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Abstract.
We demonstrate that, by observing the behavior of a film deposited on a substrate,

certain features of the substrate may be inferred with quantified uncertainty using
Bayesian methods. We carry out this demonstration on an illustrative film/substrate
model, where the substrate is a Gaussian random field and the film is a two-component
mixture that obeys the Cahn-Hilliard equation. We construct a stochastic reduced
order model to describe the film/substrate interaction and use it to infer substrate
properties from film behavior. This quantitative inference strategy may be adapted to
other film/substrate systems.

Keywords: bayesian inference, substrate, film, uncertainty quantification, reduced

order models

1. Introduction

Materials scientists are often interested in measuring spatially varying properties of

surfaces. When these properties cannot be observed directly, they may sometimes

nevertheless be inferred from the behavior of a film deposited on the surface. The surface

of interest then becomes a substrate that influences film behavior while the behavior of

the film is an indicator of substrate properties. For example, Lewandowski and Greer

inferred high temperature shear bands in metallic glasses through the localized melting

of a film of tin deposited on the sample [1]. Aizenberg et al. inferred the distribution

of local disorder in self-assembled alkanethiolate monolayers by observing water vapor

condensation figures [2]. Bowden et al. found that buckling patterns of metal films on

elastomer substrates indicate underlying relief structures of the substrate [3].

In all the examples above, a property of a substrate (e.g., temperature, local

disorder, topography) may be inferred from film behavior (e.g., melting, condensation,

buckling). We investigate how such intuitive inferences may be made quantitative
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using Bayesian statistical methods [4; 5]. These methods enable the inference of model

parameters from indirect and incomplete data. We will demonstrate two key benefits of

Bayesian inference, namely quantification of uncertainty in the inferred parameters and

the ability to improve these estimates sequentially as additional data become available.

We carry out our analysis on a model film/substrate system. The substrate property

is modeled as a Gaussian random field with a characteristic length scale. The film is a

two-component mixture described by an order parameter that obeys the Cahn-Hilliard

equation. In this model system, the length scale of the substrate field is inferred from

the phase separation behavior of the film. To assess the quality of the inference, we show

how the Bayesian posterior concentrates as more data are employed, and we compare

the posterior with the known correct substrate length scale. Although our model

system does not correspond to a specific experiment, it nevertheless demonstrates certain

general features of how Bayesian methods may be used to deduce substrate properties

from film behavior. It also sheds light on the usefulness of developing stochastic reduced

order models (ROMs) for the purpose of inference.

In Section 2, we introduce a numerical model of the substrate and the film. In

Section 3, we formulate a simple ROM for the stochastic film-substrate interaction,

based on simulations of the numerical model and on the Buckingham Pi theorem. In

Section 4, we demonstrate Bayesian inference of the substrate length scale from film

behavior using the ROM developed in Section 3. Section 5 discusses features of the

inference strategy described here that may be adapted to other film/substrate systems.

2. Model problem

In our model problem, the substrate is described by a spatially varying scalar field

T (x, y). The film is a two-component mixture that phase separates or remains uniform,

depending on the value of T (x, y). It is described by order parameter c(x, y, t), which is

a function of both position and time. We assume that the substrate cannot be directly

observed. Instead, some of its aggregate properties may be inferred from the behavior

of the film, which may be directly observed.

2.1. Modeling the substrate

We model the substrate as a Gaussian random field [6] T (x, y) on a square domain ⌦

with side L

D

, with zero mean and covariance function specified as follows:

Cov (T (x1, y1), T (x2, y2)) = K1D (x1, x2)K1D (y1, y2) (1)

(x
i

, y

i

) 2 ⌦ = [0, L
D

]⇥ [0, L
D

]

where

K1D (s1, s2) = �

2exp

✓
�2 sin2 (|s1 � s2|⇡/LD

)

(`
s

/L

D

)2

◆
. (2)

This covariance kernel ensures that realizations of T (x, y) are smooth (infinitely

di↵erentiable) and periodic on the square with dimensionless edge length L

D

. Note
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that T (x, y) is a stochastic quantity; every realization of the Gaussian random field is

a distinct substrate field T (x, y). At any fixed spatial location (x⇤
, y

⇤), T (x⇤
, y

⇤) is a

Gaussian random variable with mean zero and variance �2. The covariance kernel above

also encodes smoothness or structure by imposing nonzero covariance between T (x1, y1)

and T (x2, y2). Thus it is di↵erent from uncorrelated Gaussian noise.

As the distance between locations increases, the covariance in (2) decays at a

rate controlled by parameter `
s

. This distance-dependent covariance creates correlated

variations in the substrate field with characteristic dimensionless length scale `

s

. Large

values of `
s

result in long-wavelength variations in T (x, y) and, conversely, small values

of `
s

give rise to short-wavelength T (x, y) variations.

Due to the periodic nature of the covariance kernel, peaks in the covariance kernel

recur with a period of L
D

. Therefore, the above described decay in covariance is to be

understood to occur locally. To ensure that periodic images of the covariance peaks do

not interact, `
s

must be much smaller than L

D

. In this study, `
s

is never greater than

L

D

/5. We find that this condition is su�cient to prevent periodic image artifacts.

Figures 1(e) and 1(i) show two realizations of T (x, y) with `

s

values of 0.77 and

0.13, respectively, and L

D

= 5. As expected, variations in T (x, y) occur over larger

length scales in 1(e) than in 1(i). For contrast, Fig. 1(a) shows a uniform substrate field

T (x, y) = �1.

In our inference problem, the substrate field property of interest is `

s

. That

is, we will not infer the particular realization of the substrate field giving rise to a

single instance of film behavior. Rather, we are interested in learning the length scale

parameter in the stochastic description of the substrate field. Since the substrate field

cannot be observed directly, `
s

is inferred from the behavior of a film evolving on the

substrate, described next.

2.2. Modeling the film behavior

The film deposited on top of the substrate is a two-component mixture represented by an

order parameter field c(x, y, t). The order parameter takes values in the range [�1, 1],

where c = �1 and c = 1 represent single-component phases and c = 0 represents a

uniformly mixed phase. The behavior of the film is encoded in the substrate-dependent

potential energy density

g(c, T (x, y)) =
c

4

4
+ T (x, y)

c

2

2
. (3)

For negative values of T (x, y), g(c, T (x, y)) is a double-well potential and the film

tends to separate into two distinct phases with c = ±
p

�T (x, y). By contrast, when

T (x, y) is positive, g(c, T (x, y)) has a single well at c = 0 and the film remains uniform.

The substrate property T may therefore be thought of as a temperature di↵erence from

some hypothetical critical temperature. It promotes mixing in regions where T (x, y) > 0

and phase separation in regions where T (x, y) < 0.
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The total energy of the film may be expressed as

E =

Z

⌦

✓
g(c, T (x, y)) +

✏

2

2
|rc|2

◆
dxdy, (4)

where ⌦ is the spatial domain. In addition to the potential energy density g(c, T (x, y)),

the energy functional E contains a gradient energy penalty ✏

2|rc|2/2. The larger the

value of ✏, the larger the penalty for sharp gradients in c(x, y, t). Thus, larger ✏ values

lead to smoother c(x, y, t) solutions. ✏ may be thought of as a characteristic length scale

for composition fluctuations in the film. It is a material property of the film.

The temporal evolution of c(x, y, t) is modeled by the Cahn-Hilliard equation [7]

@c

@t

= �

✓
@g

@c

� ✏

2�c

◆
, (5)

which minimizes the energy functional in Equation (4). We solve this equation on

a square domain ⌦ with edge length L

D

and periodic boundary conditions using an

unconditionally stable, linear splitting scheme [8]. Spectral methods are used for spatial

discretization [9] and exponential time di↵erencing is used for time integration [10].

In all solutions, the initial condition of the Cahn-Hilliard equation is taken to be a

realization of a spatially uncorrelated Gaussian random field with variance 0.01. This

initial condition represents a film that has been slightly perturbed from a purely uniform

state. It is another independent source of stochasticity in the problem, in addition to

the substrate field: di↵erent realizations of the initial condition give rise to di↵erent

temporal evolution trajectories of the film.

The substrate variance parameter �

2 controls the amplitude of T (x, y), but does

not a↵ect the length scale over which T (x, y) varies. The choice of �2 does not a↵ect our

results as long as there is su�cient contrast between the phase-separating and phase-

mixing regions of the substrate. This requirement is met if ✏2 < �

2. We choose to fix �

2

to a value of 0.09, resulting in T (x, y) lying largely within the range of [�1, 1]. All ✏2

values we consider are smaller than 0.01, so there is always good contrast between the

phase-separating and mixing regions in our simulations.

2.3. Understanding the film behavior

To illustrate the interaction of the film with the substrate, Figure 1 shows the evolution

of the film for three di↵erent cases: a film with ✏ = 0.05 on a uniform substrate with

`

s

= 1, a film with ✏ = 0.02 on a coarsely patterned substrate with `

s

= 0.77, and a

film with ✏ = 0.025 on a finely patterned substrate with `

s

= 0.13.

To describe the behavior of the film quantitatively, we calculate the characteristic

length scale of composition fluctutations using the normalized autocorrelation function

C(x, y, t) of the order-parameter field c(x, y, t), calculated as

C (x, y, t) =

R
⌦
c(x0 + x, y

0 + y, t)c(x0
, y

0
, t)dx0

dy

0
R
⌦
c(x0

, y

0
, t)2dx0

dy

0 . (6)
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The length scale ⇤(t) is calculated as the radius of the central peak in the autocorrelation

function C(x, y, t). The radius is calculated by least squares fitting of a covariance kernel

K(x, y,�) = exp

 
�
2
�
sin2 (x⇡/L

D

) + sin2 (y⇡/L
D

)
�

(�/L
D

)2

!
, (7)

with an adjustable length scale parameter �, to the autocorrelation function C(x, y, t):

⇤(t) = argmin
�2R+

✓Z

⌦

(C(x, y, t)�K(x, y,�))2 dxdy

◆
. (8)

The uniform substrate with T (x, y) = �1 shown in Figure 1(a) favors phase

separation at all locations. Upon solving the Cahn-Hilliard equation (5) with ✏ = 0.05,

we observe classic spinodal decomposition [11], snapshots of which are shown in Figure

1(b)-(d). The two phases separate, coarsen, and eventually converge to a stationary,

boundary length-minimizing shape. The phase separated structure of the film converges

because the computational domain is finite. In principle, if the film were simulated

over a hypothetical infinite computational domain (L
D

! 1), the film would coarsen

indefinitely, albeit at an ever-decreasing rate. In our finite-domain simulations, Figure

2(a) shows that ⇤(t) increases with time t and converges to a value ⇤1 close to L

D

= 5.

⇤1 is calculated as the length scale of the film in its converged state:

⇤1 = lim
t!1

⇤(t). (9)

In practice, the film behavior is considered converged if the maximum change in the film

between two subsequent time steps is below a threshold �:

max
(x,y)2⌦

��
c(x, y, tn+1)� c(x, y, tn)

��
< �. (10)

For this study, � = 10�3.

The substrate shown in Figure 1(e) is coarsely patterned (`
s

= 0.77). We simulate

the behavior of a film with ✏ = 0.02 on this substrate and find that it phase separates

in some regions, but not in others, as shown in Figure 1(f)-(h). Phase separation occurs

where T (x, y) < 0. The order parameter field in Figure 1(h) has a structure finer than

the scale of the computational domain. Figure 2(a) plots ⇤(t) for this film/substrate

system and shows that the converged length scale ⇤1 is smaller than the computational

domain size L
D

= 5. Thus, unlike the case of the uniform substrate, the convergence of

the film over this patterned substrate is due to the substrate itself, not the finite size of

the computational domain.

To further illustrate this distinction, we plot ⇤1 as a function of domain size L

D

for both the uniform substrate and the patterned substrate in Figure 2(b). As expected,

⇤1 increases with L

D

for the uniform substrate while for the patterned substrate, ⇤1

is independent of L
D

. This confirms that the length scale of compositional fluctuations

in the film on a patterned substrate converges because of the patterned substrate and

not due to the finite computational domain size.
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The third substrate, shown in Figure 1(i), is finely patterned (`
s

= 0.13). A film

with ✏ = 0.025 is deposited on top of it. Figures 1(j)-(l) show the phase separation of

the film. We do not find any correlation between the phase-separated regions of the film

and the parts of the substrate where T (x, y) < 0. This behavior contrasts with that of

a film with ✏ = 0.02 deposited on a substrate with `

s

= 0.77. This comparison suggests

that the behavior of the film/substrate system depends on both ✏ and `

s

. The nature

of this dependence is explored in the next section.

3. Model simplification

The previous section describes a model film/substrate system where the substrate has

characteristic length scale `

s

and the film has two characteristic length scales: the

gradient energy penalty factor ✏ and the converged length scale ⇤1. We propose to infer

`

s

given ✏ and ⇤1. Note that the relationship between these parameters, as described

by the phase field model given in the previous section, is intrinsically stochastic due to

randomness both in the initial conditions and in the substrate field itself (for a given

`

s

). Direct evaluation of the resulting likelihood function in a Bayesian approach (to be

described in Section 4) is thus intractable. Approximate Bayesian computation methods

[12; 13] could be used instead, but these would require many thousands or millions of

model evaluations.

Instead, we adopt a di↵erent approach to infer `
s

given ✏ and ⇤1: we construct a

simplified model that relates `

s

, ✏, and ⇤1, in a way that will give rise to a tractable

likelihood function to be used in Section 4. This relation may be viewed as a “reduced

order model” (ROM), because it ignores the detailed structure of the substrate, replacing

it with `

s

, and because it also ignores the exact temporal evolution of the film, instead

describing it using only ✏ and ⇤1. This relation may be expressed as

⇤1 =

reduced order modelz }| {
f (✏, `

s

)| {z }
deterministic term

+ � (✏, `
s

)| {z }
random term

. (11)

The deterministic term captures the average response of the film/substrate system. The

random term �(✏, `
s

) can account for both the inherent stochasticity of the film evolution

and any systematic error in the deterministic term. We will construct both f(✏, `
s

) and

�(✏, `
s

) in turn.

First, we use the Buckingham Pi theorem [14] to simplify the putative relation

⇤1 = f(✏, `
s

) between `

s

, ✏, and ⇤1. Because ✏, `
s

, and ⇤1 all denote characteristic

lengths, we may use them to write two independent parameter groups ⇤1/`

s

and `

s

/✏.

The Buckingham Pi theorem then allows us to simplify the relation to

⇤1

`

s

= F

✓
`

s

✏

◆
. (12)

To get the actual form of function F , we perform runs of the full model over a

range of ✏ and `

s

. ✏ was varied over ten logarithmically-spaced values between [0.01,
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0.1]. Similarly, `
s

was systematically varied in the range [0.1, 1]. For each combination

of ✏ and `

s

, ten simulations of the full model were performed, each with an independent

realization of the substrate parameter field and the stochastic initial condition. The

resulting values of ⇤1 were recorded. The spatial discretization length h was always at

least a factor of 2 smaller than `

s

, ✏, or ⇤1 and the computational domain size L

D

was

always at least a factor of 5 larger than `

s

, ✏, or ⇤1.

Figure 3(a) plots ⇤1/`

s

as a function of `
s

/✏. The individual data points collapse

onto a single curve, as expected. The curve has two asymptotes. When `

s

/✏ � 1,

⇤1/`

s

⇡ 1. This limit is illustrated in Figure 1(f)-(h). In it, the film order parameter

c(x, y, t), upon convergence, exhibits variations over a distance of approximately `

s

. This

is because the phase-separating regions of the substrate ((x, y) | T (x, y) < 0) are on

average separated by a distance `

s

. Since `

s

is much larger than ✏, neighboring phase

separating regions do not interact. The film phase separates to the full extent of the

phase separating regions, but not beyond. Since the phase separating regions are on

average of size `

s

, ⇤1 is close to `

s

.

The second asymptote occurs at `
s

/✏ ⇡ 1, where ⇤1/`

s

appears to diverge. This

is the behavior observed in Figure 1(j)-(l), where the film phase separates to a length

scale larger than that of the substrate. Variations in the converged film occur over

a distances larger than `

s

. This is because the characteristic spacing between phase

separating regions `

s

, is close to ✏. As a result, the film is no longer constrained to

follow individual phase separating regions, and phase separates beyond length scale `

s

.

This causes ⇤1 to be larger than `

s

.

Given these observations of the simulated film behavior, we prescribe a functional

form for F that is consistent with both asymptotes:

⇤1

`

s

= F

✓
`

s

✏

◆
= a+

b

(`
s

/✏� 1)c
. (13)

We obtain point estimates of a, b, and c by least squares fitting to all model runs

where ⇤1 < 1. This is done to ensure that ⇤1 < L

D

/5 at all times. The estimates are:

a = 1.046, b = 79.51, c = 1.537. (14)

Figure 3(a) shows the scatter of data around this parametric fit, which reflects the

stochasticity of the full model. To simulate the likelihood function in Bayesian inference,

we must capture this stochasticity. We do so by adding a zero-mean Gaussian random

variable �(`
s

/✏) to F (`
s

/✏):

⇤1

`

s

= F

✓
`

s

✏

◆
+ �

✓
`

s

✏

◆
, �

✓
`

s

✏

◆
⇠ N

✓
0, �2

✓
`

s

✏

◆◆
. (15)

Any systematic o↵set between the deterministic model F and the mean of the scattered

data in Figure 3(a) should be incorporated in the mean of the random variable �.

However, this o↵set is negligible in the current results, and thus we choose � to have

mean zero. The variance of the random term is chosen to be a function of `
s

/✏, due
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to the inherent non-stationarity of the scatter in Figure 3(a). This non-stationarity is

an intrinsic feature of the film evolution and its response to the stochastic inputs. We

fit this dependence to the observed scatter using Gaussian process regression [6]. This

approach captures the variance �

2(`
s

/✏) nonparametrically.

The variance of the residual (⇤1/`

s

� F (`
s

/✏)) at each (`
s

/✏) value is estimated

directly from the corresponding simulation data. We then regress the logarithm of the

variance on the logarithm of `
s

/✏. GP regression is applied to the logarithm of the

variance, rather than the variance itself, to ensure that the latter remains positive. Our

GP regression scheme uses a squared exponential covariance kernel; hyperparameters

of this kernel are tuned by maximizing their marginal likelihood, as described in [6].

The mean function so obtained is used as a point estimate of �2. The variance function

obtained from the GP is ignored. In Figure 3(b), we have plotted the variance �2(`
s

/✏)

as obtained from the procedure described above. The non-stationarity of the variance

can be easily observed.

4. Bayesian inference

We use Bayesian methods and the simplified model described in Section 3 for the

inference problem of interest here. In Bayesian inference, the parameter to be inferred,

✓, is treated as a random variable. Thus, instead of producing a single estimate for

the parameter, Bayesian inference yields the probability density function (PDF) of the

parameter conditioned on the available data, D1 : P (✓|D1, ⌘1). In general, the parameter

✓ may also be conditioned on some known experimental parameter, ⌘1. This posterior

PDF contains complete information about the uncertainty of the inference, as opposed

to only a point estimate (or a point estimate and a Gaussian approximation). Particular

measures of uncertainty, such as variances, credible intervals, or tail probabilities, may

be extracted from the posterior PDF.

The posterior PDF may be calculated using Bayes formula:

posteriorz }| {
P (✓|D1, ⌘1) =

likelihoodz }| {
P (D1|✓, ⌘1)

priorz}|{
P (✓)Z

✓

P (D1|✓, ⌘1)P (✓)d✓
| {z }

evidence

. (16)

P (✓) is the prior PDF and represents knowledge about possible values of ✓ before

any data is collected. The prior may reflect expert opinion, previous experiments, or

physical constraints. In case of no prior information, one may select a maximum entropy

prior [15; 16] or another kind of non-informative prior [17; 18]. The likelihood is the

probability density of the data, conditioned on the parameter of interest. It encodes the

relationship between the parameters and the observations. In our case, the likelihood

is the simplified model from Section 3. The evidence is a normalizing term needed to

ensure that the left hand side of (16) is a valid PDF.
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An important feature of Bayesian inference is that it allows for sequential

improvements the posterior as additional data become available. The previous posterior

is simply assigned to be the new prior and an improved posterior, incorporating the new

data, is obtained using

P (✓|D1:n, ⌘1:n) / P (D
n

|✓, ⌘
n

)P (✓|D1:n�1, ⌘1:n�1). (17)

Here D1:n refers to the first n data points collected from experiments with known

parameters ⌘1:n

4.1. Inferring `

s

We consider a series of experiments where ✏ is a known experimental parameter, ⇤1 is

directly observed in the experiment, and `

s

is to be inferred. The quality of the inference

is to be improved as more experiments are performed, i.e., as additional (⇤1, ✏) pairs

become available. To model experiments that generate (⇤1, ✏) pairs, values of ✏ are

picked at random from a uniform distribution in the log-space with range [0.01,0.1].

For each value of ✏, a substrate is randomly generated with `

s

= 0.4 and used to run

the Cahn-Hilliard model described in Section 2. ⇤1 are obtained from the converged

order-parameter field of the film.

To infer `
s

, both sides of equation (15) are multiplied by `

s

/✏, giving

⇤1

✏

= F

0
✓
`

s

✏

◆
+ �0

✓
`

s

✏

◆
, �0

✓
`

s

✏

◆
⇠ N

✓
0, �02

✓
`

s

✏

◆◆
, (18)

F

0 (`
s

/✏) = (`
s

/✏)F (`
s

/✏) , (19)

�

0 (`
s

/✏) = (`
s

/✏)� (`
s

/✏) . (20)

The likelihood of any candidate `

s

is obtained from the di↵erence between the

experimentally-obtained value of ⇤1/✏ and the value of ⇤1/✏ obtained from equation

(18), given by
Observedz}|{
⇤1

✏

� `

s

✏

F

✓
`

s

✏

◆

| {z }
Predicted

⇠ N

 
0,

✓
`

s

✏

◆2

�

2

✓
`

s

✏

◆!
. (21)

We may use equation (21) to construct the likelihood function, which incorporates

both parts of the ROM: the parametric deterministic term and the non-parameteric

stochastic term,

P (⇤1|`
s

, ✏) =
1p

2⇡�0(`
s

/✏)
exp

 
� (⇤1/✏� F

0(`
s

/✏))2

2�02(`
s

/✏)

!
. (22)

Figure 4(a) shows the likelihood for ⇤1/✏ = 70. Note that the likelihood is bimodal

because the function F

0 in equation (18) is not monotonic. Thus, a unique value of `
s

cannot be inferred from a single (⇤1, ✏).
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We use a truncated Je↵reys prior [17] for `
s

, P (`
s

) / 1/`
s

. The prior is truncated

outside the range [0.1, 1], which includes the true value `

s

= 0.4. This restriction is

imposed for computational convenience and may be relaxed, if needed. The result of an

iterative inference process that incorporates successive (⇤1, ✏) pairs is shown in Figure

4(b). The posterior PDF with zero data points is the prior. The posterior PDF with

one data point is bimodal, as expected from the construction of the likelihood. However,

the bimodality of the posterior vanishes with two or more data points. When multiple

(⇤1, ✏) pairs are introduced, only the modes corresponding to the most probable `
s

will

coincide, reinforcing each other. The modes corresponding to the unlikely values of `
s

will not coincide and will decay away after the inclusion of a few data points.

The bimodal nature of the posterior PDF accurately represents the non-

monotonicity of the ROM given in equation (18), and the possibility of two correct

values of `
s

for a given (⇤1, ✏) pair. A single estimate of `
s

and any single measure

of uncertainty in this estimate (e.g., a variance or a standard error) would not

have accurately represented the ambiguity in `

s

resulting from a single measurement.

Inclusion of additional data points lifts this ambiguity, which is captured by the change

of the posterior PDF from bimodal to unimodal.

As additional (⇤1, ✏) pairs are introduced, the peak in the posterior moves towards

the true value of `
s

. Any number of point estimates of `
s

may be calculated from the

posterior, such as the mean, median, or mode. The PDF also gives a full characterization

of the uncertainty in `

s

. As an example, we have plotted in Figure 4(c) both the posterior

variance (a measure of uncertainty) and the absolute di↵erence between the posterior

mean and the true value of `
s

(a measure of error), for di↵erent numbers of data points.

As more data are used in the inference problem, both the posterior variance and the

error in the posterior mean decrease.

It is interesting to consider whether the posterior mean of `
s

will converge to the true

value of `
s

, i.e., the value used to generate the data, as the number of data pairs (⇤1, ✏)

approaches infinity. It is also interesting to consider what happens to the posterior

variance in the same limit. These are questions of posterior consistency, i.e., about

the asymptotic (and frequentist) properties of the posterior distribution. If the data

were being generated directly from the likelihood, then in problems with fixed and finite

parameter dimension such as this one, standard results establish conditions under which

the posterior mean converges to the truth and the posterior becomes asymptotically

normal with decreasing variance [19; 20]. But the problem analyzed here is di↵erent,

in that the data pairs (⇤1, ✏) are generated via solution of the Cahn-Hilliard equation

while the ROM is used to define the likelihood function for inference. Thus there exists

model error or misspecification, and posterior consistency is far less clear. Theoretically,

there may be no particular reason to expect consistency in the present setting. But the

empirical results in Figure 4(c) suggest that the ROM is su�ciently accurate for the

posterior mean to provide a good representation of the true underlying parameter. Had

this not been the case, we could have introduced a model discrepancy term to capture

the di↵erence between the ROM mean and the true mean response of the Cahn-Hilliard
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system. This could be accomplished using the framework provided by Kennedy and

O’Hagan [21], in which the model discrepancy is represented as a Gaussian process and

conditioned on data.

4.2. Inferring ✏

In addition to inferring `

s

from ✏ and ⇤1, the modeling framework we have described

also allows us to solve another inference problem, namely determining ✏ from (⇤1, `

s

)

pairs. Thus, we infer a property of the film, ✏, given that the length scale `

s

of the

substrate is known and the converged length scale of the film, ⇤1, may be observed.

To generate data in the form of (⇤1, `

s

) pairs, values of `
s

are picked at random

from a uniform distribution in the range [0.1,1]. For each value of `
s

, a substrate field

is randomly generated. For each substrate, the full Cahn-Hilliard model is run using

✏ = 0.04. Values of ⇤1 thereby obtained are used to construct (⇤1, `

s

) pairs and the

likelihood is calculated from equation (15) in a manner similar to that in Section 4.1.

The process for obtaining the likelihood is shown in Figure 5(a). The mode of the

likelihood corresponds to the intersection of the horizontal line defined by the ratio of

⇤1/`

s

with equation (15). The spread in the likelihood is controlled by the random

term, �. In this case, the likelihood is unimodal because the function F in equation

(15) is monotonic.

As before, we use a truncated Je↵reys prior [17] for ✏, supported on the interval

[0.01, 0.1]. Figure 5(b) shows the e↵ect of incorporating successive data points on

the posterior. Both the accuracy and confidence in the estimate of ✏ improve as the

number of (⇤1, `

s

) pairs increases. Figure 5(c) plots the error in the posterior mean

and the posterior variance for di↵erent numbers of data points used in the inference. As

the number of data points increases, both the posterior variance and the error in the

posterior mean decrease.

5. Discussion

We demonstrated the inference—with quantified uncertainty—of a substrate property

from film behavior in an illustrative, model film/substrate system. Two features of

Bayesian inference are demonstrated in this context. First is the ability to quantitatively

describe uncertainty in the inferred parameters via a posterior probability distribution.

This distribution describes the state of knowledge about the inferred parameters, after

observing the data.

Second, Bayesian inference allows for sequential improvement of parameter

estimates by using the posterior from a previous inference as the prior for inference

with new data. We used the error in the posterior mean and variance of the posterior

distribution as estimates of the error and uncertainty in the inference, respectively. It

was shown that both the error and the uncertainty reduce as an increasing number of

data points used for inference.
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An important component of our inference procedure is the construction of a reduced

order model (ROM) that directly connects the known quantities to those that are to

be inferred. To construct our ROM, we built a simplified, parametric model using the

Buckingham Pi theorem. The parametric model incorporates physical understanding

of the asymptotic behavior of the film. The values of the parameters in the model

were obtained by least squares fitting with simulation data. In addition to the

parametric model, the ROM includes an additive Gaussian random term to account

for the stochastic nature of the full model. The sources of stochasticity are the random

initial condition and the randomness of the underlying substrate. The variance of the

additive noise is a function of `
s

/✏. The exact form of the random term is obtained

non-parametrically using a Gaussian process fit.

Similar approaches have been adopted in previous applications of Bayesian inference

in materials science-related problems. For example, Davis and Guttierrez inferred

the melting point of Ti2GaN starting with what is e↵ectively a ROM for the energy-

temperature relation in isochoric molecular dynamics simulations of Ti2GaN [22]. Yoo

et al. modeled the creep rupture life of Ni-base superalloys as a function of their

composition using Bayesian neural networks [23]. These neural networks are trained

on data collected from existing literature and serve a purpose analogous to our ROM.

Other methods for constructing ROMs besides the one we used are available. For

instance, a direct GP regression of log(⇤1/`

s

) on log(`
s

/✏) might be used as a ROM.

However, this choice would not have allowed us to take advantage of known structure of

the problem (i.e., the asymptotic behavior described in Section 3). Moreover, capturing

the non-stationary stochastic response of the film/substrate system would require using

a non-stationary prior covariance kernel — a non-trivial task.

Also, we could have used a more fully Bayesian procedure to construct the ROM.

This approach would involve constructing posterior distributions for a, b, c and �

2(`
s

/✏),

conditioned on the training data, instead of using point estimates. However, this

additional complexity seemed unnecessary in our case, since we had a large and

comprehensive training set from which to construct the ROM. If we had had a limited

training set, as in [24], a Bayesian construction of the ROM would have been warranted.

Although the film/substrate model studied here does not correspond to a specific

experiment, it nevertheless illustrates general features of how Bayesian inference may

be applied to inferring substrate properties from film behavior. In particular, it

demonstrates the utility of constructing a ROM that connects the quantities of interest

in a way that may be inverted. Although it ignores much of the details of the

film/substrate model under consideration, this approach nevertheless gives rise to

accurate inferences with quantified uncertainty. Similar approaches may be adapted

to particular film/substrate systems as well as to other situations in materials science

where di�cult-to-observe quantities are to be inferred from easily observable ones.
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Figure 1. (a) Uniform substate (T (x, y) = �1), (e) patterned substrate with `s = 0.77
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Figure 2. (a) Three trajectories of the film length scale ⇤(t) for the uniform
substrate in Figure 1(a) and the patterned substrate in Figure 1(e). (b) Variation
of the converged film length scale ⇤1 as a function of computational domain size LD

for the uniform substrate in Figure 1(a) and the patterned substrate in Figure 1(e).
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Figure 4. (a) Likelihood P (⇤1|`s, ✏) plotted as a function of `s/✏ for fixed ⇤1 and
✏. Each (⇤1, ✏) pair represents a point on the y-axis. The discrepancy is given by
the distance between the horizontal line at the given value of (⇤1/`s) and the ROM.
The random term in the model, given in grey, is used to calculate the likelihood. (b)
Posterior PDFs for di↵erent numbers of (⇤1, ✏) pairs. With the inclusion of ever more
data, PDF centers closer to the true value of `s with a tighter uncertainty bound. (c)
Posterior variance and error in posterior mean for di↵erent numbers of (⇤1, ✏) pairs.
Both error and variance are reducing with increasing data points
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Figure 5. (a) Likelihood P (⇤1|`s, ✏) plotted as a function of `s/✏ for fixed ⇤1 and
`s. Each (⇤1, `s) pair represents a point on the y-axis. The discrepancy is given by
the distance between the horizontal line at the given value of (⇤1/`s) and the ROM.
The random term in the model, given in grey, is used to calculate the likelihood. (b)
Posterior PDFs for di↵erent numbers of (⇤1, `s) pairs. With the inclusion of ever
more data, PDF centers closer to the true value of ls with a tighter uncertainty bound.
(c) Posterior variance and error in posterior mean for di↵erent numbers of (⇤1, `s)
pairs. Both error and variance are reducing with increasing data points
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