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Thin, viscous fluid threads falling onto a moving belt behave in a way reminiscent of a sewing machine,
generating a rich variety of periodic stitchlike patterns including meanders, W patterns, alternating loops,
and translated coiling. These patterns form to accommodate the difference between the belt speed and the
terminal velocity at which the falling thread strikes the belt. Using direct numerical simulations, we show
that inertia is not required to produce the aforementioned patterns. We introduce a quasistatic geometrical
model which captures the patterns, consisting of three coupled ordinary differential equations for the radial
deflection, the orientation, and the curvature of the path of the thread’s contact point with the belt.
The geometrical model reproduces well the observed patterns and the order in which they appear as a
function of the belt speed.
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No onewho has played with pouring honey from a spoon
onto toast can fail to have been fascinated by the peculiar
dynamics of coiling and folding of the viscous stream on
impact. This surprisingly complex behavior can be repro-
duced in a simple yet well-controlled experiment, where a
viscous thread falls onto a moving belt: the patterns laid
down by the thread are diverse and include meanders,
alternating loops, a W pattern, and coiling (Fig. 1), as well
as various resonant patterns such as double coils and double
meanders [1–3]. This system has been extensively studied
[1–5] but has lacked a simple explanation until now.
The resemblance of these patterns to the stitch patterns
of a sewing machine led Ref. [1] to call the system the
“fluid mechanical sewing machine” (FMSM). Some
patterns [see Fig. 1(a)] produce evenly spaced self-
intersections which can serve as sacrificial bonds [6]:
solidified fibers containing such a microstructure display
a combination of high toughness and stretchability,
revealed by mechanical tests [7], as they effectively
reproduce nature’s design for spider silk [8]. Similar coiling
patterns can be found in a number of industrial or everyday
situations, such as the production of nonwoven textiles [9],
the laying down of “squiggles” of icing on cakes, Jackson
Pollock’s action painting, in which paint from a moving
brush dribbles onto a stationary horizontal canvas [10],
or when transoceanic fiber-optic cables are deposited from
a vessel onto the ocean bed [11]. The latter are elastic rather
than viscous [12–14], showing that the patterns are robust
with respect to a change in the thread rheology.
In this Letter, we show that the FMSM patterns can be

described quantitatively by three coupled non linear ordi-
nary differential equations for three state variables only and

FIG. 1 (color online). (a) Direct numerical simulation, with no
inertia, of a thin thread of viscous fluid falling from a height H�
onto a belt with velocity V�. Shown are four periodic orbits of
the contact point of the thread on the belt, and the corresponding
spatial patterns. (b) Phase diagram showing the distribution of
patterns in the dimensionless parameter plane ðH;VÞ. The speed
UcðHÞ at which the fluid coils in the absence of advection
ðV ¼ 0Þ is shown by the dashed line. (Inset) The same diagram,
with belt velocity rescaled by coiling velocity UcðHÞ. The yellow
dots correspond to experimentally measured thresholds [3].
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that are geometric in essence. This model builds upon
previous work which revealed a connection between the
FMSM patterns and the well-studied case of steady coiling:
in the laboratory frame, the motion of the point where the
thread makes contact with the belt involves multiples or
simple ratios of the steady-coiling frequency Ωc [5].
Accordingly, our geometric model uses the position of
this point as a state variable, as well as the direction of the
tangent to the thread. Before deriving the model we
perform direct simulations of the FMSM with the
Discrete Viscous Rods (DVR) algorithm [4,5] to propose
a rationalization of the FMSM phase diagram when inertia
is negligible, i.e., for moderate fall heights. Since this DVR
algorithm is known to accurately predict the experimental
FMSM patterns [4,5], we will not repeat a detailed
comparison with experiments here.
Consider a thread with kinematic viscosity ν falling at a

volumetric rate Q� from a nozzle of dimensional height H�
onto a conveyor belt moving horizontally at speed V�. The
thread is stretched by gravity (denoted g) during its fall so
that the speed of the fluid increases with the distance from
the nozzle. Balancing the gravitational stretching with the
viscous dissipation yields a typical length scale ðν2=gÞ1=3
and time scale ðν=g2Þ1=3 that we use to nondimensionalize
our equations. In particular, H ¼ H�ðg=ν2Þ1=3 and V ¼
V�=ðνgÞ1=3 are the dimensionless height of fall and belt
velocity, respectively. By varying these two parameters,
one generates a phase diagram for the FMSM [5]. Herein,
we work with the typical parameter values used in the
literature [2,3] so that 0.5 ≤ H ≤ 1.4. We artificially omit
inertia in our simulations, an assumption which is valid in
almost this entire range (specifically, for H ≤ 1.2, see
Sec. 1 in the Supplemental Material [15]). By doing so,
we find that all of the simple patterns survive in this
quasistatic limit (see Fig. 1), thereby confirming that inertia
is irrelevant for moderate fall heights.
When the belt has velocity V ¼ 0 the thread coils

steadily with a radius Rc, a frequencyΩc, and a speedUc ¼
RcΩc (steady coiling) [16]. When gradually increasing the
belt velocity while keeping the other parameters constant,
the coiling pattern is first simply translated on the belt
(translated coiling) up to a certain critical value of V where
loops form alternatively on one side of the belt and then the
other (alternating loops). For higher belt speeds the thread
exhibits some meanders [17,18] which collapse to a straight
line for a critical value of the belt velocity Vc. For velocities
higher than Vc the thread has a catenary shape and its
contact point with the belt is stationary in the laboratory
frame. In the rest of the Letter we concentrate on belt speeds
in the range 0 ≤ V ≤ Vc. Three points are of particular
interest. First, no double patterns [5] such as the double
coiling or double meanders were found in these quasistatic
conditions. This was anticipated since such resonant patterns
are typically observed for large values of H where inertia is
dominant in normal conditions [5]. Second, we found

hysteresis in the critical belt velocity values corresponding
to the transition between patterns. The data shown in
Fig. 1(b) are for a slowly accelerating belt. The case of a
decelerating belt is discussed at the end of the Letter. Third,
we report the presence of another pattern, the W pattern,
which we found in limited portions of the diagram [see the
overlay in Fig. 1(b)]. It appears in competition with the
meanders after the alternating loops become unstable when
the belt speed is increased—and only then.
For any height H, we can compute the steady coiling

velocity Uc ≡ RcΩc using the method of [19]. This yields
the dashed curve in Fig. 1(b). The curve matches the lower
boundary of the grey region (the straight pattern), which
reveals that the onset of steady coiling matches accurately
the critical velocity Vc ¼ Uc. The central role played by the
reduced velocity V=Uc in the formation of the patterns
becomes even more evident when one plots the phase
diagram in terms of V=Uc [see the inset in Fig. 1(b)]; then,
all boundaries between the patterns become horizontal
straight lines. This important finding shows that the only
influence of the height of fall on the patterns is to set the
value of the reduced velocity V=UcðHÞ: the patterns can be
rationalized solely in terms of the parameter V=UcðHÞ.
This is confirmed by the collapse of the experimental
measurements from Ref. [3] (for low fall heights, hence
negligible inertia) onto horizontal bands in Fig. 1(b).
The reason why V=Uc is the only relevant parameter

may be understood by analyzing the thread’s radius profile
aðzÞ for different V while keeping H constant, i.e., moving
vertically in the phase diagram and browsing through the
different patterns. We do so in Fig. 2 and find that all of
the curves aðzÞ collapse onto a single master curve. In the
upper part of the master curve, called the tail, the thread
is accelerated and stretched by gravity until it reaches a
terminal radius ac. Both this radius and the speed Q=ðπa2cÞ
at which the thread arrives on the belt are found to be
approximately independent of V in the range 0 ≤ V ≤ Vc.
As a consequence the thread speed may be called the free-
fall speed [1] and is equal to the coiling speedUc (observed
when V ¼ 0), which depends solely on H. In general Uc
and V do not match and there is a small region near the
lower end of the thread, called the heel in Fig. 1, where the
thread bends and twists while keeping a constant radius.
The patterns are produced as the heel is set in motion to
satisfy the no-slip boundary condition at the contact point
between thread and belt:

FIG. 2 (color online). The thread’s radius distribution aðzÞ
normalized by the nozzle’s radius a0 is identical for any pattern
in the range V < Vc. Stretching is limited to the upper part of
the thread, and the radius is constant near the belt.
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Uctþ Vex ¼ _r: ð1Þ

Here we use the notation introduced in Fig. 3: t is the unit
tangent to the thread at the point of contact rwith the belt, _r
is the velocity in the laboratory frame of this nonmaterial
point, and ex is a unit vector in the direction of belt motion.
The limiting case of steady coiling corresponds to V ¼ 0

and _r ¼ Uct, and the case of a straight (catenary) pattern
corresponds to _r ¼ 0, t ¼ −ex, and V ¼ Uc. In the general
case V=Uc < 1, the speed at which the thread arrives at the
belt exceeds the belt’s ability to carry it away in a straight
line (_r ≠ 0 in equation above). This excess length of thread
is accumulated on the belt in the form of patterns produced
as the heel lays down on the belt. This agrees with our
initial observation that the critical velocity at which the
straight pattern appears is Vc ¼ Uc; see Fig. 1(b).
We now turn to the task of characterizing and modeling

the heel boundary layer where the deposition takes place.
Since bending stresses are dominant in the heel, we
anticipate that the curvature κ of the thread at the point
of contact plays a key role in the pattern formation.
Working in the quasistatic (inertialess) limit, we assume
that the shape of the hanging thread (and in particular its
curvature near the point of contact) is only a function of
the current boundary conditions applied to the thread. The
boundary conditions at the nozzle are time invariant as
the fall height and flow rates are fixed. Therefore, we view
the curvature κ at the bottom of the hanging thread as a
function of the position r of the point of contact and the
orientation of the tangent t. The equations for the hanging
thread are cylindrically invariant, and therefore we have
κ ¼ κðr;ϕÞ, where ϕ is the direction of the tangent relative
to the line joining the projection of the nozzle O to the
point of contact r (Fig. 3). The function κðr;ϕÞ is found by
fitting DVR simulations of translated coiling for the case
of H ¼ 0.6 and 0 < V=Uc < 0.4 [the darker red bar in
the lower left corner of Fig. 1(b)]. As explained in the
Supplemental Material [15], Sec. 2.1, the time series of
ðr;ϕ; κÞ for the translated coiling pattern are well approxi-
mated by the heuristic fit

κðr;ϕÞ ¼ 1

Rc

ffiffiffiffiffiffi

r
Rc

r
�

1þ AðϕÞ r
Rc

�

sinϕ; ð2Þ

where AðϕÞ ¼ b2 cosϕ=ð1 − b cosϕÞ and b ¼ 0.715 and
Rc is the radius of steady coiling [16]. Figure 4 shows the
collapse of the numerical data obtained from Eq. (2).
The result of this fitting procedure is robust with respect
to the particular value of H chosen (see Sec. 2.2 of the
Supplemental Material [15]).
Building on our previous observations, we now derive a

quasistatic geometric model for the formation of the trace.
The heel is modeled as a filament of uniform radius falling
towards the belt at a velocity Uc, which is bent and laid
down quasistatically onto the belt. Let s be the arc length
along the trace, with s ¼ 0 corresponding to the point
which contacted the moving belt at time t ¼ 0 and s ¼ Uct
corresponding to the current point of contact r. We label
material points in the trace by their (Lagrangian) coordinate
s. We also use s as a timelike variable and write rðsÞ for
the contact position at time t ¼ s=Uc. Let qðs; tÞ be the
position on the belt of the point s at time t, with
0 ≤ s ≤ Uct. This point was deposited at time s=Uc at
position rðsÞ, and it has subsequently been advected at
velocity Vex by the belt. Thus

qðs; tÞ ¼ rðsÞ þ Vðt − s=UcÞex: ð3Þ

In our model of the thread, the dynamical quantities of
interest are the contact position r and the tangent vector t
and curvature κ at the point of contact. At any point s, the
tangent to the trace is ∂q=∂s. In particular, at the point
of contact tðsÞ ¼ ∂q=∂sjs¼Uct ¼ r0ðsÞ − V=Ucex, and we
recover Eq. (1) with r0 ¼ _r=Uc. Now let (rðsÞ;ψðsÞ)
denote the polar coordinates of the contact point rðsÞ, as
shown in Fig. 3, and let θðsÞ denote the angle from the
x axis to tðsÞ. We resolve r0, t, and ex into the polar basis
ðer; eψÞ and use ϕ ¼ θ − ψ to eliminate the dependence
on ϕ:

FIG. 3 (color online). Geometrical model, in the plane of the
belt: trace q (thick black curve) with arc length s, orbit of the
contact point (dashed red curve), and projection O of the nozzle
onto the belt’s plane. The curvature of the thread is assumed to be
a function of the polar coordinates ðr;ϕÞ of the point of contact r.

FIG. 4 (color online). Collapse of the DVR simulation data for
the rescaled curvature, as a function of ϕ, for the translated
coiling pattern [H ¼ 0.6 and 0 < V=Uc < 0.4; see darker red bar
in the lower left corner of Fig. 1(b)]. See the Supplemental
Material [15] for details.
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r0 ¼ cosðθ − ψÞ þ V
Uc

cosψ ; ð4aÞ

rψ 0 ¼ sinðθ − ψÞ − V
Uc

sinψ : ð4bÞ

Finally, θ0 is the curvature of the trace at the contact point,
which has been found in Eq. (2) in terms of a fitting
function κ:

θ0 ¼ κðr; θ − ψÞ: ð4cÞ
Equations (4a)–(4c) are a set of coupled ordinary non-

linear differential equations for the functions r ¼ rðsÞ,
ψ ¼ ψðsÞ, and θ ¼ θðsÞ, depending on a single dimension-
less parameter V=Uc—the parameter Rc in Eq. (2) sets a
length scale for r and s and can be removed by rescaling.
We refer to this system of differential equations as the
geometrical model (GM). The kinematic equations (4a)
and (4b) capture the coupling with the moving belt, while
Eq. (4c) captures the shape of the hanging thread as set by
the balance of viscous forces and gravity. We integrated
the GM numerically, varying the velocity parameter in the
range 0 ≤ V=Uc ≤ 1 (Fig. 5). The solutions rðsÞ were
found to settle into periodic orbits; see Fig. 5(a). The
patterns corresponding to the different orbits can be
identified by reconstructing the complete trace q from
Eq. (3) and then comparing it to those obtained by DVR
simulations; see Fig. 5(b). With the aim of calculating the
bifurcation thresholds accurately and identifying the nature
of the bifurcations, we also investigated the stability
domains of the periodic solutions of the GM using the
continuation software AUTO-07P [20]; see Fig. 5(c).
All of the patterns originally observed with DVR in the

quasistatic (noninertial) limit are captured by the GM. They
appear in the correct order when V=Uc is varied, and there
is a good agreement on the values of the pattern boundaries;
see Fig. 5(c). Their shapes are accurately captured as well;
see Fig. 5(b). Alternating loops and meanders are sym-
metric about y ¼ 0 in their full domain of existence, both in
DVR simulations and in the GM. The alternating loops and
the amplitude of the meanders both decrease as the belt
velocity increases, and the latter tends to zero when
V ¼ Uc, as expected. Coils are symmetric at zero belt
velocity, but then turn asymmetric at larger velocities. W
patterns are, on the other hand, always asymmetric.
Interestingly, the GM sheds light on two subtle features

of the FMSM. First, it accounts for the hysteresis observed
in DVR when transitions between patterns occur at differ-
ent values depending on whether the belt velocity is
increasing or decreasing: the domains of stability of the
various patterns predicted by the GM do indeed overlap;
see Fig. 5(c). Second, it explains why the W pattern can be
observed in DVR with an increasing belt velocity, but not

with a decreasing one. Indeed, the layout of the stability
diagram of the GM in Fig. 5(c) predicts that meanders will
destabilize directly into alternating loops for a decreasing
belt velocity, skipping the W pattern.
The geometrical model is formulated as an evolution

problem for the position of the contact point, with an
additional dependence on the tangent orientation. This
dependence induces a memory effect which explains the
complexity of the patterns, even in the absence of inertia.
The central role of geometry explains the robustness of the
patterns with respect to the rheology of the thread. By
condensing the dynamics of the spatially extended thread to
that of a single point, we could interpret the patterns using
methods from the field of dynamical systems, rather than
the field of pattern formation [21]. From the point of view
of applications, the FMSM suits the inertialess environment
associated with fabrication at the microscale [22].

FIG. 5 (color online). (a) The four periodic orbits rðsÞ obtained
with the GM and (b) the corresponding patterns qðs; tÞ (the green
lines), compared to the pattern obtained with DVR simulations
(the brown lines) for identical ratios V=Uc. (c) Patterns encoun-
tered with DVR while quasistatically increasing the ratio V=Uc
(respectively, decreasing, as indicated by the arrows) along with
the stability domains and bifurcation analysis computed with the
GM (the green lines): period doubling (PD), fold point (LP), and
torus bifurcation (TR).
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Modulating the orientation and the lateral position of the
belt or nozzle offers an interesting avenue toward extending
the library of patterns, thereby offering a possible alter-
native to 3D printing [23] and electrospinning [24]; our GM
allows these modulations to be designed in a rational way.
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