers of bovine tongue mucosa
is shown in comparison with immunostaining for β-catenin in
Fig. 5. In the interdesmosomal cell-cell contact regions of
these stratified tissues, small punctate fascia-like or even more
extended striatin reaction sites are often seen, mostly showing
colocalization of AJ molecules with TJ markers such as
occludin, because of spatial overlap. Moreover, in several
stratified epithelia, striatin immunostaining is not restricted
to colocalization areas with other AJ proteins but has selec-
tively been noted in upper layers, positionally equivalent to
the upper stratum spinosum and the granulosum layers of the
epidermis, even in regions that appear totally negative for
proteins including the catenins, p120, p0071 and protein
ZO-1 (see Fig. 5, upper portion). The reactive structures and
the intensities of the various members of the striatin protein
family can differ in the different stratified epithelia, i.e. epi-
dermis, oral and lingual mucosa regions, oesophagus, pharynx
epithelium and stratified thymic reticulum epithelium
(“Hassall bodies”). Therefore, we have decided to devote a
special future article to the complex patterns of AJ protein
localizations in the distinct substructures of tessellate junc-
tions of mammalian stratified epithelia and in tumours and cell
cultures derived therefrom.

Immunolocalization in myocardiac tissues

In view of the molecular architectonic, functional and medical
importance of CJs in the intercalated disks, and in view of the
special roles of such molecules in the pathogenesis of a series
of heart diseases and “sudden death” forms, we have carefully
examined and compared the five mammalian species men-
tioned by immunofluorescence microscopy. Moreover, as a
single striatin polypeptide appeared to be the predominant, if
not exclusive isoform in myocardiac cells in situ (see Fig. 1a,
c’), we made certain, in all cases, that the antibodies specific
for this striatin were included in the experiments.

As shown for the example of boar heart (Fig. 6), striatin is
highly enriched in the CJs, usually showing colocalization
with N-cadherin and β-catenin (Fig. 6a-a’’’, b-b’’’) and with
p120, desmoplakin, plakophilin-2 and desmoglein-2 (Dsg2;
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not shown). Essentially identical colocalization results have been
obtained for bovine cardiomyocytes in situ (Fig. 7a-a’’’ presents,
for example, colocalization with desmoplakin). Several other AJ
plaque proteins such as ZO-1 also colocalize with striatin in CJs
but here striatin label has not been detected in the zonulae
adhaerentes of the interspersed blood capillaries (Fig. 7b, b’).

Colocalization of striatin with other CJ molecules has also
been found in a significant proportion of the junctions of the
Purkinje network of conducting cells (Fig. 7c-c’’; for an
extensive recent review of cardiac conduction cells, see
Mezzano et al. 2014). In addition, we have noted, in the
conductive cells, a few striatin-positive junctional reaction
sites that are negative for all desmosome-specific marker
proteins and other junctions that are desmoplakin- and
plakophilin-2-positive but negative for all striatin antibodies
tested (not shown).

�Fig. 2 Immunolocalization of striatin in the zonula adhaerens of bovine
intestinal epithelial cells. a–a’’’ Double-label confocal laser scanning
immunofluorescence microscopy, showing striatin (a, red; mAb mouse
[m]) in a relatively narrow apical zone in partial colour reaction overlap
with desmoplakin (a’, green; pAb gp). This double-label immunoreaction
is seen in a’’ and on a phase contrast background in a’’’. Note, however,
that striatin is restricted to the subapical ring (zonula adhaerens; L,
lumen), whereas desmoplakin is also located in the numerous
desmosomes of the basolateral cell-cell contacts. b Higher resolution
micrograph showing the distinct separation of the striatin-positive
zonula (red) and the basolateral desmosomes (green). c–e Differential
immunostaining reactions of striatin (red; mAb m) and β-catenin (green;
rabbit [rb] antibody), indicative of zones of colocalization (yellow) and
local segregation (red). f–f’’’ Double-label immunofluorescence
microscopy showing the same tissue after localization of proteins PERP
(f, f’’, f’’’, red; mAbm) and striatin (f’–f’’’, green; gp). Note that striatin is
restricted to a thin upper line of the zonula adhaerens (green), whereas
protein PERP is seen in a slightly lower zone and in special larger
punctate structures both at the zonula and at the basolateral membranes
(bracket and bottom in f, respectively). Bars 20 μm (a, f), 5 μm (b–e)

Fig. 3 Double-label confocal laser-scanning immunofluorescence
microscopy of cryostat sections through a bovine muzzle epidermis
region rich in glandular and ductal epithelium. a Survey of cross- or
obliquely-sectioned gland structures showing the general frequency of

desmosomes (green; desmoplakin, gp antibody) and zonulae adhaerentes
positive for striatin (red; mAbm). a’Higher magnification illustrating the
differential localization of these two structures. Bars 20 μm
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In both murine species examined, the colocalization of
striatin with β-catenin (Fig. 8a-a’’’), p120 and p0071 and with
desmoglein-2, desmoplakin, plakophilin-2 and plakoglobin
have also been observed. However, in a number of experi-
ments, we have also detected small (“dot-like”) cytoplasmic
reaction sites that are positive only for striatin or only for

specific CJ partner molecules such asβ-catenin (see Electron-
ic supplementary material, Fig. S5), p120 and p0071 or α-
catenin (not shown).

Unsurprisingly, the same kind of results were also obtained
in our extensive localization studies of human myocardium.
As shown in cross-sections of intercalated disks (Fig. 8a-a’’, c)

Fig. 4 Specific immunolocalization of striatin in the zonula adhaerens
structures of hepatocytes extending along the bile canalicular surface in
bovine liver tissue. a–a’’ Double-label confocal laser scanning
immunofluorescence microscopy of near-longitudinal sections of bile
canaliculi, showing the location of striatin (a, red; mAb m) in
comparison with the strictly desmosomal position of desmoplakin (a’,
green; pAb gp). Note that in double-colour labelling (a’’), the reaction of
“free” desmosomes is strictly green, indicating that the desmosomes do

not contain any striatin. b–b’’ Same preparation as in a–a’’ showing that,
for most of the section, an unstained space of the canalicular lumen is seen
between the striatin-rich layer of the zonula (red) and the desmoplakin-
positive desmosomes (b’, b’’, green). c–c’’ Same preparation showing a
near exact cross-section through a bile canaliculus surrounded by a
continuous striatin-positive zonula (red) and a series of desmoplakin-
positive desmosomes (c’, c’’, green). Bars 10 μm (a), 5 μm (b), 2.5 μm
(c)

786 Cell Tissue Res (2015) 359:779–797



and in grazing-horizontal sections of intercalated disks
(Fig. 8b–b’’’), pronounced colocalization was typical for at
least one isoform of striatins with N-cadherin (Fig. 8a–a’’’, b-
b’’’), β-catenin, p120 and p0071 (not shown) and with des-
moplakin (Fig. 8c), desmoglein Dsg2, plakophilin-2 and
plakoglobin (not shown). In special control experiments, we
also used two different types of striatin antibodies, namely,
one that cross-reacted with various striatins and one that

reacted only with the major cardiac striatin polypeptide.
Again, near-complete colocalization was observed (Fig. 8d).

Colocalization of striatin(s) in the plaques of CJs has
also been found for plectin, an extremely large protein
previously described in association with various other
contractile and cytoskeletal proteins (Wiche et al. 1983;
Wiche 1989; Andrä et al. 1997; for biochemical data,
see also Wiche et al. 1982; Pieperhoff et al. 2012) and

Fig. 5 Double-label confocal laser scanning immunofluorescence
microscopy showing one of the subforms of cell-cell tessellate junctions
in a multistratified epithelium, namely the ventral part of bovine tongue
mucosa. a–a’’’ Striatin (red; mAb m) demonstration in regional

substructures, including polar or fascia-like tessellate junctions; the β-
catenin-positive portion (green; pAb gp) of the tessellate junctions
extends over much larger cell-cell contact areas. Bar 20 μm
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ankyrin-G (Electronic supplementary material, Fig. S6),
confirming the data of Makara et al. (2014; see also
Mohler et al. 2004; Sato et al. 2011; for a review, see
Bennett and Healy 2009). To demonstrate the specificity
and intensity of the binding of ankyrin-G and plectin to
other CJ plaque proteins and, notably, also to the protein
myozap (see also Pieperhoff et al. 2012) and striatin
(Fig. S6f), gradual “buffer wash treatments” of cryostat

sections have been regularly performed (see also previous
sections).

Light microscopic immunolocalization of striatin in cultured
epithelial and myocardiac cells

Localization studies of striatin with α- and β-catenin,
with other AJ markers and with desmosomal molecules

Fig. 6 Double-label confocal laser scanning immunofluorescence
microscopy of cryostat sections through porcine (boar) myocardium. a–
a’’’ Immunostaining of striatin in the complete composite junctions
(areae compositae) of the intercalated disks (a’, green; pAb gp) in
comparison with β-catenin (a, red, mAb m), showing extensive
colocalization (a’’, yellow merged colour; a’’’, as a’’, but with a phase

contrast background). b–b’’’ Parallel preparation to that of a–a’’’ but after
reactions with antibodies to N-cadherin (b, red; mAb m) and to striatin
(b’, green; pAb, gp), again showing colocalization (yellow merged
colour) without (b’’) and with (b’’’) phase contrast background. Bars
10 μm
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have also been performed on cell culture monolayers,
including epithelium or carcinoma-derived cells and
cardiomyocyte-derived cells (for biochemical demonstra-
tions of the presence of striatins in such cells, see
Fig. 1a, b and Electronic supplementary material,
Fig. S1; for immunofluorescence microscopy, see

Electronic supplementary material, Figs. S7–S10).
Striatins have been identified as major components not
only in the cell-cell connecting zonulae adhaerentes of
primary cultures. Figure S7, for example, shows a
monolayer culture of rat myocardiac cells taken 2 days
after birth (cf. Pieperhoff et al. 2012). This micrograph

Fig. 7 Double-label confocal laser scanning immunofluorescence
microscopy of cryostat sections through bovine myocardium. a–a’’’
Immunostaining of desmoplakin (a, red, mAb m) compared with that of
striatin (a’, green; pAb gp) shows extensive colocalization (yellow
merged colour in a’’ without and in a’’’ with phase contrast
background). Note also some small but distinct punctate staining
regions that are either red, i.e. positive for desmoplakin, or green, i.e.
positive for striatin. b, b’ Double-labelling with antibodies to the plaque
protein ZO-1 (b, red; mAb m) in comparison with antibodies to striatin

(b, green; pAb gp) shows colocalization in the composite junctions but
exclusive protein ZO-1 labelling at the junctions of the cardiac capillary
endothelium (red). The relationship to the specific structures is seen in the
phase contrast background image (b’). Note also some small strictly red
or green punctate structures. c–c’’ Double-labelling immunostaining of
striatin (c, red; mAbm) and desmoplakin (c’, green; pAb gp) in c’’ shows
that the conductive cells of the Purkinje cell system also contain some
junctions that appear yellow (merged colour in c'', bracket). Bars 20 μm
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also demonstrates the absence of striatin in certain
desmosome-related structures, including the variously
sized intracellular assemblies of desmoplakin-rich mate-
rial. Striatin has also been seen in continually-appearing
cell-cell contact AJs of all epithelial cell culture mono-
layers examined (Figs. S8–10 present examples of the
human breast carcinoma line MCF-7). Thus, striatins
have to be counted among the obligatory constituents
of AJs in tissues and in cell cultures. As striatins also
occur in single cells in culture and in the living mam-
malian body (see Fig. 1 and Electronic supplementary

material, Figs. S6–S9), one has to conclude that the
synthesis and stability of striatin(s) are not dependent
on established cell-cell junctions.

Remarkably, the integration of striatin(s) into the AJ
zonula plaque structures is not restricted to completed
assembly at the cell-cell contacts but can be detected
in small puncta- or fascia-like structures in the cyto-
plasm, even in juxtanuclear regions, or in short plasma
membrane intercepts before the formation of a contin-
uous zonula adhaerens (Figs. S8, S9). In such situa-
tions, we find it especially surprising that even the

Fig. 8 Double-label confocal laser scanning immunofluorescence
microscopy of cryostat sections through human myocardium. a–a’’
Colocalization of N-cadherin (a, red; mAb m) and striatin (a’, green;
pAb gp) on cross-sections of composite junctions (a’’, yellow merged
colour). Note, however, the occurrence of some small isolated punctate
striatin-positive, i.e. green, reaction sites (e.g. in the middle between the
two composite junctions in the lower part of the image). b–b’’’
Colocalization (reagents as in a–a’’) of N-cadherin (b) and striatin (b’)
on near-horizontal sections of intercalated disks (b’’, b’’’merged images,
presented in b’’’ on a phase contrast background). Note the yellowmerged
colour in each of the composite junction substructures. c Colocalization

of striatin (green; pAb gp) with desmoplakin (red; mAbm) in the plaques
of composite junctions. Note also a tiny punctate and exclusively
desmoplakin-positive reaction site (middle bottom). d Control of the
colocalization approach by using two different antibodies reactive with
striatin: mAb (m) reactive with different striatins (red) and pAb (gp)
reactive only with a specific striatin type (green). The colocalization
(yellow merged colour) shows that striatin3 is predominant and that no
other striatin is recognized in the myocardium (note the tiny "artificial"
red dot in the centre of the region right serving as a control). Bars 10 μm
(a, b), 20 μm (c, d)
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newly formed AJ molecules are often closely associat-
ed with TJ proteins such as claudins and/or occludin
(Figs. S8–S10).

Immunoelectron microscopic localizations of striatins

Using snap-frozen tissues or monolayer cell cultures, we have
been able to localize specific striatins on the plaques of cell-

cell contact regions of the AJ type, as is shown for bovine liver
tissue in Fig. 9a, b. Again, desmosomes or other categories of
junctions (gap junctions, TJs) are not immunogold-labelled at
all (e.g. the junction labelled D in Fig. 9c). Moreover, the
immunogold reaction sites are all associated with cytoplasmic
plaques of AJ strucures. Particularly eye-catching in this tissue
is the zonula adhaerens labelling extending over the subapical
junction region bordering on the bile canaliculi (BC in

Fig. 9 Immunoelectron
microscopic localization of
striatins in cytoplasmic plaques of
adherens junctions in a simple
epithelial tissue and an
epithelium-derived cell culture.
a–c Silver-enhanced immunogold
reactions on ultracryotome
sections of bovine liver tissue,
showing that striatins are
components of the adherens
junction plaques in the
interdesmosomal regions
connecting here three (a) or four
(b) hepatocytes (H), whereas
desmosomes (D in c) are
negative. d The specificity of
adherens junctions is also evident
from their localization in the
entire subapical zonula adhaerens
surrounding the bile canaliculi
(BC). Note that, in the
intracanalicular space, the villus-
like apical cell processes are
negative. e, f Silver-enhanced
immunogold reaction of striatin
antibodies in the entire adherens
junction region between the
desmosomes (D) in a monolayer
cell culture of human breast-
carcinoma-derived MCF-7 cells
(IF bundles of intermediate-sized
filaments). Note in b that the
striatin label is exclusively seen in
the submembranous plaque. Bars
2 μm (b), 1 μm (a), 500 nm (c-e),
200 nm (f)
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Fig. 9d), whereas no striatin label is associated with the apical
villus-like cytoplasmic processes extending into the bile can-
alicular interior.

Even more extended and often dense immunolocal-
ization reaction products have been seen in the plaques
of interdesmosomal AJ-type cell-cell contact regions of
densely grown monolayers of human breast carcinoma
MCF-7 cells (Fig. 9e, f), hepatocellular carcinoma PLC
and colon carcinoma CaCo2 cells (not shown) and in
human epidermis-derived HaCaT tumour cells (not
shown). Here, large amounts of antibody-bound heavy

metal grains are exclusively concentrated on the
submembranous AJ plaques (see Fig. 9f), whereas nei-
ther gap junctions nor TJs show marked enrichment.

In stratified epithelia, immunoelectron reaction is also
restricted to interdesmosomal regions. Figure 10a-h shows
striatin labelling by gold-silver grains at such regions (des-
mosomes are numbered in Fig. 10a) with only a few small
immunogold grains. By contrast, Fig. 10b presents clusters
of larger metal label grains in positions that, in some cases,
might be equivalent to local puncta adhaerentia within a
tessellate junction (regions denoted by brackets in

Fig. 10 Immunoelectron microscopic localization of striatins in small
punctum- or fascia-like adherens junctions or “molecular islands” in the
interdesmosomal regions of the tessellate junctions of a stratified
epithelium (here, bovine tongue mucosa). a–c Silver-enhanced
immunogold reaction sites of antibodies against striatins on cryotome
sections through bovine tongue mucosa fixed and embedded as described
and further sectioned into ultrathin sections. The exposure times to striatin
antibodies in the samples shown were 5, 7 and 9 min, respectively. a
Survey micrograph showing the small original reaction sites (dots gold
grains) in the interdesmosomal regions (D1–D5 desmosomes, brackets
tessellate junction regions). Note the abundance of bundles of
intermediate-sized filaments (IFs) of the keratin type in the cytoplasm.
b As in a, more than seven desmosomes occur in this region, with

relatively high label densities (brackets) in variously sized and
variously positioned interdesmosomal cell-cell contact regions. c Higher
label densities showing the confinement of the striatin reaction sites to
interdesmosomal regions. d Higher magnification showing an intensely
immunogold-labelled junction cluster in an interdesmosomal tessellate
junction region. e Higher magnification revealing a cluster of both small
and larger heavy metal grains of a striatin reaction in a small punctum
adhaerens-like junction island. f–h Striatin cluster (bottom in f) next to
the edge of a desmosome (f), small interdesmosomal islands of
immunolabelled puncta adhaerentia (brackets), and a striatin-rich cell-
cell contact island (bottom in h) in direct association with the margin of a
desmosome. Bars 200 nm
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Fig. 10b) . An even more extended and intensive
interdesmosomal striatin labelling pattern is seen in Fig. 10c).
In general, the sizes and the relative positions of striatin immu-
noreaction products vary (for light microscopic comparisons,
see Electronic supplementarymaterial, Fig. S5). In Fig. 10d, the
label extends over the entire interdesmosomal region, whereas
the antibody-linked heavy metal grains in Fig. 10e-h show a
higher tendency to cluster in regions near desmosome margins.
In view of the frequent close vicinity of striatin localization sites
with desmosomal margins (see above), we have examined the
proteins of desmosomal fractions from calf muzzle epidermis,
tongue mucosa and oesophagus tissue prepared in the Heidel-
berg laboratory (see Mueller and Franke 1983; Kapprell et al.
1985) by SDS-PAGE and immunoblotting, with and without
immunoprecipitation and protein cross-linking experiments (cf.
Straub et al. 2011; Pieperhoff et al. 2012) but we have found no
indications of the occurrence of striatins within desmosomal
structures.

Discussion

Members of the striatin family of proteins are by no means
specific for, or especially abundant in, neuronal or other cells
of the nervous system as originally reported (for references see
Introduction). As shown in this study, they are synthesized
and integrated into protein complexes, dispersed particles or

plaques of cell junctions ofmost, if not all mammalian cells, in
single cells and in cultured cells and cells of tissues (see also
Hwang and Pallas 2013).

For the sake of clarity, we consider it important to empha-
size that our results show that the classification of members of
the striatin family as “desmosomal proteins” (Meurs et al.
2013) is not correct. We have not detected striatin(s) in any
type of desmosome or desmosome-related structure. On the
contrary, striatins are exclusive and constitutive components
of AJs such as the zonulae adhaerentes of polar epithelia, of
certain punctate or fascia-like substructures of the tessellate
junctions in stratified epithelia, and of the CJs in the interca-
lated disks of mammalian heart (for the latter localization in
boxer dog, see also Meurs et al. 2010). Consequently, striatins
(certainly the major cardiac isoform) should be added to the
diagnostic “control list” of markers for hereditary AC and DC
damage (Table 2; cf. Asimaki et al. 2009).

Our results also clearly show that striatin proteins are not
components of TJs, although they can often be seen in the
vicinity of TJs. The most convincing argument for this con-
clusion is presented by the CJs of the myocardial intercalated
disks from which TJ-specific molecules and structures are
totally absent. Similarly convincing examples are provided
by several cultured cells with large regions positive for
striatins and other AJ molecules but negative for TJ markers.

Additional locations of members of this protein family
might occur in which the striatins as scaffold proteins are
masked by specific complex partner molecules. Indeed, the
members of this protein family are typical scaffold proteins
able to form not only oligomeric complexes, but also complex
“multimodular” structures, including some involved in di-
verse signalling and regulatory functions (see Muro et al.
1995; Castets et al. 1996, 2000; Bartoli et al. 1998, 1999;
Kachidian et al. 1998; Salin et al. 1998; Moreno et al. 2000,
2001; Baillat et al. 2001; Gaillard et al. 2001; Yu et al. 2001;
Lu et al. 2004; Joshi-Mukherjee et al. 2008; Gordon et al.
2011; Chen et al. 2012; for a recent general review on scaffold
proteins see Garbett and Bretscher 2014). Consequently, we
now need to examine the possible occurrence of such striatin-
binding proteins and striatin-typical functions in plaque com-
plexes of, for example, epithelial AJs and myocardiac CJs.
Similarly important are detailed experimental analyses, in-
cluding gene knock-out studies, to determine which of the
so highly related and so similarly sized striatin forms are
involved in certain pathogenic conditions, such as the afore-
mentioned cardiac AC and DC damage.

Whether the pathogenic effects of certain CJ molecule
mutations on cardiomyopathies such as ACs or Brugada syn-
drome take place in junctions between cardiomyocytes or in
any of the special junctions connecting the conductive
Purkinje fibre cells (for details, see Pieperhoff et al. 2010;
Mezzano et al. 2014) remains unclear. Also unknown is
whether these effects are direct or indirect, e.g. by involving

Table 2 Constitutive molecules of composite junctions (areae
compositae) in the intercalated disks of mammalian cardiomyocytes

Transmembrane cadherins Plaque proteins

Adherens junction molecules Adherens junction molecules

N-cadherin α-Catenin (αE + αT)

Cadherin-11 β-Catenin

Protein p120

Protein p0071

Protein ARVCF

Plakoglobin

Myozap

Striatin(s)

Protein ZO-1

Desmosomal molecules Desmosomal plaque molecules

Desmoglein 2 (Dsg2) Plakoglobin

Desmocollin 2 (Dsc2) Plakophilin 2 (Pkp2)

Desmoplakin

Other molecules

Plectin

Ankyrin-G

Protein PERP

Protein LUMA

Armadillo repeats-containing proteins are underlined
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connexin43 or connexin40 of the intimately associated gap
junctions or the Nav1.5 sodium ion channels, and decisive
experimental results are needed. Such indirect reactions via
other adjacent cell-cell contact structures have repeatedly been
discussed by a series of authors (Oxford et al. 2007a, b, 2011;
Sato et al. 2009, 2011; Cerrone et al. 2012, 2014; Delmar and
Liang 2012; Gomes et al. 2012; Agullo-Pascual et al. 2013,
2014; Meens et al. 2013; Noorman et al. 2013; Cerrone and
Delmar 2014; Lyon et al. 2014; Vreeker et al. 2014; for earlier
references and general reviews, see also Saffitz 2007, 2011;
Delmar and McKenna 2010; Delmar and Makita 2012; Mur-
ray 2012; Rickelt and Pieperhoff 2012; Rizzo et al. 2012a, b).
Finally, we cannot yet exclude that both direct and indirect
effects of the mutated or otherwise modified molecules con-
tribute to the pathogenetic effects mentioned. One hope is
that detailed studies of the animal pathogenesis examples
and transgenic experimental possibilities (for some
related references, see Table 3 in Rickelt and Pieperhoff
2012; see also Fox et al. 2007; Vatta et al. 2007) will help in
elucidating the cardiomyopathic mechanisms involved.

The recognition of striatin as a multimodular scaf-
folding protein that occurs in the cytoplasmic plaques of
various kinds of cell junctions has also to be discussed
in comparison with other scaffolding plaque proteins
such as protein ZO-1 of various tight and adherens
junctions (AJs), as well as AJ α-catenin and the ERM
protein-binding component EBP50 found at the actin
microfilament associations with microvillar membranes
(for a review, see Garbett and Bretscher 2014). Such
scaffolding proteins can also form a diversity of other
complexes located in other structures or regions in
which they might be masked for certain cell-type-spe-
cific antibodies but do indeed bind to antibodies reac-
tive with other epitopes on the same molecule. As a
result, the same scaffolding protein might immunocyto-
chemically appear positive in one structure but negative
in another. Consequently, such selective masking of one
conformational domain might result in completely neg-
ative immunolocalization sites of the same protein that
is positive with other antibodies (see, for example, the
results obtained for protein LUMA in the report of
Franke et al. 2014).
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