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ABSTRACT

The asymptotic convergence of the proximal point algorithm (PPA),

for the solution of equations of type 0 e Tz, where T is a multivalued

maximal monotone operator in a real Hilbert space is analyzed. When

0 e Tz has a nonempty solution set Z, convergence rates are shown to

depend on how rapidly T grows away from Z in a neighbourhood of 0.

When this growth is bounded by a power function with exponent s, then

for a sequence {zk} generated by the PPA, {Izk - Zl} converges to zero,

-s/2
like O(k ), linearly, superlinearly, or in a finite number of steps

according to whether s e (0,1), s = 1, s e (1, +o), or s = +0.



1. Introduction

Let H be a real Hilbert space with inner product <', >, and induced

norm |1', where for all z e H, Izi = <z,z> . Let us consider a multi-

valued mapping T: H + 2 . Its domain D(T) is defined by

D(T) = {z e H : Tz # 0} ,

its range by

R(T) =U{Tz : z e HI

and its graph by

G(T) = {(z,w) e H x H: w e Tz}

The inverse point to set mapping T is defined by T w = {z e H : w e Tz}

-1
if w e R(T) and T w = X otherwise. It is an elementary fact that

D(T- ) = R(T), R(T- 1 ) = D(T), and G(T- 1 ) = {(w,z) eH xH: (z,w) e G(T)}

Such a mapping T is said to be a monotone operator, if and only if,

Vz, z' e D(T), Vw e Tz, Vw' e Tz' <z - z', w-w'> > 6.

If in addition, its graph, is not properly contained in the graph of any

other monotone operator, then T is maximal monotone. For a detailed

treatment of the theory and applications of such mappings, the reader

may consult the works by Brezis (1973), Browder (1976), Pascali and

Sburlan (1978), and the references cited therein.

A fundamental problem is to find a vector z e H such that 0 e Tz.

Some of the most important problems in the area of convex programming

and related fields can be cast into this general framework.
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If f is a closed proper convex function, then T = Of is maximal

monotone (Moreau 1965). Thus solving the equation 0 e Tz is equivalent

to minimizing the convex function f, since f attains its minimum at

z if and only if 0 e 3f(z).

Let H1, H2 be real Hilbert spaces and let K be a closed proper saddle

function on H = H1 x H2, which is convex in the first argument and

concave in the second, and let the subdifferential of K at (x,y) e H1 x H2,

DK(x,y), be defined as the set of vectors (u,v) e H1 x H2 satisfying

V(x',y') e H1 x H2 K(x',y) - <x' -x, u> > K(x,y) > K(x,y') - <y'-y, v>,

then the multifunction

T(x,y) = {(u, -v) e H1 x H2 : (u,v) e DK(x,y)}

is a maximal monotone operator (Rockafellar 1970a). The solutions (x,y)

of the equation (0,0) e T(x,y) are the saddle points of K.

A variational inequality problem is to find a vector z e C satis-

fying

Sw e Az : Vv e C <a - w, z - v> > 0 ,

where C C H is a nonempty closed convex set, A : H + 2H is a multivalued

monotone mapping with D(A) = C, and a is a given vector in H. Equivalently,

it can be expressed by:find a vector z e C such that

a e Az + NC(z) ,

where Nc(z) is the normal cone to C at z. Its expression valid for all

u e H is (Rockafellar 1970b, p. 15)
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NC (U) = {x e H : <x, u-v> > 0 for all v e C}

When C is a cone and C° denotes its polar, the variational inequality

problem above is reduced to the complementarity problem of finding a

vector z e C such that

aw e Az : a - w e C°, <a - w, z > = 0

These last two problems can be reduced to solving 0 e Tz for the

operator T defined by (Rockafellar 1976a)

-a + Az + N (z) z e C

Tz =

0 z + C

Conditions for the maximal monotonicity of such operators T, were given

by Rockafellar (1970c, Th. 5). Further results are contained in papers

by Rockafellar (1978, 1980) and McLinden (1980).

We will now introduce the Proximal Point Algorithm (PPA). Most of

the notation has been borrowed from Rockafellar (1976a).

Minty (1962) proved that if T is a maximal monotone operator and

c is a positive constant, for any u e H there is a unique z, such that

u e (I+cT)z. The operator P = (I+cT) (the proximal mapping associated

with cT in the terminology of Moreau (1965)), is thus single-valued from

all of H into H. The monotonicity of T is a necessary and sufficient

condition for the nonexpansiveness of P wherever P is defined (Brezis

1973, p. 21, Prop. 2.1). Thus

Vz, z' e H IPz - Pz'l < Iz - z'l

The PPA generates for any starting point z© e H, a sequence {zk
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according to the rule

k+l k
z PkZ

-l
where Pk = (I+ckT) , and {ck } is some sequence of positive real numbers.

k+l
The criterion for the approximate computation of z used in this

analysis will be

(Ar) k+l - Pkz < ck min{l, I k+l - zk r

where r and sk satisfy

00

r > 0, Vk £k > O, C k < +k 
k=0

It has been shown by Rockafellar (1976a, Th. 1) that when 0 e Tz has at

least one solution, the condition z k+1 < ck is a sufficient

condition for Iz k+l - zkj + 0. Therefore when the PPA is implemented with

criterion (Ar) r > 1, there exists some k' e 2Z+ such that for all k > k',

zkl - z kIr < Ikz +l z < 1, and thus the larger r is, the more accurate

k+l
the computation of z will be. In previous papers dealing with the PPA

(Rockafellar 1976a, 1978, 1980), the value of r was always taken equal to

1, but as will be shown below one takes r strictly greater than

one in order to achieve superlinear convergence of order greater than one.

As shown by Rockafellar (1976a, Prop. 3), the estimate Ik+l - Pkz <

c$kzk+l -1 (z-zk ) Therefore

criterion (A ) is implied by

k+l k k+l k r}
(A') dist(0, S z ) < - min{1, Iz - zI
r k - ck

The set of solutions (possibly empty) of the equation 0 e Tz, will

be denoted by Z = {z e H : 0 e Tz}. When T is maximal monotone, for every
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u e H, T u = {z e H : u e Tz} is a, possibly empty, closedi convex set

(Minty 1964, Th. 1). Therefore Z = T 0 is closed and convex. If Z

is nonempty, the vector in Z closest to z will be denoted by z. We will

use the notation

Iz - ZI = minf{z - z'i : Z' e Z} = Iz - z[.

Our analysis will focus on the convergence properties of the sequence

{ zk
- Zl} corresponding to any sequence tzk } generated by the PPA.

In addition to the proximal mappings Pk = (I+ckT) where ck > 0

and T is a maximal monotone operator, use will also be made of the

mappings Qk defined by

Qk = I - P

Clearly 0 e Tz <-> Pkz = z <>Qkz = 0.

Rockafellar (1976a, Prop. 1) proved the following facts

-k k kVk > 0, Vz e H ck Qkz e TPkZ (1.1)

k > 0, Vz,z' eH IPk - PkZ'2 + QkZ - QkZ'12 < z-z'12. (1.2)

In the same paper, the following theorem was also proved.

Theorem 1.1. (Rockafellar 1976a, Th. 1). Let Z = T 10 # , and let

{zk } be any sequence generated by the PPA with stopping criterion (A ),r

r > 0, and a sequence of positive numbers {ck }, such that lim inf ck > 0.
k k_>o

Then {zk } is bounded, and converges in the weak topology to a unique

point z e Z. Also
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0 = lk im lkzkck Qkz I = l lim i Z - z (1.3)
k+-m k-- k->-

This paper addresses the issue of the speed of convergence of the PPA,

in both its exact and approximate versions. Under various hypotheses, we

show linear convergence, superlinear convergence, convergence in a finite

number of steps, and convergence in one step. A condition that implies sub-

linear convergence is given, and an estimateof the convergence rate in this

case is also provided. The results previously available on the speed of

convergence of the PPA have been reported by Rockafellar (1976a) for the

case in which Z = {z}. If T is Lipschitz continuous at 0 with modulus

a>O, then the approximate algorithm with {ck} nondecreasing, converges

linearly at a rate bounded by a/(a +c) 1/2 which becomes superlinear if

{ck } is unbounded (ibid., p. 883, th. 2). If 0 e int Tz, the exact algorithm

with lim inf c k>0 converges in a finite number of steps, while the approximate
k+-co

one with {ck } nondecreasing, achieves superlinear convergence without requiring

that {ck } be unbounded (ibid., p.888, th.3).

The hypotheses used are of a geometric nature and concern the growth

properties of the multivalued mapping T in a neighbourhood of 0, away from

the solution set. The general form of these growth conditions is

16 > 0 : Vw e B(0,6), Vz e T w z-zl < f(w|w,

where B(0,6) = {x e H: IxI < 6}, and f: [0, +o) + [0, +00) is a continuous

function such that f(O) = 0. This type of assumption was suggested to the

author by Professor D. Bertsekas of MIT. The characterizations of Rockafellar

(1976a) discussed above, are special cases of this one.

When f is linear with slope a>O, we are able to guarantee linear

convergence at a rate bounded by a/(a +c2 ) . This is valid for both the exact

and the approximate versions of the PPA with r>l in criterion (A ). By means of
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an example we show that this bound is tight. The extension to general

solution sets Z, and the proof of tightness of the bound are new.

As shown by Rockafellar (1976b), the quadratic method of multipliers

for convex programming is a realization of the PPA in which T = -ag, g

being the essential objective function of the ordinary dual program.

Taking this into account our Theorem 2.1, allows some extensions of the

circumstances under which the quadratic method of multipliers achieves

linear convergence as reported in Kort and Bertsekas (1973, 1976), and

Rockafellar (1976b).

When f is a power function with exponent s > 1, we show in Theorem

3.1, that superlinear convergence of order at least s is obtained for

the exact algorithm. For the approximate implementation, with criterion

(Ar ) and r > 1, the order of convergence is at least min{r,s}. This

result is entirely new. A comparison is made with results on the super-

linear convergence of the quadratic method of multipliers reported by

Kort and Bertsekas (1973, 1976).

If f is flat in some neighbourhood of 0 in [0, +o), i.e. there is

some 6>0 such that f(x) = 0 for all x e [0,6 ), then the exact algorithm

converges in a finite number of steps. The approximate version of the

algorithm, with stopping criterion (A ), r > 1, achieves superlinear

convergence of order r at least. A sufficient condition for the con-

vergence of the exact algorithm in a single step is also given.

When T 1 is such that its growth exceeds any linear bounding in any

neighbourhood, however small,of zero then it is proved in Theorem 4.1,

that the PPA will converge sublinearly when the penalty sequence {ck }

remains bounded. This result is valid for both the exact and approximate
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versions. To the best of our knowledge this is the first result dealing

with sublinear convergence of the PPA.

Finally, if f is a power function with exponent s e (0,1), we give

a conservative estimate of the speed of convergence. It is shown that

IZk - l decreases to zero faster than k- s/2 . This result is also new.

This section ends with a proposition on the global convergence of

the PPA which will be used repeatedly in what follows.

Proposition 1.2: Let Z 0, and let {z } be any sequence generated

by the PPA with stopping criterion (A ), r > 0, and a sequence of positive

numbers {ck such that lim inf ck > 0. Let us also assume that
k ~k- k

6 > 0: Vw e B(o,6), Vz e T-w Iz-z < f(Iw), (1.4)

where B(0,6) = {z e H : lzl < 6}, and f : [0, +c) + [0, +-), is such that

f(O) = 0, and upper semicontinuous at 0 (in this case equivalent to continuity

at 0). Then Ik - l + 0.

Proof: By Theorem 1.1, equation (1.3), we have Ick QkZ + 0. There

exists then, some k1 e Z + such that Ick Qkzkj < 6 for all k > k. By

equation (1.1) and assumption (1.4)

_k > kl IPkzk - Z < f(Ick Qkz k)

Using the continuity of f

lim sup IPkz - ZI < limf(ck Qkzl) = 0,
k-f ckzk k-+oo

from which it follows that IPkzk - Z+ 0.

Also the definition of jz - zj, the triangle inequality, and

criterion (Ar) yield for all k
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Izk+l - -- Pkzkl < Izk+l - PkzkI + I |PP k - Pz

< Ck min{l, Izkl z kr + Izk Z

Since k + 0, the result follows.

Remark. Condition (1.4) is not necessary. To see this consider in
2

P2 (IN) the quadratic function q (x) = I-A-- . The PPA for T=Dq converges
i=0

strongly to the unique solution x=O (Kryanev 1973). Nonetheless, the graph

of T is as flat as we may want in any neighborhood of zero, and such an

f does not exist.
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2. Linear Convergence

In this section a sufficient condition for the linear convergence

of {Jzk - Z } to zero when the PPA is operated in an approximate manner

is provided. The upper bound on the rate of convergence is shown to be

tight. Implications for the quadratic method of multipliers are pointed

out and comparisons with previous results are made. The main result of

this section is embodied in the following theorem.

Theorem 2.1. Let Z # 0, and let {zk} be any sequence generated by

the PPA with stopping criterion (A ), r > 1, and a nondecreasing sequence

of positive numbers {Ck}, such that 0 < ckT c < +-. Let us also assume

that

Ha > 0, 3 > O : Vw e B(0,6), Vz e T w z Z < awi. (2.1)

Then Izk - z + 0 linearly with a rate bounded from above by

a/(a +c20 ) < 1. If ca = +, the convergence is superlinear.

Proof. The hypothesis implies the one of Theorem 1.1, thus its

conclusion is in force. By (1.3) there exists some kl e + such that

Ick Qk zk < 6 for all k > k1 . Using formula (1.1) and assumption (2.1)

Vk > k1 IPkZ - Qk . (2.2)

k z k
Equation (1.2) with z = z , z' = z Z (thus Pkz ' = ' kZ = )

together with the flat IPkz - z > iPk z - zI, yields

Vk > 0 IQkl z - IPkzk -_ z 2 . (2.3)



Using (2.3) to eliminate IQkzk| in (2.2)

2 2

Vk > kl IP k 2 < Izk z2
a

Introducing k = a/(a 2+c2k) 1 /2 < 1 we obtain

Vk > kl |Pkzk Z|1Z < z Z . (2.4)

From equation (2.3) we have

Vk > O IQkZkl < Izk z (2.5)

The triangle inequality gives

V'k > O IZk _ Pkzkl < Ik _ zk + Izk _ pkzkl 

Projection onto a nonempty closed convex set (Z in our case) is a non-

expansive operation (in fact it is a proximal mapping, see Moreau 1965,

p.279), thus Izk - PkzkI < Izk - Pkzk|, and using (2.5)

Vk > 0 i k - Pkz < 2 - (2.6)

By Theorem 1.1, Iklz -zk + 0, and therefore there exists an index

k2 c ,+ such that for all k > k2 Zk+l - Zk < 1. If r > 1, then for

all k > k2 kl - kIr < Iz k+l _ k, and criterion (A) can be used

to obtain the estimate

Vk > k 2 ~ k+l kVk > k2 I k+ l Pk zkl < I k+l P zkl + IPzk P zk
k+l k

< EkZk+l _ zkl + |P zk - Z-
< kz - I + IPkz -

_ zkIZ - PkZl + k1 - Pzkl + IPkz - -z.
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But zk+l _ pkzl > klz - z. By criterion (A), Ek+0, thus there is
k r k

some k3 E Z+ such that £k<l for all k k 3. Let k = max {k2,k3}.

Using equation (2.6) and rearranging

~dk> /kZkk kfl - k
Vk > k IPkz Z > (1 - k) +l - 2 -z - (2.7)

Let k = max t klk }. Combining (2.4) and (2.7)

kVk > Is - zk+l Z| <_ l_ k |

Thus the rate of linear convergence 3, satisfies

k+l -1+2E

z -z k+k a
< lim sup z -I < a < 1 . (2.8)

k+- - Z k1 - k (a2+c)

Example. We will show by means of an example that the bound for the

rate of linear convergence obtained in Theorem 2.1 is achieved.

2 2 2
Let us consider in H = IR the linear transformation A: IR+ R ,where

A is given by the matrix

A [0 -1
A =

(Its effect is to rotate vectors counterclockwise by an angle of n/2).

Let us consider the quadratic form <z, Az> It is obvious that <z,Az> = 0

2 2 IR2

for all z e ]R .The mapping T: JR + 2 , given by Tz = {Az} is monotone

because

Vz, z' e ER
2 <z-z', Az -Az'> = <z-z', A(z-z')> = 0.
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Clearly T is single-valued and is continuous in IR . Therefore it is maximal

monotone (Pascali & Sburlan 1978, Cor. 2.3, p. 106). T is not the sub-

differential mapping of any proper lower semicontinuous convex function

f : R2 + (-o, +o0], as A is not self-adjoint (Rockafellar 1970b, p. 240).

It is easy to see that IAzj = Izl for all z e R 2 Therefore Z = {0},

the constants a, 6 appearing in assumption (2.4) are a = 1, 6 = +0, and the

inequality Iz-ZI < alwj becomes |zl = Iwl, valid for all w e ER2and all

-1 -1
z e T w, i.e., z = A w.

When the PPA is implemented in its exact form, i.e., £k - 0, it

becomes z = (I+ckT) z , and in our case we obtain izk+l = (I+ckA) lzk

Elementary computations show that

(I+c A) - k

and also that

zki
1 k+ll = (I+c A) l 

Therefore the convergence rate is

k+l
lim lim 1 1

= k- 1 k = k"l I+c2 l+c2
k 00

Since in this example a = 1, we have B = a/(a +c2) /2 , and the bound is

achieved.

Let us consider the following convex programming problem
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min f0(x)

s.t. f(x) < 0 i = 1,2,..., m (2.9)

xeC

where C is a nonempty closed convex subset of IRn and f. : C + /R, is a lower

semicontinuous convex function for i = 0,1,...,m.

Its ordinary dual problem is

max go(y)
(2.10)

s.t. y > 0

where go : R+m + iR, is the concave function defined by

g0(y) = inf {f0 (x) + ylfl(x) +...+ ymfm(x)}

xeC

The quadratic method of multipliers involves a sequence of minimiza-

tions of the Augmented Lagrangian function

m 2 2
f (x) + 2 Z [(max({,yi+cfi(x)}) - >o x e C

L(x,y,c) =

+o x¢C .

The method of multipliers can thus be expressed as

k k
x = arg min L(x,y ,k )

x
(2.11)

k+l k k
Y. = max{0,y + ckfi(xk)} i = 1,2,...,m.

1i ki

Rockafellar (1976b) has shown that the quadratic method of multipliers

(2.11) for the solution of (2.9), is a realizationof the PPA, in which

T = -ag, where g is the essential objective function of the dual problem
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(2.10) defined by

go (y) if y e IR+

g(y) =
-00 if y IRm

assuming that g is proper, i.e. sup g > -c, so that T is maximal monotone.

He assumes that T is Lipschitz continuous at the origin - which implies

that there is only one Lagrange multiplier vector y- and that the mini-

mization to determine x in (2.11) is carried out only approximately with

stopping criterion

L(xk+l yk, ck) - inf L(x, y , ck) < ( 2/2ck ) yk+l -yk2

00

where y is given as in (2.11), E > 0 for all k, and sk < +-. He
k- k
~kj ~~~k=0

concludes that the sequences {y } generated by the algorithm converge

towards y linearly, at a rate bounded as in (2.8). He also shows that

Jykl k2k+1 k k
Iy _ pky1c2/2ck < L(x , y, ck) - inf L(x, y , ck)

x

and thus the stopping criterion implies (A ) with r = 1.

Kort and Bertsekas (1973, 1976) have also studied the convergence

for this method of multipliers. In their analysis it is assumed

(i) Problem (2.9) has a nonempty compact solution set

X, and a nonempty compact set of Lagrange multipliers Y.

(ii) f is strongly convex with modulus y > O. This implies

that X ={x.

(iii) The following growth condition on the dual function
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3b > 0, 36 > 0: Vy e B(Y,6) g(Y) < g y - Y2-

where

g = max g, B(Y,6) = {y e Rm: I - Y < 6} ,

and

ly - Yj = max{ly-y'1: y' e Y}
which is well defined as Y is closed and convex.

The strong convexity assumption (ii) allows them to develop an imple-

mentable criterion which implies the following one

yk+l _2- <~y k _ yk+l k 2 (2.12)

where nk is a prespecified sequence such that nk < 2i for all k large

enough. When minimization of the Augmented Lagrangian is carried out

exactly (ii) need not be assumed. The growth condition (iii) implies

(2.1) with a = b. Linear convergenge is guaranteed if n < 4Vc/b where

,1 = lim sup rk' c = lim sup ck. If nk 4 0, the rate of linear convergence
k--oo k-+-o

is bounded (as in the case of exact implementation of (2.11)) by a/(a+c).

When interpreted in the framework of the method of multipliers,

Theorem 2.1, gives a sufficient condition for its linear convergence

under still weaker assumptions than those discussed above. First, both

X and Y are required to be only nonempty (they will always be closed and

convex by the lower semicontinuity and convexity of the functions

fi,i = 0,1,..., m), and no assumption is made on their compactness. Secondly,

the strong convexity assumption on f0 is not made.
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3. Superlinear Convergence and Convergence in a Finite Number of
Iterations

The (Q-) order of convergence (Ortega & Rheinboldt 1970) of {Izk-ZI},

assuming that Izk - Z1 # 0 for all k, is the supremum t of the numbers

T > 1 such that

k+l -
lim sup i z - < +0

k->- Iz ZI

Theorem 3.1. Let Z ¢ 0 , and let {zk } be any sequence generated by

the PPA with stopping criterion (A ), r > 1, and a nondecreasing sequence

of positive numbers {ck }, such that 0 < ck f ck c < +X. Let us also assume

that

3a > 0, 3s > 1, 36 > 0: V w e B(0,6), Vz e TW Iz- 1 < aIwIs

(3.1)

Then Izk-zI + 0, and its (Q-) order of convergence satisfies

t > min{r,s}.

Proof. The hypothesis of the theorem subsumes that of Theorem

1.1, and therefore Ick Qkzkl + 0. By equation (1.1) and assumption (3.1),

there is some k e z + such that

Vk > kl IPk z - < aiQkzk . (3.2)

ck

Using (2.3) to eliminate IQkzkI in (3.2)

2

Vk >k 1 IPkz - 2 2/s IPk - <12 / s k z- Z212
a



from which

Vk > k 1 I P kz k -I Z <_ (2 a /sk < aCz z (3.3)Vk 1>IPkzk 2 a2/slp zk zI 2(s-l)/s)s/2

The triangle inequality and criterion (A ) yield the following

estimate for all k

Izk+l _ pkzkl < Izk+l _ pkzkl + IPk zk Pkzl

< £klzk+ - Zklr + IP k Z-

< zk+l - klr-l k+l P kl + zk p kkl) + IP k -

Rearranging and using the fact Izk - Pkzkl < 21 - ZI (cf. (2.6))

Vk>_ - > ( IPkz k Z >_ (1 k k+l kVk > 0 IPkk z z k lr-1 ) 1k+l pkz

-2k
z-2 k+l - klr-ll k -z

By Theorem 1.1, 2 + z I u cBy Theorem 1.1, Izk+l _ z, -+ 0, and therefore there is some k2 e Z + such

that Izk+l -_ zk < 1, and z k+l zkr-l < 1 for all k > k2 as r > 1.

Also, by criterion (A ), k + 0, and thus there is some k3 e + such that

Sk < 1 for all k > k 3. Hence for all k > k = max{k2, k3}, 1- k+l -z kr >

1-$k > 0, and being Izk+l p kl> k+l

Vk >k Pkzk - Zi > (1 - k)zk+ -_Z

- 2 Eklzkk+l klr-1lZk z- 
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From equation (2.5), the triangle inequality, and the fact r > 1

I!k-1 >_ IQzI = 1 k - kI > Iz k+l -isk+
l
-P kzki

> Izk _ k+l ( 1 zk - zk+l r-l)

which can be transformed into the following estimate valid for all k > k

k k - -l
I - zk+ll < l-k Z (3.5)

Combining (3.4) and (3.5)

V > k lPkz - zi > (l-sk)IZ k + l _ ~1- > | - -r 
>z- -r-l I zk - ~r (3.6)

(1k

Let k = max{k, kma x max{kl, k k3}. The combination of (3.3) and

(3.6) yields for all k > k

(3.7)

izk+l- -I < akk - zj + 2_k k1 r
(1- k) (cs + a2/siPkzk -Z 2(s-l)/s)s/2 (1-kr z

Assumption (3.1) implies the hypothesis of Proposition (1.2) with

f(Jl') = aj-.j, and thus Izk - Z + 0. Also, by criterion (Ar), r k 0 '

and therefore from (3.7) it clearly follows that the (Q-) order of

convergence of {Izk - Z} is at least min{r,s} > 1.

Remark. An alternative proof can be obtained by using (2.5) instead

of (2.3) to eliminate IQkz k in (3.2), and then (3.6) to obtain
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>k I[zk+l_~I < a Izk _-Is + k [zkkZIr
-- r

(l-Ek) c k (1- E k)

The proof chosen has the advantage of clearly showing the connection

in equation (3.7) with the linear convergence case (take s=l to obtain

(2.8)).

In the context of the quadratic method of multipliers, Kort and

Bertsekas (1973, 1976) have also specified conditions for the super-

linear convergence to zero of the sequences {fyk _- Y }. The assumptions

under which this result is obtained include (i) and (ii) as in § 2 above

for the case of inexact minimization of the Augmented Lagrangian, while

(iii) takes the form

3b > 0, 3q e (1,2), 36 > 6: Vy e B(Y,6) g(y) < g - [y - Y q -

With the help of the subgradient inequality for the concave function g

Vy* e ag(y), y e Y g< g(y) + <y-y, y*> < g(y) + Iy-yI [y* ,

the assumption above becomes

3b > 0, 3q e (1,2), 36 > 0: Vy e B(Y,6), Vy* e ag(y) ly-YI < bly*I1/(- l )

Clearly when q e (1,2), s = 1/(q-l) e (1, +c), thus obtaining a growth

condition on Dg- analogous to the assumption (3.1) used in the proof

of our theorem. When the algorithm is implemented in exact form (the

strong convexity of f0 is not needed in this case), the (Q-) order of

convergence is at least l/(q-l) which coincides with our result (3.7).

When the algorithm is implemented only approximately (see (2.12)), the

(Q-) order of convergence obtained is 2/q (Kort & Bertsekas 1976,
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Prop. 7, p. 286). Taking into account that l/(q-l) = s, this order

becomes 2s/(l+s) in our notation and satisfies

2sVs> 1 < < s .
l+s

In order to achieve the same order of convergence as with the exact

algorithm, the sequence nk in (2.12) has to be replaced by

min(nk, cly - y I }, where nk + 0, c > 0, and a > s-l (Kort &

Bertsekas 1976, Cor. 7.1, p.288). With this modification the actual

criterion for the approximate implementation implies

i k -l yk 2 clyk+l -k kls+l

This is less stringent than criterion (A ) with r > s which implies

that for all k large enough (after yk+l _ yk < 1)

zk+l pkz k lS - E k-s

k=0

The difference in orders of convergence might be accounted for by the

following facts

a) The presence in the method of multipliers of subgradient

inequalities which are not available for a general monotone

operator.

b) The assumptions made on f , X, and Y.
0

We analyze now the conditions under which finite convergence is

obtained.

Theorem 3.2. Let Z { z, and let {zk } be any sequence generated

by the PPA either in exact form ( k -- 0), or with stopping criterionk
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(A), with r = O0 or r > 1, and a sequence of positive numbers {ck},

such that lim inf ck > 0. Let us also assume that

-1 -(3.8)
36 > 0: Vwe B(0,6), Vz e T w z e Z (3.8)

Then for all k large enough

k

If the PPA is operated in exact form (Ek 0), convergence is achieved

in a finite number of iterations. Otherwise, if r > 1, superlinear

convergence of order at least r, is guaranteed.

Proof. Theorem 1.1 applies, and by (1.3), Ick Qkzkl + 0, so there

is some kl e + such that Ic kQklz < 6 for all k > k By equation
1 + kk Be

(1.1) and assumption (3.8)

Vk~ > k IPkzk Z- = .0 (3.10)

Equation (1.3) implies that Iz k+l z k + 0, so there is some

k2 G 2+ such that Iz - z k < 1 for all k > k2, and the inequality

mini k+l k lz z r k+lz -z is valid for all k > k2 for r = 0 or

r > 1. Letting k = max {kl,k2}, the triangle inequality, criterion (A ),

and (31.10) yield

Vk > k | Zk+l < Iz +l P zkl< Izk+l Pkzkl + IPk k - Pkzl

< k min{l, izk+lzklr < 6} _ zk+lzkr (3.11)

valid for r=0 or r>l.
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By criterion (A), Ck + 0, thus there is some k3 e Z+, such that

<k < 1 for all k > k 3. When r > 1 and k > k = max{kl, k2 , k} > k,

(3.5) holds, and (3.11) can be transformed into

blVk > k IkZ l z| l l .< (3.12)

(1-Ck )

The theorem follows because it is clear that (3.10), (3.11), and

(3.12) are equivalent to (3. 9) when the PPA is implemented in exact

form ( - 0), with (Ar ) and r = 0, and with (A ) and r > 1 respectively.
k r r

Remark. A condition for the convergence of the exact PPA in a

single step can be easily obtained as follows. By (1.1) c01QOZ e

TO0 r-l0 1 0 -TP0 z , so if Ic 0 %0zI < 6 then z = P e z. Q0 is the proximal

mapping for the maximal monotone operator (cOT) , and thus it is non-

expansive. Hence for any z, z' e H, IQOz - Qz'I < Iz-z'I- We know

that if z' e Z, then Q0z ' = 0. Let us choose z = z , z' = z e Z, then

the estimate IQ0z
0 l < Iz0 - Zl is obtained. Thus a sufficient condition

for IcO QOz0I ~ is cO > IZ - ZI/6. A condition of this type appeared

for the first time in Bertsekas (1975).

Rockafellar (1976a, Th. 3, p.888) showed the finite convergence of

the PPA under the assumption that 0 e int Tz for some z e H. This

assumption implies that z is the unique solution of 0 e Tz. On the

other hand, our result applies in the general case in which Z need

not be a singleton or even compact.

Viewed in the context of the quadratic method of multipliers,

Theorem 3.2, guarantees finite convergence without the need of making

compactness assumptions on X (Bertsekas 1975) or uniqueness of the Lagrange
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multipliers, i.e. Y = {y} (Rockafellar 1976b).

The generalization of Rockafellar's criterion 0 e int Tz for

some z e H, to a general nonempty Z would be

36 > 0: B(0,6) C TZ . (3.13)

Instead we have used (cf. (3.8))

36 > 0: T lB(0,6) C Z (3.14)

which is the obvious limiting case of (3.1) when s + - and 6 < 1 (this

last condition can be arranged by taking some 6' < min{l,6}).

It is interesting to explore the relationship between (3.13) and

(3.14). From our analysis (see Prop. 3.4 below), it follows that (3.13)

implies not only (3.14) but also that Z is bounded. On the other hand

there are instances in which (3.14) holds but (3.13) does not. For

example, if Z is unbounded, as it happens for H = R-, when the graph of

T is given by G(T) = R_ x {O} U {0) x [0,1] U R+ x {1}.
+
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To show this relationship we will first prove two technical lemmas.

Lemma 3.2. Let T be a maximal monotone operator such that Z = T 0

is nonempty.

Then Tz c N-(z) for all z e H, where N-(z) denotes the normalz z

cone to Z at z. In particular if z e int Z, the interior of Z in the

strong topology of H, Tz = {0}.

Proof. For all z e H, the cone normal to Z at z is given by

(Rockafellar 1970b, p.15).

N-(z) = {x e H: Vu e Z <z-u, x> > 0} . (3.15)

If z 9 D(T), then Tz = 0 and the inclusion Tz c N-j(z) is trivial. Let

z e D(T), and w e Tz. Then the monotonicity of T implies

Vz' e z <z-z' w> > 0

and it follows that w e N-(z). If z e int Z then N-(z) = {0} _ Tz # 0,

so Tz = {0}.

Lemma 3.3. Let C be a nonempty closed convex and bounded subset of a

real Hilbert space H. Let Nc(z) denote the normal cone to C at z.

If z 0 C, then NC(Z) has a nonempty interior in the strong topology

which is also a convex cone.

Proof: Since C is nonempty closed and convex, for any z e H there

is a unique vector z e C which is closest to z. This vector is characterized

by (Luenberger 1969, Th. 1, p.69) <z-z, z-u> > 6 for all u e C. But
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<z-z, z-u> = <z-z, z-u> - iz-z 2 which clearly shows that for all u e C

<z-z, z-u> > z-z > 0, and therefore z - z e Nc(z) (see (3.15)).

It will now be shown that if C is bounded and z 0 C, then z-z e

int Nc(z). Let us suppose that z-z 9 int Nc(z), then for any 6 > 0,

there is some v e B(0,6) such that z - z + v C Nc(z). By the definition

of Nc(z), this implies that there is some vector p e C such that

<z-p, z-z + v> < 0, or <z-p, z-z> < <p-z, v>. But <z-p, z-z> =

<z-z, z-z > + <z-p, z-z> > |z-z 2 > 0, because p e C and z is the pro-

jection of z onto C.

Using successively the Cauchy-Bunyakovsky and triangle inequalities,

and boundedness of C (i.e.,3M e IR: C c_ B(O,M))

0 < Iz-z12 < <p-z, v> < jp-zl Ivl

< (Ipl + lzl)lvl < (M+lzl)lvl .

Thus vl| > lz-z12/(M+lzl) > O. Let us choose 0 < 6 < Iz-z1 2/(M+|zl) to

obtain a contradiction with v e B(0,6), and therefore z-z e int N (z).

It is easy to prove that if K is a convex cone so is int K, and therefore

int Nc(z) is a convex cone.

Proposition 3.4: Let T and Z be as above. Then O e int TZ implies

that Z is bounded. Moreover, there is some 6>0 such that for all w e

B(0,6), z e T w => z e Z. In particular, if w e B(0,6)\{0} and

-l -l
z E T w then z e aZ = Z\int Z, or more suggestively T (B(0,6)\{0}) c aZ.

Proof. Z is closed, therefore it contains its boundary aZ, and

Z = int Z U aZ. We also have by Lemma 3.2
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TZU =U{Tz: z e Z} = T int Z U TDZ

{O} UT3Z = TZ .

By the hypothesis, there is some 6>0 such that B(0,6) c TZ, and thus

B(0,6) c TDZ.

Let us denote by N-(z) the cone normal to Z at some given vector

z e H. N-(z) is convex and its expression is given by (3.15). Using

Lemma 3.2, and the hypothesis

B(0,8) c U{Tz:z ea Z} _U{N(z) :ze az} , (3.16)

and this implies that Z is bounded. Suppose that Z were unbounded, then

since Z is convex, there is some z e Z and u e H with Jul = 1 such that

for all X > 0, z + Xu e Z (Rockafellar 1970b, p.61). For any T e (0,61

TU e B(0,6) which implies, by (3.16), that there is some z' e aZ such

that Tu e Tz'. By the monotonicity of T and the fact z + Xu e z.

V X > o <z - (Z+Xu), TU> > 0 ,

or since T>0 and Jul = 1,

vX > 0 X < <Z'-z, u> < Jz'-zJ

whic is clearly a contradiction. Thus such u does not exist for any

z e Z, and Z is bounded.

To prove the second part, let us assume that for some z e D(T)\Z,

there is some w e Tz such that JwJ < 6. Since Z is convex and bounded,

by Lemma 3.3, for any z 0 Z, the interior of N-(z) is a nonempty convex

cone. Let p e int NZ(z) n B(0, 6-jwi) # Q. Clearly, 0 < JpJ < 6 - JIw, and
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Vu e z <z-u, p+w> = <z-u, p> + <z-u,w> > 0,

because p e int N-(z) c N-(z), and w e Tz c N-(z). The triangle

inequality yields Ip+wl < Ipl + Iwl < 6 - Iwl + |wI = 6, and p+w e

B(O,6). By (3.16), there is some z' e aZ such that p+w e Tz' c N-(z').

The monotonicity of T implies 0 < <z-z', w-(p+w)> = -<z-z', p>. But

p e N-(z) and z' e Z imply that <z-z', p> > 0, thus <z-z', p> = O. As

p e int Nz(z), there is some T>O such that B(p,T) c N-(z). For any

v e (0,T), p + V(z'-z)/Iz'-zI e N-(z). By the definition of Ni(z)

given in (3.15), this implies that

<z-z', p+ V > > 0 .

Since V>O and <z-z', p> = 0 we obtain 0 < <z-z', z'-z> < O a contra-

diction. Therefore we cannot assume that for some z e D(T)\Z there

exists some w e Tz with Iwl F 6. It follows that Iwl < 6 implies

z e z.
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4. Sublinear Convergence

This section starts with a partial converse to Theorem 2.1.

Theorem 4.1. Let Z # 0, and let {z } be any sequence generated

by the PPA with stopping criterion (Ar) with r > 1, and a nondecreasing

sequence of positive numbers {C }, such that 0 < ck t co < +o. Let us

also assume that

Va > 0, 3 6>0: Vw e B(0,6), Vz e T w Iz-Zl > a !wi. (4.1)

Then if {z } does not converge to Z in a finite number of steps

(i.e., zk 9 Z for all k)

1 k+l--1
lim inf z - 1,

and {Iz k - Zl} cannot converge to zero faster than sublinearly.

Proof. Let us choose some fixed a>0. Theorem 1.1 applies and

by (1.3) Ick Qkz k + 0. Therefore there is some kl e 1 such that
-k 1 +

Ick Qkz kI < 6 for all k > kl. By equation (1.1) and assumption (4.1):

Vk > k1 IPkz-zI > a IQkzk . (4.2)

By the triangle inequality

IQ zkzI IzkpkzkI >k -zk+ll -I zk+lp k (4 3)=~lI - I~k~l k I .(4.3)

The triangle inequality, and the fact that projection onto a nonempty

closed convex set is a nonexpansive mapping (Moreau 1965, p.279) yield
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Izk < IP k k+lI + I k+l k+l + Ik+l k

< 2 1pkzk k+l + Ik+lz I- 21P kz z I!+ lz · (4.4)

Using (4.3) and (4.4) we see that (4.2) can be transformed into

Vk > kl (2ck+a) IP kz kl + ckzk+l > al z -z I1 (4.5)

By equation (1.3) there is some k2 e .+ such that k+lz kr <

zk+l_zkl < 1 for all k > k 2. Hence criterion (Ar) yields

Vk > k2 Pk-zk+ll < k minfl, Izk+l-zklr} < k lzk+l_zki. (4.6)

We also have that

-zkzk+l > kk+li- k+l k+l > k 1 - k+lk k+l (47)

By combining (4.5)-(4.7) we obtain for all k>k = max{kl,k2}

(ck+a) Izk+l - Z > alz-z - (2ck+a) klzk+l -zk .

Criterion (A r ) implies that k + 0. Thus there is some k3 e Z+ such

that £k < 1 for all k > k3. If k > k = max{k3, k}, the above inequality

and (3.5) are valid and using the latter to substitute for Izk+ -z k

in the former

Vk > k (c +a)1zk+l-l >alzk - Z (2ck+a)k 
k l-E

From it, taking into account that sk + 0,

k+l -Z

a a
lim inf Iz - z > lim -

k+40 IZk - ke< a+ck a+ck-- 1 zk-*- k0
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Since a can be arbitrarily large, the theorem follows.

The preceding theorem provides an essentially negative result.

In the next theorem we try to quantify the speed of convergence. Since

the convergence maybe sublinear, we will have to look for an estimate

of the form Izk-zI = O(k- ) for some a > 0.

Theorem 4.2. Let Z # X , and let {z } be any sequence generated

by the PPA in exact form with a nondecreasing sequence of positive

numbers {Ck}, such that 0 < ck 1 ck < + Let us also assume that

3a > 0, 3s e (0,1) , 36 > 0: Vw e B(0,6), Vz e T-lw Iz-Z < alwl.

(4.8)

Then Izk-z] + 0 as o(k-S/2), i.e., lim lzk-_z2/Sk = 0.
k+-o

Proof. By Theorem 1.1, Ick Qkzkl + 0, thus there exists some

kl e + such that Ic1 Qzklz < 6 for all k > k 1. Also by (1.1)

-1 k k k+l
Ck Qk z e TP z = Tz . Using these facts and assumption (4.8)

Vk > k 1 z+l z < IQzl
ck

Using (2.3) to eliminate lQkzkI, and rearranging

2

kk izkc]2 + k+l z-2/s < zk -2_> k s - + 2/s z s _< ! - z]
a

From which we obtain the following inequality for all n > k

2
n k Z n ck n

c ~ 2 Ik+l 2 + k 1 k+ _ 2/s < k 
Iz - ! + | + l z - <2/s z l z 2

k=k1 k=kl a k=k1
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which reduces to

n 2

n Zl C /k k+l s2/s klVn > kl Izn+l-zl2 + 2/S z z < ]z k Z2
k=k a

Taking the limit as n -+ , Iz - Z + 0 by Proposition 1.2

co c k
z _2/s Iklz < zi2/s2I< +o .

k=k1 a

For the series to converge, its terms have to decrease to zero faster

than the terms of the harmonic series, thus

2 k+l z12/ 2k
lim sup czk+l z 2 /Sk 0

Obviously, any speed of decrease can be obtained by making Ck+ X fast

enough. If c + cco < +- then it follows that Izk - Z = o(k-S/2 )-

Remark. This estimate seems conservative at least when s + 1

because for s = 1 linear convergence is achieved and then k - ZI =

o(k- G) for all a > 0 (Ortega & Rheinboldt 1970).
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