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5D seismic data completion and denoising using
a novel class of tensor decompositions

Gregory Ely1, Shuchin Aeron2, Ning Hao3, and Misha E. Kilmer3

ABSTRACT

We have developed a novel strategy for simultaneous in-
terpolation and denoising of prestack seismic data. Most
seismic surveys fail to cover all possible source-receiver
combinations, leading to missing data especially in the mid-
point-offset domain. This undersampling can complicate
certain data processing steps such as amplitude-variation-
with-offset analysis and migration. Data interpolation can
mitigate the impact of missing traces. We considered the pre-
stack data as a 5D multidimensional array or otherwise re-
ferred to as a 5D tensor. Using synthetic data sets, we first
found that prestack data can be well approximated by a low-
rank tensor under a recently proposed framework for tensor
singular value decomposition (tSVD). Under this low-rank
assumption, we proposed a complexity-penalized algorithm
for the recovery of missing traces and data denoising. In this
algorithm, the complexity regularization was controlled by
tuning a single regularization parameter using a statistical
test. We tested the performance of the proposed algorithm
on synthetic and real data to show that missing data can
be reliably recovered under heavy downsampling. In addi-
tion, we demonstrated that compressibility, i.e., approxima-
tion of the data by a low-rank tensor, of seismic data under
tSVD depended on the velocity model complexity and shot
and receiver spacing. We further found that compressibility
correlated with the recovery of missing data because high
compressibility implied good recovery and vice versa.

INTRODUCTION

An ideal seismic survey would cover all possible source and
receiver combinations. These geometries rarely occur due to finan-

cial and physical constraints. In particular, the shot and receiver po-
sitions are planned prior to acquisition but the true sampling
locations usually deviate from the originally intended ones resulting
in less desirable midpoint and azimuth sampling. Moreover, the
midpoint-offset-azimuth domain is also not fully sampled due to
the intrinsic nature of seismic acquisition geometries. These effects
are more pronounced in land surveys. For methods that rely on
gridded data, the extent of undersampling depends on the manner
in which the data are binned. Also note that even under complete
acquisition for a given geometry, the seismic wavefield may still be
undersampled in the domain in which other processes are carried
out. This spatial undersampling adversely affects later processing
steps such as migration and quantitative interpretation (QI) studies
such as amplitude versus angle analysis (Sacchi and Liu, 2005;
Hunt et al., 2010). Recovery of prestack traces can mitigate the im-
pact of incomplete sampling. In this paper, we examine methods
based in linear algebra for recovery of missing traces.
Prestack seismic data can be viewed as a fifth-order tensor consist-

ing of one time or frequency dimension and four spatial dimensions
describing the location of the sources and the receivers on the surface,
either in the original source-receiver ðrx; ry; sx; syÞ coordinate frame
or in terms of midpoints and offsets ðx; y; hx; hyÞ. Some of the current
approaches, such as in Trad (2009) and Kreimer and Sacchi (2012b),
work the f-x domain in which the data completion is carried out sep-
arately over the 4D slices corresponding to each frequency.
Prestack seismic reconstruction techniques typically exploit

the fact that under some assumptions, the fully sampled seismic
wavefield is highly redundant and can be compressed under an ap-
propriate representation. Most of these methods fall into two cat-
egories: techniques that explicitly define a transform domain and
methods that do not define a basis, instead representing the seismic
data as a low-rank matrix or tensor. Numerous methods exploit
compactness in the frequency-space (f-x) domain (Duijndam et al.,
1999; Hindriks and Duijndam, 2000; Liu and Sacchi, 2004; Xu
et al., 2005; Zwartjes and Sacchi, 2007; Trad, 2009; Curry,
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2010) and other domains such as the curvelet (Hennenfent and
Herrmann, 2006; Herrmann and Hennenfent, 2008; Naghizadeh
and Sacchi, 2010a), seislets (Fomel and Liu, 2010), and Radon (Ka-
bir and Verschuur, 1995). Other methods exploit the statistical com-
pactness or the predictably of a signal in the f-x domain (Spitz,
1991; Gulunay, 2003; Naghizadeh and Sacchi, 2007, 2010b). In ad-
dition to methods that either impose sparsity explicitly or compact-
ness through thresholding in a basis, low-rank matrix methods do
not define a single basis and instead impose compactness on the
signal’s subspace. In these low-rank methods, the 5D seismic data
are embedded into a 2D Hankel matrix in which the true noiseless
and complete signal is assumed to be of low rank (Trickett et al.,
2010). Iterative thresholding and imposing sparsity on the singular
values of the matrix enforces the reduced rank of the data, requiring
numerous costly singular value decompositions (SVDs). Other var-
iations enforce the low rank through less expensive matrix decom-
position, completely avoiding the calculation of the SVD (Gao
et al., 2011, 2013; Kumar et al., 2013) or applying the SVD to
a randomized subset of the original matrix (Oropeza and Sacchi,
2010, 2011). In contrast to the aforementioned methods, other
methods use a priori velocity information and the wave equation
to interpolate missing traces (Ronen, 1987; Stolt, 2002; Fomel,
2003; Kaplan et al., 2010), thereby incorporating actual physical
information and principles governing the system. See Stanton
and Sacchi (2013) for a detailed survey of current reconstruction
methods.
More recently, methods for seismic completion have exploited

multilinear algebraic approaches based on tensor rank minimiza-
tion. Unlike matrices, for which the rank is uniquely defined, for
third- or higher order tensors, the rank heavily depends on the
choice of tensor factorization and rank penalization can encourage
different structures of the tensor. SVD-like tensor decompositions
can be divided into three classes: canonical decomposition (CAN-
DECOMP, CP) (Kolda and Bader, 2009), Tucker or higher-order
SVD (HOSVD) (Lathauwer et al., 2000), and hierarchical tucker
(HT) (Grasedyck, 2010). All of these decompositions have been
applied to the problem of 5D seismic data reconstruction with good
performance on real and synthetic data. Seismic data completion
using tensor rank minimization under HOSVD is proposed by
Kreimer and Sacchi (2012b) and Kreimer et al. (2013). Although
the performance was shown to be good, the proposed algorithm re-
quires preselection of the truncation ranks along each dimension for
effective interpolation. No systematic approach has been proposed
to select these truncation ranks. One way to select these truncation
ranks is to perform tests on a small piece of the data set and then use
these parameters for the rest of the data. Although this approach is
data adaptive, it is not clear if the ranks should remain constant over
the entire data set. If this is not the case, then it may require ground
truth and model selection for each section of the data. Kreimer et al.
(2013) propose seismic data completion based on nuclear norm
minimization. This approach flattens the data into various modes,
which may be suboptimal because it destroys the multidimensional
structure of the data. Recently, Zhang et al. (2014) demonstrate this
information loss for the problem of 3D and 4D video data comple-
tion from missing pixels. Even though video data and seismic data
are very different data types, we expect that retaining the multidi-
mensional structure of the data should also help with recovery in the
seismic case. Nevertheless, it is important to note that because we
do not compare our method with that in Kreimer et al. (2013), we

cannot claim that our approach is superior to theirs. Extensive com-
parison of our approach with those of Kreimer et al. (2013) is a
subject of future work and will be undertaken in the future. In Silva
and Herrmann (2013), the authors use the HT decomposition for
data completion with a novel algorithm that exploits the manifold
structure of tensors with fixed HT rank. Similar to the HOSVD case,
the performance heavily depends on the prior knowledge of the di-
mension tree. Furthermore, it is computationally difficult to search
for the best dimension tree for a given data set. In Trickett et al.
(2013), CANDECOMP (CP)-type factorization is used for data
completion. Although this approach requires selecting only a single
parameter, namely, the CP rank, finding the CP decomposition is
computationally challenging, and in some cases, the best r-rank ap-
proximations may not even exist (Silva and Lim, 2008).
We exploit a novel tensor decomposition, tensor singular value

decomposition (tSVD), for completion of prestack seismic data.
Kilmer and Martin (2011a) develop tSVD for third-order tensors
and Martin et al. (2013) extend it to higher orders. Ely et al.
(2013) present the initial results of this approach for seismic appli-
cations, and Zhang et al. (2014) present the accompanying results
for computer vision applications. For 5D synthetic seismic data, we
show that the prestack seismic data are compressible; i.e., they have
low informational complexity expressed as the low tensor nuclear
norm (TNN) in the tSVD domain. This compressibility stems from
the convolutional structure of the t-product because the tSVD-based
representation is particularly efficient at describing shift and scaling
operations between traces. Hence, the data can be reliably recovered
under limited sampling using the appropriate complexity penalized
(CP) algorithm.
The tSVD differs from the HOSVD, CANDECOMP, and HT for-

mats because the tSVD retains a tensor’s orientation information
while remaining computationally efficient. The TNN derived from
tSVD differs significantly from the sum of nuclear norms approach
used by Gandy et al. (2011) and Kreimer et al. (2013), where the
summation is over the nuclear norms of all the different mode un-
foldings of the tensor. Our approach computes the TNN, as derived
from the tSVD, by first applying the Fourier transform recursively
along the different dimensions and then summing the nuclear norms
of the frontal slices of the resulting tensor. In contrast to the ap-
proach in Kreimer et al. (2013), the TNN of a tensor as computed
from the tSVD depends significantly on the ordering of dimensions.
This is also in contrast to the HOSVD approach used by Kreimer
and Sacchi (2012a) and the approaches based on HT as used by
Silva and Herrmann (2013), which are orientation independent.
For example, two tensors containing the same data, one indexed
as ðt; rx; ry; sx; syÞ and the other indexed as ðrx; ry; sx; sy; tÞ, would
have two different TNNs as computed from tSVD. The approach
based on the sum of nuclear norms of mode unfoldings is indepen-
dent of orientation unless an a priori weighted sum is applied to
each of the unfolded matrices. This weighting, when unknown
or set to be uniform, can impose low-rank along foldings that should
be of high rank or vice versa. Similar considerations also apply to
the cases when using the HOSVD and HT decompositions, in
which the choice of truncation ranks is orientation independent.
We organize the remainder of the article as follows: We first out-

line the mathematical problem formulation and review the back-
ground of the t-product and tSVD. We first perform a detailed
case study of prestack seismic data compressibility under two ex-
treme cases: a set of Born scatters and finite-difference data sets for
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two different velocity models and two survey geometries. We then
apply the proposed algorithm for a variety of sampling rates and
plot the reconstruction performance. We then apply the simultane-
ous denoising and reconstruction algorithm to a real data example.
Finally, we provide conclusions and future research directions.

METHOD

Notation: We will denote vectors by boldface small letters x, ma-
trices by boldface capital letters X, and tensors (of order >2) by
capital boldface script letters X . Throughout the text, we use MAT-
LAB notation and indexing to denote the elements and fibers of
these vectors, matrices, and tensors. For example, Xð∶; ∶; 1Þ will
denote the first frontal slice of X , Xði; j; ∶Þ will denote a tensor
fiber into the page, and Xð∶; 1Þ will denote the first column of
X and so on.

Problem setup

The true seismic dataM are spatially undersampled either in the
source-receiver or in the midpoint-offset domain. The measurement
Y can be represented by a linear operatorA, resulting in the sparse
observed data Y under additive noise N as

Y ¼ AðXÞ þN . (1)

The seismic data completion problem becomes reliably estimating
X from Y under the sampling operator A. Because the number of
observed measurements is significantly less than the number of el-
ements inX , the inverse problem is severely ill posed and cannot be
solved directly without placing constraints on X . As noted in the
introduction, these constraints arise as complexity measures on the
underlying true data M. One can reliably recover X using CP al-
gorithms of the type

min hðXÞ s:t:kY −AðXÞk ≤ σn; (2)

where hðXÞ ∈ Rþ ∪ f0g is a nonnegative real valued mapping that
measures the complexity of the true data X and σ2n is the additive
noise variance. Note that equivalently one can also solve for a con-
strained formulation:

min kY −AðXÞk s:t: hðXÞ ≤ c0; (3)

for an appropriate choice of the constant c0.

The t-product

In this section, we review the t-product proposed by Kilmer and
Martin (2011b) and further analyzed by Braman (2010) and Kilmer
et al. (2013). We will focus on 3D tensors for ease of exposition and
interpretation. We begin by viewing a 3D tensor X ∈ Rn1×n2×n3 as
an n1 × n2 matrix of tubes (vectors oriented into the page), whose
i; jth entry, denoted by X i;j, is given by X i;j ≜ Xði; j; ∶Þ. One can
consider a n1 × 1 × n3 tensor as a vector of tubes. We will call such
tensors oriented matrices and denote them by ~M, with the jth tubal
element denoted by ~Mj. To define the 3D tensor as a linear operator
on the set of oriented matrices ~M, Braman (2010) defines a com-
mutative multiplication operation between two tubes ~v ∈ R1×1×n3

and ~u ∈ R1×1×n3 resulting in another tube of same length. This com-
mutative operation is given by circular convolution denoted by ⋆.

Note that ~v⋆~u ¼ ~u⋆~v. Under this multiplication operation and the
usual vector addition, the operation of a tensor X of size n1 × n2 ×
n3 on ~M of size n2 × 1 × n3 is another oriented matrix ~Z ¼ X⋆ ~M
of size n1 × 1 × n3 whose ith tubal element is given by ~Zi ¼Pn2

j¼1 X i;j⋆ ~Mj. This is illustrated in Figure 1. One can extend this
construction and definition to describe the multiplication of two ten-
sors X and Y of sizes n1 × n2 × n3 and n2 × k × n3, respectively,
resulting in a tensor C ¼ X⋆Y of size n1 × k × n3. This multipli-
cation between the tensors is referred to as the t-product.

Tensor singular value decomposition under the tensor product

Using the notion of the t-product and viewing a 3D tensor as a
linear operator over the set of oriented matrices, one can compute
the tSVD of an n1 × n2 × n3 tensor X as shown in Figure 2 and
given in the following equation:

X ¼ U⋆S⋆V⊤; (4)

where U and S are orthogonal tensors of size n1 × n1 × n3 and
n2 × n2 × n3, respectively, and S is a diagonal tensor of size
n1 × n2 × n3. The construction of the tSVD has the same form
as the matrix singular value decomposition X ¼ USVT except that
t-product and tensor-transpose operations replace the matrix prod-
uct and matrix transpose. A tensor can be regarded as a matrix of
fibers or tubes along the third dimension of a tensorX. The tSVD is
analogous to a matrix SVD if we assume that the diagonal tensor S
consists of singular “tubes” or “vectors” on the diagonal, analogous
to singular values on the diagonal in traditional SVD. The compo-
nent tensors U and V obey the orthogonality conditions U⊤⋆U ¼
I and V⊤⋆V ¼ I . Definitions for tensor transpose ð·Þ⊤ and iden-
tity tensor I are given below.Definition 1.
Tensor transpose: Let X be a tensor of size n1 × n2 × n3, then

X⊤ is the n2 × n1 × n3 tensor obtained by transposing each of
the frontal slices and then reversing the order of transposed frontal
slices two through n3.Definition 2.
Identity tensor: The identity tensor I ∈ Rn×n×n3 is a tensor

whose first frontal slice is the n × n identity matrix, and all other
frontal slices are zero.
Because the t-product is defined via circulant convolution, the

computation of tSVD can be efficiently calculated using the fast
Fourier transform (FFT). To compute the tSVD of a 3D tensor
X , we first apply the FFT along the third dimension and store
the Fourier transformed tensor X̂. We then compute the standard
matrix SVD of each frontal slice of the transformed tensor X̂

Figure 1. 3D tensors as operators on oriented matrices.
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and store a temporary slice of the component tensors Û, Ŝ, and V̂.
Finally, we apply an inverse FFT to the third dimension of the com-
ponent tensors to compute the final tSVD decomposition. This con-
cept of the tSVD can be recursively extended to define the t-product
and tSVD for higher order tensors (Martin et al., 2013). For exam-
ple, for 4D data, one can begin by considering it as a matrix of ma-
trices. Then one defines a commutative operation that maps two
matrices of same size and outputs another matrix of the same size.
This commutative operation is defined to be the 2D circular con-
volution. Operationally, in the extension of tSVD to higher dimen-
sions, the Fourier transform and inverse Fourier transform are
applied recursively in dimension three through p. Note that for
our application, p ¼ 4 or p ¼ 5. Algorithm 1 outlines the steps
to compute the tSVD for an order-p tensor. Note that in the
algorithm, X̂ is an order p tensor and the notation X̂ð∶; ∶; iÞ de-
scribes the ith frontal slice of size n1 × n2 of the tensor X̂ when
the tensor is stored in MATLAB format; see Martin et al. (2013)
for more details.
The general t-product framework (including computation of

tSVD) requires one to fix an orientation of the tensor, i.e., fix
the dimensions for the first and second indices. In contrast to
the other tensor decomposition methods, which are orientation in-
dependent, the fixing of dimension orders makes the tSVD orien-
tation dependent. In many applications where the tensor order, i.e.,
the number of dimensions, is not very large, such as the one con-
sidered in this paper where the tensors are of orders four and five,
one can find the best orientation based on some prior experiments
with synthetic and real data.

Seismic data completion using tensor singular value
decomposition

Based on tSVD, one can define the notion of the tensor rank
(Kilmer et al., 2013). The multirank of a tensor using tSVD was
defined to be a vector of the ranks of the frontal slices
X̂ð∶; ∶; iÞ; i ¼ 1; 2; : : : ; N, where N ¼ n3n4 : : : np (for the nota-
tion, see Algorithm 1). One can take the sum of the ranks of these
frontal slices as a complexity measure. This motivates a CP algo-

rithm for recovering X from linear measurements by minimizing
the sum of the elements of the tubal-rank vector of X as

CP∶min
XN
i¼1

rankðX̂ð∶; ∶; iÞÞ s:t:Y ¼ AðXÞ. (5)

However, as in the recovery of undersampled matrices via linear
operators by minimizing rank, the CP problem is known to be com-
putationally infeasible; see Recht et al. (2010). We therefore relax
the complexity measure to a norm that we call as the TNN given by
kXkTNN ¼ P

N
i¼1 kX̂ð∶; ∶; iÞknuc, where k · knuc denotes the Schat-

ten-1 norm on the matrix singular values in the argument (Watson,
1992) also known as the nuclear norm. For the noiseless case, we
solve for OPT_TNN(1) and for the noisy case, we solve for
OPT_TNN(2) as outlined below:

Algorithm 1. tSVD

Input: X ∈ Rn1×n2 : : :×np

N ¼ n3n4 : : : np
X̂ ¼ X ; % Initialization

for i ¼ 3 to p do

X̂←fftðX̂ ; ½�; iÞ;
end for

for i ¼ 1 to N do

½Û; Ŝ; V̂� ¼ svdðX̂ð∶; ∶; iÞÞ
Ûð∶; ∶; iÞ ¼ Û; Ŝð∶; ∶; iÞ ¼ Ŝ

V̂ð∶; ∶; iÞ ¼ V̂;

end for

for i ¼ 3 to p do

U←ifftðÛ; ½�; iÞ;S←ifftðŜ; ½�; iÞ;
V←ifftðV̂; ½�; iÞ;

end for

=

Singular values (tubes) 

=

Singular vector (of tubes) 

j=1

min{n1,n2 }

n1

n2

n3

n1

n1

n3

n2

n2

n3

n1

n3
n3

n2

Figure 2. The tSVD of an n1 × n2 × n3 tensor. The
construction of the tSVD is similar to the matrix
SVD except that the t-product and tensor transpose
substitute the equivalent matrix operations. Like
the matrix SVD, the tSVD can also be written as
the sum of outer tensor products.
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OPTTNNð1Þ∶min
XN
i¼1

kX̂ð∶; ∶; iÞknuc s:t:Y ¼ AðXÞ

(6)

and

OPTTNNð2Þ∶min kY −AðXÞk22 þ λ
XN
i¼1

kX̂ð∶; ∶; iÞknuc.

(7)

Note that although in real seismic applications the noiseless case
does not arise, we consider it here for the sake of completeness. In
OPT_TNN(2), λ is the low (tensor)-rank tuning factor. The pro-
posed optimization problem is convex (Semerci et al., 2014; Zhang
et al., 2014) and, therefore, can be solved using existing techniques.
We would like to point out again that the TNN, as derived from

the tSVD, differs significantly from the sum of nuclear norms ap-
proach used by Gandy et al. (2011) and Kreimer et al. (2013). tSVD
computes TNN by first applying Fourier transform recursively
along the different dimensions and then taking the sum of nuclear
norms of the frontal slices of the resulting tensor, which are N ¼
n3 × n4 × n5 in number. In contrast, Kreimer et al. (2013) use the
nuclear norms of matrices formed by mode unfoldings along the
five modes of the tensor if operating in the space-time domain,
or along the four modes if operating in the f-x domain.
A Kolmogorov Smirnov (KS) test method determines the choice

of λ as discussed in the section “Selection of regularization param-
eter.” In addition, the noisy and noiseless versions of the optimiza-
tion problem can be solved using the alternating direction method of
multipliers (ADMM) methods presented in the following section,
“Algorithm for solving the optimization problems.” These methods
are also used by Kreimer et al. (2013) to solve the resulting opti-
mization problem. ADMM methods are ideally suited to the down-
sampling problem because the ADMM class of algorithms
converges in a few number of iterations but requires the typically
expensive projection of the residual onto the null space of the for-
ward operator. Note that the projection onto the null space of the
downsampling operator is very inexpensive to compute. If, how-
ever, the data were acquired using a generic sampling operator, such
as in the case in which the traces were randomly summed or sub-
tracted from one another, the projection would be very expensive to
compute. In these cases, first-order or incremental methods (Bert-
sekas, 2011; Juditsky and Nemirovski, 2012) would be better
suited. See Ely and Aeron (2013) for an application of such methods
to the problem of hydraulic fracture monitoring.

Algorithm for solving the optimization problems

To solve OPT_TNN(1) and OPT_TNN(2), we use the ADMM
(Boyd, 2011). The ADMM method, as adapted to our case, works
by dividing the variable in two, with one variable capturing the TNN
penalty and the other variable capturing the data-matching con-
straints (as an indicator function). In particular, the ADMM recur-
sion steps (in scaled form) for OPT_TNN(1) are given by

X kþ1 ¼ arg min
X

�
1Y¼AðXÞ þ

ρ

2
kX − ðZk −Bkk2F

�
; (8)

Zkþ1 ¼ arg min
Z

�
1

ρ
kZkTNN þ 1

2
kZ − ðX kþ1 þBkÞk2F

�
;

(9)

and

Bkþ1 ¼ Bk þ ðX kþ1 −Zkþ1Þ; (10)

where ρ > 0, 1Y¼AðXÞ is the indicator function of the set
fX∶AðXÞ ¼ Yg that assumes a value of 0 for all X satisfying
the linear constraint and a value of ∞ otherwise.
The closed-form solution to equation 8, when A corresponds to

the sampling operator, is given by

X kþ1 ¼ ðI −AÞðZk −BkÞ þY; (11)

Algorithm 2. The ADMM algorithm for seismic data
completion using tSVD

X ¼ Z ¼ B ¼ 0 // Initialize variables.

N ¼ n3n4:::np
while Not Converged do

if Constrained then

// Projection onto Y ¼ AðXÞ when A is the sampling
operator

X ¼ ðI −AÞðZ −BÞ þY
else

X ¼ ðρIþAÞ−1ðρðZ −BÞ þYÞ;
end if

M ¼ X þB
// Calculate tSVD and shrink in the Fourier domain

D ¼ M
for i ¼ 3 to N do

D←fftðD; ½�; iÞ;
end for

// shrinking via singular value thresholding on each slice

for i ¼ 1 to N do

½U; S;V� ¼ ðDð∶; ∶; iÞÞ;
// If constrained ε ¼ 1

ρ, If unconstrained ε ¼ λ
ρ

S ¼ Shε½S�;
Uð∶; ∶; iÞ ¼ U;Sð∶; ∶; iÞ ¼ S;Vð∶; ∶; iÞ ¼ V;

end for

// Going back to the original domain

for i ¼ 3 to p do

U←ifftðU; ½�; iÞ;S←ifftðS; ½�; iÞ;V←ifftðV; ½�; iÞ;
end for

Z ¼ U � S �VT

// Dual Update

B ¼ BþX −Z
end while
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where I denotes the identity operator. For the unconstrained
optimization case OPT_TNN(2), the update equation for X kþ1

becomes

X kþ1 ¼ ðρIþAÞ−1ðY þ ρðZk −BkÞÞ. (12)

The solution to equation 9 is obtained by singular value threshold-
ing of the frontal slices in the Fourier domain as shown in Algo-
rithm 2, which shows the overall pseudocode for solving the
problems OPT_TNN(1) and OPT_TNN(2). In Algorithm 2, Shϵ
is an elementwise shrinkage function that applies a soft thresholding
according to equation 11 as

1

1.1

a)

b)

c)

1.2

1.3

1.4

s
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1.1

1.2

1.3

1.4

s
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1.2

1.3

1.4

s

Original

Measured

Reconstruction

5 6 7 8Receiver-X

5 6 7 8Receiver-X

5 6 7 8Receiver-X

Receiver-Y

Receiver-Y

Receiver-Y

Figure 3. (a) This figure shows the full synthetic data for four different receiver-source slices as well as (b) the undersampled measured data for
the case in which 60% of the traces were removed. In addition, (c) the reconstruction for the 5D slices is shown as well. All subfigures are
shown with the same gain and clip values.
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Shε½x� ¼
( x − ε; if x > ε;
xþ ε; if x < ε;
0; otherwise:

(13)

For the constrained noiseless case ε ¼ ð1∕ρÞ and for the uncon-
strained noisy case ε ¼ ðλ∕ρÞ where ρ is the step size and λ is
the low-rank tuning factor controlling the severity of the TNN pen-
alty. The convergence criteria in Algorithm 2 are set according to
relative tolerance. For all of the instances of the algorithm, we set ρ
to be equal to 1. The algorithm is robust for the choice of this param-
eter, although for some very small or large values, the performance
of the algorithm degrades.

PERFORMANCE EVALUATION: SYNTHETIC
DATA

Compressibility of seismic data in the tensor singular
value decomposition domain

To demonstrate the compressibility of the seismic data with non-
linear reflectors, we generate a synthetic 5D survey in which
sources and receivers were placed on a 16 × 16 grid with 50-m
shot and receiver spacing in the x- and y-directions. Three synthetic
Born scatters were placed below the surface. Traces consisting
of Nt samples were generated for all the possible source-receiver
combinations, resulting in a 5D tensor with dimensions 16 ×
16 × 16 × 16 × Nt. Figure 3 shows several receiver gathers from
the 5D synthetic survey for the source located at indices sx ¼ 3

and sy ¼ 7 with each subplot showing four receiver gathers. Each
of the four subplots contains gathers for the constant X receiver
indices (5,6,7,8) and all receiver Y indices. The tSVD was applied
to th[pe synthetic data. Figure 4 shows the decay of the singular
values of the matrices X̂ð∶; ∶; iÞ as computed using the tSVD.
For the synthetic data case, they obey an empirical power law decay,
which implies that

P
N
i¼1 kX̂ð∶; ∶; iÞknuc is a good complexity mea-

sure in the tSVD domain. As a result, we expect Algorithm 2 to
recover the data from a limited number of measurements.

Simple reflectors

To evaluate our algorithm, we use the synthetic data set described
previously and remove 10% to 90% of the mea-
sured traces at 5% intervals, resulting in highly
undersampled data as shown in Figure 3b for
60% of traces removed. Algorithm 2 was then
applied in two ways: (1) Recovering the data
by completion of 4D tensors frequency by fre-
quency and (2) recovering the entire 5D seismic
volume at once. In addition to testing a random
downsampling operator, we experiment with a
regularly spaced operator in which every second
or third shot or receiver was removed. Under the
regular downsampling, completion using the
TNN proved to be unreliable when only 50%
of the traces were removed. The reason that regu-
lar downsampling does not work well can be
attributed to the reasons why it fails in the case
of simple matrix completion. One reason behind
this is that for regular downsampling, the result-
ing matrix (padded with zeros at places in which

the data are not sampled) can be of the same or lower rank as the
original matrix. Clearly in this case, the nuclear-norm heuristic will
fail. On the other hand, such a case does not happen with high prob-
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Figure 4. Decay of singular values of the synthetic seismic data that
empirically obey a power law decay.
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ability when using random downsampling. We refer the interested
reader to Recht et al. (2011) for a more technical discussion,
implicit in the analysis there. An analysis of such conditions for
our case is a subject of current investigations. The normalized
root-mean-square error (NRMSE) measures the recovery error.
For the synthetic data, Figure 5 shows the performance as function
of sampling rate. Although the NRMSE is significant for highly
undersampled data, the reflectors are still visible in the re-
construction; refer to Figure 3. Therefore, the NRMSE appears
to underestimate reconstruction quality. For all sampling rates,
the completion performance in the 5D or 4D domain is nearly iden-
tical, with reconstruction error varying less than 1% as shown in
Figure 5.
Although many reconstruction techniques must operate in the

Fourier domain to exploit the sparsity of the data cube in the f-x
domain, the performance of our method does not appear to depend
on the temporal Fourier transform. This is due to the fact that the
construction of the tSVD involves the recursive application of the
Fourier transform along the temporal as well as the spatial dimen-
sions of tensor. After taking the Fourier transform along the tem-
poral dimensions, our method implicitly operates in the spatial
Fourier domain. Given that time and Fourier domain reconstruc-
tions of the tensor are nearly identical, it could be computationally
advantageous to reconstruct the data in a frequency-by-frequency
manner because this is trivial to parallelize across numerous nodes.
For a 5D data set with Nt samples, the completion would only need
to be performed on Nt∕2 4D tensors due to the symmetry of the
Fourier transform. The number of computations could further be
reduced if the signal is band limited and only a fraction of the
Nt∕2 frequencies is needed. Given that the tSVD shrinkage operator
already acts in the frequency domain and the SVD is already com-
puted on a complex matrix, transforming the data into the Fourier
domain incurs no additional computational costs.
Despite these advantages of the Fourier domain, we choose to

work in the time domain for most of the synthetic and real data sets
to simplify the approach and to reduce the number of regularization
parameters. In particular, if the reconstruction algorithm was ap-
plied to noisy data in the f-x domain, then a regularization parameter

would need to be selected for each frequency. This is due to the fact
that the source wavelet is band limited, resulting in a different S/N
across frequencies, which in turn necessitates optimizing over the
regularization parameter for each frequency.

Finite-difference synthetic

Because Born scatters inaccurately represent typical data sets, we
generate a more realistic set of synthetic survey over two velocity
models of varying complexity: (1) a flat layered model and (2) a
layered model with a normal fault. Figure 6 shows cross sections
for the two 2000-m cubed velocity models. For each of the two
models, two orthogonal surveys were generated with different shot
geometries with the same total number of shots and receivers. Syn-
thetic shots were fired over a 16 × 16 grid and a 32 × 32-receiver
grid. For the small spatial survey geometry, shots and receivers were
placed over a 1000 × 1000-m area centered in the middle of the
velocity model, resulting in shot spacing of 62.5 m and receiver
spacing of 31.25 m. For the large spatial geometry, the shots
and receivers were spread across the entire 2000 × 2000-m surface
with shot spacing of 125 m and receiver spacing of 62.5 m. We then
used PySit, a seismic inversion and forward-modeling toolkit, to
generate the synthetic traces using a finite-difference solver such
that the resulting data sets had a spatial dimension of 16 × 16 ×
32 × 32 in the shot-receiver domain. For each of the two velocity
models and two receiver geometries, we apply Algorithm 1 to cal-
culate the tSVD decomposition of the four data sets. Using these
decompositions, we generate truncated rank (compressed) versions
of the data sets and compare the error between the low-rank
reconstruction and original data as a function of the total number
of singular vector pairs used. Figure 7 shows the normalized mean
squared error (NMSE) of the reconstructions versus the fraction of
singular vector pairs for the wavefield arriving after the direct
arrival. From these curves, we see that the survey geometries
and complexity of the velocity significantly affect the data’s com-
pressibility, with survey geometry being most dramatic. With a wide
shot and receiver spacing, each trace contains more unique infor-
mation than the small spatial geometry, in which each trace contains
more redundant information. For any survey geometry, the com-

plexity of the model inversely correlates with
compressibility. Given that the more complex
velocity model would involve a more complex
wavefield geometry, we conclude that more sin-
gular vectors would be needed to represent the
wavefield. From the demonstrated relationship
among compressibility, survey geometry, and
the velocity model, we expect a similar behavior
for reconstruction of missing traces. Performance
could also be improved by applying the recon-
struction on a small spatiotemporal window to
reduce the complexity and nonlinearity of the
traces.
For the four surveys, between 25% and 97.5%

of the source-receiver pairs are randomly re-
moved, and we use the full noiseless 5D comple-
tion algorithm to reconstruct the missing traces.
We apply Algorithm 2 to the decimated traces for
500 iterations from the four surveys and different
sampling rates. Figure 7 shows the NMSE for the
wavefield after the direct arrival. Regardless of
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Figure 7. (a) Reconstruction error for the four data sets as a function of the downsam-
pling rate. (b) Compressibility of the data sets in the tSVD domain as a function of the
fraction of singular vector pairs used to reconstruct the data set. Note that if the data are
more compressible in the tSVD domain, then the corresponding recovery error is also
small.
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the velocity model, the reconstruction error behaved comparably
across the four cases and the error appears to be minimal for down
sampling rates of 10% or less. Figure 8 shows the original and re-
constructed traces from model B and small spatial survey geometry
for a single slice at several downsampling rates. At downsampling
rates lower than 10%, many of the reflections in the wavefield be-
come severely distorted and difficult to discern. For ease of viewing
the relevant reflections, we null the traces at the direct arrival.
Although the type of down sampling in which we randomly re-

move source-receiver pairs would not be encountered in a real sur-
vey, the experiment provides a theoretical method of validating the
reconstruction technique. Normally, the data would instead be com-
pleted in other domains, such as the midpoint offset domain. To
generate full 5D finite-difference data in the midpoint offset domain
without binning, a forward solver would be needed for each trace
instead of each source location as in the source receiver domain.
Generating data in this manner would make it computationally bur-
densome to create true data to test the completion algorithm. In the
following section, we test the algorithm in the midpoint offset do-
main for real data.

PERFORMANCE EVALUATION ON FIELD DATA

In addition to synthetic data, we test the algorithm on a survey
from the Western Canadian Sedimentary Basin. This is a gridded
data set consisting of 29 midpoints and 12 offsets in the x- and
y-directions, respectively, or a volume with spatial dimensions of
29 × 29 × 12 × 12. The midpoint grid spacing is 26 and 52 m
for the x- and y-directions with offset spacing from 0 to
1400 m. Roughly 121,000 midpoint and offset combinations are
possible; however, only 16,060 traces were recorded, resulting in
a sampling rate of approximately 8%. Figure 9 top shows the origi-
nal reflection data from the survey for several x-offsets with a fixed
y-midpoint of 11 and a y-offset of 6 in which numerous reflectors
are present.

To reconstruct the traces, we solve the constrained and uncon-
strained optimization with a λ of 0.0038, determined by the KS test.
Figure 9b and 9c shows the reconstructed results for a fixed y-mid-
point of 11 and y-offset of 6. This volume coincides with the one
used by Kreimer and Sacchi (2012a), who use HOSVD to recon-
struct the same data set. We observe in the figure that the two com-
pletion algorithms can reconstruct the reflectors, with the noisy
reconstruction having noticeably better performance. For all of
these gathers, the noisy optimization scheme leads to better
reconstruction of the missing seismic data. Because the constrained
optimization assumes that there is little or no noise in the measured
data, the algorithm makes the noise look coherent, resulting in a
poor reconstruction.
To test the impact of our completion algorithm and confirm

whether it is removing signal, we stack the data. Figure 10 shows
a single slice of the stacked image for a constant common midpoint
x of 15 for the two reconstructions and the stack of the input traces.
Both reconstructions have significantly less noise than the raw
stacked image but have little difference in quality between them.
Given that the noisy optimization had better completion, we would
expect it to give improved results for other postprocessing
techniques.

Selection of regularization parameter

In the presence of noise, the minimization problem OPT_TNN(2)
introduces the unknown parameter λ to determine the trade-off be-
tween measurement error and the TNN of X . The regularization
term λ is typically determined through heuristics such as the L-curve
method (Hansen and O’Leary, 1993). However, choosing a suitable
λ based on the L-curve can be difficult to determine and challenging
to automate. To determine λ, we use a variation in the KS test, de-
scribed in detail by Aeron et al. (2011). The method computes the
residual for the entire range of the regularization parameters. From
these sets of residuals, we compute the KS statistic and P-value be-
tween each distribution and the two distributions with the smallest

Figure 10. (a) Stack of the original data set. (b) Stack of the reconstructed data with no-noise correction. (c) Stack of the joint noise removal
and reconstruction.
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and largest regularization parameters to generate two curves of the
KS statistic. The optimal operating point is the intersection of the
these two curves, Figure 11b and 11c.
In this particular experiment, we generate simulations for 10 dif-

ferent values logarithmically spaced from 10−6 to 10:45. The L-
curve method generates a curve having no distinct knee, making
it impossible to choose a viable λ, see Figure 11a. The KS test
was performed for the 10 values of λ with the residual randomly
downsampled by a factor of 104 to reduce computational time.
The intersection of the KS and P-value gives the same selection
of the parameter λ. The KS test resulted in λ ¼ .0038, which
was then used to generate all the plots showing reconstruction of
noisy field data.

CONCLUSIONS

We present a novel method for the reconstruction and denoising
of incomplete seismic data through the use of a tSVD rank mini-
mization algorithm, and we apply the algorithm to a variety of syn-
thetic data sets and a real data set. We test the algorithm in the f-x
and the t-x domain. In addition, we demonstrate how the survey
geometry and velocity model complexity can impact the compres-
sion and reconstruction of seismic data. Wide receiver shot spacing
and a more complex velocity model lead to poor reconstruction, and
interpolation is most feasible for tight shot-receiver spacing. Sub-
sequently, we demonstrate that our algorithm can be successfully
applied to field data to improve the stacked image.
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Figure 11. (a) The L-curve, residual error as function of TNN of 10 solutions. (b and c) KS statistic and P-values for the range of λs. The P and
KS curves show that between the sixth or seventh value of λ is optimal, a value of roughly 0.0038.
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