
MIT Open Access Articles

A computational approach for obstruction-free photography

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Tianfan Xue, Michael Rubinstein, Ce Liu, and William T. Freeman. 2015. A 
computational approach for obstruction-free photography. ACM Trans. Graph. 34, 4, Article 79 
(July 2015), 11 pages.

As Published: http://dx.doi.org/10.1145/2766940

Publisher: Association for Computing Machinery (ACM)

Persistent URL: http://hdl.handle.net/1721.1/100282

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/100282
http://creativecommons.org/licenses/by-nc-sa/4.0/


A Computational Approach for Obstruction-Free Photography

Tianfan Xue1∗ Michael Rubinstein2† Ce Liu2† William T. Freeman1,2

1MIT CSAIL 2Google Research

(a) Captured images (moving camera)

Background Occlusion

(b) Output decomposition (our results) 

Occluding
layer

Background

Background Reflection

Background

Reflective
layer

Figure 1: In this paper we present an algorithm for taking pictures through reflective or occluding elements such as windows and fences.
The input to our algorithm is a set of images taken by the user while slightly scanning the scene with a camera/phone (a), and the output
is two images: a clean image of the (desired) background scene, and an image of the reflected or occluding content (b). Our algorithm is
fully automatic, can run on mobile devices, and allows taking pictures through common visual obstacles, producing images as if they were
not there. The full image sequences and a closer comparison between the input images and our results are available in the supplementary
material.

Abstract

We present a unified computational approach for taking photos
through reflecting or occluding elements such as windows and
fences. Rather than capturing a single image, we instruct the user to
take a short image sequence while slightly moving the camera. Dif-
ferences that often exist in the relative position of the background
and the obstructing elements from the camera allow us to separate
them based on their motions, and to recover the desired background
scene as if the visual obstructions were not there. We show results
on controlled experiments and many real and practical scenarios, in-
cluding shooting through reflections, fences, and raindrop-covered
windows.

CR Categories: I.3.7 [Image Processing and Computer Vision]:
Digitization and Image Capture—Reflectance; I.4.3 [Image Pro-
cessing and Computer Vision]: Enhancement

Keywords: reflection removal, occlusion removal, image and
video decomposition

1 Introduction

Many imaging conditions are far from optimal, forcing us to take
our photos through reflecting or occluding elements. For exam-
ple, when taking pictures through glass windows, reflections from
indoor objects can obstruct the outdoor scene we wish to capture
(Figure 1, top row). Similarly, to take pictures of animals in the
zoo, we may need to shoot through an enclosure or a fence (Fig-
ure 1, bottom row). Such visual obstructions are often impossi-
ble to avoid just by changing the camera position or the plane of
focus, and state-of-the-art computational approaches are still not
robust enough to remove such obstructions from images with ease.
More professional solutions, such as polarized lenses (for reflection
removal), which may alleviate some of those limitations, are not
accessible to the everyday user.

In this paper, we present a robust algorithm that allows a user to
take photos through obstructing layers such as windows and fences,
producing images of the desired scene as if the obstructing elements
were not there. Our algorithm only requires the users to generate
some camera motion during the imaging process, while the rest of
the processing is fully automatic.

We exploit the fact that reflecting or obstructing planes are usually
situated in-between the camera and the main scene, and as a result,
have different depth than the main scene we want to capture. Thus,
instead of taking a single picture, we instruct the photographer to
take a short image sequence while slightly moving the camera—
an interaction similar to taking a panorama (with camera motion

∗ Part of this work was done while the author was an intern at Microsoft
Research New England.
† Part of this work was done while the authors were at Microsoft Research.



perpendicular to the z-axis being more desired than rotation). Based
on differences in the layers’ motions due to visual parallax, our
algorithm then integrates the space-time information and produces
two images: an image of the background, and an image of the
reflected or occluding content (Figure 1). Our setup imposes some
constraints on the scene, such as being roughly static while captur-
ing the images, but we find that many common shooting conditions
fit it well.

The use of motion parallax for layer decomposition is not new.
Rather, our paper’s main contribution is in a more robust and re-
liable algorithm for motion estimation in the presence of obstruc-
tions. Its success comes from mainly: (i) a pixel-wise flow field
motion representation for each layer, which, in contrast to many
previous image decomposition algorithms that use parametric mo-
tion models (affine or homography), is able to handle depth varia-
tion as well as small motions within each layer; and (ii) an “edge
flow” method that produces a robust initial estimation of the mo-
tion of each layer in the presence of visual obstructions, as edges are
less affected by the blending of the two layers. Given an input im-
age sequence, we first initialize our algorithm by estimating sparse
motion fields on image edges. We then interpolate the sparse edge
flows into dense motion fields, and iteratively refine and alternate
between computing the motions and estimating the background and
obstruction layers in a coarse-to-fine manner (Figure 3).

Importantly, we also show that the two types of obstructions—
reflections and physical occlusions (such as fences)—can be han-
dled by a single framework. Reflections and occlusions may appear
different at a glance, and indeed, previous work have used different
solutions to address each one. However, in this paper we present
a unified approach to address the two problems from a single an-
gle. With minimal tweaking, our system consists of largely shared
modules for these two problems, while achieving results of higher
quality than those produced by previous algorithms addressing ei-
ther subproblem. In this paper we specify manually the type of
obstruction present in the scene (reflective or occluding) to tweak
the algorithm to each case.

We test our method in various natural and practical scenarios, such
as shooting through fences, windows and other reflecting surfaces.
For quantitative evaluation, instead of synthetically simulating ob-
structions by blending or composting images (as commonly done in
previous work), we design controlled experiments in which we cap-
ture real scenes with ground truth decompositions. Our algorithm
is fully automatic, can work with standard phone cameras, and only
requires the user to move the camera in a freeform manner to scan
the scene. In our experiments, we found that 5 images taken along
a small, approximately horizontal baseline of a few centimeters are
usually enough to remove the obstructing layer.

2 Background

The problems of removing reflections and removing occlusions
from images have been explored in the past under different setups.
Here we review related work in those two areas.

Reflection Removal. Separating transmission and reflection in
images has been widely studied, both for the purpose of direct
decomposition (e.g. [Levin et al. 2002; Szeliski et al. 2000]), as
well as in the context of other graphics and vision applications such
as image based rendering [Sinha et al. 2012; Kopf et al. 2013] and
stereo [Tsin et al. 2006].

Previous work on reflection removal can be grouped into three main
categories. In the first category are approaches that remove reflec-
tion from a single image. As this problem is highly ill-posed, re-
searchers have proposed different priors to make the problem more

constrained. For example, Levin et al. [2002] proposed to use image
priors such as statistics of derivative filters and “corner detectors”
in natural scenes to decompose the image. They later improved
their algorithm using patch based priors learned from an external
database [Levin et al. 2004; Levin and Weiss 2007]. However, their
method requires a large amount of user input—relying on the user
to mark points on the background and reflected content—and does
not work well in textured regions. Recently, Li and Brown [2014]
proposed to separate the reflection using a single image focused
on the background, under the assumption that the reflection in that
case will be blurrier. Even with these priors, single image reflection
removal is extremely challenging and hard to make practical for
real images.

The second line of work focuses on removing reflections from a set
of images taken through polarizers. Using a polarized filter with
different orientations, a sequence of images is captured, each of
which is a linear combination of the background and reflection,
Ii = aiIB + biIR, where combination coefficients ai and bi

depend on the direction of the polarized filters. This set of images
is then used to decompose the background and reflection layers,
again, using different priors on the two layers [Kong et al. 2014;
Singh 2003; Sarel and Irani 2004; Farid and Adelson 1999]. These
methods perform well, but the requirement of a polarized filter and
two images from the same position limits their usefulness.

The third approach for removing reflections is to process an input
image sequence where the background and reflection are moving
differently. In this setup, both the intensity and the motion of each
layer need to be recovered. To simplify the problem, most previous
approaches in that category constrained the motion of each layer to
follow some parametric model. Be et al. [2008] assumed translative
motion, and proposed an algorithm to decompose the sequence us-
ing a parameterized joint diagonalization. Gai et al. [2009] assume
that the motion of each layer follows an affine transformation, and
found a new image prior based on joint patterns of both background
and reflectance gradients. Guo et al. [2014] assume that the motion
of each layers is a homography, and proposed a low-rank approxi-
mation formulation. For many practical scenarios, however, affine
and perspective transformations cannot model well enough the mo-
tions of the background and reflectance layers. This is manifested
as artifacts in the results.

Some authors used dense warp fields, as we do, to model the mo-
tions of the background and reflection. Szeliski et al. [2000] pro-
posed a min/max alternation algorithm to recover the background
and reflectance images, and used optical flow to recover a dense
motion field for each layer. In addition to dense motion fields,
our algorithm also incorporates image priors that were shown to be
instrumental for removing reflections from image sequences [Gai
et al. 2012], which are not used in [Szeliski et al. 2000]. Li and
Brown [2013] extended that approach by replacing the optical flow
with SIFT flow [Liu et al. 2008] to calculate the motion field.
However, they model the reflection as an independent signal added
to each frame, without utilizing the temporal consistency of the
reflection layer, thus limiting the quality of their reconstructions.

Occlusion Removal. Occlusion removal is closely related to im-
age and video inpainting [Criminisi et al. 2004; Bertalmio et al.
2000; Bertalmio et al. 2001; Newson et al. 2014]. To remove an
object from an image or a video, the user first marks some regions
to be removed, and then the inpainting algorithm removes those
region and fills in the holes by propagating information from other
parts of the image or from other frames in the sequence. Image and
video inpainting is mainly focused on interactive object removal,
while our focus is on automatic removal, as in most of the cases
we address asking the user to mark all the obstructed pixels in the
image would be too laborious and impractical.



Several other papers proposed to automatically remove visual ob-
structions of particular types from either an image or a video. Sev-
eral algorithms were proposed to remove near-regular structures,
like fences, from an image or a video [Hays et al. 2006; Park et al.
2008; Park et al. 2011; Yamashita et al. 2010]. Mu et al. [2012]
proposed to detect fence patterns based on visual parallax, and to
remove them by pulling the occluded content from other frames.
[Barnum et al. 2010] proposed to detect snow and raindrops in
frequency space. [Garg and Nayar 2004] remove rain drops based
on their physical properties. All these work either focus on partic-
ular types of obstacles (e.g. raindrops), or rely on visual properties
of the obstruction, such as being comprised of repeating patterns.
Our goal is develop a general purpose algorithm that could handle
common obstructions, without relying on their specific properties.

3 Problem Setup

Figure 2 shows our image formation model. A camera is imaging a
scene through a visual obstruction, which can be either a reflective
object, such as glass, or an opaque object, such as a fence. In order
to remove the artifacts—either the obstruction itself, or the reflec-
tion introduced by the obstruction—the user captures a sequence of
images while moving the camera. In this paper we assume that both
the obstruction and background objects remain roughly static dur-
ing the capture. If the obstruction is opaque (a fence, for example),
we further require that each pixel in the background scene would
be visible (not occluded by the obstruction) in at least one frame in
the sequence, so that its information could be recovered. We also
assume that the obstruction (or the reflected content) is not too close
to the background, so that when moving the camera there would be
sufficient difference between the motions of the two layers.

In this paper, we use a lower-case letter a to denote a scalar, a
normal capital letter A to denote a vector, and a bold capital letter
A to denote a matrix. We denote the matrix product as AB, where
A ∈ Rn×m and B ∈ Rm, and the element-wise product of two
vectors as A ◦B, where A,B ∈ Rn.

If there is no obstruction, we will get a clean image of the back-
ground, denoted as IB ∈ Rn (n is the number of pixels). Now,
due to the presence of obstructions, the captured image I ∈ Rn

is a composition of the background image IB and an additional,
obstruction layer, IO:

I = (1−A) ◦ IO +A ◦ IB , (1)

where IO ∈ Rn is the obstruction layer we want to remove, 1 ∈
Rn is a vector with all components equal 1, and A ∈ Rn is an
alpha blending mask, which assigns a blending factor to each pixel.
Notice that A multiplies (element-wise) the background image, not
the foreground image (that is, A = 1 means a background pixel).
This is a less conventional notation for alpha maps, but it will help
simplify some of the math later on.

More specifically, if we are imaging through a reflective object,
such as a clean window, the obstruction layer IO is the image of
objects on the same side of the camera, as shown in Figure 2(a).
In this case we assume the alpha blending mask A is a constant,
as reflective objects are usually homogeneous (i.e. glass as found
in most windows typically reflect light similarly throughout it).
This is a common assumption in the reflection separation litera-
ture [Szeliski et al. 2000; Li and Brown 2013; Guo et al. 2014].
If, on the other hand, we are imaging through a fence or other
opaque objects, the obstruction layer IO is the opaque object itself,
as shown in Figure 2(b). In that case, the alpha map, A, equals 1 at
the region where the background is not occluded, and is between 0
and 1 if the background is partially or fully occluded.

Decomposing I into the obstruction layer IO and the background
layer IB is ill-posed from a single input image. We therefore ask the

Glass Background sceneReflected object Image of reflected object

Fence

(a) Imaging through a window

Background scene
(b) Imaging through a fence

Figure 2: The image formation model. A camera image of a desired
scene though (a) a reflecting surface, and through (b) a partial
obstruction.

user to move the camera and take a sequence of images. Assuming
the obstruction layer IO is relatively closer (further away) to the
camera than the background objects, its projected motion on the
image plane will be larger (smaller) than the background objects
due to the visual parallax. We utilize this difference in the motions
to decompose the input image to the background and obstruction
components.

More formally, given an input sequence, we pick one frame t0 from
the sequence as the reference frame, and estimate the background
component IB and the obstruction component IO of that frame,
using the information from other frames. Assuming both the back-
ground objects and the obstruction layer are static, we can express
the background and obstruction components of other frames t 6= t0
as a warped version of the respective components of the reference
frame t0. Specifically, let V t

O and V t
B denote the motion fields for

the obstruction and background layers from the reference frame t0
to the frame t, respectively. The observed image at time t is then

It = (1−W(V t
O)A) ◦W(V t

O)IO+W(V t
O)A ◦W(V t

B)IB , (2)

where W(V t
B) ∈ Rn×n is a warping matrix such that W(V t

B)IB is
the warped background component IB according to the motion field
V t
B . Since the obstruction is between the camera and background

objects, the alpha map shares the same motion of the obstruction
component IO , not the background component IB . We can there-
fore simplify the formulation by defining IO = (1 − A) ◦ IO
(with the abuse of the notation IO), to get the following, simplified
equation:

It = W(V t
O)IO +W(V t

O)A ◦W(V t
B)IB . (3)

Note that in the case of reflection, since the alpha map is con-
stant, A = α, the formulation can be further simplified as It =
W(V t

O)IO +W(V t
B)IB , where IO = (1− α)IO and IB = αIB .

That is, the alpha map is essentially absorbed into the reflection
and background components. Except for a small modification in
the optimization for that case, which we will describe later on,
both types of obstructions (opaque objects and reflective panes) are
handled similarly by the algorithm.

Our goal is then to recover the background component IB and the
obstruction component IO for the reference frame It0 , from an
input image sequence {It}, without knowing the motion fields V t

B

and V t
O , or the alpha map A (in the case of opaque occlusion).



Input image sequence Edge Flow Sparse motion fields

Background Obstruction

Recovered dense motion fields

Motion
estimation

(Eq. 14)

Decomposition
(Eq. 10)

Recovered layers

Interpolation

Background (VB)

Initialzation
(Section 4.3)

A
lt. O

ptim
ization

(Section 4.2)

Motion color coding

Obstruction (VO)

x

y

Background (IB) Obstruction (IO)

Figure 3: Algorithm pipeline. Our algorithm consists of two steps: initialization and iterative optimization. Initialization: we first calculate
the motion vectors on extracted edge pixels from the input images (we thicken the edge mask for a better visualization). Then we fit two
perspective transforms (one for each layer) to the edge motion and assign each edge pixel to either the background layer or the obstruction
layer. This results in two sets of sparse flow fields for the two layers (top right), which we then interpolate to produce an initial estimation
of the dense motion fields for each layer (bottom right). Optimization: In this stage, we alternate between updating the motion fields, and
updating the background and obstruction components, until convergence.

4 Motion-based Decomposition

4.1 Formulation

Let us now discuss the optimization problem for recovering the
background and obstruction components, IB and IO , from an input
image sequence, {It}. We will first derive an algorithm for the
more general case of an unknown, spatially varying alpha map, A,
and then show a small simplification that can be used for reflection
removal where we assume the alpha map is constant.

According to the image formation model (Eq. 3), we set our data
term to be:∑

t

‖It −W(V t
O)IO −W(V t

O)A ◦W(V t
B)IB‖1, (4)

where {V t
O} and {V t

B} are the sets of motion vectors for the ob-
struction and background components, respectively.

To reduce the ambiguity of the problem, we include additional
constrains based on priors on both the decomposed images and
their respective motion fields. First, because the obstruction and
background components are natural images, we enforce a heavy
tailed distribution on their gradients [Levin and Weiss 2007], as

‖∇IO‖1 + ‖∇IB‖1, (5)
where∇IB are the gradients of the background component IB .

We assume that the alpha map is generally smoother than a natural
image (smooth transitions in the blending coefficients). We assume
the gradients follow a Gaussian distribution and penalize its l2-
norm:

‖∇A‖2. (6)
We also assume that the background component and the obstruction
component are independent. That is, if we observe a strong gradient
in the input image, it most likely belongs either to the background
component or the obstruction component, but not to both. To en-
force this gradient ownership prior, we penalize the product of the
gradients of background and obstruction, as

L(IO, IB) =
∑
x

‖∇IO(x)‖2‖∇IB(x)‖2, (7)

where x is the spatial index and ∇IB(x) is the gradient of image
IB at position x.

Finally, as commonly done by optical flow algorithms [Black and
Anandan 1996], we also enforce sparsity on the gradients of the
motion fields, seeking to minimize∑

t

‖∇V t
O‖1 + ‖∇V t

B‖1. (8)

Combining all the terms above, our objective function is:

min
IO,IB,A,{V t

O
},{V t

B
}

∑
t

‖It−W(V
t
O)IO−W(V

t
O)A ◦W(V

t
B)IB‖1

+λ1‖∇A‖22+λ2(‖∇IO‖1+‖∇IB‖1)+λ3L(IO, IB)+λ4

∑
t

‖∇V t
O‖1+‖∇V

t
B‖1

Subject to:

0 6 IO, IB , A 6 1, (9)

where λ1, . . . , λ4 are weights for the different terms, which we
tuned manually. For all the examples in the paper, we used λ1 = 1,
λ2 = 0.1, λ3 = 3000, and λ4 = 0.5.1 Similarly to [Szeliski et al.
2000], we also constrain the intensities of both layers to be in the
range [0, 1].

In Figure 4, we demonstrate the contribution of different compo-
nents in our algorithm to the result, using a controlled sequence
with ground truth decomposition. One of the main differences
between our formulation and previous work in reflection removal
is the use of dense motion fields instead of parametric motion. For
comparison, we replaced the dense motion fields V t

O and V t
B in

our formulation with a homography (the results using affine motion
were similar). As can be seen in Figure 4(c,e), a dense motion
representation greatly improves the quality and reduces artifacts.
That is because the background/obstruction layer at different frames
cannot be aligned well enough using parametric motion. Such
misalignments show up as blur and artifacts in the decomposition.
The decomposition quality also degrades slightly when not using
the gradient sparsity prior, as shown in Figure 4(d).

1L(IB , IO) is significantly smaller than other terms, and so we com-
pensate for that by choosing a larger λ3.



(b) Init. with opt. flow

B
ac

kg
ro

un
d

R
ef

le
ct

io
n

(c) Parameteric motion (projective) (d) Without sparsity prior (e) Our result

0.7401

0.7494-0.1045

(a) Input and ground truth decomp.

Representative input frame

Background

Reflection

0.8835 0.8928 0.8985

0.7207 0.7536

G
ro

un
d 

tru
th

 d
ec

om
po

si
tio

n

Figure 4: The contribution of different components in the algorithm to the result. We use one of our controlled image sequences with ground
truth decomposition (see Section 5), and compare our algorithm (e) with the following variants: (b) replacing the edge flow initialization with
regular optical flow, (c) replacing the dense motion fields with parametric motion (we used projective transforms for both layers), and (d)
when removing the sparsity prior on the image gradients (i.e. λ2 = 0 in Eq. 9). One pair of ground truth background and reflection images
for this 5-frame sequence are shown in (a) for reference. The normalized cross correlation (see Section 5 for details) between each recovered
layer and the ground truth is shown at the bottom left of each image.

4.2 Optimization

We use an alternating gradient descent method to solve Eq. 9. We
first fix the motion fields {V t

O} and {V t
B} and solve for IO, IB

and A, and then fix IO , IB and A, and solve for {V t
O} and {V t

B}.
Similar alternating gradient descent approach for joint estimation
has been used in video super resolution [Liu and Sun 2014].

Decomposition step: fix motion fields {V t
O} and {V t

B}, and
solve for IO , IB , and A. In this step, we ignore all the terms in
Eq. 9 that only consist of V t

O and V t
B :

min
{IO,IB ,A}

∑
t

‖It −Wt
OIO −Wt

OA ◦Wt
BIB‖1 + λ1‖∇A‖2

+ λ2 (‖∇IO‖1 + ‖∇IB‖1) + λ3L(IO, IB), (10)
Subject to

0 6 IO, IB , A 6 1, .

where we use Wt
O and Wt

B as short notes for W(V t
O) and

W(V t
B). We solve this problem using a modified version of itera-

tive reweighted least squares (IRLS). The original IRLS algorithm
is designed for a non-constrained optimization with only l1-and l2-
norms. To get this form, we linearize the higher-order terms in the
objective function in Eq. 10. Let ÎO , ÎB and Â be the obstruction
component, the background component, and the alpha map of the
last iteration, respectively. Then the data term is linearized as2

‖It−Wt
OIO−W

t
OA◦W

t
B ÎB−W

t
OÂ◦W

t
BIB+W

t
OÂ◦W

t
B ÎB‖1. (11)

We also linearize the edge ownership term as:3

λ3(L(ÎO, IB) + L(IO, ÎB)− L(ÎO, ÎB)). (12)

2we make an approximation commonly used in optimization: xy ≈
xŷ + x̂y − x̂ŷ, where x̂ is very close to x and ŷ is very close to y.

3L(IO, IB) =
∑

x ‖∇IO‖2‖∇IB‖2 ≈
∑

x ‖∇ÎO‖2‖∇IB‖2 +

‖∇IO‖2‖∇ÎB‖2 − ‖∇ÎO‖2‖∇ÎB‖2 = L(ÎO, IB) + L(IO, ÎB) −
L(ÎO, ÎB).

Second, we incorporate the two inequality constraints into our ob-
jective function using the penalty method [Luenberger 1973]. For
example, for the non-negativity constraint IB > 0, we include the
following penalty function into the objective function:

λp min(0, I2B), (13)

where I2B denotes element-wise square and λp is the weight for the
penalty (we fix λp = 105). This function will apply a penalty
proportional to the negativity of IB (and will be zero if IB is
nonnegative).

Motion estimation step: fix IO , IB ,A, and solve for the motion
fields V t

O and V t
B . In this step, we ignore the terms dependent

only on IO , IB , and A in Eq. 9:

min
V t
O
,V t

B

‖It −W(V t
O)IO −W(V t

O)A ◦W(V t
B)IB‖1

+ λ4

(
‖∇V t

O‖1 + ‖∇V t
B‖1

)
. (14)

This equation can again be solved using IRLS, similarly to the
decomposition step.

Multi-scale Processing. To accelerate the algorithm, we opti-
mize across multiple scales. We build a Gaussian pyramid for
the input image sequence, and first solve all the unknowns—the
motions, background and obstruction components, and the alpha
blending mask—for the coarsest level. We then propagate the
coarse solution to the next level using standard bicubic interpola-
tion, and use it as initialization to solve for all the unknowns at
the finer level. We get the final solution by solving the problem
at the original resolution. At each level, we make a few iterations
between solving for the motion and solving for the decomposition.
The final algorithm is summarized in Algorithm 1. The functions
Decompose and EstimateMotion are the two steps described
above. Scale 1 is the coarsest scale and ns is the finest scale (we
use 3 − 4 scales), and ni is the number of iterations, which varies



Data: {It}t, initial guess of IO , IB , A, {V t
O}, and {V t

B}
Result: IO , IB , A, {V t

O} and {V t
B}.

for Scale s = 1 to ns do
{Ît} ← downsample input image sequence {It} to scale s ;
IO, IB , A, {V t

O}, {V t
B} ← downsample/upsample IO , IB ,

A, {V t
O}, and {V t

B} to scale s;
for i = 1 to ni do

IO, IB , A← Decompose({Ît}, {V t
O}, {V t

B}) ;
{V t

O}, {V t
B} ← EstimateMotion({Ît}, IO, IB , A) ;

end
end

Algorithm 1: The motion-based decomposition algorithm.

across scales. We typically use 4 iterations for the coarsest scale
and 1 iteration for each of the other scales.

Reflection Removal. As discussed earlier, in the case of a re-
flective pane, the alpha map A is essentially absorbed into the
background and reflection images and there is no need to solve for
it separately. We thus remove the prior term ‖∇A‖2 (Eq. 6) from
the objective function, and only solve for IO , IB , {V t

O}, and {V t
B}.

The data term in Eq. 9 becomes:

‖It −W(V t
O)IO −W(V t

B)IB‖1, (15)

and we use the same alternating gradient descent method described
above to solve the decomposition. Currently we distinguish be-
tween the two sources of obstructions (opaque and reflective ob-
struction) manually.

4.3 Initialization

A key stage in our algorithm is the initialization of the motion
fields and decomposition for the optimization. That part is vital
for getting a clean separation as the objective function in Eq. 9 is
nonlinear, and the IRLS algorithms (Section 4.2) may get stuck
at a local minimum. Our initialization works by first estimating
an initial motion field for each layer, then calculating the initial
decomposition (background component IB , obstruction component
IO , and alpha map A) from the initial motion fields. We will now
describe these two steps in detail.

Initial motion estimation. Motion estimation in videos with re-
flection/occlusion is challenging. For videos with reflection, for
example, each pixel has two motion vectors—one for the back-
ground and one for the reflectance. Therefore, we cannot directly
use optical flow to estimate the motion fields. Notice that previous
work in multi-layer optical flow [Jepson and Black 1993; Jojic
and Frey 2001; Weiss and Adelson 1996; Liu et al. 2014] usually
assume that the layer in the front occludes the layer on the back,
while we assume the captured image is an additive superposition of
two layers, so that both layers may be visible at the same location
in the image.

Therefore, we propose to get an initial estimate of the motion fields
using an “edge flow” algorithm. That is, we estimate a sparse
motion field at each edge pixel identified in the image. As discussed
before (Eq. 7), an observed image gradient will often belong to only
one of the layers–either the background or the occlusion–but not to
both. Indeed, we find that motion vectors estimated from pixels
with large image gradients are generally more robust. A similar
idea was used by [Kopf et al. 2013] for multi-view stereo.

More specifically, for a given input sequence, we first extract the
edge map for each frame using the Canny edge detector [Canny

1986]. Then we calculate the motion of detected edge pixels by
solving a discrete Markov random field (MRF):

min
V

∑
x∈Edge(I1)

NCC(I1(x), I2(x+ V (x))) +
∑

x,x′∈Edge(I1) and (x,x′)∈N

S(V (x), V (x′)),

(16)

where I1 and I2 are two neighboring input images, V is the motion
field from image I1 to I2 that we want to estimate, Edge(I1)
is the set of edge pixels in image I1, and N is the 4-connected
pixel neighborhood. Notice that different from the motion fields
described in previous sections, this motion field is only defined on
image edges. We also assume that V takes only integer values, so
that x+ V (x) is also on the grid in the image I2.

The first term in Eq. 16 is the data term that describes how well the
patch located at position x in image I1 matches the patch located
at x + V (x) in image I2. Here, NCC(I1(x), I2(x + V (x))) is
the normalized cross correlation (NCC) between these two patches.
The second term S(V (x), V (x′)) in Eq. 16 is the smoothness term
that enforces neighboring edge pixels to have similar motion. We
use the same penalty function described in Eq. 1 in [Kopf et al.
2013] for the smoothness term. We solve this Markov random field
using belief propagation.

After obtaining the sparse motion field using edge flow, we separate
it into two sparse motion fields, one for each layer. For this we
first fit a perspective transformation to the sparse motion field using
RANSAC, and assign all the edge pixels that best fit this transfor-
mation to the background layer, assuming the background pixels
are more dominant. We then fit another perspective transformation
to the rest of the edge pixels (again using RANSAC), and assign the
pixels best fitting the second transformation to the reflection layer.
Finally, we compute the dense motion fields for both layers using
visual surface interpolation [Szeliski 1990]. An illustration of this
process is shown in Figure 3.

In Figure 4 we compare our result with the proposed edge flow
initialization (Figure 4(e)) with the one produced when initializing
using standard optical flow, as done in [Szeliski et al. 2000] (Fig-
ure 4(b)).

Initial decomposition. To get an initial estimation of the decom-
position, we first warp all the frames to the reference frame accord-
ing to the background motion estimated in the previous step. In this
warped input sequence, the background pattern should be roughly-
aligned, while the obstruction component should be moving (as the
motions of the two components are assumed to be different).

In the case of an opaque occlusion, we take the per-pixel mean
across the warped input frames as an initial estimation of the back-
ground image. We also compute a binary alpha map by thresh-
olding the per-pixel difference between the estimated background
image and the input images. If the difference is larger than a
threshold (we used 0.1), we set the alpha map to 0 at that location;
otherwise we set the alpha map to 1. We then get the obstruction
component by plugging the initial estimation of IB and A to Eq. 3.

For a reflective pane, we take the initial estimation of the back-
ground image to be the minimum intensity across the warped
frames4.

4we compute the minimum intensity instead of the mean, since the
minimum is an upper bound for the background’s intensity. See [Szeliski
et al. 2000] for details.



Input (representative frame) Background Reflection

Input (rep. frame) Background BackgroundReflection ReflectionInput (rep. frame)

(b)

(c) (d)

(a)

Figure 5: Reflection removal results on four natural sequences. For each sequence we show a representative frame (each input sequence in
this figure contain 5 frames), and the background and reflection images recovered automatically by the algorithm. Corresponding close-up
views are shown next to the images (on the right of each image for the sequences in the top and middle rows, and below each image for the
sequences in the bottom row). More results can be found in the supplementary material.

5 Results

In this paper, we took most of the image sequences using the cell
phone cameras of HTC One M8 and Samsung Galaxy 4, except for
the sequence shown in Figure 5(c), which was taken using a Canon
VIXIA HFG30. We processed the sequences on a desktop computer
with Intel Xeon CPU (8 cores) and 64GB memory. With a non-
optimized MATLAB implementation, processing a high-resolution
image sequence (1152x648) took 20 minutes and required 3GB of
RAM, and processing a low-resolution sequence (480x270) took
2 minutes and required 1GB memory. We also created a non-
optimized Windows phone app prototype, implemented in C++,
which produces equivalent results on the phone in less then 2 min-
utes for low-resolution images (480x270). Most of the sequences
contain 5 frames sampled uniformly form the video, except for
gallery (Figure 8, left) that contains 7 frames.

Removing Obstructions in Natural Sequences. We tested our
algorithms under various scenarios, with different background ob-
jects, reflecting/occluding elements, and lighting conditions, and it
worked consistently well in all these cases.

The top row in Figure 1 shows a common scenario when a pho-
tographer is taking a picture of an outside view through a window,
while self reflection appears in the captured images. The strong

reflection of the shirt covers most of image and obstructs a large
part of the scene. Our algorithm generates a clean separation of the
background and reflective components. Notice how the checker-
board pattern on the shirt is completely removed in the recovered
background image, while most of the background textures, like the
trees and the building, are well-preserved.

Figure 5 shows more scenarios where reflections frequently appear
in photos. One common case is imaging reflective surfaces, such as
a glass-covered billboard of a bus station (Figure 5(a)) and a glass-
covered panel (Figure 5(d)). Notice that in Figure 5(a), due to the
reflection, many letters on the billboard can be difficult to recog-
nize. Even with such strong and textured reflection, our algorithm
is able to produce a good separation, and words on the billboard
become much clearer after the reflection is removed.

Reflections are also common when imaging outdoor scenes through
windows during the night (Figure 5(b)) or at dusk (Figure 5(c)).
Our algorithm is able to separate the background image from the
reflection, producing a clean image of the outdoor scene, as well as
revealing a lot of information about the indoor scene that is difficult
to see in the original image. While the recovered background image
is usually of most interest in this work, our high-quality reconstruc-
tion of the reflected scene may also be useful in some cases where
more information needs to be extracted from an image sequence or
a video.



Input (representative frame) Background Occlusion Alpha map (A)

fe
nc

e
si

gg
ra

ph
ra

in

Figure 6: Occlusion removal results. For each sequence (row), we show a representative image from the input sequence (left column), the
recovered background scene (second column) and the recovered occluding layer (third column). In the right column, we also show the alpha
map, A, as inferred by the algorithm, with colors ranging from black (occlusion) to white (background). The alpha map, as expected, is
tightly correlated with the occlusion image, but we show it here for completeness.

Figure 1 (bottom row) and Figure 6 show some common scenar-
ios when photographs are taken though more opaque, occluding
elements, such as fences, dirty/textured windows (“simulated” by
the SIGGRAPH logo), and surfaces covered by raindrops. In all
cases, our algorithm is able to produce good reconstruction of the
background scene with the occluding content removed.

Rep. input frames [Mu et al. 2012] Ours

Tennis

Square

Figure 7: Comparison with “Video De-Fencing” [Mu et al. 2012]
on sequences from their paper. Left column: two representative
frames from each input sequence. Middle column: backgrounds re-
covered by [Mu et al. 2012]. Right column: backgrounds recovered
by our method.

Comparison. We compared our algorithm with two state-of-the-
art algorithms for removing reflections, [Guo et al. 2014] and [Li
and Brown 2013], and with the recent work of [Mu et al. 2012]
for fence removal from videos. In Figure 8 we show side-by-side
comparisons of our results with the results by [Guo et al. 2014]
and [Li and Brown 2013] on two sequences. On the “gallery”
sequence5, both [Guo et al. 2014] and our algorithm manage to
produce a clean background, while there are noticeable artifacts
near the boundary of the image in the results of [Li and Brown
2013]. Moreover, the reflection image produced by our algorithm
is cleaner than the ones produce by the other methods. On “night”,
our algorithm generated a much cleaner separation than the other
methods. Notice, for example, how the garbage bin is still visible
in the results by the other methods, while our algorithm produces a
clean separation in that region.

To compare with [Mu et al. 2012], we used the authors’ own
sequences “Tennis” and “Square”, shown in Figure 7. On the
“Tennis” sequence, the two methods produced comparable results,
although our algorithm generated a slightly cleaner background
image. On the “Square” sequence, since the direction of camera
motion is mostly horizontal with a small vertical component (see
input frames of “Square”), removing the horizontal part of the fence
is challenging. Our algorithm can take advantage of this tiny verti-
cal camera motion and remove both horizontal and vertical parts of
the fence, while in the result by [Mu et al. 2012] only the vertical
part of the fence is removed.

Quantitative Evaluation. To evaluate our results quantitatively,
we took three sequences with ground truth background and ob-
structing layers, as shown in Figure 9. The first two sequences
were taken through glass (reflective layer), while the third sequence
was taken through an iron net (occluding layer). We captured a
sequence of images over time while moving the camera, where at
each time step we captured three images: a standard (composite)

5Original sequence by [Sinha et al. 2012]. We sampled 7 consecutive
frames from their video.



O
ur

s
[G

uo
 e

t a
l. 

20
14

]
[L

i e
t a

l. 
20

13
]

Background Reflection Background Reflection

In
pu

t (
tw

o 
re

p.
 fr

am
es

)

gallery night

Figure 8: Comparison with recent methods for reflection removal. More comparisons can be found in the supplementary material.

image through the obstacle (Figure 9, left column), an image of
just the background scene, captured by removing the obstacle, and
an image of the reflective/occluding layer, which we captured by
placing a black sheet of paper behind the obstacle, blocking the
background component (and turning the glass into a mirror). All
images were taken with a DSLR camera under fully manual control.
The full sequences are available on the project web page.

We evaluate our algorithm by calculating the normalized cross cor-
relation (NCC) of our recovered decomposition with the ground
truth decomposition. The NCCs of our recovered background
images with the ground truth backgrounds were 0.9738 (Stone),
0.8985 (Toy), and 0.9921 (Hanoi). On the project web page we give
some additional comparisons with competing methods on those
sequences. For example, on the Stone sequence, the NCCs of the re-
covered background images by [Guo et al. 2014] and [Li and Brown
2013] were 0.9682 and 0.9271, respectively, and the NCCs for their
recovered reflections were 0.5662 and 0.2423, respectively.

Reflection-free Panoramas. Our algorithm can also be used for
removing obstructions from panoramic images, for which the im-
age capture already involves camera motion. In Figure 10, we
show an example of automatically removing window reflections
in a panorama of an outdoor scene taken from inside a building
(Figure 10(a)). In this case we can use the camera motion that is
already introduced by the user for creating the panorama, to also
remove the reflections from it. We remove the reflection for each
captured image using our algorithm as described above, and then
stitch the results together to produce a reflection-free panorama
image, as shown in Figure 10(b).

Our approach will not work if the camera motion is purely rota-
tional. In that case, we can still produce reflection-free panoramas if

Input (rep. frame) Recovered background Recoverd obstruction

NCC = 0.9921 NCC = 0.7079

NCC = 0.9738 NCC = 0.8433

NCC = 0.8985 NCC = 0.7536

Stone

Toy

Hanoi
````````̀Method

Sequence Stone Toy
IB IO IB IO

[Li and Brown 2013] 0.9271 0.2423 0.7906 0.6084
[Guo et al. 2014] 0.9682 0.5662 0.7701 0.6860

Ours 0.9738 0.8433 0.8985 0.7536

Figure 9: Quantitative evaluation on controlled sequences. Top:
for each sequence (row), we show a representative frame from
the controlled sequence (left column) and our decomposition re-
sult (middle and right columns). The normalized cross correlation
(NCC) between each recovered layer and the ground truth (not
shown, but available on the project web page) is written below the
image. Bottom: numerical comparison with recent techniques for
reflection removal (visual comparisons can be found on the web
page).



(a) Normal panorama processing

(b) Reflection-free panorama

Figure 10: Reflection-free panoramas. Often when taking panoramas of outdoor scenes through windows, reflections of the indoor scene
on the window cannot be avoided. Our algorithm can be used to produce reflection-free panoramas from the same camera motion used to
capture the panoramas—i.e. without any additional work needed from the user. (a) The panorama produced with a mobile phone and a
state-of-the-art stitching software, where indoor reflection are very apparent. (b) Our reflection-free panorama result. A panorama stitching
of the estimated reflection is shown in the inset. On the right are close-up views of corresponding patches in the two panorama images.

the user additionally translates the camera. However, we found that
in many practical scenarios—a user taking a panorama with a hand-
held camera or a phone—the camera motion will not be purely
rotational, and will introduce sufficient parallax for the algorithm
to work.

6 Conclusion

In this paper, we have demonstrated that high quality images can be
captured automatically, with mobile cameras, through various types
of common visual obstructions such as reflections, fences, stains,
and rain-drop covered windows. Our algorithm can dramatically
increase the quality of photos taken in such scenarios, and only
requires that the user record a short image sequence while mov-
ing the camera—an interaction similar to taking a panorama. Our
algorithm then combines the visual information across the image
sequence to produce a clean image of the desired background scene
with the visual obstruction removed. We have shown promising
experimental results on various real and challenging examples, and
demonstrated significant improvement in quality compared to prior
work.

Acknowledgements

We thank Dr. Rick Szeliski for useful discussions and feedback,
and the anonymous SIGGRAPH reviewers for their comments.
Tianfan Xue is supported by Shell Research and ONR MURI
6923196.

References

BARNUM, P. C., NARASIMHAN, S., AND KANADE, T. 2010.
Analysis of rain and snow in frequency space. International
Journal of Computer Vision (IJCV) 86, 2-3, 256–274.

BE, E., YEREDOR, A., AND MEMBER, S. 2008. Blind Separa-
tion of Superimposed Shifted Images Using Parameterized Joint
Diagonalization. IEEE Transactions on Image Processing 17, 3,
340–353.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In Computer Graphics and Interac-
tive Techniques.



BERTALMIO, M., BERTOZZI, A. L., AND SAPIRO, G. 2001.
Navier-stokes, fluid dynamics, and image and video inpainting.
In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

BLACK, M. J., AND ANANDAN, P. 1996. The robust estimation of
multiple motions: Parametric and piecewise-smooth flow fields.
Computer Vision and Image Understanding 63, 1, 75–104.

CANNY, J. 1986. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 6, 679–698.

CRIMINISI, A., PÉREZ, P., AND TOYAMA, K. 2004. Region filling
and object removal by exemplar-based image inpainting. IEEE
Transactions on Image Processing 13, 9, 1200–1212.

FARID, H., AND ADELSON, E. H. 1999. Separating reflections and
lighting using independent components analysis. IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).

GAI, K., SHI, Z., AND ZHANG, C. 2009. Blind separation of su-
perimposed images with unknown motions. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

GAI, K., SHI, Z., AND ZHANG, C. 2012. Blind separation of su-
perimposed moving images using image statistics. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI)
34, 1, 19–32.

GARG, K., AND NAYAR, S. K. 2004. Detection and removal of
rain from videos. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

GUO, X., CAO, X., AND MA, Y. 2014. Robust Separation of Re-
flection from Multiple Images. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

HAYS, J., LEORDEANU, M., EFROS, A. A., AND LIU, Y. 2006.
Discovering texture regularity as a higher-order correspondence
problem. In European Conference on Computer Vision (ECCV).

JEPSON, A., AND BLACK, M. J. 1993. Mixture models for optical
flow computation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

JOJIC, N., AND FREY, B. J. 2001. Learning flexible sprites
in video layers. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

KONG, N., TAI, Y.-W., AND SHIN, J. S. 2014. A physically-
based approach to reflection separation: from physical modeling
to constrained optimization. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI) 36, 2, 209–21.

KOPF, J., LANGGUTH, F., SCHARSTEIN, D., SZELISKI, R., GOE-
SELE, M., AND DARMSTADT, T. U. 2013. Image-Based Ren-
dering in the Gradient Domain. ACM SIGGRAPH.

LEVIN, A., AND WEISS, Y. 2007. User assisted separation of re-
flections from a single image using a sparsity prior. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (TPAMI)
29, 9, 1647–1654.

LEVIN, A., ZOMET, A., AND WEISS, Y. 2002. Learning to per-
ceive transparency from the statistics of natural scenes. Advances
in Neural Information Processing Systems (NIPS).

LEVIN, A., ZOMET, A., AND WEISS, Y. 2004. Separating reflec-
tions from a single image using local features. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

LI, Y., AND BROWN, M. S. 2013. Exploiting Reflection Change
for Automatic Reflection Removal. IEEE International Confer-
ence on Computer Vision (ICCV).

LI, Y., AND BROWN, M. S. 2014. Single image layer separation
using relative smoothness. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

LIU, C., AND SUN, D. 2014. On bayesian adaptive video super
resolution. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 36, 2, 346–360.

LIU, C., YUEN, J., TORRALBA, A., SIVIC, J., AND FREEMAN,
W. T. 2008. Sift flow: Dense correspondence across different
scenes. In European Conference on Computer Vision (ECCV).

LIU, S., YUAN, L., TAN, P., AND SUN, J. 2014. Steadyflow: Spa-
tially smooth optical flow for video stabilization. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR).

LUENBERGER, D. G. 1973. Introduction to linear and nonlinear
programming, vol. 28. Addison-Wesley Reading, MA.

MU, Y., LIU, W., AND YAN, S. 2012. Video de-fencing. IEEE
Circuits and Systems Society.

NEWSON, A., ALMANSA, A., FRADET, M., GOUSSEAU, Y.,
PÉREZ, P., ET AL. 2014. Video inpainting of complex scenes.
Journal on Imaging Sciences, Society for Industrial and Applied
Mathematics.

PARK, M., COLLINS, R. T., AND LIU, Y. 2008. Deformed
lattice discovery via efficient mean-shift belief propagation. In
European Conference on Computer Vision (ECCV).

PARK, M., BROCKLEHURST, K., COLLINS, R. T., AND LIU,
Y. 2011. Image de-fencing revisited. In Asian Conference on
Computer Vision (ACCV).

SAREL, B., AND IRANI, M. 2004. Separating transparent layers
through layer information exchange. European Conference on
Computer Vision (ECCV).

SINGH, M. 2003. Computing Layered Surface Representations :
An Algorithm for Detecting and Separating Transparent Over-
lays. IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

SINHA, S., KOPF, J., GOESELE, M., SCHARSTEIN, D., AND
SZELISKI, R. 2012. Image-based rendering for scenes with
reflections. ACM SIGGRAPH.

SZELISKI, R., AVIDAN, S., AND ANANDAN, P. 2000. Layer
extraction from multiple images containing reflections and trans-
parency. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

SZELISKI, R. 1990. Fast surface interpolation using hierarchical
basis functions. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 12, 6, 513–528.

TSIN, Y., KANG, S. B., AND SZELISKI, R. 2006. Stereo matching
with linear superposition of layers. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI) 28, 2, 290–301.

WEISS, Y., AND ADELSON, E. H. 1996. A unified mixture frame-
work for motion segmentation: Incorporating spatial coherence
and estimating the number of models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE.

YAMASHITA, A., MATSUI, A., AND KANEKO, T. 2010. Fence
removal from multi-focus images. In International Conference
on Pattern Recognition (ICPR).


