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Abstract— In robotic single port surgery, it is desirable for a 
manipulator to exhibit the property of variable stiffness. Small 
port incisions may require both high flexibility of the 
manipulator for safety purposes, and high structural stiffness 
for operational precision and high payload capability. This 
paper presents a new hyper-redundant tubular manipulator 
with a variable neutral-line mechanisms and adjustable 
stiffness.  

A unique asymmetric arrangement of the tendons and the 
links realizes both articulation of the manipulator and 
continuous stiffness modulation. This asymmetric motion of 
the manipulator is compensated by a novel actuation 
mechanism without affecting its structural stiffness.  

The paper describes the basic mechanics of the variable 
neutral-line manipulator, and its stiffness characteristics. 
Simulation and experimental results verify the performance of 
the proposed mechanism.  

Index Terms - Variable neutral-line mechanism, snake–like 
manipulator, adjustable stiffness, medical robot. 

I. INTRODUCTION 
NAKE-like manipulators have unique characteristics 
and advantages such as flexibility, safety, dexterity, and 

potential for minimization. Most snake-like manipulators 
can be roughly categorized into flexible manipulators and 
hyper-redundant manipulators. Trunk and tentacle-like 
devices made from soft materials belong to the flexible 
manipulator category [1, 2, 3, 4] and they have inherent 
passive compliance, which is one of the great advantages of 
these manipulators. On the other hand, hyper-redundant 
manipulators [5, 6, 7] are composed of many rigid links and 
joints, which can be actuated by embedded motors as in [7], 
or, by external actuators and transmission components such 
as tendons or flexible shafts [5, 6]. Most of the externally 
actuated hyper-redundant manipulators have an under 
actuated property, and thus they also exhibit passive 
compliance like flexible manipulators.  
    Passive compliance is useful for safe manipulation of 
unknown or delicate objects, human-robot interaction, and 
multi-arm cooperation without complex force-feedback 
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schemes. This compliance is caused by flexibility of the 
structural material, or deformable components in the 
mechanism. Because the compliance is determined by the 
material stiffness and the pose of the manipulators [2, 8], the 
stiffness remains fixed if the pose is determined. 

Recently, snake-like manipulators are receiving high 
attention due to rising research interest in minimally 
invasive surgery (MIS) and natural orifice translumenal 
endoscopic surgery (NOTES) [9, 10, 11]. MIS and NOTES 
have huge advantages including low trauma, fast healing and 
minimal or no scarring. Snake-like devices are well suited 
for accessing deep inside of the patient’s abdominal cavity 
through a small entry point, while today’s rigid (and 
typically straight) tools have difficultly achieving such 
access. However, the fixed stiffness of snake-like devices 
hinder their ability to achieve high stiffness for high payload 
operation and exact positioning, and low stiffness for safe 
movement without harming internal organs [12, 13]. In order 
to overcome this drawback, various stiffening mechanisms 
have been developed. One popular approach relies on the 
use of wire tension and friction between rigid links [5, 14]. 
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Fig.1. (a) 4-DOF variable neutral-line manipulator and actuation system,  

(b) Single-port surgical system using the variable neutral-line 
manipulator  
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    However, the wire tension must be very high, and thus the 
links must be strong enough to endure high tension, since the 
stiffening force arises solely from the friction between the 
links. Moreover, the links can occupy substantial space, and 
thus it is difficult to create a compact manipulator that also 
allows passage of miniaturized surgical tools (e.g. one with a 
large hollow space at the center).  

    Recent research has focused on the use of 
tunable-stiffness materials, including field-activated 
materials like magnetorheological (MR) or 
electrorheological (ER) fluids [15, 16]. These technologies 
are promising for precise control of damping, and are mostly 
used in active damping mechanisms such as tunable 
automotive suspensions. However, there are limitations in 
their achievable range of the elastic modulus, or yield 
strength, when they are activated. Thermally activated 
materials such as wax or solder can also be used as 
tunable-stiffness elements to create locking mechanisms in 
soft robotic applications [17, 18]. However, achieving 
tunable stiffness with these materials requires long activation 
times (typically on the order of seconds).  

 Particle jamming technology using granular media has 
also recently been researched as another way to achieve 
tunable stiffness [19, 20].  Particle jamming has interesting 
features including high deformability in its fluid-like state, 
and drastic stiffness increase in its solid-like state, without 
significant change in volume, but it requires substantial 
volume to achieve sufficient stiffness.  In order to overcome 
this problem, reduced dimensional jamming approaches, 
such as layer jamming of thin frictional flaps of material, 
have been investigated and exhibited drastic stiffness 
changes within a small volume [21,22]. 

To overcome the drawbacks of previous methods, we 
propose a new snake-like mechanism, named a variable 
neutral-line mechanism as shown in Fig.1, whose stiffness 
can be changed continuously, even while in motion. 
Although it is also composed of rigid links and actuated by 
tendons, its unique joint mechanism and actuation system 
make stiffness control possible by varying the tension of the 

tendons. Its simple, thin, and hollow structure (top left of 
Fig.1(a)) is suitable for surgical application such as MIS or 
NOTES, because it can be used as a flexible guide tube 
through which multiple miniaturized surgical tools such as 
endoscopes and surgical instruments can be inserted. Fig.1(b) 
shows a single port surgical system which is composed of 
dual 7-DOF instruments and one 3-DOF endoscopic device 
mounted at the end of a guide tube made by the two identical 
2-DOF variable neutral-line  manipulators. In aid of the 
rotation and insertion motion of the mounting system, the 
guide tube has in total 6-DOF, which means that the guide 
tube can place the dual instruments and the endoscope at 
arbitrary position in the abdominal cavity with an arbitrary 
approach direction. Then, the human-like configuration of 
the instruments and the endoscope can provide an intuitive 
teleoperational environment for a surgeon. Due to dexterity 
and adjustable stiffness of the variable neutral-line 
manipulator, extremely difficult surgeries using a single port 
(such as lower anterior resection or partial nephrectomy) can 
be performed significantly more easily and safely. 

The paper is structured as follows. In Section II, we 
introduce the basic mechanics of the proposed manipulator 
without external forces, and then, in Section III, we 
exhaustively investigate the deflection shape under an 
external force. Based on this, Section IV derives important 
stiffness properties of the variable neutral-line manipulator. 
Section V presents an actuation system that can control both 
of the bending angle and the stiffness of the manipulator 
independently. Section VI validates the stiffness model 
through experiments. Section VII discusses key design 
parameters related to the stiffness, and suggests several 
useful design variations without losing the advantage of the 
proposed mechanism, and this is followed by the paper's 
conclusion. 

II. BASIC MECHANICS OF VARIABLE NEUTRAL-LINE 
MANIPULATOR 

A one-dimensional concept of a traditional snake-like 
manipulator is shown in Fig.2. This structure is composed of 
a flexible backbone at the center with evenly placed disks 
(the proximal part of Fig.2(a)) [1], or multiple links with 
pivots at their centers, with springs fixed around them (the 
distal part of Fig.2(a)) [6]. They are actuated by a pair of 
wires placed at an equal distance from the center. Fig.2(a) 
illustrates an example of the bent pose when the left-side 
wire is pulled and the other is loosened. If we assume that 
the compression of the backbone (or pivot mechanism) is 
negligible compared to bending, the length of the centerline 
is invariant. The relationship between amount of the 
movement of the right and left wires, rlΔ  and llΔ , and the 

bending angle of the manipulator, θ , can be easily obtained 
as follows: 

θ
2
wll lr =Δ−=Δ .                                                     (1) 

  
Fig.2. One dimensional illustration of traditional snake-like 

manipulators 
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where w  denotes the width between the left and right wires. 
This equation shows that the left and right wires have the 
same magnitude and opposite direction. This symmetric 
movement of wires provides an under actuated mode that 
introduces passive compliance, as mentioned in the previous 
section. When we consider a situation where the wires are 
fixed at a straight pose, as in Fig.2(b), and an external force 
is applied to the lateral direction at the end of the 
manipulator, it tends to bend easily into to an s-shape 
regardless of wire tension, as shown in Fig.2(c). This is 
because the manipulator can be moved to various 
configurations without changing the wire length. Therefore, 
the manipulator stiffness to resist bending comes solely from 
the fixed stiffness of the flexible backbone, or the springs, 
and not from wire tension.  

 

 
Moreover, in order to obtain higher stiffness, stiffer 

materials must be used and, accordingly, a higher wire 
tension is needed to overcome the stiffness of the backbone 
or springs, which can lead to a reduction of available drive 
actuator force and a larger required wire diameter . 

On the other hand, if asymmetric movement of the wire 
pair can be achieved, the stiffness of the manipulator can be 
a function of the wire tension. Fig.3 shows an example of an 
asymmetric mechanism. This mechanism employs 
self-similar links with rolling joints, instead of pivots or a 
backbone, where the joint has arc-shape contact surfaces. 
When it bends similar to Fig.3(a), movement of the loosened 
wire rlΔ is longer than that of pulled wire llΔ , which leads 
to asymmetric behavior. When a lateral force is applied, as 
shown in Fig.3(c), the total movement of the wires

+− Δ+Δ ll  has a positive value. This is important, since it 

implies that proper tension of the wires dictates the force 
maintaining the shape of the manipulator. (A detailed 
analysis of the relationship between wire tension and 
stiffness of the manipulator will be investigated in Section 
III and IV.)  In contrast to traditional snake-like 
manipulators, the location of the length invariant neutral-line 
shown in Fig.3 is not fixed at the center. In mechanics, 
neutral-line (or neutral surface) denotes a conceptual line 
within a beam or cantilever, where the there is no 
compression or tension and thus the length does not change. 
As the position of the neutral-line varies according to the 
pose of the proposed mechanism, this device is termed a 
variable neutral-line manipulator.  

The contact surface of the joint does not need to have a 
circular shape. Many other asymmetric joints can produce 
the variable stiffness property, but we will here focus on 
cylindrical rolling joint for simplicity, and discuss other 
possibilities briefly in Section VII. In the remaining part of 
this section, the basic mechanics and the asymmetric 
property in the situation of no external forces are described. 

A. 1 DOF Variable Neutral-line Manipulator 
From the geometry of each joint, the relationship between 

the bending angle of the manipulator and the movement of 
the wires can be derived. If we assume that there is no 
external force, the bending shape will be arc shapes, as in 
Fig.3(a). Let us define n and φΔ  as the number of joints 
(not links), and the bending angle of one joint with respect to 
the proximal link. As already defined, θ is the bending angle 
of the manipulator tip, and as the manipulator has an arc 
shape, we know that φθ Δ= n . Fig.4 illustrates a close-up 

view of the rolling joint, where r , w , α , ld  and rd
represent the radius of contact surface, the width between 
the left and right wires, half of the contact angle, and local 
length of the left and right wires, respectively. From Fig.4(b), 

ld  and rd can be calculated as follows: 

⎟
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Therefore, the movements of the left and right wires, ldΔ  

and rdΔ , are  
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(3) 

Consequently, the relationship between θ and the overall 

length change of the left and right wire, llΔ  and rlΔ , 
without any external force, can be obtained as (4). Here we 
can notice that the sum of the length change is nonzero. 

 
Fig.3  1-dimensional concept of the variable neutral-line 

manipulator  
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Fig.4  Close-up view of  the 1-dimensional rolling joint  
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B. 2 DOF Variable Neutral-line Manipulator 
Fig.5 illustrates a diagram of a 2-degree of freedom 

manipulator. Each link shown in Fig.5(a) has two cylindrical 
contact surfaces, oriented orthogonally to each other. At the 
center of the link there is a large hole, which distinguishes 
the device structurally from many other snake-like 
manipulators. The contact surfaces between adjacent links 
form rolling joints, and they are alternately placed at 
orthogonal directions to each other as shown in Fig.5(b) and 
(c). In order to prevent slip between the rolling surfaces, 
flexures can be used which will be described in Sect V and 
Fig.14(b). 

 In the case of the 2-DOF manipulator, as shown in 
Fig.6(b), there are two wire pairs, and the motion of the two 
pairs affects each other. In other words, when the 
manipulator is deflected by one wire pair’s motion, the other 
wires placed at the center of links (the red line in Fig.6(b)) 
are also pulled. Let us call the horizontal motion and vertical 
motion in Fig.6(a) pan motion and tilt motion, respectively, 
and let the corresponding wire pairs be called the pan wire 
pair and tilt wire pair. The manipulator has the same number 
of links n  for each pan motion and tilt motion. Also, pφΔ  

and tφΔ denote bending angles for pan motion and tilt 

motion of a joint, and pldΔ , prdΔ , tldΔ  and trdΔ  denote 

displacements of  the lengths of the  pan wire pair and tilt 
wire pair of a joint, respectively. In a similar way as (3), the 
displacement of the pan wires can be calculated as follows: 
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(5) 
The term )2/cos(1 tφΔ− in (5) implies that the tilt motion 

contributes to the movement of the pan wires. It can be 
derived from the diagram of the rolling joint in Fig.6(b). In a 
similar way as (4), the relationship between the angle of the 
end effector and the length change of the pan wires can be 
obtained as: 
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where pllΔ , prlΔ , pθ  and tθ denote the overall 

displacement of the left pan wire and right pan wire, and the 
components of the end effector tip angle in the directions of 
pan motion and tilt motion, respectively. These equations are 
valid when an external force does not exist, and the bending 
angle of each joint has the same angle. The relationship 
between the angle of the end effector and the length change 
of the tilt wires also can be calculated in the same way.  

III. DEFLECTION CHARACTERISTICS UNDER EXTERNAL 
FORCE  

In order to show that the stiffness of the manipulator is 
controllable by changing the wire tension, the bending shape 
of the manipulator under an external force will be calculated. 
In this paper, small deflections about the straight pose will 
be considered. The deflection diagrams (such as Fig.3(c) and 
Fig.7(a)) show an exaggerated shape for ease in explanation. 
Since we assume that the manipulator links are rigid, an 
axial force applied to the tip while at a straight pose causes 
no effect, and thus only lateral forces cause deflection. 
Analysis of the manipulator stiffness under an arbitrary 
bending angle, and the effect of moment loading at the end 
effector, are both beyond the scope of this paper. Therefore, 
we will focus on analysis of manipulator deflection when 
subject to a lateral force.  

Let us start with analysis of a 1-DOF manipulator. As 
shown in Fig.7(a), the amount of lateral motion d  generated 
by a lateral force in the y direction is: 

∑
=

=
n

i
ild

1

sinφ                                                              (7) 

 
 

Fig.5.  2-dimensional concept of the variable neutral-line 
manipulator 
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where l , n  and iφ  denote the length of the links, number of 
joints and the bending angle of the i th joint with respect to 
the x axis. Note that nφ is always zero. In the case of large 
deflections, the joints move differently from ordinary 
revolute joints, however since we only consider small 
motion, we approximate them as revolute joints. As the two 
wires are pulled to maintain a straight pose (refer to Fig.3(c)), 
the movements of the left and right wires are the same, i.e. 

rl ll Δ=Δ .                                                                         
(8) 

The objective is to find the pose of the manipulator under 
lateral motion that minimizes the change of length of the 
wires. Therefore the problem is to find the set of iφ  as 
follows: 

( )rl ll Δ+Δminarg
φ

                                                      (9) 

where φ  denotes the set of iφ , and thus it represents the 

deflected pose of the manipulator. llΔ  and rlΔ  in (8) and (9) 
have different values than in (4) because the manipulator is 

subject to an external force, and thus angle iφ  in each link is 

different from each other. Thus, llΔ  and rlΔ  should be 
calculated by summing the displacement of the wires of each 
link using (3). 
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where 0    , 01 =−=Δ − φφφφ iii  and 0 =nφ . 
If we substitute (10) into (8) we find: 
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Because αsin is nonzero, (8) is reduced to  
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Also, the cost function 
rl ll Δ+Δ   in (9) can be simplified 

(using (10)) as 
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Thus the minimization problem (9) can be rewritten by a 
maximization problem. Consequently, we can obtain the 
optimization problem of (13) with the two constraints (7) 
and (11) as follows: 
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Δ

∑
=

n

i

iφ . 

For a more simplified formulation, it is worthwhile to 
consider the geometric property of a tendon-supported 
structure under lateral forces.  The lateral force as shown in 
Fig.7(a) generates a torque, or moment, at the proximal end 
of the manipulator, and the wire pair delivers the same 
amount of torque to the distal end [2]. As a result, the 
manipulator deflects into a symmetric s-shape, because the 
same amount of torque is applied at each end. Exploiting this 
property, the problem can be represented by half of the joint 
configuration of the manipulator, as shown in Fig.7(b). This 
symmetric property can eliminate the constraint of (11), 
because the equality of the displacement of both wires (8) is 

automatically satisfied. iφΔ is the change of iφ as shown in 
Equation 10, and its sign could be either positive or negative 
depending on its location. For example, in Fig.7(a), the 
lower half of the manipulator will always have positive  

iφΔ , while the upper half will have negative  iφΔ .    

 
 

Fig.6.  (a) Pan motion and Tilt motion (b) Close-up view of tilting 
surface of 2-dimensional variable neutral-line manipulator 

 
Fig.7.  Deflection model of the straight pose 1-DOF manipulator 
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A. Analysis of Manipulators with Odd Number of Joints 
Therefore, in the case of an odd number of joints, the 

optimization function (13) and constraint (7) are rewritten 
as: 

   ⎟
⎠

⎞
⎜
⎝

⎛ Δ
+

Δ
∑
−

=

1

1

)
2

cos()
2

cos(
2
1maxarg

m

i

im φφ
φ

                       

(14) 
 such that 

   
l
dm

i
i 2

sin
1

1

=∑
−

=

φ                                                                 

(15) 
where 0    , 01 =−=Δ − φφφφ iii  and 2/)1( += nm . 

Due to the assumption of small deflections, the 
trigonometric function in (14) and (15) can be approximated 
using a Taylor series expansion, as  
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In order to solve this approximate optimization problem, 
the method of Lagrange multipliers is applied. The Lagrange 
function is defined as: 

)()()( φλφφ gf +=Λ                                              (16) 
where 
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and λ is a Lagrange multiplier. )(φf again represents the 
minimization function, because the sign is changed during 
approximation. Differentiating (16), the following necessary 
conditions for the solution are obtained. 
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These can be expressed in matrix form as 
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where we call the 1+m  by 1+m matrix on the left side A , 
and the 1+m vector on the right side c . In the case of 3-joint 
manipulators (i.e. 3=n ), A and c  are: 
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(20) 
As a result, the deflected pose (i.e. the set of 

iφ ) can be 
obtained from the following equation. 
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φ                                                                     (21)  

 
B. Analysis of Manipulators with Even Number of Joints 
Until now, we have considered the case of manipulators 

with an odd number of joints. In the case of an even number 
of joints, the symmetric property can be used similarly, if we 
take into account that the distal link of the simplified model 
has half the size of the other links.  

In a similar derivation as (14) and (15), the optimization 
problem for a manipulator with an even number of joints is: 
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where 0   , 01 =−=Δ − φφφφ iii  and 2/nm = .  

The equation (21) can be used to find a solution for an 
even number of joints, where the matrix A  takes on unique 
values, as:  
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(24) 
In the case of 4-joint manipulators (i.e. 4=n  ),  A is: 

 
Fig.8.  Deflected shapes of simulated manipulators  
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In the case of 2-joint manipulators (i.e. 2=n ), the set of iφ  
can be directly calculated from (7) as ld /1 ≅φ  and 02 =φ . 

Fig.8 shows the deflected shapes of various simulated 
manipulators according to their number of links. The length 
of the manipulator nl , radius of contact surface r , half of 
the contact surface angle α , and amount of the lateral 
displacement d  are 87mm, 14.8mm, 33.18deg and 5mm, 
respectively.  

C. 2-DOF Analysis  
In order to extend these analyses to a 2-DOF manipulator, 

the coupling term )2/cos(1 tφΔ−  in (5) should be 
considered. Let us consider a situation of a 2-DOF 
manipulator where the external force in the pan direction 
results in a deflecting motion in the same direction. Then, 
the displacements of pan wires are the same as (10) because 
the tilt angle of each joint is zero. However, the 
displacements of the tilt wires are nonzero due to the 
coupling term, as follows 
 ∑∑
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(25) 
where tllΔ , trlΔ , piφΔ  and tiφΔ  denote displacements of the 

left and right tilt wires and the pan and tilt angle of i th link, 
respectively, and tiφΔ  is zero because there is no tilt motion. 
Here, the objective is to find the pose of the manipulator (i.e. 
the set of piφ ) when subjected to lateral loading that 

minimizes the change of lengths of the tilt wires as well as 
that of the pan wires. If we consider the minimization 
problem for only the tilt wires: 
    ( )trtl ll

p

Δ+Δminarg
φ

                                                       

(26) 
From (25) and (26), the optimization problem is rewritten as  

   ⎟⎟
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i

pi

p 1

)
2

cos(maxarg
φ

φ

.                                               

(27) 
Note that (27) for the tilt wires has exactly the same cost 

function as that of the pan wires (13). This is important 
because it implies that displacing the tilt wires under lateral 
loading produces the same deflected pose as displacing the 
pan wires. It also means that (13) represents the optimization 
problem for the 2-DOF manipulator. Therefore, the deflected 
shape obtained from (21) can be applied directly to the 
2-DOF manipulator.  

 

 

IV. STIFFNESS OF THE VARIABLE NEUTRAL-LINE 
MANIPULATOR  

In this section, the relationship between the stiffness of the 
manipulator and the wire tension is calculated by using the 
deflected shape obtained in the previous section. Fig.9 
shows a schematic of the wire tensions and force exerted on 
the manipulator, where the same tension T is applied to the 
pan wires and tilt wires individually, and F  is the external 
lateral force applied to the end effector. The tensioning 
mechanism is highly simplified here, and the detailed 
structure will be described in Section V. 

For clarity of the stiffness calculations, let us first define 
several terms. In (21), only c  contains design parameters l
and d . Thus, we can cancel out these design parameters by 
defining the following variable:  

iii d
h

d
nls φφ ==                                                                         

(28) 
where h =nl  and can be considered as the total length of 
the manipulator. The set of is  can be calculated by 

substituting iφ  in (21) with (28), i.e. 
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s mmi
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(29) 
which shows that is  is a design-independent constant related 
only to the number of the joints n . Using this relationship, 
we can define another constant: 

∑
=

Δ≡
n

i
in snS

1

2                                                                   

(30) 
where 0   , 01 =−=Δ − ssss iii . The values of nS shown in 

Table I were calculated by using (29) and (30) for each case 
of n . They are also design-independent parameters only 
related to n , regardless of the link length l , radius of 
contact surface r , or half of the contact surface angle α . 

Table I 
DESIGN-INDEPENDENT STIFFNESS COEFFICIENT 

  

n 2 3 4 5 6 10 30 ∞

Sn 16.00 13.50 12.80 12.50 12.34 12.12 12.01 12.00

 
Fig.9. A schematic of tensions and force exerted in a 

2-DOF manipulator 
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Now it is possible to derive the stiffness of the variable 
neutral-line manipulator. From (12), the displacement of the 
pan wires 

plΔ  can be expressed as follows: 

∑
=
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By substituting (28)-(30) into (31), the relationship 
between d and plΔ can be calculated as 
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From (25), the displacement of the tilt wires 

tlΔ  also can 
be expressed as follows: 
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(33) 
By using the virtual work concept, an energy conservation 

equation can be obtained as follows: 

tp

d

lTlTdxF Δ+Δ=∫
0

                                                             

(34) 

By putting (32) and (33) into (34) and differentiating both 
sides of (33) by d , 

d
nh
rSTd

nh
rSTF nn 2

4
 2

4
cos 22 +=

α .                                  

(36) 
As a result,  the stiffness K is obtained as  

T
nh

rS
d
FK n 22

)cos1( α+
==                                                         

(37) 
This verifies that the stiffness of the manipulator can be 

adjusted via the tension of the wires, and the relationship 
between the stiffness and the tension is approximately linear. 
This is an important advantage of the variable neutral-line 
design compared to other comparable manipulators. Note 
that increasing the number of joints reduces the manipulator 
stiffness because n is in the denominator of (37). However, 
if the maximum bending angle is considered, this leads to a 
different conclusion, which will be discussed in Subsection 
VII.B.  

Fig.10 illustrates the simulation results of the manipulator 
with the specification of Table II, where frictional effects are 
ignored. For the simulation, the multi-body dynamics 
simulation software MSC ADAMS 2012 was used. When 
the maximum lateral motion in Fig.10(a) is extremely high 
(more than 60mm in minimum tension), the overall graph 
does not follow a linear relationship because the manipulator 
behavior lies outside the valid range of the Taylor series 
approximations applied to (14), (15), (22) and (23). However, 
in a reasonably small region about zero displacement, it 
shows an approximately linear relationship.. Table III shows 
the simulated stiffness and calculated stiffness using (37). 
The error between them is negligible, which means that the 
stiffness calculation and approximation is valid.  

V. ACTUATION SYSTEM DESIGN 
Most current tendon-driven mechanisms employ pulley 

mechanisms or linear actuators, due to the symmetric 
property of the wire pair. Fig.11(a) shows a concept of an 
actuator design using a pulley mechanism. This simple 
approach cannot be easily applied to the variable neural-line 
manipulator because it has an asymmetric wire movement. If 
the pulley mechanism is used for the variable neutral-line 
manipulator, the pulley is pulled as it deflects, which means 
that the pivot of the pulley moves in a wide range, and the 
wire tension affects the torque of the actuator when it bends. 
Alternatively, two linear actuators can be used to actuate two 
wires individually, but these actuators must have a complex 
force control function for tension control.  

  
Fig.10.  Stress-strain graph as determined by simulation. (a) 

Overall shape of graph. (b) Close-up shape near zero 
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TABLE II 
SPECIFICATIONS AND OF THE 2-DOF MANIPULATOR 

Specification Value 
Number of Joints n  3 

Half of Contact angle α  0.579 rad 

Radius of Contact surface r  14.8 mm 
Link Length l      29 mm 
Pretension (N) 20.0, 33.1, 46.5,  59.9 N 

 
TABLE III 

STIFFNESS COMPARISON 
Tension (N) 20.0 33.1 46.5 59.9 

Simulated Stiffness (N/mm) 0.161 0.266 0.374 0.481 
Calculated Stiffness (N/mm) 0.162 0.268 0.376 0.484 
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Therefore we propose a new actuation mechanism that 

mechanically compensates for the asymmetric wire 
movement, and achieves a proportional relationship between 
actuator motion and manipulator motion. Fig.11(b) shows 
the basic concept of the proposed actuation mechanism for a 
1-DOF manipulator. It is composed of a fan-shaped lever, 
and actuator wire pair connected at both ends of the lever. 

The length of the actuator wire pair lγ and rγ  is obtained 
from Fig.11(b) as follows: 

)
22
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2

sin(2)(

)
22
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2

sin(2)(

ψβψβπ
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ψβψβπ
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+=
−−
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−=
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=

aar

aal

rr

rr
             (38) 

where  ar , β  and  ψ  denote the radius of the lever, half 
of the pan shape angle, and the amount of lever rotation, 
respectively. The displacements of the actuator wire pair 

lγΔ and rγΔ  are 

⎟
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⎟
⎠

⎞
⎜
⎝

⎛ −−−=−=Δ

)
22

cos()
2

cos(2)0()()(
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γψγψγ

ψββ
γψγψγ

arrr

alll

r

r
 (39) 

Similarity between (4) and (39) shows that the proposed 
actuation mechanism can compensate the asymmetric 
motion of wire pair. If we set the length of lever ar  as nr
and half of the pan shape angle β as α2 , the rotation of the 
lever and the bending angle of the manipulator has a direct 
relation n/θψ = . Thus, the rotational actuator can solely 
control the bending motion of the manipulator, and the 
pretension shown in Fig.11(b) can adjust the stiffness 
independently. 

This actuation mechanism is for a 1-DOF manipulator. For 
complete compensation of 2-DOF motion as (6), another 
mechanism is required. Fig.12 shows the actuation 
mechanism for a 2-DOF manipulator. The length of the 
brown colored wire changes as the lever rotates, as follows: 

2
cos2)( p

ap r
ψ

ψν =Δ                                                      (40)  

 
Similar to (39), it can compensate the last term of (6) if we 

set ar  and β  as nr and α2 . Even though the proposed 
mechanism in Fig.12 can compensate for the coupling of the 
2-DOF manipulator, it can be somewhat complicated to 
implement. In Subsection VII.C, simplification of the 
actuator will be discussed. 
 

A. Implementation Details 
As illustrated in the conceptual designs in Fig.11(b) and 

Fig.12, the pivots of the actuation levers must be able to 
translate in order to deliver a pretension force to the wires 
through the lever mechanism. This moving pivot leads to a 
complicated implementation, because the gears and motors 
(with associated cabling) connected to the lever must all 
move along with the pivot motion. In order to simplify this, 
the wire path is redirected as shown in Fig.13(a). Instead of 
moving the pivot of the lever, an additional pulley with a 
slider at the center moves according to the motion of the 
pretension wire (black solid line).  

 
Fig.11.  Conceptual Design of Actuating Mechanisms   
        (a) Conventional concept (b) Proposed concept 

Pretension

Manipulator side

Actuator side

Pulley

β

)(ψγ r)(ψγ l

ψ

ar

22
ψβ

−

Manipulator side

Actuator side

β

Pan shape 
Lever

(a) (b)

Rotational 
Actuator

Rotational 
Actuator

 
Fig.12.  Conceptual Design of 2-DOF Manipulator   
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Fig.13(b) and (c) show a front and exploded views of the 

detailed actuator mechanical design. It is designed to satisfy 
the performance specifications in Table II. Two identical 
mechanisms are mounted in order to actuate one 2-DOF 
manipulator. For actuation of the levers, two 8W BLDC 
motors with 53:1 gear heads were used. Between the levers 
and the gear heads, 8:1 gear pairs were placed. As the 
maximum continuous torque of the motor is 8 mNm and the 
efficiency of the gear head is 59%, the approximate 
continuous output torque of the lever is 2Nm. In order to 
control the wire tensions, 1.22mm pitch lead screws and 
springs were used. The tension can be changed from 8.8N to 
40N by rotating the lead screws using another geared motor 
having the same specification.  

 
As can be seen in Fig.13(b), the wires connected to the 

lever are wound three times around pulleys to amplify the 
wire motion. In order to minimize friction, miniaturized 
bearings were used for the pulleys. The wires connected to 
the manipulator shown in Fig.13(d) are also wound three 
times to lessen the wire motion and amplify their tension. 
This amplification mechanism distributes the stress among 
multiple wires, hence, high tension for the manipulator can 
be achieved by using low payload, small wires. For 
implementation, Polymer wires (Dyneema®) of diameter 
0.3mm were used. However, amplifying the tension by using 
multiple windings also increases friction, and causes error 
between the modeling and implemented system due to 
hysteresis in repeated motion. This will be examined in 
Section VI.  

Fig.14(a) illustrates the assembled structure of a 4-DOF 
variable neutral-line manipulator system. Two identical 
2-DOF manipulators were stacked, and two identical 
actuation mechanisms were connected to them. In order to 
transfer wire motion through a flexible path, Teflon conduits 
were used. Fig.14(b) shows the assembled structure of the 
joint. In order to make the joint exhibit pure rolling, Teflon 
flexure rings of 0.5mm thickness were attached between the 
links, as shown in Figure 14(b). Most of large frames (made 
from ABS material) were fabricated mainly by using 3D 
fused deposition manufacturing (FDM). Small parts like 
pulleys and sliders were made from aluminum alloy (AL 
6061T6). 
 The diameter of the manipulator was chosen with a large 
inner channel to allow passage of multiple dexterous 
surgical instruments and an endoscope. Theoretically, based 
on the design of the device, there are no strict size 
limitations. We expect that 5mm and 3mm diameters are 
also feasible, which are standard sizes of conventional 
laparoscopic surgical instruments. However, we note that as 
the device size shrinks, the payload and the stiffness will 
decrease accordingly.  

 

 
 
Fig.13.  Detailed Design of a 2-DOF Manipulator   

 
Fig.14.  Detailed Design of 2-module 4-DOF Manipulator  
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 Considering practical implementation issues, small-sized 
manipulators pose greater fabrication difficulties, such as 
fabricating miniaturized flexures and attaching them to 
rolling links. We can greatly simplify the mechanism by 
removing the flexure and allowing the actuation wires to 
replace the function of the flexure, by guiding the rolling 
action between the link surfaces. However, the wires cannot 
completely prevent slip between the rolling surfaces, which 
could lead to inaccuracy in pose control.   
 The manipulator was designed for multiple uses. 
Sterilization is an important issue for such a complicated 
mechanism. We are considering low-temperature liquid 
sterilization methods because the mechanism has 
heat-sensitive components, and thus steam sterilization is not 
adequate. For the manipulator shown in Fig.1(b), a cover 
sheath made from EPDM has been developed (not shown in 
the figure), which is a commonly used material for flexible 
endoscopes. In order to prevent the EPDM sheath being 
caught between the rolling surfaces and minimize friction 
between the sheath and manipulator, a mesh layer made by 
woven steel wires was placed between the sheath and the 
manipulator. However, the sheath acts to resistant bending 
motion and thus slightly increases hysteresis of the 
manipulator motion. 

VI. EXPERIMENTAL VALIDATION 
This section presents experimental results to verify the 

proposed manipulator models. The experiments were 
conducted using the same specifications as those in Table II. 
The stiffness measurement was done on one module by 
using a texture analyzer which can measure up to a 49N 
maximum force with 0.001N sensitivity.  
Fig.15 illustrates the stress-strain curves measured for four 
different wire tensions levels. Although the lateral motion is 
relatively small compared with the simulation in Fig.10, the 
curves are nonlinear and exhibit hysteresis behavior. The 
hysteresis is caused by changes in the wire tension according 
to the direction of frictional forces acting on the wires. When 
the manipulator is driven by a external force, friction aids 
the wire tension, and thus the manipulator exhibits higher 
stiffness. When the manipulator is driving itself, on the other 
hand, friction reduces the wire tension, and thus the 
manipulator exhibits lower stiffness. 
 Sources of friction in the manipulator include a (relatively 
small) contribution from the bearings that acompany every 
pulley in the actuation mechanism. Moreover, the multiple 
windings of the wires in the manipulator not only amplify 
the wire tension, but also amplify the friction. Therefore, 
using single wire for the manipulator as shown in Fig.6(a), 
instead of multiple windings, can reduce the hysteresis. 
However, in that scenario, thicker wires and conduits should 
be used to a maintain high payload. Applying Teflon coating 
or inserting Teflon tubes throughout the wire paths in the 
link holes of the manipulator could also reduce the friction 
and the resultant hysteresis. 
 The stiffness change according to the tension variation is 
approximately linear as shown in Fig.16 and Table IV. The 
simulated stiffness-tension curve is linear, and crosses the 

zero point because it has no friction and follows (37). In 
contrast, the experimental curve has a nonzero y-intercept of 
0.088N/mm. It means that the additional force caused by 
friction aids the wire tension.   

Fig.17 shows several snapshots of motion of a 4-DOF 
variable neutral-line manipulator system prototype. As the 
maximum bending angle of one module is more than 45deg, 
the manipulator can be bent 90deg as shown in Fig.17(a),(b) 
and (c). Under no external force, the motion is not affected 
by the stiffness changes, and the motion with low stiffness is 
approximately the same as the motion with high stiffness. 

 

 

 

 
Fig.15.  Stress-strain graph by experiments   
        (a) Overall shape of graph (b) Closed-up shape near zero 
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Fig.16.  Relationship between wire tension and manipulator 

stiffness 
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TABLE IV 
STIFFNESS BY EXPERIMENTS 

Tension (N) 20.0 33.1 46.5 59.9 
Stiffness (N/mm) 0.242 0.334 0.437 0.529 
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VII. DISCUSSION 
So far, the mechanics of the variable neutral-line 

manipulator and the actuation mechanism have been 
investigated and verified. In this Section, the effect of joint 
number and design variations are discussed. 

A. Maximum Bending Angle  
As mentioned in Section VI, the maximum bending angle 

of one module is approximately 45 deg. This can be 
predicted by considering the tension balance. Let us consider 
the extreme bending pose of pan motion like Fig.6(b). In this 
extreme case, the left pan wire (blue line) has tension T  and 
the right pan wire (purple line) has zero tension, because the 
sum of the tilt wires have tension T and this balances with 
the left pan wire. Therefore, the joint will be settled at the 
middle of the left pan wire and tilt wire at the center, which 
means that the maximum bending angle is half of α . Thus 
the maximum bending angle of the module is  

2max
α

θ
n

= .                                                                  (41) 

The theoretical maximum bending angle of the 
implemented manipulator is 49.8deg, which agrees 
reasonably with the measured value.  

B. Stiffness Change with Joint Number under Fixed 
Maximum Bending Angle and Link Width 

Assuming that the maximum bending angle maxθ  and the 
width of the link w in Fig.4(a) are fixed, we can see that the 
stiffness changes as the number of links increases using (37) 
and (41). These assumptions can be represented as 

22max
iinn αα

θ == ,                                                      (42) 

iirrw
αα sinsin

2
==  ,                                                  (43) 

where ir  and iα are design parameters of an in -joint 
manipulator having the same maximum bending angle and 
link width. The stiffness of the in -joint manipulator is 
represented using (42) and (43) as  
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If we consider a manipulator with a large  number of joints 
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For example, the stiffness of the manipulator with an 
infinite number of joints is 0.445N/mm when the tension is 
59.9N. This value is not severely small compared to the 
stiffness of the manipulator with three joints, which is 
0.484N/mm. It means that increasing joint number does not 
significantly affect the stiffness performance, and we can 
select the proper number of joints depending on specific task 
requirements. 

C. Simplification of Actuation Mechanism  
In Section V, an actuation mechanism that completely 

compensates for the coupling of the 2-DOF manipulator was 
proposed. In order to simplify the actuation mechanism, two 
1-DOF actuation mechanisms shown in Fig.11(b)  can be 
used for a 2-DOF manipulator if we can eliminate  the 
coupling mechanically. Fig.18 introduces a linkage design to 
diminish or eliminate the coupling effect. If we enlarge the 
space for passage of the center wire, elongation of the center 
wire path is diminished or completely eliminated. Fig.18(b) 
and (c) shows the linkage with space to the center of the 
rolling space, where the length of the wire path in the space 
is maintained to   while the original link has additional 
length of   as shown in Fig.18(a). However, due to the 
removal of tlΔ  shown in (33), the stiffness decreases as 
follows: 

T
nh

rS
d
FK n 22

cosα
==                                                        (46) 

For practical use, this modification will be an efficient 
tradeoff between simplicity and performance. 

 
Fig.17  2-DOF Manipulator  Prototype Performing Controlled 

Motions 

(a) (b)

(c) (d)

(e) (f)
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D. Design Variation  
As mentioned in Section II, the joint shape does not need 

to be a cylindrical-shape rolling mechanism. For instance, if 
the sum of wire movement has a negative value, we can also 
control the stiffness by using pushing shafts instead of using 
pulling wire tension. However, in this case the actuation 
mechanism should be redesigned to compensate for 
asymmetric wire motion.  

Fig.19 presents two design variations of the proposed 
manipulator. In most cases of snake-like manipulators, the 
initial pose is straight shape, which represents a singular 
point. As shown in Fig.17(a), the initial pose can be changed 
to a C-shape or S-shape by simply changing the individual 
link shape. Also, by using different surface angles as 
Fig.17(b), a near-rigid joint design is feasible. This 
manipulator can be inserted through a curved path by 
loosening the wire tension, and can be used like a rigid joint 
by applying wire tension.  

VIII. CONCLUSION 
This paper introduced a unique variable neutral-line 

manipulator and actuation mechanism to achieve a 
controllable stiffness capability. Design, modeling, analysis 
and experimental results of the variable neutral-line 
manipulator were presented. Detailed analysis of its stiffness 
properties and verification of its performance based on 
simulations and experiments proved the direct relationship 

between the wire tension and stiffness of the manipulator, 
and its demonstrated stiffness controlling capability without 
losing motion control performance. The thin tubular 
structure of the manipulator and the ability to control 
stiffness by only using position-controlled actuators could 
make the manipulator well suited for MIS applications. For 
instance, the manipulator can be used as a flexible guide 
tube of a single port surgical device. In this application, the 
stiffness changing capability can be a great advantage, 
because compliance is important for safely moving the guide 
tube in the abdominal cavity. On the other hand, high 
stiffness is crucial for payload motion or precise operation. 

Current work is focusing on integrating all of these efforts 
to develop an innovative surgical robotic system, and 
evaluating its performance and effectiveness. For future 
research, stiffness analysis under arbitrary bending angles 
will be investigated. For more precise position control, 
friction modeling and analysis deserve study.  
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