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Knowledge of the mean-free-path distribution of heat-carrying phonons is key to understanding phonon-
mediated thermal transport. We demonstrate that thermal conductivity measurements of thin membranes spanning
a wide thickness range can be used to characterize how bulk thermal conductivity is distributed over phonon
mean free paths. A noncontact transient thermal grating technique was used to measure the thermal conductivity
of suspended Si membranes ranging from 15–1500 nm in thickness. A decrease in the thermal conductivity
from 74–13% of the bulk value is observed over this thickness range, which is attributed to diffuse phonon
boundary scattering. Due to the well-defined relation between the membrane thickness and phonon mean-free-path
suppression, combined with the range and accuracy of the measurements, we can reconstruct the bulk thermal
conductivity accumulation vs. phonon mean free path, and compare with theoretical models.

DOI: 10.1103/PhysRevB.91.245423 PACS number(s): 63.22.−m, 66.70.Df

Phonon mean free path (MFP) plays a key role in lattice
thermal conductivity. Recent studies have demonstrated that
describing phonon-mediated heat transport with a single or
average MFP value is largely inadequate [1–4]. A more
adequate description is provided by considering a distribution
of thermal conductivity over phonon mean free paths (MFPs),
also known as the phonon MFP distribution or spectrum
[5,6]. Knowledge of this distribution is necessary for modeling
heat transport in nanostructures and designing new materials
for applications such as thermoelectric energy conversion
[7]. However, accurate measurements of MFP distributions
are challenging, as the length scales of thermal phonon
wavelengths and MFPs can vary from less than 1 nm to several
micrometers, depending on the material and temperature
[8,9]. Experimental measurements of thermal conductivity
yield only an integrated value, and do not typically reveal
microscopic details of the thermal transport. First-principles
calculations of thermal conductivity accumulation vs. MFP
have recently been accomplished for a few materials [8–10].
However, the complexity of modeling anharmonic phonon-
phonon interactions necessitates experimental validation of
these calculations.

Although the frequency-dependence of phonon lifetimes
can be measured directly with inelastic neutron [11], x-ray
[12], or light scattering [13], or with laser-excited coherent
phonons [14,15], MFP measurements by these techniques have
been limited. For example, the available experimental data for
silicon do not extend beyond 100 GHz [16], far below the range
of frequencies thought to be important for thermal transport at
room temperature [8,10].

*Present address: Brigham Young University Provo, Utah, USA.
†Corresponding author: gchen2@mit.edu

In recent years, advances in measuring phonon MFP
distributions have been made with studies of size-dependent
thermal conductivity over small distances, where thermal
transport deviates from Fourier’s law. In these experiments, the
length scale is typically controlled through the measurement
geometry, varying, for example, metal line width [1], laser
spot size [2], optical grating period [3], or laser modulation
frequency [4]. As the heat flux of phonons with MFPs longer
than the measurement length scale is suppressed compared to
that predicted by Fourier’s heat diffusion model, the observed
reduction in effective thermal conductivity can be used to
estimate the contributions of phonon MFPs to the heat flux
[2–4]. These experiments have provided useful insights into
phonon MFP distributions, although there are currently lower
limits to the length scales that can be probed, e.g., ∼300 nm
for crystalline silicon [4].

One of the difficulties in determining the MFP distribution
from size-dependent thermal conductivity measurements is
that a model is required for how different phonon MFPs
contribute to the measured thermal conductivity for the specific
experimental geometry, often referred to as a suppression
function. Typically, approximations are made, such as cutting
off the contribution of phonons whose MFP exceeds a certain
characteristic length. In addition, the interpretation of the
measurements is often complicated by the presence of a
metal-substrate interface. These difficulties complicate direct
comparison of the measured mean-free-path distribution with
first principles calculations.

In this work, we demonstrate an alternative approach to
characterizing the MFP distribution based on size-dependent
thermal conductivity measurements. Namely, we measure
thermal transport in suspended nanoscale membranes in the
diffusive regime and reconstruct the thermal conductivity
accumulation vs. MFP from the dependence of the thermal
conductivity on the membrane thickness. The advantages
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of this approach are the availability of the direct solution
to the size-dependent heat flux problem based on the
Fuchs-Sondheimer suppression function [17–19] and the
access to a length scale down to ∼10 nm. Studies of
nanostructures have shown that thermal conductivity reduces
significantly with decreasing thickness due to the reduction of
phonon MFPs caused by diffuse boundary scattering [20–22].
While thin-film thermal conductivity has been investigated
previously, these measurements have lacked the precision
and the wide thickness range needed in order to recover the
MFP distribution from size-dependent thermal conductivity
data. To meet these requirements, we use the noncontact
laser-based transient thermal grating (TTG) technique [3,23],
which inherently yields high absolute accuracy, to measure
suspended single-crystalline silicon membranes with thickness
values ranging from 15 nm to 1.5 μm. These measurements
avoid heat transport across interfaces, and measure in-plane
transport. Then, following the work of Minnich [5], and
Yang and Dames [6], we use a convex optimization algorithm
to reconstruct the thermal conductivity accumulation as a
function of MFP for bulk silicon at room temperature.

The membranes with areas of ∼500 × 500 micrometer
squared were fabricated on 150 mm silicon-on-insulator (SOI)
wafers using Si MEMS processing techniques [24]. The
underlying Si substrate and the buried oxide layer were
removed through a combination of dry and wet etching
techniques to leave a top layer of suspended silicon. The
high etch selectivity of the buried oxide with respect to the
top SOI layer enables the release of the membrane. The
thickness was obtained from optical reflectance measurements
performed with a FilmTek 2000 spectroscopic reflectometer.
The accuracy of the measurements is estimated to be better
than one nanometer.

The optical setup used to create a thermal grating in the
sample and monitor its decay [Fig. 1(a)] was similar to that
used in prior works [3,23]. A 515 nm pulsed excitation laser
with a 60 ps pulse duration at a 1 kHz repetition rate was passed
through a transmissive diffraction grating. A two-lens imaging
system was then used to collect the ±1 orders of diffraction and
cross them at the sample, with a 1/e2 intensity level spot radius
of 250 μm, to generate an interference pattern. The period
of the interference pattern is determined by the diffraction
grating period and the imaging system. Absorption of the
pulses results in a spatially periodic temperature variation,
which behaves as an optical diffraction grating due to the
temperature dependence of the complex refractive index and
the membrane thickness. A continuous wave probe laser with a
wavelength of 532 nm was passed through the same diffraction
grating and imaging system as the pump to generate probe
and reference beams. The probe laser was modulated by
an electrooptic modulator synchronized to the pump laser
repetition rate with a temporal window of 64 μs duration
in order to reduce sample heating by the probe light. The
probe beam, with a 1/e2 spot radius of 75 μm, is diffracted
from the transient thermal grating and superimposed with the
attenuated reference beam for heterodyne detection in order
to enhance sensitivity [23]. The signal was monitored with
a 1 GHz amplified photodiode and recorded by a digitizing
oscilloscope. The absorbed pump energies varied between
1–2.5 μJ and absorbed probe powers varied between 1–15 mW,
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FIG. 1. (Color online) (a) Schematic illustration of the Si mem-
brane samples and TTG experiment. Two laser pump pulses are
crossed on the suspended membrane to form a thermal grating. A
probe beam is diffracted from the thermal grating and mixed with
a reference beam for heterodyne detection. (b) Typical signals as
functions of time for silicon membranes with thickness values of
1.5 μm (blue), 99 nm (red), and 17.5 nm (green) at a grating spacing
of 21 μm, showing a slower decay for the thinner membranes. The
fitted thermal decay (dashed line) is related to the thermal diffusivity
of the sample as described in the text.

depending on the membrane thickness, as discussed in the
Supplemental Material [19]. Due to Fabry-Perot effects, the
absorption and the probe power needed to yield the same signal
level vary nonmonotonously with the membrane thickness.

As a result of the one-dimensional sinusoidal heating
pattern, the temperature grating decays exponentially due to
thermal transport from the heated to the unheated regions
with a decay time τ = 1/(αq2), where α is the thermal
diffusivity and q = 2π/L is the grating wave vector magnitude
corresponding to the grating period L. The thermal diffusivity
can therefore be determined from the signal decay time [25],

α = 1/(q2τ ). (1)

Both the signal decay time and the grating period can
be measured with high accuracy, with no other parameters
involved in the measurement; in particular, precise knowledge
of the absorbed laser power and the magnitude of the
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temperature variation is not required, thus eliminating a major
challenge to measuring thermal conductivity in nanoscale
objects [26,27]. As no adsorbed metal heater layer is used and
the samples are suspended, the measurements and analysis are
free from uncertainties due to thermal interface resistance and
heat loss to a substrate.

In recent work, we have observed nondiffusive transport
with TTG periods L that are short compared to the MFPs of
heat-carrying phonons [3]; in the present work we use large
periods so that the film thickness is the only dimension that
is made small relative to phonon MFPs and the resulting
changes in diffusivity can be associated uniquely to the
thickness variations. The absence of nondiffusive effects can
be verified by varying the TTG period and ensuring that the
measured thermal diffusivity remains constant, i.e., that the
transport time scales as the square of the transport length,
τ ∝ 1/q2 ∝ L2, as expected for diffusion.

Data were collected for grating periods ranging from 11–
21 μm for silicon membranes with thickness values ranging
from 15 nm to 1.5 μm. The thermal diffusivity was calculated
from a biexponential fit to the acquired traces to account
for the optical response of excited electron-hole pairs due
to the pump pulse at short times [3]. This fast electronic
contribution to the signal decays on a time scale approximately
one order of magnitude faster than the thermal decay, from
which the thermal diffusivity is measured. The estimated
excited carrier densities excited by the probe beam are of the
order of 1014cm−3, which is well below the level required to
affect the thermal conductivity [28]. The measurements were
performed at 294 K in a cryostat under vacuum, thus removing
any potential contribution from thermal transport through air.
The optical penetration depth of 515 nm light in silicon is
approximately 1.2 μm, and the thermal grating periods were
much larger than the thickness. This ensured that the thermal
grating was nearly homogeneous throughout the thickness of
the samples and so thermal transport could be considered to
be one-dimensional. The effect of sample heating by the pump
and probe lasers was estimated by repeating the experiments
with twice the original laser powers. The upper bound for the
associated error was found by extrapolating to zero power,
assuming a linear response. It was found that doubling the
pump power had a negligible effect on the measured diffusivity,
while doubling the probe power resulted in a reduction of
the measured diffusivity typically less than 5%. Theoretical
estimates of the temperature rise due to the absorption of the
pump excitation pulses amounted to less than 10 K for all but
the thinnest 15 nm membrane for which the temperature rise
of 16 K was estimated [19,29]. A theoretical estimate of the
temperature rise due to probe laser beam required numerical
calculations, which were made using the finite element method
software package COMSOL [19]. The simulated temperature
rise, �Tsim, was less than 30 K for membranes with thickness
�150 nm. For the thinner membranes, �Tsim was calculated to
be >50 K, with a maximum of 150 K for the 99 nm membrane.
This large �Tsim for the 99 nm membranes correlates with
the greatest experimental change in diffusivity with power
of 13%. However, the moderate effect of the probe power
for all membranes may indicate a lower actual temperature
rise than the simulated estimations. Experimentally deduced
uncertainties due to heating by the probe beam are included
in the error bars reported below in Fig. 2. Full details of
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FIG. 2. (Color online) Thermal conductivity characterization of
the Si membranes. (a) Thermal diffusivities α as functions of grating
spacing L for silicon membranes with thickness values ranging from
15 nm to 1.5 μm. (b) Thermal conductivity k as a function of
membrane thickness d . The experimental points from this work
(black squares) are in good agreement with the calculation based
on Eq. (4) with the phonon MFP distribution at 300 K calculated
from first principles by Esfarjani et al. [8] and Fuchs-Sondheimer
suppression function (red line). The same calculation using the MFP
distribution predicted by Holland [40] in place of that by Esfarjani
et al. overpredicts thermal conductivity for thicker membranes. Data
from other thermal conductivity measurements on supported and
unsupported Si thin films are shown for comparison in open symbols
[27,34–39]. The thermal diffusivity and conductivity values of bulk
silicon are shown for reference in (a) and (b), respectively [31,41].

the calculation of the temperature rise and error analysis are
provided in the Supplemental Material [19,30].

Figure 1(b) shows typical signal intensities as functions of
time for silicon membranes with thickness values of 1.5 μm,
99 nm, and 17.5 nm for a thermal grating period of 21 μm.
The thermal diffusivity is determined from the decay time
according to Eq. (1) and the thermal conductivity can then
be calculated as k = αC where C = 1.64 × 106 Jm−3K−1 is
the volumetric heat capacity of silicon [31]. The volumetric
heat capacity of the membranes is predicted not to change
significantly for silicon membranes with thickness values
down to 15 nm at room temperature, due to the relatively
small change in the density of states [32,33].

Figure 2(a) shows that the measured diffusivities of the
membranes remain constant as a function of the grating
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spacing, which is indicative of diffusive thermal transport.
Figure 2(b) shows the associated thermal conductivities as
a function of thickness, compared to other experimental
works [27,34–39]. The plotted thermal conductivity for each
membrane thickness is the average value calculated from all
grating spacings.

To compare our experiments with theory, we calculate
the thermal conductivity in the membrane using the phonon
Boltzmann transport equation, assuming isotropic dispersion
under the relaxation time approximation [42],

kmem =
∑

s

∫ ∞

0

1

3
Cω v S

(
�bulk

d

)
�bulkdω. (2)

This equation describes the thermal conductivity in terms
of the individual contributions from phonons with frequency
ω with a volumetric heat capacity Cw, group velocity v, and a
MFP �, summed over each polarization branch s. The function
S(�bulk/d) represents how the contribution to the heat flux of
a phonon with a MFP �bulk is suppressed compared to the bulk
for a membrane of thickness d and is given by

S
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�bulk

d

)
= 1 − 3
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d
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�bulk

d
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1

(
1
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)
e
− d

�bulk
t
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This relation, known as the Fuchs-Sondheimer [18] sup-
pression function, was originally derived analytically from
the Boltzmann transport equation to calculate thin film
electrical conductivity. Although this equation is commonly
used to describe the lattice thermal conductivity of thin films
[22], its full derivation for phonon-mediated heat transport
with associated assumptions is not found in the literature.
We provide the derivation in the Supplemental Material
[8,17–19,32,33,43–46]. A similar expression has been derived
by Turney et al. [47].

In deriving Eq. (2), it is assumed that the discretization
of the z component of the wave vector due to the finite film
thickness is negligible, or, in other words, that there are no
phonon confinement effects apart from the reduction of the
mean free path due to boundary scattering, which we have
assumed to be completely diffuse in deriving Eq. (3). An
accurate description of wave scattering from rough surfaces
is quite complex [45], and requires knowledge of the sur-
face roughness and a model for describing the wavelength
dependence of the specularity, p. If we assume that the
majority contribution to the thermal conductivity of Si at
room temperature comes from phonons with wavelengths of
<6 nm [8], and extrapolate recent experimental results from
photoacoustic measurements of the specularity of similar Si
membranes at sub-THz frequencies, we find that p = 0 is
a reasonable assumption [46]. Under this assumption, there
are no waveguide modes and no modifications to the phonon
dispersion relation.

When the contributions of long wavelength phonons are
important, as expected, for example, at low temperatures,
accounting for the wavelength-dependent specularity may be
required [45,48], as phonons with wavelengths significantly
greater than the surface roughness may scatter at least partially
specularly, leading to the formation of guided (Lamb) modes.

We perform a change of variables in Eq. (2) to express the
thermal conductivity in the membrane as:

kmem =
∫ ∞

0
K�bulkS

(
�bulk

d

)
d�bulk, (4)

where K�bulk = −∑
s

1
3Cv�bulk

dω
d�bulk

is the thermal con-
ductivity contribution per MFP, known as the differential
MFP distribution [6]. If the MFP distribution is known, the
thermal conductivity in the membranes can be calculated from
Eq. (4) directly, without explicit knowledge of the frequency
dependence of the phonon group velocities and MFPs. For
silicon, the MFP distribution calculated from first principles
at 300 K following Ref. [8] predicts membrane thermal
conductivity in good agreement with our experimental data,
as shown in Fig. 2(b). The importance of this result is that it
demonstrates the ability of first-principles-based calculations
to predict thermal conductivity of nanostructures without free
parameters. Previously, first-principles calculations of lattice
thermal conductivity were tested by comparing them to the
temperature dependence of the thermal conductivity of bulk
single-crystal materials [8,49]. However, the true promise
of the ab initio approach is in predicting thermal transport
in engineered materials and structures. Another important
observation is the fact that the Fuchs-Sondheimer model works
well for the thermal conductivity of thin films down to 15 nm
in thickness at room temperature. The thickness, temperature,
and roughness conditions at which phonon confinement effects
become significant remains an open question.

Now let us consider the inverse problem of reconstructing
the phonon MFP distribution from the experimental measure-
ments. To do this, we rewrite Eq. (4) in terms of the normalized
accumulative MFP distribution, defined as:

kacc (�c) = 1

kbulk

∫ �c

0
K�bulk d�bulk, (5)

which represents the fraction of thermal conductivity con-
tributed by all phonons with MFP less than �c [5,6]:

kmem

kbulk
=

∫ ∞

0
kacc (�bulk)

dS
(

�bulk
d

)
d�bulk

d�bulk. (6)

While inverting this equation to recover kacc(�c) from experi-
mental measurements of kmem as a function of d is technically
an ill-posed problem, certain constraints can be imposed on
the form of the accumulative distribution to allow it to be
reconstructed, given a wide enough range of experimental
data. Minnich [5] proposed an algorithm based on a convex
optimization procedure [50] to find the smoothest accumu-
lation function still satisfying Eq. (5) within experimental
uncertainties, under the restriction that the function increases
monotonically from 0–1.

The result of the reconstruction obtained with this algorithm
is shown in Fig. 3. It can be seen that the reconstructed
distribution is broad and agrees quite well with first-principles
calculations by Esfarjani et al. [8] and MD simulations by
Henry and Chen [51]. We also compare our results with the
commonly used Holland model [40]. While Holland’s model
predicts a dominant contribution by phonons with MFPs close
to 300 nm, the reconstructed distribution is much broader.
For example, it can be seen that phonons with MFPs larger

245423-4



RECONSTRUCTING PHONON MEAN-FREE-PATH . . . PHYSICAL REVIEW B 91, 245423 (2015)

10-9 10-8 10-7 10-6 10-5 10-4
0.0

0.2

0.4

0.6

0.8

1.0
k ac

c

Λc (m)

  Exp. Reconstruction
  Esfarjani et al.
  Henry & Chen
  Holland

FIG. 3. (Color online) Reconstructed phonon MFP distribution.
Normalized thermal conductivity accumulation kacc showing the
fraction of thermal conductivity contributed by phonons with MFPs
less than �c. The reconstructed thermal conductivity accumulation
function shows good agreement with the distribution calculated
from first-principles [8] and MD calculations [51]. The error in the
reconstruction is estimated by performing the reconstruction for all
combinations of upper and lower data bounds, indicated by the shaded
gray region.

than 1 μm contribute almost 50% to the overall thermal con-
ductivity. We note that although the Holland model correctly
reproduces the temperature-dependent thermal conductivity of
bulk silicon [40], it fails to predict the contributions of phonons
with different MFPs, which emphasizes the need for size-
dependent thermal conductivity measurements to characterize
MFP distributions. Simultaneously, we note that the sharp
features of the Holland thermal conductivity accumulation
curve are not apparent in the predicted thermal conductivity
vs. thickness plot in Fig. 2(b). This is due to the finite width
of the suppression function in terms of mean free path. This
results in the reconstruction method being unable to recover
very sharp features in the mean-free-path distribution.

It should be noted that unlike spectroscopic techniques
[11–15] capable of measuring the lifetime of a specific
phonon state within the Brillouin zone, our measurements
do not provide such direct MFP information. Rather, we
obtain integrated information on phonon MFPs and dispersion
according to Eq. (4). However, the ability to characterize the
thermal conductivity accumulation vs. MFP is quite valuable
for the analysis of the thermal transport in nanostructures
and nanostructured materials even if MFPs of specific phonon
modes remain unknown. In particular, if the suppression func-
tion of a nanostructure is known, such as that given by Eq. (3),
its thermal conductivity can be calculated from the thermal
conductivity accumulation function alone, without the explicit

knowledge of the phonon dispersion and frequency-dependent
bulk MFP [3–6]. On the other hand, our measurements offer
a way of testing theoretical predictions of phonon MFPs; for
example, we have seen that we can distinguish between the
Holland model [40] and ab initio calculations [8,51], even
though they all provide equally good agreement with the
temperature dependence of the bulk thermal conductivity of
Si. However, within the accuracy of our measurements and of
the reconstruction procedure, we cannot distinguish between
the accumulation functions calculated in Refs. [8] and [51],
which are in fact quite close to each other.

Since the thickness range of Si membranes we measured
only went up to 1.5 μm, our study leaves open the question
of the onset of the size effect, i.e., of whether a measurable
reduction in the thermal conductivity from the bulk value can
be observed in membranes as thick as 10 μm or even thicker
[52]. TTG measurements on thicker membranes would require
a longer excitation wavelength yielding a longer absorption
depth, with a potential concern that photons with energy close
to the bandgap of Si would produce excited carriers but not so
much heat.

In conclusion, our results show compelling experimental
evidence of the broad phonon MFP distribution in silicon, con-
firming recent ab initio calculations. The reconstruction was
possible due to the well-defined relation between characteristic
dimension of membrane thickness and phonon MFP reduction
described by the Fuchs-Sondheimer suppression function,
as well as the accuracy and range of the measurements,
spanning from 1.5 μm down to 15 nm in thickness. A
natural next step will be an investigation of the temperature
dependence of the phonon MFP distribution. However, the
interpretation of the low-temperature data requires a more
careful treatment of phonon confinement effects, as well as
a wavelength-dependent model of the surface specularity. Our
methodology can be extended to other materials, for which
accurate ab initio calculations may not be available. The capa-
bility of characterizing the MFP distribution of heat-carrying
phonons will further advance the quantitative understanding of
phonon-mediated thermal transport for important fields such
as thermoelectrics and nanoelectronics.
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