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ABSTRACT

During 1973, the vertically-directed incoherent scatter radar at Millstone Hill
(42.6°N, 71.5°W) was employed to measure electron density, electron and ion
temperature and wvertical ion velocity in the F-region over periods of 24 hours
one or two times per month. The observations spanned the height interval
200-900 km approximately, and achieved a time resolution of about 30 minutes.
This report presents the results of these measurements in a set of contour

diagrams.

For a number of the days, the results have been used to derive the diurnal
variation of the temperature of the neutral atmosphere above 300 km (the
exospheric temperature) as well as’ the speed of the neutral wind in the
magnetic meridian plane at this altitude. These results were used to define a
model for the pressure variation in the thermosphere over Millstone whose E-W
variation is set by the observed temperature variation, and whose N-5
variation was adjusted to reproduce the observed winds calculated by solving
momemtum equations for the neutral air. These results, together with similar
results obtained using data gathered over the six-year period 1970-1975 have
been used in a study of the seasonal and sunspot cycle variation of the mean
meridional and zonal winds. Also reported are the results of a study of the
effect of magnetic storms on the thermospheric winds observed over Millstone
Hill.
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MILLSTONE HiLL THOMSON SCATTER RESULTS FOR 1973

f. INTRODUCTION.

Since 1963, incoherent {(Thomson) scatter radar measurements of F-region
electron densities, and electron and ion temperatures have been conducted at
Millstone Hill, Westford, WMassachusetts (42.6°N, 71.5°w) (Refs. 1 to 10).
This paper is the eleventh in a series of annual reports, and presents the
results gathered in this program during the calendar year 1973. The
observations reported were made for periods of 24 hours, approximately once
a month. The results obtained in earlier years have been published and
discussed in the articles listed in Table |, and have been transmijtted to the
World Data Center A, Boulder, Colorado.

The results reported in this paper are of F-region electron density Ne’
o Ti’ and wvertical velocity VZ and span
the altitude interval 200-900 km, approximately. The measuremenis were made
by transmitting single long puilses on each sweep of the radar time base and
integrating the returns in a digital computer. Spectral information (from
which Te and Ti are determined) was obtained by examining the outputs
from a bank of filters matched to the length of the puise (0.5 or 1.0 msec)?%.
Additional measurements were made of the E- and F-regions by transmitting
pairs of pulses, whose spacing could be varied allowing the " echo
autocorrelation function to be determined in the computer. This approach
also allowed for the digital subtraction of unwanted returns from distant
hilis2l, and has been described in detail elsewhere22. Resulits gathered for
E-region lon temperature using this pulse-pair method in 1972 have been
employed in the study of tides in the lower thermosphere and reported in a
number of papers (e.g., Ref. 23). '

electron and ion temperature T

Other observations conducted in 1973 that are not reported here include short
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observing periods chosei
(1S1S {1l and Atmospheric Explorer) or with the launch of a rocket from

Wallops Is‘Iland.




TABLE i

PUBLICATIONS CONCERNING THE MILLSTONE HILL UHF
(68-cm Wavelength) THOMSON SCATTER RESULTS

Year Months Covered Publication
February 1963 to January 1964 Ref. 1
1963 March, July, August, September Ref. 11
April, July, November Ref. 12
1964 January through December Ref. 2
April, July, November Ref. 13
January through December Ref. 3
1965 January, April, August Ref. 14
June Ref. 15
June, August, September Ref. 16
1968 January through December ' Ref. 4
January, March, July, September Ref. 17
1967 January through December Ref. 5
February, June, October, December Ref. 17
1968 January through December Ref. ©
October Ref. 18
January through December Ref. 7
1969 February, April, July
September, October Ref. 19
1970 January through December Ref. 8
197 January through December Ref. 9
1972 January through December Ref. 10
-2 -
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Section || describes the equipment, data gathering and reduction procedures.
During 1973, these were changed little from those employed the previous year
and described in Ref. 9. Resuits for electron density, electron and ion
temperature and vertical velocity are presented in Section (I. In Section 1V,
we report results obtained from the data gathered in the years 1970 through
1975 for the mean meridional and zonal winds in the thermosphere and relate
these to present under'stahding of thermospheric circulation. This work
represents a continuation of an effort begun by Barbara A. Emery and
reported in Refs. 9 and 24. Section V presents results of separate study of
the effect of magnetic storms on the thermospheric winds over Millstone. The
work presented in Sections IV and V represent the principat results obtained
by R. R. Babcock25, a graduate student at the M.l.T. Meteorology
Department.

I1.  EQUIPMENT, OBSERVING AND DATA-ANALYSIS PROCEDURES.
A. Equipment.
a. General.

The UHF (68 cm wavelength) incoherent scatter radar equipment has been
describedl. This system employs a fixed verticaliy-directed 220-foot diameter
antenna and hence can measure oniy the vertical component of the ion drift.
Extensive modifications to the data-taking procedures were made in 1968
(Ref. 6) which allowed the echo power spectra to be measured for many
heights simuitaneously. This scheme made use of banks of matched filters for
each of the pulse lengths (0.5, 1.0 or 2.0 msec) employed, and has been
described in detail in Ref. 20. Owing to an imperfect match between the
filters and the spectra of the pulses (especially for the 0.5 msec pulses),
some systemmatic errors were introduced in the measurements of Te and Ti
over some altitudes and empirical correction procedures were deveioped in an
effort to remedy these?’®. In 1976, the filter bank system was replaced by a
digital correlator which obviated this problem.

During 1972, some incoherent scatter observations were conducted using the
smaller 84 ft. diameter steerable antenna and associated L-band (23 cm
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wavelength) radar. This system is described in Ref. 26. When used for
incoherent scatter studies, controi of the radar timing was assumed by the
incaherent scatter timing unit (located in the lonosphere Laboratory) and the
30 MHz IF output of the L-band receiver was connected to the 30 MHz IF
input to the UHF receiver, so that the data taking and sampling procedure
remained unchanged. (Actually, it was necessary to rearrange the elements
of the filter bank to span a wider frequency range as described in Ref. 20.)

b. New Timer.

The only significant change made to the apparatus in 1973 was the
introduction of a new timer system for the radar. This controls all of the
timing functions such as pulse repetition frequency, transmitter pulse length,
receiver suppression length, noise calibration pulse length and position,
sample spacing and position, etc.

The previous timer was constructed using a commercial line of digital function
boards (counters, gates, clock pulse generators, etc.) that used printed wire
construction and discrete transistors. it had undergone almost continuous
modification during 1970 and 1971 as the two-puise modes were developed and
brought into use22, When, in 1972, it became evident that further changes
were unlikely, it was decided to rebuiid the timer to improve its reiiabiiity
and reduce the space it occupied. TTL logic was selected for this purpose.

The new timer follows the design of the old which was described in Ref. 22.
It employs essentially two separate time-base generators (adjustable counters)
driven by the same 1 MHz site frequency standard. The two are synched
together, then progressively stepped apart in two puise experiments.
Essentially, only one is employed for single pulse experiments. Triggers are
developed through the detection of coincidences between the counters and an
array of preset numbers via diode "and" gates. In the old counter, these
were hard-wired, but in the new one, a matrix plug-board was included that

allows up to sixteen different modes to be established by inserting diode pins

at the appropriate locations. Selection of which mode shall operate the radar
can be made from the front panel via push buttons, or by the computer which

can call modes through relays.
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The new timer operates at a clock frequency (1 MHz) that is ten times that of

the old one and provides 1 usec adjustments in all of the pulse times.
B. Observing Procedures.

During 1972, we attempted to make observations using the single long pulse
method and the newer pulse pair scheme at least once per month for
24 hours. Table Il lists the operating modes employed for the single long
pulse measurements and the altitudes over which these provided data. In
normal or 'regular' operations, the cycle A, B, C was repeated every

30 minutes with 8 minutes of data being coliected in each mode.

As described in Ref. 9, provision was made in 1971 to switch rapidly between
the L-band and UHF radar transmitters and reload the computer with a new
data-taking program which established automatically the proper condition for
the interface equipment that transfers data from the radar to the computer2®.
During 1973, advantage was taken of this capability to switch rapidly between
operation of the vertical and the L-band radars. Since the UHF radar
measures only the vertical (VZ) component of the drift of the jons in the
F-region, it is possible to recover from the measurements information only
about the meridional winds in the thermosphere. To determine F-region
electric fields and/or winds at E-region heights, it is necessary to measure
the horizontal components of the ion drift, By employing the steerable
L-band radar to measure the drift in the magnetic N-S and E-W directions,
two additional components of the drift wvelocity could be measured. " This
allows for a solution for three orthogonal components. Measuremenis were
conducted in 1973 that attempted to secure three drift components and were
termed '3-D' (Table (11). The L-band observations (D-mode) were conducted
at 345° Az, 18° E{, and 255° Az, 45° El. The sequence then was A-mode
4 mins., B-mode 4 mins., C-mode 8 mins., D-mode 16 mins., D-mode 16 mins
(Table i1). A shortened version of this sequence in which only the L-band
observations in the magnetic meridian plane were included (termed 2-D) was
used several times in 1972 (Ref. 10) and once in 1973 (Table I11).




TABLE !
THE NORMAL -"ONE-PULSE" EXPERIMENT MODE SEQUENCE

Pulse Height Sample Altitude Measured Parameters
Length . Resolution Spacing Coverage
Mode: . (usec) (km) (km) = (km) Direct Deduced
A 100 15 7.5 100-1000 Power Ne
B 500 75 30 150~1500 Power N,
75 225-..875 . | Power spectrumi. Te, Ti’ Vv
C 1000 150 30 300-2000 | Power - N,
75 450-1125 | Power spectrum| T.; T;, V,
D*¥*. 1000 50 - 30 150~ 500 ‘Power - -
75 150~ 350 Power -Spectrum| ,_\!-d;

*Employed with the L-band steerable radar during-2-D and 3-D experiments.—




| TABLE 111
INCOHERENT SCATTER OBSERVATIONS — 1973
Begin End ' Mean| Obs' Comment

Date | C* | EST| Date |c*|esT | P

2 Jan | QQ| 1020] 3 Jan|QQ{1230| 0+ |2-D Az = 345°, El = 15°
16 Jan | Q 1{1500] 17 Jan |QQ {1440 | 2- | Reg.

13 Feb | QQ | 09201 14 Feb |QQ|1140 | 2- | Reg.

K 19 Mar | D | 1450] 20 Mar|D {2350 | 6+ | Reg. Magnetic Storm.

24 Apr 1820) 25 Apr{Q [1830 ! 3- | Reg.

22 May 0830 | 23 May 1040 | 3, | Reg.

18 Jul | Q | 1100] 19 Jul 1530 | 2, |3-D (Az = 3450, El = 18°
: Az = 255°, El = 45°
7 Aug 1120{ 8 Aug 1430 | 2, |3-D As Above.

;’ 14 Aug 11001 15 Aug|QQ 10940 | 1+ |Reg.

¥ 19 Sep QQ | 0830 20 Sep 1500 | 2, | Reg.
16 Oct | D | 0800( 17 Oct 1050 | 4+ |Reg. Disturbed

13 Nov 0900 | 14 Nov 1530 | 2+ |Reg.

A

¥ Condition

‘ QQ One of the five gquietest days in the month.
Q One of the ten quietest days in the month.
D One of the five most disturbed days in the month.

+ Observations

Reg = Regular.
2-N
j 3_5} = L-band and UHF radar measurements.
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C. Data Reduction.

As described previously??, no attempt is made to analyse the data in real time
(i.e., as it is gathered) as this would be too time consuming. Instead, the
samples of echo power collected as functions of range and frequency are
stored on magnetic tape at the end of each integration period along with other
pertinent information such as the mode type, start time and duration of the
run. A profile of echo power vs. height (i.e., corrected for the R™Z
dependence where R is the range) is computed and printed out by a high
speed printer. Together with a printout of the signal-to-noise ratio at each
point within each frequency spectrum, this allows the data quality te be
monitored while it is being gathered.

The first step in analysing the data is to construct a plot of the F-region
critical frequency f0F2 vs. time for the days of observation. For this, the
vaiues are scaled from the Miilstone ionograms. Also inciuded in the piots are
values obtained at Ottawa (45°N) and Wallops Island (382N}, which are the
two stations in routine operation closest to Milistone. Including values from
these stations usually reveals any errors in scaling the iocal ionograms, and
can serve to guide the interpolation that is necessary if any half-hourly
values from Millstone are missing for any reason. Examples of these plots

b mn s b
Nave pgoc

included in a number ©
Values for foF2 are scaled from the smooth curves drawn through the points
on the plots at half-hour intervals and entered into the computer via punched
cards. These are stored and used to obtain the value of foF2 at the
mid-point of each A-mode run by linear interpolation*. The program combines

Il A-, B~ and C-mode runs in

each cycle of observation into a single "power profile". This is converted to
an absolute profile of electron density vs. altitude by allowing for the effects
on the backscatter power of altitude variations in the ratio Te/Ti and
normalising the resultant curve to have the correct value of electron density

(Nmax)‘f at the peak of the layer.

*Actually, the time chosen = start time + 4 minutes.
tNpax = 1-24 X 104 (t,F5)? el/cm® when f_F2 s expressed in MHz.

-8 ~
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Values for electron and ion temperature are recovered from the specira
assuming that 0¥ is the only ion present. This assumption is a good one
except at night near sunspot minimum when sufficient H'  ions may be
present at altitudes below 900 km to render the temperature estimates
unreliable. More accurate values can be obtained using a program due to
J. L. Massa (private communication, 1976) which attempts to recover Te’ T
and the H+/Ne ratio at each altitude (Section I1l1). Unfortunately this
program consumes a considerable amount of computer time and hence is not

run routinety.

It has been found?® that estimates of Te/Ti obtained from the B- and
C-mode data tend to differ at night in summer when Te/Ti » 1.0. This
leads to differences in the etimates for Ti‘ It is believed that the
discrepancy stems from the large amount of smearing of the frequency spectra
of the signals introduced using 0.5 msec pulses (B-mode) particularly at
night when the spectra are narrow. In principle, attempts are made to
compensate for this by the method employed in the data analysis2?, but the
measurement accuracy must suffer at such times. Since it also was evident
that the filters employed in the receiver spectrum analyser in the B-mode are
less perfectly matched to the transmitter puise than those in the C-mode, it
is believed that the systemmatic errors are primarily in the B-mode estimates.
Assuming that C-mode is correct, J. E. Salah derived an empirical correction
scheme by comparing the data in the two modes gathered at 525 km nominal
height on four days?, and this was employed to correct the B-mode
temperatures gathered in 1969 and 19707/8. Subsequently, B. A. Emery
performed a more detailed comparison employing several heights, (to altow for
differences in the effective center height of the pulse for the two modes)
using two years' data®. Emery found that the corrections to be applied to
the Ti and Te/Ti values obtained in the B-mode depend not only on the
prevailing value of Te/Ti (taken to be that observed in the C-mode) but
to a [esser extent also on T, (again assumed to be the C-mode value). A
smooth continuous correction scheme was derived from this comparison and
employed to correct the results reported for 1971% and 19721%. The same
scheme was employed for the results reported here. Finally, the values for
electron temperature were corrected for the effect of the changing Debye
length with altitude®.




Beginning in 1976, the analog filter bank spectrum analyser was replaced by
a digital correlator that is believed to be less likely to introduce systemmatic
error. The data gathered with this device cannot be analysed with the
ANALYSIS program and a new program (INSCAL) has been written which
attempts to recover Ne, Te’ Ti as functions of height, allowing for the
influence on the Ne profile of height variations of Te/Ti and on the Te
profile of wvariations in N, (via the Debye length correction), in a truly
seif-consistent fashion. That empioyed in ANALYSIS20 represents only a
first-order correction, but in view of the possible bias errors in the B-mode
results at some times, a more elaborate approach seems unwarranted.

The next part of the analysis involves smoothing the electron density,
electron and ion temperature and vertical velocity estimates as functions of
height and time. This 6peration is performed by fitting, in a
least-mean-squares sense, a two-dimensional polynomial surface that best
represents the data. The program that performs this is known as INSCON,
and has been described in Ref. 8. The INSCON program can compensate for
distortion in the profiles of T_ and T, wvs. altitude introduced by the fact
that the effective center height for the puise is not given simpiy by the time
at which the echoes are sampled (i.e., the so-called "nominal" height), but is
shifted owing to the variation of echo power with delay within the pulse.
This effect automatically is taken into account in constructing the eilectron
density profiles, but was not included routinely for the plots of Te’ Ti
prior to 1970.

A subroutine of the INSCON program produces a plotting tape to drive a
Calcomp plotter which is used to obtain contour diagrams of Ne, Te’ Ti
and Vz‘ These are given in the next section. In addition, INSCON
provides the coefficients of the poiynomial fit from which the variation of any

parameter as a function of height or time (within the period fitted) can be
recovered. The sets of coefficients for each day are
tape which is transmitted to the World Data Center (in Boulder) together with
a listing given here as Appendix A. These, together with a simple FORTRAN
recovery program (RCVR) allow numerical values to be obtained in

machine-readable form by other users®.

- 10 -




i1, RESULTS FOR ELECTRON DENSITY, ELECTRON AND ION
TEMPERATURES AND VERTICAL VELOCITY.

A. Generatl.

Computer drawn contour plots of N, T, T, and V, as functions of

altitude and time have been generated in the manner outlined above (and
described in detail in Ref. 8); these are presented for the days listed in

Table 11l in Figures 1 through 12. Contours of Ne are labeled in units of
logjoN, (el/em3) and are drawn in steps of logig N, = 0.2 wherever
logmNe > 3.0. Regions well above hmax FZ2 sometimes are encountered

where, owing to experimental error, the density appears to be increasing with
altitude. These usually have been edited from the plots, but in any case are
not considered real. The accuracy of these piots is greatest in the vicinity
of hmax F2 (shown as a broken |ine) where the experimental uncertainty is
set chiefly by the uncertainty in determining foFZ (typically 0.2 MHz).
At higher altitudes, however, the uncertainty in the incoherent scatter
measurements contributes to the overall uncertainty ~ especially at night when

the echoes are weakest.

It is believed that the 30 minute time resolution provided by the "regular"
measurement scheme allows the normal diurnal variations to be followed
adequately, but fluctuations caused, for example, by Traveling lonospheric
Disturbances (TiDs) with periods of less than about 2 hours, are effectively

smoothed out.

The results for the electron and ion temperatures are presented as isotherms
at 200°K and 100°K, respectively. The contours of vertical velocity \/Z are
plotted at intervals of 5 m/sec and have been corrected for the frequency
"chirp" introduced by the transmitter?. Since the beam is directed at an
elevation of 88° due south, the drift component of the plasma that is

measured is not precisely vertical, but for most purposes the distinction is

unimportant.

Values of the drift observed with the L-band radar usually were very
scattered at night and quite unreliable. Accordingly, these measurements

- 11 -




have not been included in this report. These data have, however, been
employed by Kirchhoff and Carpenter in a study of the diurnal variation of
the ionospheric polarization efectric field over Millstone and its dependence on

magnetic activity?7.

The signal spectra of the reflections over the altitude interval
450 to 1125 km, approximately, are measured at intervals of 75 km using a
pulse that yields a height resolution of 150 km. Normally, these spectra are
analysed to yield estimates of Te and Ti assuming that O+ is the only
ion present. It also is possible to reanaiyse these spectra to vyield estimates
of the H' percentage as well as Te and TI.. The computer program
employed for this was written by J. L. Massa28® and modified subsequently by
R. Julian. Unfortunately, the program is slow, owing to the large search
that must be undertaken, and thus far this has limited the number of days

that could be examined.

Early attempts to use this program were for data gathered in 1969, i.e., close
to sunspot maximum!?/29  Subsequently, the program was used to reduce
data gathered in 1972 and 1973, i.e., nearer sunspot minimumi®/3%,  we
believe that the results are of great interest since they allow conclusions to
be drawn concerning the proton fluxes between the ionosphere and
magnetosphere over Miilstone. The resuits obtained for the HY percentage
at either 725 or 800 km altitude by the method outlined in Ref. 10 for some
days in 1973 are given in Figure 13a-h.

B. Quiet Winter Behavior.

There is a characteristic quiet~time winter and summer behavior of the
ionosphere over Millstone that has been discussed in many previous
reports®-2, In winter, the electron density exhibits a pronounced diurnal
variation with the daytime densities near h__, FZ exceeding the nighttime
densities by a factor of 10 and exceeding the midday density in summer aiso.
As sunspot minimum is approached, this seasonal variation becomes less
pronounced. in addition, the F-layer is formed lower in aititude as the
neutral atmosphere density at all levels of the thermosphere is reduced. Both
of these trends can be detected in the results presented here.

- 12 -
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One interesting feature, discussed in a number of previous papers3’8/31 and

reviewed in Ref. 7, is the increase in N ax that occurs over Millstone
during many quiet winter nights. This feature is evident in Figures 7a
and 26a. Typically, N declines during the evening and reaches a

max
minimum a little after midnight. The density then may remain constant for

many hours (as on 2-4 February — Figure 3a) or may increase and reach a
peak after 0200 L.T. and before sunrise (as on 13-14 November -
Figure 12a). Accompanying this increase is invariably a decrease in electron
temperature indicating that precipitation of energetic particles is not the
responsible agent. We argued earlier3! that a downward flux of H+ ions
from the protonosphere which charge exchange via the reaction

H' + o n + of (1

is responsible for the increase. The results of Figure 13, which show
periods when a downward H+ fiux can be identified by the iarge HJ'/Ne
percentages seen at 725 or 800 km altitude, support this wviewl®/30  |n
addition, the scale height of the layer at altitudes h > 600 km is seen to
vidence for a lowering of the

g and thig alsp nrovide
g8 at g a ovide

1—vu

in
i
[+1]
~—+
~+
e
[§2)
(5]
=t
..c
tn

e
O /H transitional altitude associated with the downward flux.

We now believe that the timing of the event can be explained quite simpfy as
a consequence of the diurnal variation of the exospheric temperature. This
reaches its minimum at about 0300 L.T. with the result that the abundance of
atomic oxygen in the thermosphere is at a minimum, while that of neutral
hydrogen is at a maximum. This is just the condition necessary to cause the
charge exchange reaction from H+ to O to proceed most rapidly (i.e., to
the right in Eqg. 1), thereby ensuring that the protonospheric flux is

downward and largel?/30,

C. Quiet Equinox Behavior,
There seems no very obvious separation of the behavior over Millstone into
three separate seasonal dependencies. Rather, there is a rapid transition

around Equinox from Summer to Winter. This transition is not clearly evident
in the results obtained in 1973, in large part, because the days obtained near
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Equinox tended to be disturbed. (This is partly a consequence of the fact
that magnetic disturbances tend to maximize near Equinox.:)

To the extent that there can be said to be a typical quiet equinox pattern, it
is- represented in these results by the behavior observed on 19-20 September
(Figure 10). . The -daytime variation. tends to follow the:winter pattern with
N reaching a maximum- shortly after  nocon. At night, however,

max
significant increases in N (as on 13-14 Nov.) seem absent. The length

max
of the-night is of course quite short:

On some equinoctal nights, it is possible to observe a predawn increase in
electron temperature associated with the onset of photoelectron production at .
the time of ionospheric:sunrise (x =-105°) at the conjugate point32/33, As -
we have shown®2, the magnifude of this effect is controlled by the local
electron. density. When this is sufficiently targe (as apparently was. the case
on 19-20 Sepiember), no signific-ant---Terrr increase:is detectabie near the layer

peak.
D. Quiet -Summer Behavior.

In summer time, the electron density at levels near hinax F2 is lower than-
in winter during the daytime by an amouni  ihat increases al sunspot.
maximum. It now is recognized that this reflects a change in the composition
of the neutral air at these levels introduced by horizontal transport of atomic

oxygen from the summer-to-winter hemisphere’’®.

The diurnal variation differs also in that the largest electron density is

Y Ry | . T [ o P o d

gerneouIriLeireud 12ddi”™ SUN>dEL &MNAa 110U JTiedr inalady .
exhibits a much larger diurnal variation at Millstone in summer than winter,
as then conjugate heating is absent at night. Examples of this characteristic

pattern can be seen on 22-23 May, 18-19 July, 7-8 August and 14-15 August
(Figures 6-9),

- Tl o b om b
t1ie oL

Tha marea ~nf tha avanims~ ime~
11T LOUUoT Wi HIC TVCIiHiiy e

produced by the reversal of the meridional component of the thermospheric
wind from equatorwards (i.e., tending to drive the layer into regions of
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higher recombination rate) to polewards (tending to lift it to where the losses
are lower). The cooling of the layer associated with sunspot causes a

contraction of the layer which also may contribute.

Although the summer night is (at ionospheric heights) very much shorter
than in winter, the variation of the electron temperature between day and
night is then largest. This is because in summer Te/Ti + 1.0 at night
while in winter T, s maintained above T, by heat conducted from the
protonosphere. The heating of the protonosphere in winter is caused by

escape of photoelectrons from the conjugate point which remains suniit.
E. Disturbed Behavior.

Two days of observation, namely, 19-20 March (Figure 4) and 16-17 October
(Figure 11) were quite active magnetically. In addition, the resuits for
24-25 April (Figure 5) exhibit some of the characteristics that commonly are

seen during disturbed periods.

On 19 March, there was a large evening increase around sunset, associated

with upward vertical velocities. Based upon a prior study!®, we attribute
this behavior to the lifting of the layer while it still is sunlit and production
is taking place. We believe that the lifting is caused by an eastward electric
field which drives the plasma (in an Ex 8 direction) northwards and
upwards. The field is presumably caused by the penetration of substorm
electric fields to midlatitudes!®, '

Following this increase, the density dropped to extremely Jlow values
suggesting that the main trough now was over Millstone. During the second
day, the electron density was below normal until late afternoon when a second

evening increase occurred.

Both evening increases appear to have caused large decreases in electron
temperature which reached a minimum somewhat before the density maximum.
As the density decayed, Te rose again to its daytime values before
decreasing again during the hours of darkness. While few reliable results
appear to have been obtained at night, the eiectron temperature does not
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appear to have been abnormally high, suggesting that Millstone fay some
distance from the trough minimum34/35,

The depressed value of the electron density on the second day of the storm
which persisted until midafterncon is a common feature of summertime storms
at Millstone that has been attributed to a change in the chemical composition
of the neutral atmosphere that results from the transport of atomic oxygen
towards the equator by larger than normal thermospheric winds (Section V).

The 24 hour period of 19~20 March 1973 appears to have been one of the most
disturbed intervals ever encountered during operations of the incoherent
scatter radar at Millstone Hill. The storm was in progress when observations
began and continued throughout the following day. By contrast, the
observation of 16-17 October were taken during a less intense period of
disturbance that had begun only about 6 hours previous. There was no
pronounced evening increase in electron density nor a fall to very low
nocturnal values. The most cbviously anomalous feature of this day was the
increase in electron temperature commencing around 19 EST that persisted
until about 01 EST (Figure 11b).

Nocturnal increases of Te have been seen previously at Milistone during
disturbed periods. They are most readily detectable in winter when the
hours of darkness are fong. There appear to be two separate causes, viz.:
heat conducted from the magnetosphere, where it may be deposited by
interaction between the ambient plasma and the ring current particles, and
heat caused by precipitation of low energy particles. In the latter case, we
usually find abnormally high electron densities in the E-region. This
signature appears to be missing in the case of 16-17 October, suggesting that
magnetospheric heat conduction is the responsible mechanism.

A similar instance of nocturnal heating appears to have occurred on
24-25 April. During this night, Te began to increase at about 22 EST and
began to decrease at little after 01 EST as the electron density began to
increase. The nocturnal increase in density commencing near 02 EST nas ai
the characteristics of the winter night increases described above, i.e., it is
associatt_ed with a decrease in Te and an increase in the downward flux. It
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may, therefore, have the same explanation though increases due to a
protonospheric flux normally are not seen this late in the year. A more
complete study of this night utilizing estimates of the H'  abundance
(Section I11-F) appears warranted.

F. H+ Estimates.

Figure 13a-h presents plots of the H percentage (of the total ion
abundance) at either 725 or 800 km altitude. Based upon previous studies!?,
we believe that we can identify periods when the flux is downwards by noting
when the H” percentage at 800 km exceeds 20% (at 725 km > 10%). Such
intervals are indicated in Figure 13a-h. As can be seen, periods of
downward flux usually begin around midnight and end a little after
ionospheric sunrise. In summer, there may be no time when the flux is not
escaping (e.g., Figure 13c), though this becomes less frequent as sunspot

minimum is approached1?/30,

IV. SEASONAL AND SOLAR CYCLE VARIATIONS IN THE THERMOSPHERIC
WINDS.

A. introduction.

A summer-to-winter circulation of the mid-latitude thermosphere has been
inferred from seasonal differences in the structure of the ionosphere3’/3¢ and
neutral thermospheric composition3”7. Support for this notion has been
provided by estimates of the diurnal variation of the neutrai winds in the
thermosphere in different seasons derived from observations made at Millstone
Hill9’24:38741  phy nighttime measurements of thermospheric winds from 6300 A
airglow observations??, and by theoretical models such as the zonally
averaged model of Dickinson et aj*®™4%, All available results indicate that the
diurnally averaged values of the zonal and meridional winds are strongly
equatorward and eastward in summer with weak poleward and strong westward
winds in the winter. Near equinox, there is a short-lived transition period
(3-4 weeks) in which the global circulation is relatively symmetric. The
meridional mass flow patterns shown in Figure 14 from the mode! of Roble et
al45 depict the symmetric equinox pattern and the rapid transition to the
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asymmetric solstice pattern. The net equatorward winds at equinox arise
from the inclusion of high latitude heating. At solstice, the auroral zone
heating in the summer hemisphere combines with -solar EUV 1o drive a Hadley
cell in which air is transported across the equator from the summer to the
winter hemisphere. This flow is resisted by an oppositely directed flow in
the winter hemisphere driven by the auroral heat deposited in that
hemisphere. This flow is resisted by an oppositely directed flow in the
winter hemisphere driven by the aurcral heat deposited in. that hemisphere.
it has been found necessary to include these high latitude heat sources as
well as the jn sjtu EUV and UV absorption in self-consistent models in order
to reproduce the observed wind and temperature patterns?3/46, The reverse
cell acts to decrease the winter hemisphere poleward winds driven by the
solar heating centered in the summer hemisphere, and results in an
asymmetric behavior of the mean meridional winds at mid-iatitudes.

To date, the largest sample of thermospheric wind measuremenis used to
examine this wind pattern has been presented by Emery®/28741  |sing
neutral winds and temperature data derived from ionospheric measurements
made at Millstone over the two-year period 1970-1971 as input to a
semi-empirical dynamic model, Emery confirmed the persistence of this pattern
over the two year period 1970-1971.

Roble et al*® have varied the solar and high latitude heating rates in their
model to simulate changes with the solar cycle. Using wind and temperature
observations made by Hernandez and Roble*? near solar minimum, as a guide
to set the heating rates, they found that the high latitude heating was too
small to drive a reverse cell in the winter hemisphere (Figure 15) at solar
minimum. In addition, the mid-latitude zonally averaged meridional winds are
more strongly poIeWar‘d in winter than at solar maximum. To test these
conditions, an additional four years of data from Millstone Hill (42°N) taken
from 1972 through 1975 have been added to the two vyears analyzed by
Emery®/24/41. this period covers the declining portion of the last sunspot
cycle. The results are presented in this Section.
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B. Data Analysis Procedures.

Measurements of electron density, electron and ion temperature and vertical
ion drift have been made at Millstone over periods of ~ 24 hours
approximately once per month since 1963 (Section I). After smoothing with
respect to height and time, these have been used to derive the exospheric
temperature, T, and a measure of the horizontal neutral wind at 300 km in
the magnetic meridian, VHn' (For Millstone, VHn = 97V - .24U, where
V and U are the meridional and zonal winds, positive northward and
eastward, respectively.) These neutral parameters then were employed as

input to a dynamic semi-empirical model of the local thermospher‘e24'4°.

This model assumes that the neutral constituents are in hydrostatic equilbrium
distribution above a lower boundary (120 km) so that the E-W pressure
variation is set by the observed local time wvariation of the exospheric
temperature T . The N-S pressure variation in the model is adjusted until
the winds U and V at 300 km computed from solving the momentum
equations give the observed diurnal variation of VHn in a least squares
sense. A detailed description of the mode! will not be presented here.

Emery analyzed 37 days from December 1969 through December 1871. To
these, we have added another 48 days from 1972 through 1975. Of the total
of 85 days, 21 were considered disturbed days (daily average of auroral
index AE > 300y), and their behavior is discussed in Section V. Neutral
densities needed in the calculations were taken from the Mass Spectro-
meter/Incoherent Scatter (MSIS) model48.

C. Results.

Figure 16 presents results for the diurnally averaged meridional wind at
300 km obtained from the analysis. The solid line is a least squares fit to
the data of an analytical function with 12, 6 and 4 month harmonics, whose
amplitudes are linear functions of the 10 cm solar radio flux F’IO.?' The fit
is given by

- 19 -




V o= [18.2 £ 11.7 - (27.1 £ 5.6)F) + [52.2 £ 19.3 + (4.2 * 14.9F]*
cos [2r/365 (day + 5 = 4)] + [-31.9 + 7.8 + (17.4 + 10.5)F]*
cos [4n/365 (day + 15 £ 12)] + [5.3 £ 7.8 — (3.7 * 8.4)F}*
cos [Br/365 (day ~ 11 * 5)] (2}

— e -

with  F = F 10'7/100, where Fi0.7 is an 81 day average of ?10.7
centered on the day being analyzed. The rms error between the points and
the fitted curve (Eq. 2) is 131 m/sec and the linear correlation coefficient
is r =40.84 The mean, annual and semiannual terms ali are statistically
significant but the only one having a significant variation with F is that of
the mean wind. For solar maxjmum (!?10_7 = 160), the fit gives an annual
mean velocity of 25.2 m/sec. The summer wind is about 75 m/sec
equatorward and the winter wind is about 30 m/sec poleward, with a seasonal
variation of about 50 m/sec. At soiar minimum (510.7 = 70), the mean
annual wind is 0.7 m/sec (i.e., approximately zero). The average winter
wind has increased to about 40 m/sec poleward. Near solstice, the average
summer wind still is about 70 m/sec equatorward; however, duration of the
period of equatorward winds appears to be reduced compared to solar
maximum. At solar maximum, the winds tend to be equatorward at equinox,
while at minimum, they tend to be polieward.

Figure 17 shows the diurnally averaged zonal winds at 300 km, with a least
squares fit to the data of the same form as in Eq. 2, given by '

U = [~0.8 %23.9 - (1.7 £ 18.8)F] + [27.9 % 31.0 + (1.6 £ 24.2)F]*
cos [2n/365 (day + 29 % 74)] + [-14.7 * 32.9 + (12.3 * 25)F]*
cos [4n/365 (day + 36 + 78)] + [2.7 * 30.7 — (4.3 % 24.5)F]*

cos [6n/365 (day + 8 * 48)] (3)
There is a great deal of scatter in the points, and the fit is not statistically
PErTSt v T =~ w = N [y} = gy b il atarmalmmA Moviiatian im tha amnlitnidac
U'BIlllle![lL’ 2111V ] Ve WV aflwd LIS SO IuUIal UL VIWLIWVEIL (] L A= CARRT 1 E el el e

generally is the same order of magnitude as the coefficients. Nevertheless,
there seems to be a recognizable seasonal pattern with a westward wind in
summer and an eastward wind in winter and no obvious solar cycle variation.
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D. Discussion.

From the resuits presented here, it appears that the seasonal pattern in the
winds seen by Emery?%/4l persists through the solar cycle with only minor
variations. The magnitudes of the diurnally averaged winds and of the
seasonal variation remain about the same, suggesting that the decrease in the
day-night temperature (pressure) gradient which accompanies the decrease in
solar EUV and UV flux is balanced by an equivalent decrease in the ion drag

force as the electron density decreases.

in their zonally averaged mode!, Roble et al*5 reduced the globally averaged
EUV flux by a factor of two to simulate the decline in solar activity at
sunspot minimum. in order to reproduce the winds and temperatures
observed by Hernandez and Roble*?, the high latitude heating had to be
reduced by a factor of 4.5. With the reduced high latitude heating, the
reverse cell in the winter hemisphere was not present and with the resuit
that, in the winter, hemisphere winds at mid-latitudes tended to become more
poleward. The present analysis also shows the winds becoming more poleward

in winter.

The change in the equinox meridional wind from equatorward at solar maximum
to poleward at minimum also can be explained In terms of a decrease in high
latitude heating relative to the soilar EUV flux. Because the thermosphere is
so optically thin, the latitudinal variation in the solar heating rate at equinox
is very small, The high latitude heating, which is concentrated in a narrow
latitudinal region and also tends to maximize near the equinoxes, then can be
quite effective in driving a reverse circulation. Figure 14(a) shows the
zonally averaged equinox circulation for an average level of geomagnetic
activity at solar maximum. The high Ilatitude heating then drives an
equatorward flow between 150 and 400 km at all latitudes. As the magnitude
of the high latitude heating decreases relative to the solar heating at
minimum, the extent of the region controiled by the reverse cell shrinks, and
the region dominated by an equator-to-pole circulation pattern driven by the
solar heating will expand. The generally equatorward equinox winds found in
this analysis for 1974 and 1975 support the view, advanced by Roble et ai%®,
that there is a larger decrease in the high latitude heating relative to solar
EUV in going from sunspot maximum to minimum,
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The net flow from summer to winter hemisphere at mid-thermospheric ilevels
plays a major role in the "wind diffusion” explanation of the seasonal oxygen
anomaly®7'4° and the anomalous seasonal behavior of the F-region at
midiatitudes. The almost complete disappearance of the anomalous seasonal
variation in the ionospheric fOFE’ at sunspot minimum might be taken to
imply that the seasonal variation in the thermospheric winds also decreases.
However, the present analysis, and also that of Hernandez and Roble%7, does
not support such a conclusion. A three-dimensional global model for
thermospheric oxygen transport by Straus and Christopher® also suggests
that the magnitude of the oxygen bulge in the lower thermosphere does not
decrease significantly with reduced F10-7. Furthermore, satellite
observations near solar minimum (ij = g0) by Maurersberger et at5¢ and
by wvon Zahn and Fricke®! both showed a definite seasonal variation in the
O/N2 ratio. The height and magnitude of the peak electron densily is
dependent not only on the photochemical balance, but also on dynamical
processes such as diffusive transport and neutral winds. At seclar minimum,
when the scale height of the atmosphere in the lower thermosphere is
reduced, the ionosphere is formed at lower altitudes. Presumabiy the winter
oxygen enrichment at the level where production, loss and diffusion balance
(i.e., the F-region peak) then is less pronounced.

The winds calcuiated by the model are constrained to reproduce the observed
VHn’ (where Vin = .97V - .24U). As a result, the calculated meridional
winds closely represent observed values of an‘ By contrast, the 'zonal
winds are computed from the linearized momentum equations using the
observed temperature (pressure) gradient, and accordingly, these results are
more sensitive to assumptions made in the analysis, especially the neglect of
the non-linear terms and electric fields. This may explai

scatter in the zonal wind values.
E. Conclusions.

Analysis of results for the diurnal variation of the meridional and zonal winds

computed usin ~ ! j
computed using the dynamic mode! of Emery2?/40 adjusted tc match Millstone

Hill incoherent scatter data gathered over 1970-75 shows:
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1. The seasonal variation in the mean meridional winds of about
50 m/sec seen by EmeryZ2%/41 in 1970-71 persists through the
solar cycle to solar minimum. This result is consistent with
observations by Hernandez and Roble?? and the results of the

diurnally averaged circulation model of Roble et ai4%,

=Y L

2. The equinox period winds changed from generally equatorward
at solar maximum to poleward at solar minimum. The annual
mean meridional wind, which was about 25 m/sec equatorward
at solar maximum, became about 0 m/sec at solar minimum,
causing the winds in winter to be more strongly poleward.
Both effects are consistent with the conclusions reached by
Roble et al*®, namely, that the magnitude of the high latitude
heating decreases by a larger factor than the solar EUV and
UV heating between maximum and minimum.

3. The scatter in the zona!l data is too large to permit any
N P hiid A Asaman- [N
aiidly 215, LUl a ywlieialr pailil
winds in the winter and westward winds in the summer is

found that persisted through the solar cycle.

V. EFFECT OF GEOMAGNETIC DISTURBANCES ON THERMOSPHERIC
NEUTRAL WINDS.

A. Intoduction.

The marked depression of the ionospheric peak electron density, NmFE, at
mid-latitudes during geomagnetic disturbances (e.g., in Section iIi~E) has
been attributed (e.g., by Duncan®®) to changes in the globai neutral density

structure caused by the strong equatorward winds forced by high latitude
heating (for review, see Rishbeth52) Mayr and Voliand33/5¢ have shown that
the transport could be explained as the same "wind diffusion" effect that
causes the seasonal oxygen anomaly. Averaged over the globe, the increased
equatorward winds result in a net transport of atomic oxygen (and other light

constituents) equatorward from high and mid-iatitudes, thus decreasing the
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O/N2 ratio. A lower O/N2 ratio results in a higher recombination rate for
atomic oxygen ions at all [evels and so, fower jonization density values.

There have been several efforts to observe thermospheric winds during
disturbed periods. For example, Roper and BaxterS5 conducted barium
release measurements which suggested strong equatorward winds are present
and are induced in part through momentum forcing by the increased speed of
the anti-solar convection over the polar cap. Winds derived from ion drift
measurements made at the Chatanika incoherent scatter radar also suggest
strong momentum forcing at high latitudes®®, Most of the publiished
mid-latitude observations have been obtained by means of 630 nm airglow
measurements. Hays and Roble®? reported equatorward winds of ~ 400 m/sec
associated with an aurora, while Sipler and Biondi®® found enhanced neutrai
temperature and winds estimated at 600 m/sec during a substorm. These
very strong equatorward winds persisted throughout the night, and were
observed to be faster when looking to the north than when looking to the
south. Hernandez and Roble5? reported 630 nm airglow observations made
during a series of four disturbed nights. All disturbed cases showed
stronger equatorward winds, enhanced neutral temperaturés and, in some
cases, the zonal winds became westward near dusk and remained westward
throughout the night. They also detected a difference in meridional wind
speed when looking north compared to looking south, implying that the air is
diverging from a source of limited E-W extend.

in this Section, the thermospheric neu
from Milistone Hill incoherent scatter radar observations (Section [) have been
examined to determine the effect of geomagnetic disturbances. Over the
six-year period 1970 through 1975, there were 2| days of data for which
auroral activity was high (daily average of AE > 300y). Since the
measurements were made over twenty-four hour periods, the effect of the

el s e -4
Lenipel au

B. Data Analysis Procedures.

We outlined in Section 1V-B the method of deriving estimates of the meridional
and zonal winds (V and U) over Millstone Hill from our incoherent scatter
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observations. Three variations to the analysis procedures employed
previously for quiet days (Section V) were included for the analysis of these
! winds were found to be

disturhad davs Since the derived neutr

RS SR WL Sl ik Y i LR W [ L) AV

significantly larger than during quiet times, the contribution of frictional
heating, caused by ion-neutra! coilisions to the heat balance eguation was
inciuded in the derivation of T_; this tended to reduce the derived values
of T _. The derived values of an are highly sensitive to the jon-neutral
collision frequency used in computing the ambipolar diffusion velocity. In
turn, the collision frequency is dependent on the neutral density assumed??.
For the analysis.of the winds on quiet days, the required neutral densities
were derived from the Mass Spectrometer/Incoherent Scatter (MSIS) model4®.
For this analysis, the densities used were derived using the lower boundary
density values contained in the MSIS model and integrating to 300 km,
assuming diffusive equilibrium and the observed neutral temperature profile.
This procedure tended to decrease the winds derived at night, since the
higher temperatures led to higher density estimates and collision frequencies,
thereby lowering the ambipolar diffusion velocity calculated.

A major source of uncertainty in the neutral parameters derived during
disturbed periods is the possible effect of large magnetospheric electric fields
appearing over Millstone. Large efectric-field-induced drifts not oniy affect
the derivation of VHn (through the interpretation of the observed vertical
drifts and the ion drag term in the momentum equations), but aiso will affect
the calculation of the relative ion-neutral velocity which determines the
frictional heating term in the ion heat balance equation. There were no
coincident electric field measurements available for the days analyzed, so an
"averaged" disturbed period field was constructed from a number of disturbed
period observations made by wWand®®., The averaged east-west field does not
differ significantly from the quiet time field, except for being slightly larger.
The averaged north-south field is about twice as large as the quiet time field
and exhibits a strong northward field near dusk, consistent with earlier
reported measurements??/8l, Only two of the ten days which went into this
disturbed electric field model included a full twenty~four hours of data.
Examining individual days, it appears that the mid-latitude electric field
reflects the rapidiy varying substorm activity, so that an average model can
at best remove only the general trend of the effects introduced by electric
fields.
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C. Results.

To iliustrate the behavior observed during disturbed periods, we present
results for a sample of winter and equinox days. Ail the effects to be
discussed were seen in each of the disturbed days, although their magnitude
varied considerably. Figure 18 shows the diurnal variation of the exospheric
temperature seen on a seven of the disturbed days. Unlike the generally
unstructured sinusoida! variation typically seen on quiet days, large irregular
increases in the temperature are evident after sunset on each of the
disturbed days. During the night of 12-13 February 1974, the nighttime
temperature actually rose above the daytime maximum,

Figure 19 shows the smoothed meridional and zonal winds derived for a typical
quiet winter day. The meridional wind, V, is poleward during the day at
about 75-i00 m/sec. During the night, the wind turns equatorward for 3-4

hours either side o
poleward meridional winds during the day are stronger and persist longer
than the nighttime equatorward wind, the diurnally averaged meridional wind
V is poleward. The zonal wind, U, changes direction in the afternoon at
the pressure maximum and remains eastward through the night, reversing

again to westward just before dawn. The morning reversal is found to occur
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Figure 20 depicts the smoothed meridional wind derived for the seven
disturbed days shown in Figure 18. The length of the period during the
night when the winds are equatorward is not significantly longer than on
quiet days; however, the magnitude is found to be much larger, approaching
ently encountered is the
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strong surge in the winds near local midnight, or one to two hours after

midnight.

The smoothed zonal winds derived from the model for the same seven days are
shown in Figure 21. The derived zonal winds are much stronger than the

guiet time winds, with the westward winds in the morning sector occasionatly

exceeding 350 m/sec. For most disturbed days, the time of reversal between
eastward and westward winds at night has been shifted into the pre-midnight
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sector. For 12-13 February 1974, the derived winds actually are reversed
from the normal pattern, with westward winds between noon and 2000 L.T.
and eastward through the night and morning.

The dynamic mode! of Emery*? uses a third order harmonic fit to the data in
deriving the forcing functions for the winds, so that short period
fluctuations, such as gravity wave pulses, tend to be smoothed out. The
effect of the smoothing employed to secure the resuits shown in Figures 20
and 21 is to cause the midnight surge and any gravity wave pulse occurring
within a couple of hours of each other to be merged into a single pulse.
Thus, the midnight surge may appear shifted in time and extend over a
fonger period than realiy is the case. To differentiate the different forcing
effects, the experimentaily derived wind, VHn' for the disturbed day
17-18 August 1970 has been compared with the hourly average of the AE
index in Figure 22. The equatorward pulses at 2200 L.T., 0500 L.T. and
1200 L.T. seem to be related to individual substorms, and their effects also
were evident in raising the electron and ion temperatures and hmFZ. The
surge at midnight does not appear to be related to any particular substorm
nor to increased auroral activity. (The pulse at 1700 L.T. may be associated
with a substorm, but could be a result from increased eastward electric field
in the dusk sector, which the disturbed electric field does not properly
represent. The resulting lifting of the ionization then would be interpreted

as an equatorward wind.)
D. Discussion.

The observed meridional winds clearly show the effect of the strong forcing
which occurs during auroral disturbances. The largest effect is the surge in
the wind near local midnight, which probably is an extension of the midnight
surge observed at Chatanika®®. Joule heating occurring along the nightside
auroral oval and possibly at the cleft creates a horseshoe shaped heated
region®%/83  The easiest method of escape for the expanded atmosphere in the

polar cap Is through the midnight region near the Harang discontinuity,
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over the polar cap also can assist in generating large equatorward winds near
midnight®%. Detailed analyses of the experimental results, such as those
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shown in Figure 22, indicate that this surge is a distinct feature separable
from the gravity wave pulses associated with substorm onsets®5.

The computed values of the diurnally averaged meridional wind do not entirely
support a picture of an increase giobal equatorward flow on disturbed days,
which is the basis of the "wind diffusion"®% used to explain the transport of
oxygen and the negative phasé of an ionospheric storm. Some disturbed days
do exhibit weaker poleward winds on the dayside than normal, but this is not
a consistent feature. The diurnally averaged meridional winds tend to be
more equatorward on wvery disturbed days, but again the pattern is not
consistent. In analyzing 64 quiet days {(daily average of AE < 300y) over a
six-year period (Section tV), there is a small but not statistically significant
correlation between diurnally averaged meridional wind and AE as may be
seen in Figure 23. The present analysis suggests that the transport of heat
and mass associated with geomagnetic activity may result from short-lived
pulses and surges rather than overall changes in the global circulation, and
that these shori-lived events are either not fully resclved in our
measurements and/or supressed by the 3 harmonic smoothing employed in the

data analysis.

The meridional winds computed by the model are tied to the experimental
observations, so they are a fairly good representation of the neutral wind,
given the uncertainties in neutral densities and electric fields which affect the
calculations. However, the zonal winds are derived theoretically from the
observed temperature (pressure) field, and are less reliable. Roper and
Baxter®® have found that equatorward transport of zonal momentum forced by
the ion convection pattern, can be important at subauroral latitudes
(A < 63°). The use in our analysis of linearized momentum equations negiects
such transport. Moreover, during disturbed periods, the local temperature
gradient probably does not represent the forcing of the global circulation.
Thus, the very unusual zonal wind pattern of 12-13 February 1974 may be a
result of neglecting the non-iinear transport terms. By the beginning of the
observation period for this particular day, there had been over 24 hours of

. 1 Lo e ¥ am e Iy
heating to lower

intense auroral activity. The transport of the auroral
latitudes had reversed the normal diurnal temperature gradient at Millstone,
but it is not clear that the global circulation had ‘reversed, as the derived

zonal winds suggest.
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high lgtitude winter hemisphere is driven by auroral heating (from Roble
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