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Abstract

Risk of developing inflammation-associated cancers has increased in industrialized countries 

during the past 30 years. One possible explanation is societal hygiene practices with use of 

antibiotics and Caesarian births that provide too few early life exposures of beneficial microbes. 

Building upon a ‘hygiene hypothesis’ model whereby prior microbial exposures lead to beneficial 

changes in CD4+ lymphocytes, here we use an adoptive cell transfer model and find that too few 

prior microbe exposures alternatively result in increased inflammation-associated cancer growth in 

susceptible recipient mice. Specifically, purified CD4+ lymphocytes collected from ‘restricted 

flora’ donors increases multiplicity and features of malignancy in intestinal polyps of recipient 

ApcMin/+ mice, coincident with increased inflammatory cell infiltrates and instability of the 

intestinal microbiota. We conclude that while a competent immune system serves to maintain 

intestinal homeostasis and good health, under hygienic rearing conditions CD4+ lymphocytes 

instead exacerbate inflammation-associated tumorigenesis, subsequently contributing to more 

frequent cancers in industrialized societies.
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Introduction

Routine environmental exposures to microbes and microbial products are increasingly 

understood to affect risk of chronic inflammatory diseases later in life(1-9). Microbial 

exposures are abundant in the natural environment, but are greatly reduced with hygienic 

practices and antibiotic usage that are widespread in modern lifestyles. Microbial exposures 
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represent important background stimulation for normal immune system development, such 

that limited microbe exposures in early life result in persistent overreaction to stimuli later in 

life (10). This concept that early-life microbial exposures and their connection with immune 

over-reactions later in life has been referred to as the “hygiene hypothesis” (10-16). In this 

‘hygiene’ model, too few exposures and insufficient CD4 cell priming leads to uncontrolled 

inflammatory responses and chronic inflammation. Immune over-reactions resulting in 

chronic inflammation have also been implicated in causation of cancers in the colon and 

other sites in humans (16).

Studies in lymphocyte-deficient mice using adoptive transfer techniques have shown that 

CD4+ lymphocytes significantly modulate inflammation in the lower bowel (17-22) and 

throughout the body (16, 23-26). While intact CD4+ cell populations protect from cancer 

and other pathology, prior studies using adoptive transfer of CD4+ lymphocytes in Rag-

deficient mouse models of inflammatory bowel disease (IBD) have dissected mechanisms 

involving gut microbiota and counter-regulation of inflammation. Such studies have 

revealed an interleukin-10 (IL-10)–dependent suppression of colitis-associated colon cancer 

(21, 27, 28). This showed explicitly that inhibition of enteric inflammation is pivotal in 

intestinal tumorigenesis (16, 21, 27, 28). We have previously tested roles for T cells using 

adoptive cell transfer in sporadic CRC in C57BL/6 mice heterozygous for a mutation in the 

Apc gene (ApcMin/+)(23, 28), which are genetically prone to intestinal polyps that mimic 

early stages of sporadic CRC in humans(29, 30). Although risk for sporadic colorectal 

cancer (CRC) is reduced by non-steroidal anti-inflammatory drug (NSAID) usage in 

humans, intestinal polyps without overt inflammation are less clearly associated with 

inflammation than is IBD-CRC. We now know, that despite a lack of overt inflammation, 

there were higher systemic levels of TNF-α, IL-6 and IL-17 in ApcMin/+ mice with intestinal 

polyposis (16) matching findings in colon cancer in humans (31). More recently, it has 

become clear from studies using other model systems that intestinal microbiota and 

inflammation are inextricably linked with risk of developing colon cancer (32-35).

Prior work in our laboratory(24, 36, 37) and others(38, 39) supports a model in which 

enteric infections early in life may ultimately suppress IBD and cancer by modulating T cell 

responses, consistent with the observations of the “hygiene hypothesis” by Belkaid and 

Rouse (11). Specifically, we showed that the beneficial cancer-suppressing effects of 

microbial infections are dependent on Interleukin (IL)-10 (27, 28, 36, 37) a cytokine that 

also provides suppressive and feedback inhibitory effects on allergies and autoimmune 

responses (12). Early life exposures to microbial products have been well studied regarding 

the etiologies of allergies and asthma. It follows that reduced or delayed exposures to 

microbiota or their products in childhood might hinder normal immune functions in adult 

life. Although the ‘hygiene hypothesis’ has been considered in depth for etiology of 

autoimmune diseases (10, 13), few studies other than our own (14-16, 24, 36, 37) have 

addressed these concepts as they may relate to cancer development in bowel or extra-

intestinal sites.

In humans, the risk of developing CRC is lower in countries that have less stringent hygiene 

practices (40, 41). To test this concept of whether this may be due to T cells that fail to 

protect from intestinal pathology, we applied a T cell transfer animal model using over-
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reactive “hygienic” lymphocytes in adenoma-prone ApcMin/+ model. CD4+ lymphocytes 

were isolated from restricted flora wild type (wt) C57BL/6 mice and then injected at dosage 

of 3×10^5 cells per mouse into mice with additional accumulated gut microbial diversity: 

co-housed littermate ApcMin/+ and wt recipient animals. We found that cells collected from 

the uninfected “hygienic” donor mice not only failed to provide protection against intestinal 

tumor development, but rather increased intestinal tumor burden commensurate with 

destabilizing changes in the host gut microbiome.

Results

ApcMin/+ mice are genetically at increased risk for intestinal polyps

In humans, the risk of developing CRC is lower in countries that have less stringent hygiene 

practices (40, 41). To test whether roles for lymphocytes in sporadic CRC, as they may 

conform to the aforementioned paradigm of autoimmunity, we examined C57BL/6 mice 

heterozygous for a mutation in the Apc gene (ApcMin/+), making these mice genetically 

prone to intestinal polyps that mimic early stages of sporadic CRC in humans (29, 30). Here 

we examined polyposis in 5-mos-old ApcMin/+ and wt littermate mice (Figure 1). Despite a 

lack of overt intestinal inflammation, ApcMin/+ mice are prone to intestinal polyposis 

matching important aspects of colon cancer in humans (31). This provides a framework to 

test in immunologically-intact animals whether ability of CD4+ T cells to suppress cancer 

may be more dependent on the prior microbial exposures of the lymphocyte donor rather 

than that of the recipient animals (16).

Gut microbiome is more divergent in ApcMin/+ mice than in co-housed wt littermates

It was previously shown that dysregulated inflammatory responses may destabilize the gut 

microbiome and contribute to colon cancer (32-35). To test the roles of ‘hygienic’ CD4+ 

cells in this putative destabilizing process, we first performed on mouse stool a microbiome 

analysis using high-throughput sequencing of the V4 region of the 16S gene using an 

Ilumina HiSeq platform. After quality filtering, we recovered an average of 26,879 reads per 

sample from 58 samples collected from 18 animals, including 12 harboring the ApcMin/+ 

mutation and 6 littermates with a wt genotype. We clustered these sequences into 1703 

operational taxonomic units for further analysis as previously described (42). We then 

compared the compositional variance of baseline sequence data collected from wildtype 

mice and among ApcMin/+ mice. Interestingly, we found that although the alpha diversity 

was not significantly different between these groups, the beta-diversity (or divergence 

within a group) was higher even in the unmanipulated ApcMin/+ group. Specifically, the 

average Jensen-Shannon Divergence (JSD) among ApcMin/+ mice (0.24) was higher than 

among co-housed WT littermates (0.18, p = 2.55 e-05, Mann-Whitney U-test). The ApcMin/+ 

microbiome is more variable across individuals, consistent with reduced regulation of the 

microbial population under the influence of the ApcMin/+ mutation (Fig. 2a). That this 

observation persists despite coprophagia among co-housed WT littermates that were reared 

together suggests that the ApcMin/+ mutation may play a role in regulating the composition 

of the microbiome, potentially mediated by cell-based immunity.
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Transfer of CD4+ lymphocytes collected from ‘hygienic’ restricted flora donor mice rapidly 
increases inflammatory cell infiltrates and intestinal tumorigenesis

In immune competent animals, whole CD4+ T cells potently suppress inflammation, and 

their ability to do so was previously shown to be more dependent on the prior microbial 

exposures of the lymphocyte donor rather than that of the recipient animals (16). To test this 

concept of whether T cells may fail to protect from intestinal pathology under more 

“hygienic” conditions in the adenoma-prone ApcMin/+ model, we applied a T cell transfer 

model. CD4+ lymphocytes were isolated from restricted flora source [hygienic] C57BL/6 

mice and then injected at dosage of 3X10^5 cells per mouse into littermate ApcMin/+ and wt 

littermate recipient animals. We found that cells collected from “hygienic” donor mice not 

only failed to provide protection against intestinal tumor development, but rather increased 

intestinal tumor burden in ApcMin/+ mice when compared with sham-dosed controls [Fig. 1].

Furthermore, the adenomatous polyps of mice that received “hygienic” lymphocytes were in 

a more advanced stage of the adenoma to adenocarcinoma progression compared to their 

sham-treated counterparts. Based on previously described histomorphological criteria (21, 

43, 44) focal lesions of dysplasia/adenoma within polyps were identified as low-grade 

dysplasia (LGD) or high-grade dysplasia (HGD) and carcinoma in situ (CIS, intraepithelial 

neoplasia) [Fig 3a]. The classification of small intestinal polyps according to the most 

advanced lesion they contained showed that “hygienic” T cell recipient mice had 

significantly more polyps bearing CIS compared to control mice [Fig 3b and 3c]. 

Lymphocytes, macrophages, neutrophils, plasmacytes and mast cells in the intestinal 

adenomas of both groups of ApcMin/+ mice followed the typical polyp-associated 

inflammatory cell topographical distribution pattern(23, 44). However, the inflammatory 

cell accumulation was more pronounced in the polyps of “hygienic” cell recipients. We have 

previously shown that neutrophils enhance intestinal tumorigenesis and that their 

accumulation in cancer-prone epithelia is influenced by CD4+ cell subsets(23, 44, 45). We 

next quantitatively assessed MPO+ granulocytes (neutrophils) in the polyps of ApcMin/+ 

mice. We found that tumor-associated MPO+ cells were significantly more in the mice 

treated with “hygienic” CD4+ lymphocytes when compared to the sham-dosed controls [Fig. 

4].

Gut microbiome is more divergent in ApcMin mice after adoptive transfer of ‘hygienic’ pro-
inflammatory CD4+ lymphocytes

Finally, to test whether the ‘hygienic’ + cells lead to increased microbial divergence that 

may contribute to cancer risk, we examined stool of cell transfer recipients of lymphocytes 

from syngeneic C57BL/6 wt cell donors of ultra-hygienic restricted flora health status into 

these ApcMin/+ or wt mice housed under conventional conditions. In the absence of this 

intervention, mice experienced modest ecological drift equivalent to a Jensen Shannon 

Divergence (JSD) of approximately 0.17 in both ApcMin/+ and their wt littermate mice. 

Wildtype mice subjected to lymphocyte transfer experienced a similar level of change in 

their microbiome (0.16, ns). However, ApcMin/+ mice subjected to lymphocyte transfer 

experienced a radical change in their microbiome of approximately double (0.31) the 

background rate of change in untreated controls (p = 0.05, Mann-Whitney U-test in Jensen-

Shannon Divergence between paired time points in each animal) (Fig. 2b). Operational 
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taxonomic unit (OTU)-level microbial events were found to be driving the higher level 

changes in diversity (Fig. 2c). The radical change in microbiome after transplant of 

‘hygienic’ lymphocytes coincided with increased gut inflammatory index (Fig. 4), and also 

features of intestinal adenoma multiplicity (Fig. 1) and malignancy (Fig. 3). This further 

implicates the immune system in the diversity of the ApcMin/+ microbiome and predilection 

to cancer.

Discussion

To test this concept of whether T cells arising under “hygienic” conditions may fail to 

protect from intestinal pathology, we applied a T cell transfer model in the adenoma-prone 

ApcMin/+ model. Under normal conditions, whole CD4+ T cells prevent intestinal pathology 

(16, 20). However, we found that cells collected from the restricted flora “hygienic” donor 

mice not only failed to provide protection against intestinal tumor development, but rather 

increased intestinal tumor burden. Adenomatous polyps of mice that received “hygienic” 

lymphocytes were in a more advanced stage of adenocarcinoma development, coincident 

with an increased inflammatory cell index within adenomas. Taken together, these 

observations connect the immune system, hygienic rearing, and diverse immune-mediated 

diseases including allergies, autoimmune disease, and cancer (16).

The radical change in microbiome after transplant of ‘hygienic’ lymphocytes coincided with 

an increased gut inflammatory index and intestinal adenoma multiplicity and malignancy, 

further implicating the immune system in the diversity of the ApcMin/+ microbiome and 

predilection to cancer. Indeed, inflammation-associated gut microbial ecology instability has 

previously been linked with opportunistic pathogenic infections and colon cancer (34). It is 

noteworthy that the ApcMin/+ microbiome was found to be more variable across untreated 

individuals, when compared to wt littermates, consistent with reduced regulation of the 

microbial population under the influence of the ApcMin/+ mutation. That this observation 

persists despite coprophagia when co-housed with wt litter mates that were reared together 

suggests that the ApcMin/+ mutation plays a role in regulating the composition of the 

microbiome, potentially mediated by cell-based immunity.

In summary, it has been well established in humans and in mice that chronic inflammation 

increases the risk of CRC (21, 23, 25, 31, 36, 37, 45, 46). It is paradoxical, then, that the risk 

for developing CRC is actually lower in countries that have less stringent hygiene practices 

with fewer exposures to potentially pathogenic organisms (40, 41), such as in North 

America. This paradox is explainable using cell transfer assays reveal that “hygienic” CD4+ 

cells may under some circumstances serve to promote carcinogenesis and increase cancer 

risk. This may be due in part to inability of “hygienic” source lymphocytes to suppress 

Th-17 inflammation (16), leading to gut microbiome instability that directly or indirectly 

influences cancer growth. Ultimately, in aging or genetically susceptible hosts this immune 

dysregulation leads to aberrant wound healing and ultimately contributes to cancer growth.

Materials and Methods

Experimental animals—All animals were housed in AAALAC accredited facilities and 

maintained according to protocols approved by the Institutional Animal Care and Use 
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Committee (IACUC) at Massachusetts Institute of Technology. C57BL/6 strain mice of 

defined flora health status were obtained from Taconic Farms (Germantown, NY) to provide 

‘hygienic’ CD4+ cell donors for experimental animals. C57BL/6 background ApcMin/+ mice 

on a C57BL/6J background were originally obtained from Jackson Labs (Bar Harbor, ME), 

then rederived by embryo transfer into Taconic microbial status recipient mice, and then 

bred in-house under standard conditions as (heterozygous X wildtype) crosses to provide 

ApcMin/+ mice and wt littermates of ‘non-hygienic’ status to use as cell recipients. Mice 

were humanely euthanized according to institutional criteria (i.e., poor body condition score, 

large tumor size) or when exhibiting other signs of distress. Experiments were conducted 

using six mice per treatment group as noted throughout the text.

Experimental design—A total of 24 mice were used for these experiments. Twenty 

C57BL/6 wt (N=8) or ApcMin/+ (N=12) littermate mice were included in treatment regimens 

or as experimental controls. Cell recipient and control mice were subdivided into large cages 

with ten mice (six ApcMin/+ and four WT mice) per cage to permit optimal co-housing for 

treatment and microbiome analyses. Fecal specimens were collected individually prior to 

treatment and then again every three weeks until the end of the study. An additional cohort 

of restricted flora C57BL/6 wt mice (N=4) were housed separately in a different animal 

facility and used as donors of ‘hygienic’ CD4+ lymphocytes. Recipient mice were injected 

with CD4+ lymphocytes (N = six ApcMin/+ mice per treatment group), or underwent sham 

injection with media only, at three months of age.

Adoptive transfer of purified CD4+ T cells into recipient mice—CD4+ 

lymphocytes isolated using spleens and mesenteric lymph node from Taconic restricted flora 

wt mice using magnetic beads (Dynal) and then sorted by hi-speed flow cytometry 

(MoFlow2) to obtain purified populations of CD4+ lymphocytes and determined to be ~98% 

pure as previously described elsewhere (16). Anesthetized recipient mice aged three months 

were injected intraperitoneally with 3 ×105 T cells as previously described.

Gut microbiome analyses—We performed on mouse stool high-throughput sequencing 

of the V4 region of the 16S gene using an Ilumina HiSeq platform. After quality filtering, 

we recovered an average of 26,879 reads per sample from 58 samples collected from 18 

animals, including 12 harboring the ApcMin/+ mutation and 6 littermates with a wildtype 

genotype. We clustered these sequences into 1703 operational taxonomic units for further 

analysis as previously described (42). The OTU level analysis for min study utilizes four 

groups of mice, untreated ApcMin/+, untreated wt, ApcMin/+ mice after lymphocyte transfer 

and wt mice after lymphocyte transfer. Each of the 1703 OTUs in our dataset is considered 

as to whether that OTU is enriched in any given treatment group relative to any other 

treatment group, plotted with the log-fold differences for each OTU and group relative to the 

untreated wt group. Red color reflects values below wt and blue reflects values above wt. For 

the p = 0.05 group the range is 4.5 to -4.5 log-fold changes.

Quantitation of intestinal tumors—Intestinal tumors were counted using a 

stereomicroscope at x10 magnification. Location of tumors was determined relative to the 

distance from the pylorus.
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Histopathology and Immunohistochemistry—For histologic evaluation, formalin-

fixed tissues were embedded in paraffin, cut at 4 μm, and stained with hematoxylin and 

eosin or immunohistochemistry (IHC). Polypoid adenomas were classified according to the 

worst preneoplastic lesion they contained. Preneoplastic lesions were classified as low 

(LGD) and high grade dysplasia (HGD) or Carcinoma in situ (CIS) using 

histomorphological criteria that have been earlier described (21, 44). MPO-specific 

immunohistochemistry and quantitative histomorphometry of MPO-positive cells were 

performed as previously described(44).

Statistical analyses—Adenomatous polyp counts and tumor-associated MPO+ 

neutrophils were compared between groups using Mann–Whitney U analysis. The staging of 

polyps according to their most advanced dysplasia/adenoma lesion was compared between 

groups with the Chi-square test. Statistical significance was set at P<0.05. Analyses were 

performed with the Graphpad Prism version 5.0 for windows, GraphPad software, San 

Diego, CA.
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Figure 1. 
The adoptive transfer of “hygienic” CD4+ cells increased ApcMin/+ mouse polypogenesis. 

The y-axis depicts the mean±SEM of intestinal polyp counts. *p<0.05.
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Figure 2. 
The ApcMin/+ mouse microbiomes are more divergent than wt littermates when examining 

the V4 region of the 16S gene using an Ilumina platform. (a) The average pairwise Jensen 

Shannon Divergence (JSD) among ApcMin/+ mice is significantly greater than among wt 

mice or even between ApcMin/+ mice and wt mice. ApcMin/+ mice also deviate from the 

metacommunity significantly more than do wt mice. (b) The microbiome of ApcMin/+ mice 

is dramatically changed after adoptive transfer of ‘hygienic’ CD4+ cells, while wt mice 

experience little change. (c) Display of operational taxonomic unit (OTU)-level events 
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reveal what is driving high level change shown in bar plots (a & b) above. The plot shows 

the log-fold differences (abundance) of each OTU, with the innermost ring as the untreated 

ApcMin/+, 2nd ring is ApcMin/+ after lymphocyte transfer, 3rd ring is Untreated wt, outermost 

ring is wt mouse microbiome after CD4+ lymphocyte transfer. Values are plotted as color 

intensities red (decreased) or blue (increased) and range from 4.5 to -4.5 log-fold changes, 

when compared with untreated wt mice.
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Figure 3. 
Effects of “hygienic” CD4+ cell transfer on ApcMin/+ mouse polyp histopathology. (a) Side 

by side comparison of typical small intestinal polyps of ApcMin/+ controls (left panel) and 

ApcMin/+ “hygienic” cell recipients (right panel). The most advanced glandular dysplasia/

adenoma lesion found in each polyp is shown bellow in higher magnification. While the 

sham-treated control mouse polyp contains LGD and HGD lesions, the polyp of its age-

matched “hygienic” lymphocyte-treated counterpart contains CIS characterized by increased 

glandular shape and size irregularities, epithelial pseudostratification, cellular atypia, nuclear 
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size and pleomorphism, abnormal mitotic figures and apoptosis. (b) The occurrence of CIS 

is higher in the ApcMin/+ mouse polyps of “hygienic” CD4+ cell recipient mice compared to 

their sham-treated controls and (c) reaches statistical significance. Hematoxylin and Eosin, 

Scale bars: a-upper panel=250 μm; a-lower panel=50 μm. Numbers on the y axis of bar 

graph correspond to the mean±SEM of polyps classified according to their most advanced 

dysplasia/adenoma lesion.
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Figure 4. 
Tumor-associated MPO+ cells in ApcMin/+ mouse polyps. The polyps of “hygienic” cell-

treated mice contain significantly more MPO+ cells (neutrophils) compared to the polyps of 

sham-treated control mice. IHC: DAB chromogen, hematoxylin counterstain. Scale bars=25 

μm. Numbers on the y-axis of bar graph correspond to the mean ± SEM of 

immunohistochemically positive cell counts. *p<0.05.
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