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The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background
models substantiated by reactor-on data. In this analysis, we present a background-model-independent
measurement of the mixing angle θ13 by including 7.53 days of reactor-off data. A global fit of the
observed antineutrino rates for different reactor power conditions is performed, yielding a measurement
of both θ13 and the total background rate. The results on the mixing angle are improved significantly
by including the reactor-off data in the fit, as it provides a direct measurement of the total background
rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on
both Gd and H, whose combination yields sin2(2θ13) = 0.102 ± 0.028(stat.) ± 0.033(syst.). The results
presented in this study are fully consistent with the ones already published by Double Chooz, achieving
a competitive precision. They provide, for the first time, a determination of θ13 that does not depend on
a background model.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Recently, three reactor neutrino experiments, Double Chooz [1],
Daya Bay [2] and RENO [3] have successfully determined the lep-
tonic mixing angle θ13 to be clearly non-zero. These disappearance
experiments are sensitive to the oscillation amplitude and have
measured sin2(2θ13) to be ∼ 0.1. They identify reactor antineutri-
nos via the inverse beta decay (IBD) reaction ν̄e p → e+n and use a
coincidence between the prompt positron and the delayed neutron
capture signals in order to separate antineutrinos from background
events. However, correlated events due to fast neutrons, stopping
muons and cosmogenic generated radio-nuclides form a danger-
ous background in experiments with shallow overburden. So far,
all published results are based on background models, which are
derived from data taken during reactor-on periods using certain as-
sumptions about the origin of correlated background events. This
procedure contributes, along with detection efficiency and reactor
source errors, to the total systematic uncertainty. In this paper, we
present a first measurement of θ13 which is free from background
assumptions.

Of the three experiments, Double Chooz is the only one to be
exposed to only two reactors. The total antineutrino flux therefore
changes significantly during reactor maintenance periods when
one of the two reactor cores is not functioning. At certain times
both cores at Chooz were turned off simultaneously, providing the
unique opportunity to determine the background in a model inde-
pendent way. In this paper we present an analysis of the Double
Chooz data in which the background rate and the oscillation ampli-
tude are determined simultaneously by analyzing the ν̄e candidate
rates for different reactor conditions ranging from zero to full ther-
mal power. The background rate has been proven to be constant in
time [4], thus being the same in all the considered reactor peri-
ods. We restrict our analysis to rate measurements only. In order
to identify antineutrino events via the inverse beta decay, we use
both neutron captures on Gd and on H. Finally, we present a com-
bined Gd- and H-analysis and compare our final result with the
published ones that rely on the energy spectrum information. This
analysis is also useful as a direct test of the background model
used for the Double Chooz oscillation analysis. We will show that
our background rate determination is in full agreement with the
prediction derived from our background model.

2. Reactor Rate Modulation analysis

In order to measure the mixing angle θ13 by means of reactor
neutrino experiments, the observed rate of ν̄e candidates (Robs)
is compared with the expected one (Rexp). As Double Chooz data
have been taken for different reactor thermal power (P th) condi-
tions, this comparison can be done for different expected averaged
rates, in a Reactor Rate Modulation (RRM) analysis. In particular,
there are three well-defined reactor configurations: (1) the two
reactors are on (2-On data), (2) one of the reactors is off (1-Off
reactor data), and (3) both reactors are off (2-Off reactor data). For
the 1-Off and 2-Off reactor data, the expected antineutrino rate
takes into account the residual neutrinos (Rr-ν ) generated after the
reactors are turned off as β decays keep taking place. While the
antineutrino flux generated during reactor operation is computed
as described in [1], the rate of residual antineutrinos is estimated
as described in [4].

From the comparison between Rexp and Robs at different reac-
tor powers both the value of θ13 and the total background rate B
can be derived. The correlation of the expected and observed rates
follows a linear model parametrized by sin2(2θ13) and B:

Robs = B + Rexp = B + (
1 − sin2(2θ13)ηosc

)
Rν, (1)

where Rν is the expected rate of actual antineutrinos in absence
of oscillation and ηosc is the average disappearance coefficient,

http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Expected unoscillated antineutrino event rate as a function of the total
baseline-adjusted thermal power (P∗

th = ∑Nr
i P i

th/L2
i ), for the n-Gd and n-H anal-

yses. P∗
th is presented in percentage of the nominal power.

〈sin2(�m2L/4E)〉. This coefficient is computed by means of sim-
ulations for each one of the data points as the integration of the
normalized antineutrino energy (E) spectrum multiplied by the os-
cillation effect driven by �m2 (taken from [5]) and the distance
L between the reactor cores and the detector. The average ηosc
value corresponding to the full data sample is computed to be
0.55. Fitting the data to the above model provides a direct mea-
surement of the mixing angle and the total background rate. In
previous Double Chooz publications [1,6], the rates and the en-
ergy spectra of the three dominant background sources (fast neu-
trons, stopping muons and cosmogenic isotope β-n decays) were
estimated from reactor-on data, therefore building a background
model that was fitted along with the mixing angle. In contrast,
the RRM analysis extracts the total background rate from data
in a model-independent and inclusive way, where all background
sources (even possible unknown ones) are accounted for. The ac-
curacy and precision on the fitted value of B , as well as on θ13,
rely mostly on the 2-Off reactor data, as this sample provides a
powerful lever arm for the fit. As the accidental background in the
observed rate is known to 0.2% by means of the off-time coinci-
dences, the RRM analysis is performed with accidental-subtracted
candidate samples. Therefore, hereafter the total background B
refers to all background sources except the accidental one. The
RRM oscillation analysis can be performed separately with the ν̄e
candidate samples obtained with neutron captures on Gd (n-Gd)
and H (n-H), as well as with a combination of these.

In the current analysis, the data sample in [1,6] is used along
with an extra 2-Off sample collected in 2012 [4], which increases
the total 2-Off run time to 7.53 days. Within the corresponding
total live time of 233.93 days (246.4 days), 8257 (36 883) candi-
dates (including accidental background) were found according to
the n-Gd (n-H) selection, 8 (599) of which were observed during
the 2-Off period. The number of antineutrino events expected to
be observed in the reactor-on periods was 8440 (17 690). During
the 1-Off period, the number of predicted residual events is 11.2
(28.7), while within the 2-Off period, 1.4 (3.7) residual events are
expected in the n-Gd (n-H) selection. The data are distributed in
7 bins of P th, corresponding to two different sets of bins of Rexp

for the n-Gd and n-H ν̄e candidate samples. The binning used for
this analysis is shown in Fig. 1, where the expected rates are pre-
sented as a function of the total baseline-adjusted thermal power,
P∗ = ∑Nr P i /L2, where Nr = 2 is the number of reactors and Li
th i th i
Fig. 2. Uncertainty in the n-Gd ν̄e expected rate for reactor-on data. Triangles show
the rate error due to P th uncertainty, while circles stand for the total rate error
accounting for all reactor-related systematics sources, as described and estimated
in [1].

is the distance between the detector and reactor i. The error bars
in the expected rates (not visible for all data points) account for
the systematic errors.

3. Systematic uncertainties

There are three sources of systematics to be accounted for in
the RRM analysis: (1) detection efficiency (σd), (2) residual ν̄e pre-
diction in reactor-off data (σν ), and (3) ν̄e prediction in reactor-on
data (σr). The detection efficiency systematics in n-Gd (n-H) ν̄e
sample are listed in [1] (see also [6]), from which the total un-
certainty σd is derived to be 1.01% (1.57%). The uncertainty in the
rate of residual antineutrinos has been computed with core evolu-
tion simulations as described in [4] for the 1-Off and 2-Off reactor
periods: a σν = 30% error is assigned to Rr-ν . Finally, a dedicated
study has been performed in order to estimate σr as a function of
the thermal power.

To a good approximation, all sources of reactor-related system-
atics are independent of P th, with the exception of the uncertainty
on P th itself, σP. This fractional error is 0.5% [1] when the reac-
tors are running at full power, but it increases as P th decreases. In
[1,6], σP is assumed to be 0.5% for all data. This is a very good ap-
proximation when one integrates all the data taking samples, and
consequently all reactor operation conditions, as more than 90%
of the data are taken at full reactor power. However, this is not
a valid approximation in the current analysis as it relies on sep-
arating the data according to different reactor powers. In order to
compute σP for different P th, an empirical model is fitted to a sam-
ple of measurements provided by EdF (the company operating the
Chooz nuclear plant). An effective absolute uncertainty of about
35 MW is derived from the fit, being the dominant component of
the model. This absolute error translates into a 1/P th dependence
of the relative power uncertainty, which is used to compute the
errors in Rexp. The resulting errors (both from P th only and from
all reactor systematic sources listed in [1]) are shown in Fig. 2, for
the case of the n-Gd ν̄e expectation. The total error σ i

r (where i
stands for each data point) ranges from 1.75% (reactors operating
at full power) to 1.92% (one or two reactors not at full power). In
a conservative approach, the σ i

r errors are assumed to be fully cor-
related.
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Fig. 3. RRM (sin2(2θ13), BGd) fit with n-Gd ν̄e candidates. Empty (solid) best-fit
point and C.L. regions show the results without (with) the 2-Off data sample.

4. Background independent oscillation results

The Robs fit is based on a standard χ2 minimization. Without
taking into account the 2-Off data, the χ2 definition is divided into
two different terms: χ2 = χ2

on + χ2
pull, where χ2

on stands for 2-On

and 1-Off reactor data and χ2
pull accounts for the systematic uncer-

tainties. Assuming Gaussian-distributed errors for the data points
involving at least one reactor on, χ2

on is built as follows:

χ2
on =

N∑
i

(Robs
i − Rexp

i [1 + αd + kiα
r + wiα

ν ] − B)2

σ 2
stat

, (2)

where N stands for the number of bins (6, as shown in Fig. 1), and
where αd, αr and αν stand for pulls associated with the detection,
reactor-on and residual antineutrino systematics, respectively. The
weights ki are defined as σ i

r /σr, where σr = 1.75% stands for the
error when the cores operate at full power. The fraction of residual
antineutrinos, wi , in each data point is defined as wi = Rr-ν

i /Rexp
i .

The term χ2
pull incorporates the penalty terms corresponding to σr,

σd and σν :

χ2
pull =

(
αd

σd

)2

+
(

αr

σr

)2

+
(

αν

σν

)2

. (3)

According to this χ2 definition, a fit to the two free parameters
sin2(2θ13) and the total background rate BGd is performed with
the n-Gd candidates sample. The results are shown in Fig. 3 with
best-fit point (empty star) and C.L. intervals. The best fit values are
sin2(2θ13) = 0.21±0.12 and BGd = 2.8±2.0 events/day, where the
errors correspond to �χ2 = 2.3. Although the precision is poor,
these results are consistent within 1σ with the ones presented
in [1]. In particular, the best fit value for the background is consis-
tent with the independent estimate in [1] (1.9 ± 0.6 events/day)
and with the direct measurement obtained from the 2-Off data
in [4]: B2Off = 0.7 ± 0.4 events/day (once accidental background is
subtracted).

In order to improve the RRM determination of sin2(2θ13), the
2-Off data can be incorporated into the fit as an additional data
point for P th = 0 MW. The χ2 is built then as χ2 = χ2

on + χ2
off +

χ2 . Due to the low n-Gd statistics in the 2-Off reactor period, the
pull
Fig. 4. RRM fit with n-Gd ν̄e candidates including 2-Off data. The null oscillation
hypothesis assuming the background estimates obtained in [1] is also shown for
comparison purposes.

corresponding error in Robs is considered to be Poisson-distributed.
As a consequence, χ2

off is defined as a binned Poisson likelihood
following a χ2 distribution:

χ2
off = 2

(
Nobs ln

Nobs

B + Nexp[1 + αd + αν ]
+ B + Nexp[

1 + αd + αν
] − Nobs

)
, (4)

where Nobs = Robs · Toff and Nexp = Rr-ν · Toff; Toff the live time of
the 2-Off data sample. The results of the (sin2(2θ13), B) fit includ-
ing the 2-Off data are presented in Fig. 3 with solid best-fit point
and C.L. intervals. The best fit values are sin2(2θ13) = 0.107±0.074
and BGd = 0.9 ± 0.6 events/day.

As the 2-Off data provide the most precise determination of
the total background rate in a model-independent way, the in-
troduction of this sample (or equivalently the value of B2Off) in
the RRM fit provides a direct constraint to B . Therefore, hereafter
we consider θ13 to be the only free parameter in the fit, while
B is treated as a nuisance parameter. Therefore, the best fit error
on θ13 corresponds to �χ2 = 1. The outcome of the correspond-
ing fit using the n-Gd sample can be seen in Fig. 4. The best
fit value of sin2(2θ13) is now 0.107 ± 0.049, with a χ2/dof of
4.2/5. The value of θ13 is in good agreement with the result of [1]
(sin2(2θ13) = 0.109 ± 0.039), while the error is slightly larger due
to the fact that the RRM analysis does not incorporate energy spec-
trum information. The RRM fit does not change the measurement
of the total background rate provided by the 2-Off data signifi-
cantly, as the best fit estimate of BGd is 0.9 ± 0.4 events/day.

While the best fit value of the total background rate depends
on the antineutrino candidate selection cuts, the best fit of θ13
must be independent of these cuts. In order to cross-check the
above results, the RRM analysis has also been performed for a
different set of selection cuts: those applied in the first Double
Chooz oscillation analysis [7]. This selection does not make use of
the muon outer veto (OV) and does not apply a showering muon
veto. Therefore, the number of correlated background events in the
ν̄e candidates sample is increased (according to the estimates, by
1.3 events/day). In this case, the input value for the background
rate provided by the 2-Off data is B2Off = 2.4 ± 0.6 events/day [4].
The fit yields sin2(2θ13) = 0.120 ± 0.053, which is fully consistent
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with the above results, while the background rate is not signifi-
cantly modified either in this case (BGd = 2.6 ± 0.6 events/day).

As shown in [6], the precision of the oscillation analysis based
on n-H captures is not as good as the n-Gd one due to the
larger systematic uncertainties and the larger accidental contam-
ination. This applies also to the RRM analysis. The n-H fit yields
sin2(2θ13) = 0.091 ± 0.078 (B2Off = 10.8 ± 3.4 events/day, BH =
8.7 ± 2.5 events/day) with χ2/dof = 4.8/5, consistent with the re-
sults in [6] (sin2(2θ13) = 0.097 ± 0.048). The n-H candidates can
be fitted together with the n-Gd ones in order to increase the pre-
cision of the analysis and to test the consistency of both selections.
In order to perform a global fit, a combined χ2 is built from the
sum of the Gd and H ones:

χ2 = χ2
Gd + χ2

H + χ2
pull. (5)

While σr and σν are fully correlated between the n-Gd and
n-H candidates samples (they do not depend on selection cuts,
but on reactor parameters), there is a partial correlation (ρ) in
the detection efficiency uncertainty, which has been estimated to
be at the level of 9%. This overall factor comes from correlated
and anti-correlated contributions. The correlated contributions are
due to the spill-in/out events (IBD events in which the prompt and
the delayed signal do not occur in the same detection volume, as
defined in [1]) and the number of protons in the detection vol-
umes. The anti-correlated contribution is due to the uncertainty
in the fraction of neutron captures in Gd and H. From this ρ
value, one can decompose σd into uncorrelated (σ d

Gd-u = 0.91% and

σ d
H-u = 1.43%) and correlated contributions (σ d

c = 0.38%) for the
n-Gd and n-H data. The pull αd in Eq. (3) is now divided into three
terms accounting for the correlated and uncorrelated parts of the
detection error: αd

Gd-u, αd
H-u and αd

c . Accordingly, χ2
pull is defined

as:

χ2
pull =

(
αd

Gd-u

σ d
Gd-u

)2

+
(

αd
H-u

σ d
H-u

)2

+
(

αd
c

σ d
c

)2

+
(

αr

σ r

)2

+
(

αν

σν

)2

. (6)

The combined Gd-H RRM fit is shown in Fig. 5. The best fit
value of the mixing angle is sin2(2θ13) = 0.102 ± 0.028(stat.) ±
0.033(syst.), for χ2/dof = 8.0/11. This value is consistent within
1σ with respect to the single n-Gd and n-H results, while the pre-
cision is slightly improved. The relative error on sin2(2θ13) goes
from 46% to 42%. As in the previous results, the output values of
the total background rates are consistent with the input values:
BGd = 0.9±0.4 events/day and BH = 9.0±1.5 events/day. The im-
pact of the correlated part in σ d has been proven to be negligible
by performing a fit assuming no correlation.

5. Comparison of Double Chooz θ13 results

Including this novel RRM analysis, Double Chooz has released
four different θ13 analysis results. These results are obtained as
follows: (1) with n-Gd candidates in [1], (2) with n-H candidates
in [6], (3) with n-Gd candidates and the RRM analysis, and (4) with
n-H candidates and the RRM analysis. Beyond the common detec-
tion and reactor-related systematics, these four analyses rely on
two different candidate samples (n-H and n-Gd), and two different
analysis techniques (rate + shape fit with background inputs and
RRM). The four sin2(θ13) values obtained are presented in Fig. 6,
as well as the combined Gd-H RRM result. All the values are con-
sistent within 1σ with respect to the most precise result, which is
provided by the rate + shape fit.
Fig. 5. RRM combined fit using n-Gd and n-H ν̄e candidates.

Fig. 6. Summary of published Double Chooz results on θ13: the n-Gd [1] and n-H
[6] rate plus shape (RS) results, and the n-Gd and n-H RRM ones. For comparison
purposes, the combined Gd-H RRM result is also shown. The shaded region shows
the 68% C.L. interval of the n-Gd RS fit.

6. Summary and conclusions

While the oscillation results published by the Double Chooz
Collaboration in [1,6,7] rely on a background model derived from
reactor-on data, the RRM analysis is a background model indepen-
dent approach. Both θ13 and the total background rate are de-
rived without model assumptions on the background by a global
fit to the observed antineutrino rate as a function of the non-
oscillated expected rate for different reactor power conditions. Al-
though the RRM fit with only reactor-on data does not achieve
a competitive precision on θ13, it provides an independent de-
termination of the total background rate. This rate is consistent
with the Double Chooz background model and with the measure-
ment of the total background from the 7.53 days of reactor-off
data [4]. As this 2-Off sample provides the most precise determi-
nation of the total background rate in a model independent way,
it is introduced in the RRM analysis in order to improve the re-
sults on θ13, which remains as the only free parameter in the fit.
The best fit value of sin2(2θ13) = 0.107 ± 0.049 is found by an-
alyzing the n-Gd ν̄e candidates. Finally, the precision on θ13 is
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further improved by combining the n-Gd and n-H ν̄e samples:
sin2(2θ13) = 0.102±0.028(stat.)±0.033(syst.). The outcome of the
RRM fit is consistent within 1σ with the already published results
for θ13, yielding a competitive precision. Beyond the cross-check of
the background estimates in the Double Chooz oscillation analyses,
the RRM analysis provides, for the first time, a background model
independent determination of the θ13 mixing angle.
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