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A fully three-dimensional coupled mode approach is used in this paper to describe the physics of

low frequency acoustic signals propagating through a train of internal waves at an arbitrary

azimuth. A three layer model of the shallow water waveguide is employed for studying the

properties of normal modes and their coupled interaction due to the presence of nonlinear internal

waves. Using a robust wave number integration technique for Fourier transform computation and a

direct global matrix approach, an accurate three-dimensional coupled mode full field solution is

obtained for the tonal signal propagation through straight and parallel internal waves. This approach

provides accurate results for arbitrary azimuth and includes the effects of backscattering. This

enables one to provide an azimuthal analysis of acoustic propagation and separate the effects of

mode coupled transparent resonance, horizontal reflection and refraction, the horizontal Lloyd’s

mirror, horizontal ducting and anti-ducting, and horizontal tunneling and secondary ducting.
VC 2014 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4869847]

PACS number(s): 43.20.Bi, 43.20.Mv, 43.30.Bp [KML] Pages: 2497–2512

I. INTRODUCTION

Internal waves are commonly observed in shallow

waters and at continental shelf breaks. Over the last several

decades, much effort has been expended on studying low-

frequency acoustic propagation through shallow water inter-

nal waves. In the 1980s Yellow Sea experiments, Zhou

et al.1 showed and theoretically explained very strong (up to

25 dB) resonance-like intensity fluctuations that are both fre-

quency and internal wave direction dependent. Preisig and

Duda2,3 studied the impact of individual soliton-type internal

waves on normal mode coupling physics and clearly showed

its dependence on wave width, amplitude and acoustic fre-

quency. In the 1995 Shallow Water Acoustics in a Random

Medium Experiment (SWARM95),4 strong mode coupling

was observed and studied statistically5 for the across internal

wave propagation direction. Also as part of the SWARM95

experiment, Badiey et al.6 measured acoustic signals for an

along waves path and showed that strong intensity fluctua-

tions are caused by horizontal ducting of acoustic signals

between internal waves. This was the first experimental

evidence of an out of vertical plane acoustic interaction with

internal waves, which was predicted theoretically7 and

numerically.8,9 The Shallow Water 2006 Experiment

(SW0610) was the first effort that concentrated on measuring

the fully three-dimensional variability of the water column

as well as acoustic signals coming from both the across and

along internal waves directions. For that experiment, both in-

tensity and horizontal angles of arrival fluctuations were

observed11,12 for the along internal wave acoustic track with

a fixed source and receiving array.

The first experimental evidence of the horizontal

Lloyd’s mirror, an inherently three-dimensional acoustic

effect, was observed in SW06 by Badiey et al.13 Also as a

part of the SW06, Lynch et al.14 presented results on inten-

sity fluctuations and their azimuthal dependence for a mobile

source acoustic signal. In parallel to the experimental results,

extensive analytical studies of the three-dimensional effects

of internal wave natural curvature15,16 and termination17 on

acoustic propagation were performed.

In this paper we will use a fully three-dimensional (3D)

coupled mode approach to solve the problem of low-

frequency acoustic propagation through straight and parallel

internal waves for all azimuths. We will first study mode

coupling at a vertical interface that divides the waveguide

into two stratified half spaces: an unperturbed part and a per-

turbed part (for example, from the presence of nonlinear in-

ternal waves). Using this approach enables us to explicitly

show the governing physics of mode coupled reflection from

and transmission through internal waves. The precise 3D full

field solution for internal waves with continuous waveforms

will then be obtained using a 3D coupled mode program.

This program is based on an algorithm that utilizes the inde-

pendence of waveguide properties on one of the three spatial

coordinates (along the internal wave crests) by means of a

Fourier transform. Consequent application of the direct

global matrix approach and wave number integration
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provides accurate solutions for the 3D coupled mode acous-

tic field. A similar approach was used by Schmidt in his

SAFARI propagation code18 for range independent waveguides

without mode coupling, and we extend it here to coupled

mode propagation in an environment whose properties

change in two dimensions.

Using the 3D coupled mode program, we study several

3D acoustic effects caused by a train of parallel internal

waves, including coupled mode horizontal acoustic reflec-

tion from internal waves, the horizontal Lloyd’s mirror

(HLM), ducting and anti-ducting between internal waves,

secondary ducting, coupled mode ducting, and coupled

mode transparent resonance.

The composition of this paper is as follows. In Sec. II

we will start with a brief overview of mode coupling theory

and its simplification for waveguides whose properties

change slowly in the horizontal. We then proceed with a fun-

damental problem: that of plane wave mode coupling at a

vertical interface that divides two horizontally stratified

waveguides. We provide the analytical solution for plane

wave fronts and point sources in such an environment. In

Sec. III, we introduce a simplified model of internal waves

represented by combinations of vertical interfaces and study

the physics of acoustic propagation for single internal waves.

Multiple internal wave cases will be considered in Sec. IV.

The precise 3D coupled mode numerical solution for single

and multiple internal waves with smooth waveforms will be

presented in Sec. V. Finally, the summary and future work

directions will be discussed in Sec. VI.

II. THEORY

This section briefly covers the basics of acoustic mode

coupling. In Sec. II A, we derive the general 3D coupled

mode equation for range dependent waveguides and provide

its simplified form for waveguides whose properties change

slowly in the horizontal plane (adiabatic approximation). It

will become clear later in this paper when such an approxi-

mation is appropriate in the presence of nonlinear internal

waves. In Secs. II B and II C we consider the special case of

mode coupling at a vertical interface that divides the wave-

guide into two stratified half planes, and obtain solutions for

incident modes with plane wave and cylindrical wave fronts.

This simplified problem will serve a basis for the 3D mode

coupling for more sophisticated examples, shown in Secs. III

and IV.

A. 3D coupled mode equation

Let us start with the Helmholtz equation for a point

source in Cartesian coordinates,
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where c(x, y, z) is sound speed, q(x, y, z) is density, p(x, y, z)

is acoustic pressure, and (xs, ys, zs) is the source position. To

solve for the sound pressure, we employ a vertical mode

decomposition,

pðx; y; zÞ ¼
X

m

Umðx; yÞWmðx; y; zÞ; (2)

where Um(x, y) are the complex modal amplitudes and

wm(x, y, z) are the normal modes at (x, y) obtained from the

following equation:
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krm(x,y) is the horizontal wave number of mode m, and

appropriate boundary conditions will be imposed at the sea

surface and the seabed. By substituting Eq. (2) into Eq. (1),

and applying the operatorð
�ð Þ

Wnðx; y; zÞ
qðzÞ dz;

one can get
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where the mode coupling coefficients Amn, Bmn, and Cmn are

defined by
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In general, the equations for the vertical and horizontal parts

of the acoustic pressure are coupled, and for 3D varying

environments, one has to solve the complete set of Eqs.

(3)–(7). However, for environments whose parameters

change in the horizontal slowly compared to the acoustic

wavelength, the coupling coefficients are small, and the

equations for modal amplitudes are approximated as

@2Un

@x2
þ @

2Un

@y2
þ k2

rnðx; yÞUn

¼ �dðx� xsÞdðy� ysÞ
Wnðx; y; zsÞ

qðzsÞ
: (8)

Equation (8) is called the horizontal refraction equation19 and

the corresponding approximation is called the adiabatic
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approximation. For acoustic propagation in the directions per-

pendicular to internal waves crests, the waveguide properties

change rapidly, and this approximation is often not valid.20

However, it will be shown by numerical simulations later in this

paper that the adiabatic approximation is a reasonable approxi-

mation for shallow horizontal angles between the acoustic prop-

agation track and the internal wave crests. In Secs. III and IV

we will approach the full mode coupling problem for the simpli-

fied case of waveguides whose properties change in two spatial

dimensions and are fixed in the third dimension.

B. Vertical interface: An incident mode with a plane
wave front

Let us consider a vertical interface that divides a wave-

guide into two range independent half spaces 0 and 1 such

that the waveguide in region 0 has the properties of an

unperturbed waveguide and region 1 has slightly different

water column properties. This scenario is an extreme case of

rapidly changing properties in horizontal plane, and not real-

istic for many ocean features, since ocean properties gener-

ally change more gradually with horizontal distance.

However, the basic physics of coupled mode reflection from

and transmission through such an interface is similar to the

real world internal wave scenario, and it also can be

explained analytically, as will be shown below.

When studying the effects of mode coupling, it is a stand-

ard practice to consider the incident field due to each of the

excited normal modes separately.2,21 For now, we let the ini-

tial acoustic signal be a single mode n in the unperturbed

region 0 with a horizontally plane wave front and unit ampli-

tude at angular frequency x. Figure 1 shows the top view of

the medium. We define axis x along the vertical interface and

axis y perpendicular to the interface with positive direction

pointing towards region 0. Vertical axis z with zero value at

the ocean surface has positive direction into the seabed.

The horizontally stratified region 0 is associated with

the set of unperturbed modes W0
n and horizontal modal wave

numbers k0
rn. Region 1 is also horizontally stratified, but its

waveguide properties are slightly different from region 0. It

is characterized by a perturbed set of modes W1
n and horizon-

tal modal wave numbers k1
rn.

Define the horizontal grazing angle vn as the angle

between horizontal wave vector of incident mode n and the x
axis as shown in Fig. 1. The incident pressure field then can

be written as

pI ¼ W0
nðzÞeik0

rnðx cos vn�y sin vnÞ: (9)

In order to ensure the continuity of the acoustic pressure and

the normal component of particle velocity at the vertical

interface, we set

pIðx; y ¼ 0; zÞ þ pRðx; y ¼ 0; zÞ ¼ pTðx; y ¼ 0; zÞ;
1
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@y

����
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����
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@y

����
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where q0(z) and q1(z) are the vertical density functions in the

regions 0 and 1, respectively. In this work density changes

due to the ocean thermocline depression are considered

weak compared to the water-seabed density contrast, and

therefore q0(z) � q1(z) � q(z). One must also allow the

reflected and transmitted fields, pR and pT, to comprise all

the propagating modes, i.e.,

pR ¼
XM

m¼1

RnmðvnÞW0
mðzÞeik0

rmðx cos vm;Rþy sin vm;RÞ;

pT ¼
XM

m¼1

TnmðvnÞW1
mðzÞeik1

rmðx cos vm;T�y sin vm;TÞ; (11)

where Rnm and Tnm are the coefficients of the plane wave

mode coupled reflection and transmission of incident mode

n into mode m, vm,R, and vm,T are the horizontal grazing

angles of coupled mode m in the reflected and transmitted

fields, respectively (Fig. 1), and M is the number of propa-

gating modes. Equation (11) is missing the continuous part

of the wavenumber spectrum. At a vertical sharp interface,

mode coupling will result in energy leakage into the contin-

uous part of the spectrum. In the current study we neglect

this part of acoustic energy. We note, however, that there

are several available algorithms that account for the contin-

uous spectrum. One of them22 uses the “leaky modes”

approximation and could potentially be useful. The “leaky

modes” have exponentially increasing amplitude in the

fluid half space, and the fact that they are not perfectly or-

thogonal to the trapped modes complicates the analysis.

We therefore leave this for further research study and only

consider the discrete part of the spectrum. As a result, the

solutions obtained in the current paper have a vertical angle

limitation.

The boundary conditions given by Eq. (10) provide the

continuity of the x-component of horizontal wave number

(Snell’s law) for both reflected and transmitted modes,

kx � k0
rn cos vn ¼ k0

rm cos vm;R ¼ k1
rm cos vm;T ;

m ¼ 1;…;M: (12)

They also provide linear relations for the coupled reflection

and transmission coefficients,

FIG. 1. (Color online) Top view of plane wave mode coupling at a vertical

interface. The incident pressure field consists of a single mode n of unit am-

plitude with grazing angle vn. Along the interface, it couples into all propa-

gating modes 1;…;M of both the reflected and transmitted fields.
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dnm þ RnmðvnÞ ¼
XM

k¼1

TnkðvnÞ

�
ð

W1
kðzÞW0

mðzÞ
qðzÞ dz; m ¼ 1;…;M;

dnmtanvn þ RnmðvnÞtanvm;R

¼
XM

k¼1

TnkðvnÞtanvk;T

ð
W1

kðzÞW0
mðzÞ

qðzÞ dz; m ¼ 1;…;M;

(13)

where dnm is the Kronecker symbol. The values of the mode

coupled reflection and transmission coefficients Rnm (vn) and

Tnm (vn) are obtained by solving the set of linear equations (13)

for each incident mode number n and specified grazing angle vn.

C. Vertical interface: Point source solution

Having solved the mode coupling problem at the verti-

cal interface for a single incident mode with a plane wave

front, it is possible to obtain the solution for the acoustic

pressure field on both sides of the vertical interface due to a

point source located in region 0 at (xs, ys, zs). Since the wave-

guide is independent of the x-coordinate, we set xs¼ 0 for

convenience. By applying the one-dimensional Fourier

transform (FT) operator,

FT �f g ¼
1

2p

ðþ1
�1
�f ge�ikxxdx; (14)

to both sides of Eq. (1), and assuming no density variation in

the horizontal, we get a two-dimensional separable

Helmholtz equation
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: (15)

As before, we start with considering the portion of the acous-

tic energy due to the excitation of a single mode. The solution

of Eq. (15) for an excited mode n can be formally written as

~pnðkx; y; zÞ ¼

XM

m¼1

Uð0Þþnm eik0
ymðkxÞy þ Uð0Þ�nm e�ik0
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8>>>><
>>>>:

(16)

In the above the single mode free-field source term ~ps
n (kx, y, z)

is the solution of Eq. (1) for the range independent waveguide,19

~ps
nðkx; y; zÞ ¼

i

4pqðzsÞ
W0

nðzsÞW0
nðzÞ

eik0
ynðkxÞjy�ysj

k0
ynðkxÞ

; (17)

where k0
ym (kx) and k1

ym(kx) are the y-components of the horizon-

tal wave number of mode m in regions 0 and 1, respectively,

kj
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj

rmÞ2 � k2
x ;

q
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(18)

Uð0Þþnm and U 0ð Þ�
nm are the amplitudes of mode m coupled from

incident mode n and traveling in the positive and negative

directions of y axis, respectively, in region 0, and Uð1Þþnm and

Uð1Þ�nm are similar amplitudes in the perturbed region 1. The

Sommerfeld radiation condition requires that

Uð0Þ�nm ¼ 0; m ¼ 1;…;M;

Uð1Þþnm ¼ 0; m ¼ 1;…;M: (19)

Equation (17) for y< ys describes the incident field that con-

sists of a single mode n with a plane wave front. Following

the procedure shown in Sec. II B we can derive the other two

coefficients in Eq. (16),

Uð0Þþnm ðkxÞ ¼
i

4pqðzsÞ
W0

nðzsÞeik0
ynys

k0
yn

RnmðvnÞ;

Uð1Þ�nm ðkxÞ ¼
i

4pqðzsÞ
W0

nðzsÞeik0
ynys

k0
yn

TnmðvnÞ; (20)

where the horizontal grazing angle vn is related to the com-

ponents of the modal wave number by

vn ¼ cos�1 kx

k0
rn

: (21)

Acoustic pressure as a function of x is obtained by applying

the one-dimensional inverse Fourier transform (IFT) operator

IFTf�g ¼
ðþ1
�1
f�geikxxdkx; (22)

to both sides of Eq. (16). Using Eq. (19), Eq. (20), and the

method of stationary phase, the Fourier integral can be eval-

uated for each coupled mode m at its stationary points

ks
x(n,m). As a result, the acoustic pressure due to mode n

excited at the source location approximates to
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In the expression above,

vs
nðmÞ ¼ cos�1 ks

xðn;mÞ
k0

rn

(24)

and

vs;coupled
m ðnÞ ¼

cos�1 ks
xðn;mÞ
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; y � 0;

cos�1 ks
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k1
rm

; y < 0

8>>><
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are the horizontal grazing angles of initial mode n and

reflected (or transmitted) coupled mode m, respectively, for

the stationary point ks
x(n, m) (Fig. 2), r is the horizontal dis-

tance between the source and the receiver, and r1(n,m) and

r2(n,m) are the lengths of the two-segmented refracted eigen-

rays connecting the source and the receiver such that

r1 ¼
ys

sin vs
nðmÞ

; r2 ¼
jyj

sin vs;coupled
m ðnÞ

: (26)

Note that for m¼ n, vs
n(m)¼ vs;coupled

m (m), which implies the

specular reflection of initial mode n. Equation (23) approxi-

mates the portion of the acoustic pressure due to an individ-

ual mode n excited by the point source. The total acoustic

pressure field for a point source is the sum of its components

due to each excited mode

pðx; y; zÞ ¼
XM

n¼1

pnðx; y; zÞ: (27)

Equations (23) and (27) represent a geometrical acoustic

approximation to coupled mode propagation in the horizon-

tal plane. Once the eigenray for the mode pair (n,m) is found

from Eqs. (24)–(26), the acoustic pressure is easily com-

puted. Figure 2 schematically illustrates the geometric

approximation of mode coupled reflection and transmission

at the vertical interface. The acoustic source is located in the

region 0, and two possible locations of the receiver are

shown in regions 0 and 1. For the receiver located in region

0, the solution due to initial mode n is a sum of the direct

path contribution and the weighted sum of coupled modes

traveling along the two-legged reflected eigenrays. For the

receiver located in region 1, solution due to initial mode n is

a weighted sum of the coupled modes traveling along the

two-legged transmitted eigenrays. McMahon23 obtained a

similar to Eq. (23) result for an adiabatic approximation.

Equations (23) and (27) provide the full 3D coupled mode

point source solution.

III. SINGLE INTERNAL WAVE

Next, we will discuss the physics of acoustic normal

mode propagation through a single internal wave at different

horizontal grazing angles. To do this, we will use the wave-

guide model shown in Fig. 3. This is an idealized model that

consists of two horizontal fluid layers bounded by a vacuum

on the top and by the homogeneous fluid seabed below. The

lower acoustic layer is characterized by a constant reference

FIG. 2. (Color online) Geometrical approximation to the coupled mode hori-

zontal reflection from and transmission through a vertical interface.

FIG. 3. Two waveguide model consists of two water layers (with upper

layer having slightly faster sound speed than lower layer) overlaying ocean

bottom, which is represented by fluid half space. Modeled smooth shaped in-

ternal wave is shown on the left, and its approximation by a sharp interface

internal wave (SIA wave) is shown on the right.
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sound speed c0 and water density q0. The upper layer, that is

often called the mixed layer, has the same density, but a

sound speed slightly higher than the reference sound speed,

cml¼ c0þDc. The homogeneous bottom has a constant den-

sity and sound speed equal to the seabed reference values

cbot and qbot. The depth of the interface between layers is D
and the a bottom depth is Hbot.

The waveguide model above does not fully accurately

describe the vertical variation of sound speed, but it is fairly

simple and at the same time approximates a wide range of

shallow water columns, especially in the mid-latitude

summer time or at low latitudes, when a higher sound speed

surface mixed layer exists. Another advantage of this

“canonical” waveguide is that internal waves are easily

incorporated by lowering the horizontal interface between

the water layers (see the left wave shape in Fig. 3).

In the previous section, we showed that a waveguide

with a single vertical interface provides a useful solution that

describes the geometric acoustics approximation for coupled

mode horizontal propagation. We will use this approach

again in this and the next sections and replace the smooth

shaped internal wave by its top hat like approximation (see

the right wave shape in Fig. 3). This approximation, which is

also called the sharp interface approximation (SIA), models

internal wave with two parallel vertical interfaces separated

by offset W, such that the interface between water layers

(thermocline) has the depth D everywhere outside such wave

and is depressed to a new depth Hiw¼DþDHiw in between

vertical interfaces (inside the internal wave).

The SIA internal wave is not a new approach, and was

used by Preisig and Duda2,3 to study 2D mode coupling effects

and by Lin et al.17 to study acoustic mode horizontal ducting

between internal waves and radiation from an open duct under

the adiabatic approximation. In this paper we use the SIA in-

ternal wave model to understand the fundamental physics of

acoustic normal mode 3D propagation through internal waves,

and not for numerical computations or quantitative studies.

The advantage of the SIA wave is that it is simple and that the

coupled mode reflection and transmission occurs only at two

vertical interfaces, as opposed to continuous mode coupling

inside smoother shaped internal waves. We will see that this

simple model is capable enough to describe complicated 3D

coupled mode effects that occur within real internal waves. In

Sec. V we will also present numerical modeling results for

smoothed shape internal waves, and see how the simple SIA

and more realistic waveform calculations compare.

The front and back interfaces of SIA waves are sharp

for any grazing angle, and at shallow grazing angles, the

mode coupling strength in this model will be stronger than

for the case of smooth shaped internal waves. To overcome

this limitation, we will employ a hybrid approach of using

the SIA internal waves and dividing the 3D propagation into

three propagation direction sectors (similar to Badiey

et al.20): steep, intermediate, and shallow horizontal grazing

angles. With real internal waves, the water column sound

speed changes quickly along the acoustic track at steep graz-

ing angles. Mode coupling is strong and horizontal refraction

is weak at these angles. On the other hand, for shallow hori-

zontal grazing angles, propagation occurs in directions close

to parallel to the internal wave crests, and the waveguide

properties change slowly. Therefore, mode coupling is weak,

and we can assume nearly adiabatic propagation with strong

horizontal refraction at these angles. In the transition regime

(intermediate grazing angles), both mode coupling and hori-

zontal refraction are important and should be considered.

The boundaries of these azimuthal sectors are not exact and

depend on the amplitude of the internal wave. For the exam-

ples shown in numerical simulation in Sec. V, we consider

the grazing angle to be shallow if it is equal or less than the

maximum horizontal critical angle of the normal modes,

which will be defined later in this section (typically less than

ten degrees); intermediate grazing angles are approximately

10	 to 35	; steep grazing angles are greater than 35	.
Addition of a second vertical interface provides another

vertical discontinuity, and mode coupling becomes more

complicated. We wish to understand how the finite width of

the SIA wave alters the reflected and transmitted mode

amplitudes as compared to the single sharp interface studied

above. As before, a single mode incident with a cylindrical

wave front is considered.

A. Transparent resonance and coupled cancellation

Let us start with steep grazing angles. Coupled mode

propagation in directions perpendicular to the SIA internal

wave crest directions (i.e., at a horizontal grazing angle of

ninety degrees) was studied in detail by Duda and Preisig2,3

among others. We will discuss two effects of the coupling

physics from their study: transparent resonance and coupled

cancellation. Consider an incident mode n coupled into mode

m at the front interface of a SIA wave (top panel in Fig. 4). In

the transparent resonance regime, the wave width is such that

FIG. 4. (Color online) (a) Mode coupling diagram for normal incidence of

mode n upon a SIA wave. Mode n partially couples into mode m at the front

interface. At a certain resonant width of the wave, mode m uncouples back

into mode n at the back interface. (b) Same scenario, but for steep (other

than normal) grazing angle of initial mode n. Weak refraction of the coupled

modes at these angles makes both segmented rays coincide with each other

and with a straight (dashed) line.

2502 J. Acoust. Soc. Am., Vol. 135, No. 5, May 2014 Shmelev et al.: Internal-wave acoustic ducts



the phase difference between modes n and m changes by an

integer multiple of 2p as they travel across the wave2,3

Wres � 2pl

jk1
rn � k1

rmj
; l ¼ 1; 2;… : (28)

The cancellation regime is a special case of transparent reso-

nance, where the wave width W is short enough so that the

relative phase difference between modes n and m does not

change significantly as they reach the back interface of the

wave, and “uncoupling” occurs (or put another way, “reverse

coupling” occurs).

When the resonance condition is satisfied, energy of

mode n coupled into mode m at the front sharp interface

uncouples back into mode n at the back interface. Since only

few significant (sometimes also called dominant) modes2

carry most of the coupled energy within the SIA waves (and

smooth-shaped waves), uncoupling of mode m back into

mode n will result in almost total uncoupling of mode m if

either of modes n or m is dominant.

For steep grazing angles, other than normal, it was

shown12 for internal waves with amplitudes of 5–40 m,

acoustic frequencies of 50–500 Hz and the waveguide model

used in the present work, that horizontal refraction of

coupled modal rays is not significant for initial mode grazing

angles greater than 35	–40	. Using the principles of the geo-

metric approximation to mode coupling discussed in Sec. II

and neglecting the effects of horizontal refraction, normal

mode propagation through a SIA wave at steep grazing

angles can be interpreted as follows: the horizontal ray of

mode n coupled into mode m inside the wave coincides with

the horizontal ray of mode n propagating through the wave

[Fig. 4(b)] and both of them lay on an almost straight line.

Therefore, the cancellation regime between initial mode n
with grazing angle vn and mode m happens when the projec-

tion of the wave width onto the ray direction (effective wave

width Weff) satisfies the resonance condition

Wres;eff � W

sin vn

� 2pl

jk1
rm � k1

rnj
; l ¼ 1; 2;… : (29)

Both the cancellation regime and the transparent resonance

regime play important roles in the intensity fluctuations of

the acoustic energy transmitted through an internal wave or

a train of internal waves. If one measures modal amplitudes

behind a wave along a circle arc centered at the source posi-

tion [Fig. 4(b)], significant fluctuations are expected as the

effective wave width passes through its resonant values.

B. Horizontal Lloyd’s mirror

At shallow grazing angles (typically below 10	 in the

examples presented in this paper), horizontal refraction is

important, and mode coupling is weak. Therefore, in this

propagation regime, we will neglect mode coupling and

assume single mode adiabatic reflection and refraction at the

SIA wave interfaces. In Sec. II we studied the coupled mode

reflection and transmission through a single vertical inter-

face. For a source and a receiver located at one side of the

vertical interface, Eq. (23) shows that the total solution

should be direct path plus all coupled and non-coupled spec-

ular mode reflections. For incident grazing angles less than

vn;crit ¼ cos�1 k1
rn

k0
rn

; (30)

the y component of the horizontal wave number of mode n
in the perturbed region becomes imaginary, and under the

adiabatic approximation below these angles total horizontal

reflection of mode n occurs, i.e., Rnn � 1 for these angles.

Horizontal grazing angles defined by Eq. (30) are called the

critical grazing angle of mode n. The superposition of the

direct arrival of mode n and its reflected part with subcritical

grazing angles creates a strong interference pattern on the

source side of internal wave that is called the horizontal

Lloyd’s mirror24 (HLM). The classical Lloyd’s mirror

effect25,26 is a dipole-like interference of a direct path and a

path reflected from the sea surface in the vertical r-z plane.

The HLM pattern differs from the classical Lloyd’s mirror in

that it happens in the horizontal plane and that reflection

from the wave interface is only important at the subcritical

grazing angles defined by Eq. (30). In the classical Lloyd’s

mirror, reflection from the sea surface is considered perfect

at all vertical grazing angles. Another difference is the cy-

lindrical spreading in the HLM, as opposed to spherical

spreading in the classical Lloyd’s mirror. Work by

McMahon23 provides theoretical studies of the HLM for

straight and curved nonlinear internal wave fronts under

the adiabatic approximation. The HLM effect has been

observed experimentally in the Shallow Water 2006

experiment.13

The difference between the HLM effect at the single

vertical interface, which is equivalent to an infinitely wide

SIA internal wave, and a finite width SIA wave is due to the

horizontal tunneling of normal modes. This effect allows

partial energy leakage through the wave even at subcritical

grazing angles. The resultant intensity of the reflected initial

mode is expected to be slightly weaker. Below we explain

the physics of this effect.

C. Horizontal tunneling through internal waves

Let us now return to the horizontal refraction equation

[Eq. (8)] and apply the one-dimensional FT operator

[Eq. (14)] to its homogeneous part,

@2Unðy; kxÞ
@y2

þ ðk2
rnðyÞ � k2

xÞUnðy; kxÞ ¼ 0: (31)

The modal horizontal wave number in the presence of a sin-

gle SIA wave of width W is

krnðyÞ ¼
k0

rn; y < 0;

k1
rn; 0 � y � W;

k0
rn; y > W:

8>><
>>:

As before, we consider an initial acoustic field consisting of

a single mode n with unit amplitude and a planar wave front,

but incident upon the SIA wave of finite width W at a
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subcritical grazing angle vn< vcrit,n, and with no mode cou-

pling. Since k0
rn > kx > k1

rn at subcritical grazing angles,

Eq. (31) represents a standard problem of particle transmis-

sion through a potential barrier in quantum mechanics.27,28

The corresponding plane wave transmission coefficient is

Tn � exp �
ðW

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2 � ðkrnðyÞÞ2

q
dy

" #
; (32)

which for the SIA wave of width W is

Tn � exp �W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2 � ðk1

rnÞ
2

q� �
: (33)

One can see that the transmission coefficient above is unity

at the critical angle, and it rapidly decreases as the grazing

angle becomes less than critical. Therefore, at subcritical

grazing angles acoustic energy propagates through the wave,

and the angular spectrum of the transmitted modal amplitude

is localized in a narrow angular range just below its critical

value. This effect is called horizontal tunneling. In ocean

acoustics, tunneling in the vertical plane was observed

numerically by Jensen and Schmidt29 when studying

Gaussian beam penetration through a sediment layer at sub-

critical vertical grazing angles. Horizontal tunneling through

internal waves has recently been decomposed into the hori-

zontal leaky modes of the horizontal ducts by Lin et al.17

Energy leakage is an inherent property of the acoustic tun-

neling. As a result, reflection from the wave becomes imper-

fect at subcritical grazing angles under the adiabatic

approximation.

D. Coupled mode reflections from internal waves

We discussed above that the subcritical grazing angles

of normal modes are considered as shallow grazing angles,

and for the numerical examples to be presented in Sec. V,

mode coupling is indeed weak below approximately 10	.
Consider now the 3D coupled mode effects in the transition

sector between the steep and shallow grazing angles.

Horizontal refraction of normal modes in our examples

(Sec. V) is shown to be considerable for grazing angles up

to approximately 35	. Thorough analysis of the coupled

mode reflection coefficient (see Ref. 12 for details) shows

that in the transition grazing angle sector (10	–35	), the

coupled mode reflection coefficient Rnm for a single vertical

interface as defined by Eq. (13) has peak values for certain

mode pairs (n, m) and grazing angles of the incident mode

n equal to

vn � cos�1 k1
rm

k0
rn

: (34)

Such features of the coupled reflection coefficient corre-

spond to narrow beams of coupled mode energy reflected by

the vertical interface (coupled mode reflection). Below this

angle, coupled mode m is evanescent inside the internal

wave. Therefore, when a finite width SIA wave is considered

instead of a single vertical interface, the effect of horizontal

tunneling may also alter the strength of this effect.

With realistically smooth wave shapes, mode coupling

is continuous across the wave. When an initial mode n with

a grazing angle above its critical value couples into mode m,
whose grazing angle becomes subcritical, the resulting

energy of mode m is available for horizontal tunneling.

Therefore, although we discussed them separately, mode

coupling and horizontal tunneling are interconnected effects.

IV. MULTIPLE INTERNAL WAVES

In real ocean environments, nonlinear internal waves

usually travel in trains of several waves. Many acoustic and

oceanographic experiments1,4,10 provide evidence of strong

time varying intensity fluctuations as a package of internal

waves propagates in the vicinity of a source-to-receiver

track. Therefore, it is important to understand what 3D

acoustic effects one should expect as the train approaches

and crosses the acoustic track at different angles. Below, we

first describe one of the major causes of intensity fluctuations

in the along-wave propagation scenario: acoustic ducting

and anti-ducting.

A. Horizontal acoustic ducting

The horizontal reflection of acoustic normal modes from

internal wave interfaces at subcritical angles was shown to

cause significant contrasts in acoustic intensity compared to

the “no wave present” case.24 Therefore, as an internal wave

train propagates through the source location, one would

expect intensity fluctuations in the “near-crest” directions.

The effect of horizontal acoustic ducting may be observed if

an acoustic source is located between neighboring internal

waves of depression. For such a scenario, a part of the mode

n energy is confined within the grazing angle range

b�vn;crit;þvn;critc, i.e., is horizontally trapped by these waves

due to almost total reflection at the subcritical grazing

angles. Alternatively, if one puts an acoustic source inside

an internal wave of depression, the horizontal ray of mode n
with negligibly small initial grazing angle is pushed out

from the wave with grazing angle 6vn,crit. This effect is

known as anti-ducting.7

Ducting of acoustic energy between waves implies no

cylindrical spreading compared to the usual range independ-

ent environment. Contrariwise, anti-ducting has spreading

stronger than cylindrical. Acoustic ducting contributes to

longer propagation in the “along-crest” direction compared

to the “no waves” background scenario. The combination of

ducting and anti-ducting events creates very large scintilla-

tions of the acoustic intensity. These effects were first

described for internal waves theoretically by Katsnelson and

Pereselkov7 and numerically by Badiey et al.6 The first ex-

perimental observations of these strong intensity fluctuations

(6–10 dB) compared to the “no waves” case, with an along

wave geometry for internal waves passing over a fixed

source and receiver, were made during the SWARM95

experiment.6 Later, the SW06 experiment10 was specifically

configured for measuring three-dimensional acoustic effects,
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and the intensity fluctuations in these directions were com-

monly observed in presence of internal wave trains.

B. Secondary tunneled ducting of normal modes

We showed that if mode coupling is not important, the

effect of horizontal tunneling provides energy leakage

through the internal waves even at subcritical grazing angles.

When the tunneled acoustic signal encounters another wave

in the train, part of its energy is reflected, and another part is

tunneled further in the same manner as it did through the first

wave. Ducted energy continues leaking at each consequent

interaction with the waves (Fig. 5).

With the adiabatic tunneled transmission coefficient

given in Eq. (33), and the conservation relation between

reflection and transmission coefficients,

jRnj2 þ jTnj2 ¼ 1; (35)

the amplitude of mode n in the secondary duct after l interac-

tions with the waves is proportional to

jUnj � TnRl
n � e�W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2�ðk1

rnÞ
2

p �
1� e�W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkxÞ2�ðk1

rnÞ
2

p 	l=2

:

(36)

The leakage rate associated with tunneling is high at grazing

angles that are close to the critical values. On the other hand,

the reflection coefficient is greater further below the critical

grazing angles (since the exponent in the second brackets

quickly vanishes as kx exceeds k1
rn). Therefore, the angular

spectrum of the acoustic field in the secondary duct narrows

as l increases.

V. NUMERICAL MODELING

In this section, we will evaluate the three-dimensional

effects of acoustic propagation in the presence of parallel in-

ternal waves that have a smooth shape that is closer to the

natural shapes observed. Although this scenario also is not

realistic for the ocean, as perfectly straight internal waves

never exist, the following numerical examples demonstrate

the quantitative importance of the fundamental mechanisms

discussed in previous sections, specifically the horizontal

modal refraction and normal mode coupling, which govern

acoustic propagation through real ocean waveguides.

Numerical methods for three-dimensional acoustics

coupled mode propagation in range dependent environments

are complicated and generally require a considerable amount

of computing power and memory. Three-dimensional PE

techniques30,31 are perhaps the most efficient ways to accom-

plish the task of creating a pressure field numerically. In par-

allel internal waves applications, we can eliminate the

dependence in the direction along the wave crests. For such

cases, there exists a useful Fourier transform based

method32,33 that allows one to divide a three-dimensional

mode coupling problem into many standard34 two-

dimensional problems (see Appendix A for details). This

technique is useful for mode calculations, since it gives the

precise solution and allows all grazing angles as well as

backscattering to be taken into account, unlike other avail-

able PE algorithms.

The two-layer background waveguide model, which

was discussed in previous sections, will be used for our sim-

ulations with the following parameters: c0¼ 1500 m/s,

cml¼ 1530 m/s, cbot¼ 1800 m/s, q0¼ 1000 kg/m3, H¼ 80 m,

and D¼ 15 m. We model internal waves by displacing the

interface between the water layers, but for modeling more

realistic scenarios we use the smooth wave shape this time

(left wave in Fig. 3). A sech2 function is used for modeling

the shape of internal waves (solitons),

HiwðyÞ ¼ Dþ DHiw sech2 y� ywave

W

� �
; (37)

where DHiw¼ 25 m is the amplitude of the wave used in the

simulations, W¼ 70 m is the width parameter, and ywave is

the coordinate of the wave center. Such a wave shape is as a

formal solution to the Korteweg–de Vries equation35 des-

cribing the propagation of weakly nonlinear internal waves.

The half-amplitude width of this wave is 130 m. Figure 6(a)

shows the shape of this wave (black line). In our numerical

modeling, one hundred steps are used to divide the wave-

guide inside the wave into locally range independent sectors

(the blue line in the upper panel of Fig. 6). The source fre-

quency is considered to be 100 Hz. The KRAKEN normal

mode code36 was used for computation of mode functions

and horizontal wave numbers across the wave.

Corrections to the horizontal wave numbers of the nor-

mal modes for the sectors inside the wave, with respect to

background water column values, are shown in Fig. 6(b).

The lower panel of the same figure shows the horizontal crit-

ical angles of the normal modes, which were computed with

Eq. (30). Note the minimum and maximum horizontal criti-

cal angles of 5	 and 8	, respectively.

A. Single wave

We start our modeling with a single internal wave cen-

tered along ywave¼ 0 m and an acoustic source at xs¼ 0 m,

ys¼ 500 m. For visualizing the effects of mode coupling, we

let the incident field consist of a single mode with unit am-

plitude at 1 m distance from the source. Figure 7 shows

amplitudes of modes 1–4 for the case of incident mode 1.

The crest of the internal wave is schematically shown by the

FIG. 5. (Color online) Secondary ducting due to mode tunneling. Partially

ducted energy leaks out from the duct during each interaction with the

waves.
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white dashed line, and the horizontal location of acoustic

source is shown by the red circle. By looking at the ampli-

tude of mode one, one can clearly see the HLM pattern for

y> 0. This is the result of interference between the direct ar-

rival of mode 1 and its reflection from the internal wave at

subcritical grazing angles. Although a single mode 1 is inci-

dent in this case, neighboring modes 2 and 3 have distinct

beams of reflected energy. This phenomenon corresponds to

the coupled mode reflection discussed in the previous section

at grazing angles defined by Eq. (34). Amplitude plots for

modes two and three transmitted through the internal wave

have similar beams, but symmetrical about the internal

wave. The symmetry of these beams is the result of mutual

effects of mode coupling and horizontal tunneling through

an internal wave.

The effect of the transparent resonance can be observed

by the amplitude notch in the transmitted field of mode one

[upper left pane in Fig. 7 at (x, y)¼ (10 km, �2 km)]. It is

not very distinct for this example and much stronger ampli-

tude variations due to the transparent resonance will be

shown below for the multiple wave scenario.

In Appendix B, we provide results similar to Fig. 7, but

using the analytical 3D coupled mode solution [Eqs. (23)

and Eq. (27)] for a single vertical interface. The reader can

see how similar the acoustic fields are for the smooth shaped

internal wave and its first order approximation using a single

vertical interface at which a sudden depression of the ther-

mocline occurs. A sharp interface approximating the “exact”

sech2 solution is not surprising, because the sech2 function

has a sharp slope, which the vertical sharp interface crudely

mimics. The main difference in the two models is in the am-

plitude of the reflected acoustic intensities. While the wave-

guide properties change sharply for any grazing angle at the

single vertical interface, the smooth shape internal wave sce-

nario provides more gradual transition once the horizontal

FIG. 6. (a) Internal wave of depression with amplitude of 25 m and sech2

shape (black line). Half amplitude wave width is 130 m. The blue line repre-

sents 100 steps dividing the wave into locally range independent sectors,

used in numerical modeling. (b) Changes in the horizontal modal wave num-

bers across the soliton internal wave with respect to the background water

column values. (c) Normal mode horizontal critical angles.

FIG. 7. Amplitudes of modes 1–4 for

the case of incident mode one with unit

amplitude at 1 m distance from the

source and a single internal wave of

25 m amplitude centered at ywave¼ 0 m.

Source is located at ybl¼ 500 m (red

circle). White dashed line indicates the

crest of internal wave.
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grazing angle of the incident normal mode increases.

Therefore, it is logical to expect larger amplitudes of coupled

mode reflection for the single vertical interface. Note that

the example shown in Appendix B is presented for the quali-

tative comparison only, and it is not our goal here to provide

quantitative comparisons between a smooth shape internal

wave and its single interface approximation (as studied for

normal incidence of normal modes in Refs. 2 and 3).

B. Multiple waves

In the following example, we place two identical

smooth shaped internal waves (with the same amplitude and

width as in the examples above) centered at ywave¼6300 m.

Figure 8(a) illustrates the case of horizontal ducting with an

acoustic source in between the waves (ys¼ 0 m) and an inci-

dent mode one of unit amplitude at 1 m distance from the

source. The panel depicting mode one indicates a consider-

able amount of energy trapped between the waves (12–15 dB

difference between mode one amplitudes inside and outside

of the duct). Ducted energy is known to travel over long dis-

tances, depending on the length17 and curvature15,16 of the

natural duct, since there is (almost) no cylindrical spreading

associated with its propagation. Along with the ducting of

incident mode 1, one can also note ducting of a coupled

mode 2, which is 15–20 dB weaker than the ducting of the

initial mode 1. This effect is relatively weak, and will not

likely be noticed or measured if other modes are excited at

the source. Of importance is the effect of horizontal

tunneling, which can be seen in the upper panel. At subcriti-

cal angles, energy from mode one leaks out of the duct and

is radiated outside of the duct at the critical grazing angle.

As the distance from the source increases, less energy is

radiated outside of the duct; but we still note a 7 dB differ-

ence between the tunneled and ducted modal amplitudes

15 km away from the source.

We next relocate the source to ys¼ 500 m and shift the

internal wave centers to ywave1¼ 0 m and ywave2¼�600 m,

such that source is outside of both waves, and then repeat the

simulation. The resultant modal amplitudes for the initial

mode 1 are shown in Fig. 8(b). The effect of tunneled sec-

ondary ducting is clearly seen from the amplitude plot of

mode 1. As discussed in Sec. IV, tunneled secondary ducting

is associated with the continuous leakage of modal energy

out of the duct during each interaction with the internal

wave. Once mode 1 has tunneled through the first wave

located at ywave1¼ 0 m, part of its energy ducts in between

waves (one sees increased amplitude of mode 1 in between

waves at y> 15 km). Another part of the tunneled energy

tunnels yet again with each consequent interaction with the

internal waves. By comparing the upper left panel in Fig. 7

with the same panel in Fig. 8(b), one notes slight differences

in the HLM patterns. This is caused by the energy of mode 1

which tunneled through the first wave (ywave1¼ 0 m), was

reflected by the second wave (ywave2¼�600 m), and then

tunneled back through the first wave in Fig. 8(b). One may

also note the secondary ducting of coupled mode 2. This

effect was discussed in Sec. IV, and is a result of the

FIG. 8. (a) Horizontal ducting of nor-

mal modes. An acoustic source located

at ys¼ 0 m is in between two internal

waves centered at ywave¼6300 m.

The incident field consists of a single

mode one with unit amplitude at 1 m

distance from the source. (b)

Secondary ducting. An acoustic source

at (xs, ys)¼ (0,500) m is located just

outside of the duct composed of two

internal waves centered at ywave1¼ 0 m

and ywave2¼�600 m. The incident

field consists of a single mode one of

unit amplitude at 1 m distance from the

source. White dashed lines indicate the

crests of internal waves.
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interconnection between mode coupling and horizontal tun-

neling. Compared to the tunneling of the initial mode 1,

coupled tunneling is a less noticeable effect.

The amplitudes of the modes transmitted through both

waves in Fig. 8(b) show distinct transparent resonances that

are more closely spaced in grazing angle and have bigger

amplitude fluctuations than for the case of one wave. We

noticed in our simulations that the scintillations of the modal

amplitudes transmitted through the wave train initially

increase with the number of waves in the train due to cumu-

lative transparent resonances. However, after a certain num-

ber of waves in the train (five to six in our case) having

slightly different amplitudes and widths, variability in the

nulls and maxima in the multiple resonances results in

“smearing” of the acoustic amplitude fluctuations. This is

known as saturation of the waveguide, and was observed by

Fredericks et al.5 in the SWARM95 experiment. He showed

that for a fixed source and receiver situated across the mean

direction of the internal wave crests, the root mean square of

the log-intensity over a several hour time window was near

5.6 dB, the statistical value expected for fully saturated

ocean waveguides.37

VI. CONCLUSIONS

The primary focus of this paper has been to study the

physics of 3D low frequency coupled mode acoustic propa-

gation through shallow water waveguides that contain

straight internal gravity waves. This study adds value by

increasing the physical understanding of the strong intensity

fluctuations, which have been observed multiple times1,4,10

for propagation across and along internal waves. The basis

of our studies has been the normal mode approach, which

allowed us to explain the complexities of the sound propaga-

tion in terms of simple mechanisms, mainly governed by the

geometrical (modal ray path) approximation of coupled

mode propagation through internal waves.

We used the simple sharp interface approximation for

understanding the complicated process of continuous refrac-

tion and mode coupling. Using a single vertical interface

that represented the depression of the thermocline due to an

internal wave, analytical coupled mode solutions for the

reflection from and transmission through such interfaces was

derived. We showed that this simple approximation provided

us with an analytical result that is very comparable with the

precise numerical solution for sech2 shaped internal waves.

Therefore, it can be used for a wider class of ocean acoustic

problems such as crossing internal waves, bottom sand

waves (dunes), or even long distance surface swell.38

For an azimuthal analysis of the three-dimensional

acoustic propagation through straight internal waves, we

qualitatively divided the propagation azimuths into three

sectors with respect to the horizontal grazing angles of the

normal modes. Horizontal propagation of normal modes

with horizontal grazing angles less than their critical values

leads to an almost total reflection from the ocean internal

waves. Depending on the source location relative to a group

of parallel waves, this results in either the HLM effect or

horizontal acoustic ducting (or anti-ducting) between the

waves. In addition to primary ducting between two parallel

waves, we showed that at grazing angles just below the crit-

ical values, the effects of horizontal tunneling through the

waves and the following reflections from neighboring

waves trap the modal energy in secondary ducts. On the

other hand, at steep grazing angles (approximately 35	–90	

in our examples), strong mode coupling dominates the

propagation regime. The sound intensity fluctuations in

these directions have been observed in a number of experi-

ments,1,10 and are mainly driven by strong mode coupling

and its resonant-like behavior. No significant horizontal

refraction is observed in this angular region. For the inter-

mediate grazing angle range, both horizontal refraction and

mode coupling were shown to be noticeable. At these

angles, both mode coupled reflection from the wave fronts

and secondary ducting effects are possible through mode

coupling mechanisms. However, those were shown to be

weak, and acoustic energy propagates mostly without hori-

zontal trapping in this regime.

In the real ocean, internal waves, both linear and nonlin-

ear, are not straight and have finite length. Two or more

packets of nonlinear internal waves can propagate one

through another and create complicated crossing structures.

While the acoustic effects of curvature and termination of

individual ducts on low frequency acoustics have been stud-

ied before,15–17 the effect of internal wave crossing on

acoustics has not been studied before. In our parallel studies,

we are approaching this problem using the 3D parabolic

equation technique.
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APPENDIX A: 3D MODE COUPLING AT STRAIGHT
INTERNAL WAVES

Here we describe a useful algorithm for computing

three-dimensional coupled mode solutions for the acoustic

pressure in waveguides with laterally varying properties

along the y axis (across wave crests) and the independent of

the x-coordinate (along wave crests). Assume waveguide

changes to be within the segment bya; ybc such that

cðx; y; zÞ ¼
caðzÞ; y � ya;

cðy; zÞ; ya < y < yb;

cbðzÞ; y � yb;

8><
>: (A1)

qðx; y; zÞ ¼
qaðzÞ; y � ya;

qðy; zÞ; ya < y < yb;

qbðzÞ; y � yb:

8><
>: (A2)

Similar to Sec. II, we apply the one-dimensional FT operator

to both sides of Eq. (15), and rewrite the resultant two-

dimensional separated Helmholtz equation,
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(A3)

Our initial three-dimensional mode coupling problem is now

divided into many two-dimensional problems, one for each

kx, that can be solved using known techniques. One of them

is the spectral parabolic equation (PE), introduced by Orris

and Collins39 for studying three-dimensional acoustic propa-

gation over a sloping bottom. Although the spectral PE

method is robust, it has certain limitations and does not pro-

vide the explicit physics of normal mode propagation and

coupling. To get the most accurate solution to our three-

dimensional problem, we employ the two-way coupled

mode method of solving each of the x-reduced problems.33

Following the logic of the two-dimensional two-way mode

coupling algorithm,19,34 we divide our waveguide into Nþ 1

segments by N vertical plane interfaces y¼ yj, j¼ 1;…;N
such that y1¼ ya and yN¼ yb as shown in Fig. 9. It is further

assumed that the waveguide properties do not change signifi-

cantly within each segment j and are locally range independ-

ent with density and sound speed columns qj(z) and cj(z),

respectively, and with horizontal modal wave numbers kj
rm,

and mode function sets Wj
m(z).

By placing an acoustic source into segment js and

neglecting the contribution from the continuous part of the

spectrum, the acoustic pressure field in segment j is

~pðjÞðkx; y; zÞ ¼
XM

m¼1

bUðjÞþm eikj
ymðkxÞðy�yjÞ þ UðjÞ�m eikj

ymðkxÞðyj�yÞc

�Wj
mðzÞ þ dj;js ~p

s; (A4)

where UðjÞþm and UðjÞ�m are the amplitudes of mode m traveling

in the positive and negative directions of the y axis, respec-

tively. By analogy with Eq. (17), the source contribution is

~psðkx; y; zÞ ¼
i

4pqðzsÞ
XM

m¼1

Wjs
mðzsÞWjs

mðzÞ
eikjs

ymðkxÞjy�ysj

kjs
ymðkxÞ

:

(A5)

In the above, M is the number of propagating modes, and the

y-component of the modal wave number in segment j is

defined [similarly to Eq. (18)] as

kj
ymðkxÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkj

rmÞ2 � k2
x

q
; k2

x � ðkj
rmÞ

2;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � ðk
j
rmÞ2

q
; k2

x > ðkj
rmÞ

2:

8><
>: (A6)

Using the matrix notation formalism of the two-dimensional

version of this algorithm,19 the appropriate boundary condi-

tions at interface j for the acoustic pressure and the y-compo-

nent of the particle velocity can be written as

Uðjþ1Þþ þ E
jþ1
2 Uðjþ1Þ� þ djs;jþ1S1

¼ ~C
jðkxÞðEj

1U
ðjÞþ þUðjÞ� þ djs;jS2Þ (A7)

and

Uðjþ1Þþ � E
jþ1
2 Uðjþ1Þ� � idjs;jþ1S1

¼ Ĉ
jðkxÞðEj

1U
ðjÞþ �UðjÞ� þ idjs;jS2Þ; (A8)

respectively, where djs,j denotes the Kronecker symbol as

before. Vectors UðjÞþ and UðjÞ� consist of coefficients UðjÞþm

and UðjÞ�m , respectively, the propagator matrices E
j
1 and E

j
2 are

E
j
1 ¼ diagðeikj

ymðkxÞðyj�yj�1ÞÞ; (A9)

E
jþ1
2 ¼ diagðeikjþ1

ym ðkxÞðyjþ1�yjÞÞ; (A10)

and the elements of coupling matrices ~C
j
and Ĉ

j
are

~C
j

lmðkxÞ ¼
ð

Wjþ1
l ðzÞWj

mðzÞ
qjþ1ðzÞ dz; (A11)

Ĉ
j

lmðkxÞ ¼
kj

ym

kjþ1
yl

ð
Wjþ1

l ðzÞWj
mðzÞ

qjðzÞ dz: (A12)

Vectors S1 and S2 are the source contributions at the interfa-

ces js� 1 and js and consist of elements s1,m, m¼ 1;…;M
and s2,m, m¼ 1;…;M, respectively, where

s1;m ¼
iWjs

mðzsÞeikjs
ymðys�yjs�1Þ

4pqðzsÞkjs
ymðkxÞ

; s2;m ¼
iWjs

mðzsÞeikjs
ymðyjs�ysÞ

4pqðzsÞkjs
ymðkxÞ

:

(A13)

The Sommerfeld radiation condition implies that

Uð1Þ� ¼ 0;

UðNþ1Þþ ¼ 0: (A14)

FIG. 9. (Color online) The range dependent part of the waveguide bya; ybc is

divided by N vertical interfaces yj, j ¼ 1;…;N into Nþ 1 segments such

that y1¼ ya, yN¼ yb. Within each segment, the waveguide properties do not

change significantly and are thus locally range independent. The solution

within each homogeneous segment j is a sum of right and left going plane

waves with amplitudes UðjÞþm and UðjÞ�m , respectively. Segment js containing

the acoustic source has an additional source term ~ps in the solution.
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By combining all the equations together into one matrix

block form, one gets

R1
2 �I 0

R1
4 0 �I

0 0 0 0

0 0 0 0
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1 R
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; (A15)

where

R
j
1 ¼

~C
j þ Ĉ

j

2
E

j
1;

R
j
2 ¼

~C
j � Ĉ

j

2

R
j
3 ¼ E

jþ1
2

� 	�1 ~C
j � Ĉ

j

2
E

j
1;

R
j
4 ¼ E

jþ1
2

� 	�1 ~C
j þ Ĉ

j

2
;

R5 ¼ 0;

R6 ¼ � E
js
2

� 	�1

;

R7 ¼
~C

js þ Ĉ
js

2
;

R8 ¼ E
jsþ1
2

� 	�1 ~C
js � Ĉ

js

2
; (A16)

and I is the identity matrix.

Having solved the block matrix equation above for mul-

tiple evenly spaced values of kx, the pressure kernel is con-

structed using Eq. (A4) and converted to p(x, y, z) with the

one-dimensional IFT operator [Eq. (22)].

In the absence of physical attenuation in the system

(bottom loss is a good example), Eq. (A15) has a singular so-

lution in segment j when

kx ¼ kj
rm; j ¼ 1;…;M:

Although including physical attenuation smoothes the kernel

slightly, it still requires a large number of sampling points to

avoid aliasing. Another method that requires much fewer

sampling points consists of shifting the integration contour

into the complex plane by an offset e. This technique is

described in details in Refs. 18 and 19. In our applications,

we evaluated the kernel at Nkx
¼ 213 points, and the value of

the offset that guaranteed the wrap-around attenuation to be

down by 50 dB was

e ¼ 12kmax
x

2p Nkx
� 1ð Þlog e

; (A17)

which is four times greater than that required for applications

of sound reflection from the sea bottom.19

APPENDIX B: HORIZONTAL LLOYD’S MIRROR AT A
SINGLE VERTICAL INTERFACE

We provide an illustrative example of an analytical

solution for 3D coupled mode reflection and transmission

through a vertical interface using Eqs. (23) and (27) in Figs.

10 and 11. The background waveguide model (region 0) is

identical to that used in Sec. V, and its perturbation in region

1 is modeled by a sudden depression of the thermocline by

DHiw¼ 25 m along the y axis (Fig. 10). Similar to the

smoothed internal wave numerical example shown in Fig. 7,

we set the incident acoustic field to be a single mode one with

unit amplitude at 1 m horizontal distance from the source

location. Figure 11 shows the resultant amplitudes of modes

1–4. The reader will notice strong similarities between the

acoustic fields for a smooth shaped internal wave in Fig. 7

and its single vertical interface approximation.

FIG. 10. A sharp vertical interface divides a waveguide into an unperturbed

part (region 0) and a perturbed part (region 1). The waveguide consists of

two homogeneous water layers (the upper layer having slightly higher tem-

perature and sound speed) overlaying a bottom fluid half space. Perturbation

of the water column in region 1 is modeled by depression of the interface

between the water layers by DHiw.
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