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Abstract

In this thesis, we design and implement a robust proof-of-concept system for demon-
strating the concept of usable, geo-based access control and agile, dynamic key man-
agement. The system utilizes a Parrot AR Drone 2.0 to stream an encrypted video
feed to a number of Android-based tablets. The tablets are able to decrypt the video
feed only if they are authorized to access it, based on the drone's location or a man-
ual override by the drone's operator. As the individual tablets' access permissions
change (either due to the drone's location changes or manual over-ride), the system
enforces these permissions cryptographically through real-time, in-band rekeying of
the authorized devices. This rekeying occurs virtually instantaneously, without any
loss in the quality of service for the authorized participants.

The proof-of-concept system achieves two goals. First, it serves as a compelling
demonstration of the Lincoln Open Cryptographic Key Management Architecture
(LOCKMA) library. It illustrates how usable and seamless cryptographic protections
can be straightforwardly utilized in an application, such as our geo-based drone pro-
totype, using LOCKMA's intuitive interface for cryptography, key management, and
access controls. Second, the proof-of-concept system lays the foundation for develop-
ing the geo-based access control concept further for drones and, possibly, other types
of mobile data distribution systems. The software produced in this thesis project can
also be used as a base for such future explorations.

This thesis document summarizes the project, the system architecture and its
implementation, and lessons learned.

Thesis Supervisor: Roger I. Khazan
Title: Senior Staff, MIT Lincoln Laboratory

Thesis Supervisor: Daniil Utin
Title: Technical Staff, MIT Lincoln Laboratory
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Chapter 1

Introduction

In this thesis, we design and implement a robust proof-of-concept system for demon-

strating the concept of usable, geo-based access control and agile, dynamic key man-

agement. The system is comprised of three types of wirelessly interconnected de-

vices: a ground control station (GCS), an unmanned aerial vehicle (UAV), and several

ground terminals (GTs). In our implementation, these devices are realized respec-

tively as a Windows laptop, a Parrot AR Drone 2.0 UAV [1], and several Android-

based Asus Eee Pad Transformer Prime tablets 121.

The GCS specifies, using an OpenLayers map, several geographical regions in

which different ground terminals are authorized to access the UAV's video feed. The

access permissions are enforced cryptographically: The GCS acts as a key manage-

ment server, generating and securely distributing cryptographic keys to the UAV and

the authorized GTs, in real-time, using the UAV's own wireless network. The UAV

uses the key it receives from the GCS to encrypt its video feed. The GTs are able

to decrypt the video feed only if they are currently authorized to access it. This de-

pends either on the UAV's position on the map or, in the manual mode, by the GCS

explicitly granting permission to a GT. All access control changes are implemented

through real-time re-keying of the devices; such rekeying occurs virtually instanta-

neously, without any loss in the quality of service for the authorized participants.

Internally, our proof-of-concept system relies on the Lincoln Open Cryptographic

Key Management Architecture (LOCKMA) library 13, 41. LOCKMA is a software
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component that provides a self-contained solution for easily integrating cryptographic

protections and key management into applications. LOCKMA handles all of the

necessary key management and cryptographic functions in a holistically architected

and verified design, and provides a simple, intuitive interface to the application for

invoking these functions. It supports agile, dynamic rekeying of individual devices

and groups of devices, without requiring a centralized, enterprise-grade key server.

1.1 A Motivating Example

The use of drones for civilian purposes is a hot topic in the news today (see for

example [5] and [6]). Video surveillance applications are one of the main uses, raising

non-trivial privacy and security concerns [7].

Figure 1-1: Seamless and transparent security for drones. The mission planner spec-
ifies the flight path and the geographical regions in which different participants are
authorized to access the video feed.

Imagine a chase scene of the Breaking Bad nature', depicted in Figure 1-1. The

'Breaking Bad is a crime drama television show originally aired on AMC until 2013. The main
character is, for most of the show, a producer of crystal meth, and as such is a natural target for
the US DEA.
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US Drug Enforcement Administration (DEA) has a UAV chasing a suspect (the UAV

is depicted by the yellow triangle in Figure 1-1). The DEA is collaborating with

various police departments, both domestically and across the border. It is, however,

quite likely that up to a certain point, each police department does not want any

others to get in its way or falsely assert a right to information. For protecting privacy

and ensuring security of the mission, the DEA wants to only share the video feed on

the need-to-know basis.

Figure 1-1 shows geographical regions where various police departments have ju-

risdiction and where the DEA would like to share the information with them. To

make such access controls real, they have to be enforced through proper encryption.

That is, the key that is used to encrypt the video feed at any given moment is made

available only to a subset of all the ground terminals-those that are authorized to

receive the video. For example, as the drone enters further into Mexico, the DEA

would like assistance from Mexican Police; so the cryptographic key that is used by

the drone to encrypt its video feed has to change and securely be made available to

them. When the drone crosses back into the US, access permissions are modified to

revoke Mexican Police's access and grant it to US Border Patrol.

1.2 Contributions

In this thesis, we designed and implemented a proof-of-concept system for the geo-

based UAV video access control illustrated in Figure 1-1, using the OpenLayers

library[8] as the user interface for rendering maps and specifying map overlays that

correspond to access regions. This proof-of-concept system lays the foundation for

developing the geo-based access control concept further for UAVs and, possibly, other

types of mobile data distribution systems.

Specifically, the proof-of-concept implementation has undergone significant testing

and resulted in a robust software system, which can be used as a foundation for future

extensions.

Furthermore, the proof-of-concept system developed in this project serves as a

15



compelling demonstration of the LOCKMA library. It illustrates how usable and

seamless cryptographic protections can be straightforwardly inserted in to an appli-

cation, such as our geo-based UAV prototype, using LOCKMA's intuitive interface

for cryptography, key management, and access controls.

1.3 Thesis Outline

This thesis document summarizes the project, the system architecture and its imple-

mentation, and lessons learned. Specifically, it consists of the following four chapters:

" Background Work - This chapter discusses the foundational technologies used

in building the access control system. The chapter focuses most heavily on

LOCKMA's functionality and design goals, but it also covers more widespread

technologies in common use, and provides the technical underpinnings for de-

velopment of the project.

" High-Level Project Overview - This chapter discusses the design of the project,

including each component relevant to a technical demonstration. The design

goals of the project are covered, along with the general execution plan of the

project and how the foundational technologies fit together in the plan. It also

discusses user interaction with the tool as a whole, delivering the idea of usable

access control through the provided geographically-oriented map interface.

" Implementation Details - This chapter discusses the implementation of the project,

going into the technical details of the work, both as it evolved and in its final

form. Decisions for which specific technologies met the project's needs are dis-

cussed, along with technical issues the project ran into along the way.

" Conclusions - This chapter analyzes the work done, including a measurement

of the overhead introduced by cryptographic operations on each end of the

network. The chapter also discusses partially-completed and future work, and

the potential merits of that work. Finally, it covers what the author has learned

over the course of working on and completing this project.

16



Chapter 2

Background Work

Several technologies that were developed before my project began have proven critical

to the goal of a highly usable access control system. LOCKMA and several other

existing technologies came together to form a coherent demonstration that could, by

design, be recreated rather precisely with the same technologies at one's disposal. In

this chapter, we discuss these foundational technologies, going into detail where we

feel it will be useful to the reader.

2.1 Location-based Access Control

The concept of location-based access control was introduced in a prior paper 191. It

was also a work developed by my advisors, Roger Khazan and Dan Utin. That work

pre-dated LOCKMA and used a Department of Defense-specific mission planning

tool, FalconView, as the user-interface. The prototype system ran on laptops, was

not integrated into an actual UAV, and used a pre-recorded video file to simulate

UAV video feed.

2.2 LOCKMA

The Lincoln Open Cryptographic Key Management Architecture, or LOCKMA 14],
is the primary novel technology for this project. LOCKMA is a software component

17



designed to significantly simplify the task of adding cryptographic protections and un-

derlying key management to software applications and embedded devices. LOCKMA

utilizes NSA Suite B cryptographic protocols to achieve secure distribution of crypto-

graphic keys and to encrypt and authenticate messages. Among these are AES block

cipher modes of operation for encryption/authentication and Elliptic Curve Diffie

Hellman for key agreement. The structure of a keywrap packet is found in Figure

2-1. Keys are distributed by encrypting to all specified machines using their key-

agreement certificates or permissions granted by such certificates; thus, keys cannot

be intercepted. Further, the key management operations are fast enough that there

is no noticeable loss in immediately taking a system out of the loop by re-keying the

other systems in use.

k pnt, n+1 metdale records n e

s ou EPIC Participant Rocord Ke Kys s WV

Nonce for Ke nor ppicatdon CEK, UWuwwK
Agreement Package Encryption Key

Applcadon Key
package

Figure 2-1: A LOCKMA keywrap structure. Keywraps are used to securely distribute

cryptographic keys to several users at once. An Ephemeral Public Key and corre-

sponding private key are generated; the private key is used to derive a key encryption
key per shared user, in turn used to encrypt a singular content encryption key, which

is finally used to encrypt the keys used for protecting and securing application data.

In order to securely transmit these keys, Elliptic Curve Diffie-Hellman is used for key

agreement to all target machines.

The LOCKMA API is specifically aimed to be friendly to users lacking advanced

knowledge of cryptography. One of the core goals in its design and production is thus

to make cryptographic security a more commonplace trait of daily computation and

communication. Cryptography is becoming more widespread, but its adoption has

18



been slower than would be expected by masses of users concerned about their privacy.

The primary issue there is usability. Fully open-source software has a tendency to

become as labyrinthine as the developers can handle, but monetized software with

simplistic user interfaces give virtually no granularity in what cryptography to use.

Thus, LOCKMA finds an important niche in being usable by anyone familiar with,

presently C programming, but at later points it will likely be even simpler to secure

communications with LOCKMA, for example from the command line. A high-level

overview of the API is detailed in Figure 2-2.

Frontend API Core Modus Backnd API

HadwameCrypto Kerns
4e SHAMROCK)

SoftwereCrpto Functions

Figure 2-2: An overview of the LOCKMA API. Being an "Open Architecture" system,
LOCKMA is designed to be able to be integrated into current and future systems,
and can be easily updated to take advantage of newer cryptographic advances and
methods. It does so without changing the simplicity allowed to the front-end devel-
oper.

Presently, LOCKMA's capabilities are detailed as follows:

* Identity Management

- Generating and protecting long-term private keys

- Exporting public keys and meta information as CSRs

- Management of local user credentials that protect long term private keys

" Key Management

19



- Request and authenticate remote device credentials

- Generate and distribute key packages to groups of authorized entities

" Application access to common cryptographic functions

- Digital Signatures

- Key Agreement

- Cryptographic Hashes

- Key Derivation Functions

- Application data protection: confidentiality, integrity, authenticity

" Support for software and hardware cryptographic backends

2.3 Parrot AR Drone 2.0

The Parrot AR Drone is a toy unmanned aerial vehicle (UAV), a quadcopter [11, that

offers various digital interfaces for controlling it and, more importantly, features an

output video stream from a camera built into its front. It has several features that

made it desirable for a practical demonstration of LOCKMA. An image of the drone

can be found in Figure 3-3, in the next chapter.

2.3.1 Video Stream

There is a camera embedded in the UAV that persistently takes a live video feed

while the drone is turned on. There are also recording options built-in to the drone's

software. A program can receive the video stream by simply connecting to the drone

on a specific port; only one connection is allowed.

The video output is 720p, a high-definition stream, by default. While it is certainly

easy for a demonstration to artificially generate more network traffic than that, an

HD video stream is one of the highest sources of bandwidth that one could imagine

requiring the delivery of in real-time. Therefore, this stream was ideal for testing

20



out the access control system's performance capabilities, encrypting and decrypting

whole packets to verify that LOCKMA is usable in real-time with high-bandwidth

traffic.

2.3.2 Embedded Linux

Parrot provides a Software Development Kit, but it is designed for software meant

to interact with the drone, not to be placed on the drone. However, we were able to

quickly determined that it runs an ARM processor with embedded Linux, meaning

that the GNU C Compiler for ARM platforms is sufficient for the software we wanted

to develop to place on the drone itself. If it had been running a customized kernel,

a variety of issues could have arisen with our ability to interface software with the

native system. For example, running Linux meant that all system calls were known

to us. The file system was also structured in the expected way, such that configuring

files to run as soon as the drone was powered on was fairly straightforward.

2.3.3 Software Support

In addition to the features of the UAV itself, there is a variety of software and support

for interacting with the drone, some of which we made use of and will be discussed

later in this chapter. This was made possible by the previously-mentioned Software

Development Kit provided by Parrot.

2.4 Technical Underpinnings

An array of other technologies were utilized in this project, to varying extents. Some

of these were more key to the technical content of the project than others, but all

provided important utilities to the project as it was being developed.
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2.4.1 Node.js

Node.js is a web server platform built on Google Chrome's JavaScript runtime 1101.

It usefully supports asynchronous events and non-blocking input and output, and

it is fast enough to not introduce appreciable delay in something like forwarding a

high-bandwidth video stream.

There is an open-source Node.js project called node-dronestream that accepts the

real-time video feed from the Parrot AR Drone and streams it to a browser window

1111. Using Chrome's graphical hardware acceleration and another Node.js package

called Broadway.js, this module is able to stream the drone's video live without no-

ticeable lag. By default, the node-dronestream application simply connects to the

drone directly and broadcasts a web page to a specified port on the local machine

that contains only playback of the video stream.

2.4.2 OpenLayers

OpenLayers is an open-source JavaScript software package that allows a dynamic

map based on a supplied tile set to be easily included within a web page 18]. It offers

useful features such as as custom graphical modifications, click-based events, and

geometric intersection detection. Most notably of all is that it works in a fully offline

environment, because its API can be stored locally. This is especially contrary to the

Google Maps API, which requires being dynamically loaded through a web browser

112]. The only requirement for full offline compliance is to download or generate a

tile set and serve it locally through a map tile server, so that maps do not have to be

received through the internet. This tile server is covered in Section 2.4.3.

2.4.3 TileStache

TileStache is a Python-based server application that can serve map tiles based on

rendered geographic data 113]. Through an open-use map tile host that offers free

maps of various sizes from across the globe, we had access to nearly any map we could

want, which could be easily converted into a format usable by TileStache. With such
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a tile set available, TileStache can be easily configured to act as a tile server for

any machine that knows how to connect to it, serving the specified tiles based on

geographic coordinates.

TileStache accepts a variety of formats, though not the raw data supplied by our

online source. As such, we made use of an additional free program called TileMill for

generation of the tile sets that we then used with TileStache 1141.

2.4.4 Android SDK/NDK

Android is a mobile operating system found on smartphones and other mobile devices

12]. It offers a software development kit and a native development kit for Java and

C/C++ code, respectively [151. These kits can be used to develop applications to

run on the Android platform. Such applications can then be published to the Google

Play Store for public consumption, or can be loaded locally onto any Android device

with developer options enabled.

There is an open-source Android application called AR.Freeflight, developed by

Parrot, that connects to all of the Parrot AR Drone's input and output sources 116].

It provides playback for the drone's video stream and allows the issuing of navigation

commands. By the nature of the Android VM, all applications' entry points occur

in Java, but through its heavy use of C code, Freeflight is able to stream the drone's

video live without noticeable lag or other breaks.
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Chapter 3

High-Level Project Overview

In this chapter, we discuss the design of the project as a whole. The implementation

details can be found in the next chapter; in this one, we discuss the project from a

broader perspective, making it clear how the technologies we used link together to

achieve the goals of the project's core functionality. We also note certain steps in the

evolution of the project over time.

Reading this chapter should be sufficient for the capability to implement a similarly-

designed access control system. However, there are several technical details in the

next chapter that are vital for streamlining the implementation process, especially

for a system looking to utilize LOCKMA.

We will also provide diagrams to indicate interactions among the machines and

processes involved. The notation used in this chapter is found in Figure 3-1. Due to

the nature of discussion in this chapter, it differs somewhat from the notation found

in the next chapter.

3.1 Top Level

In this section, we briefly discuss the overview of the demo's interactions as a whole.

"We do this in order to more smoothly transition into the design and functionalities

of the individual components. The components' interactions with each other are the

most important part of this project; therefore, it is important to avoid confusing the
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Long-term
Process Local Data Transfer Storage

Device

Networked
Data Transfer

Figure 3-1: This diagram indicates the shape-based notation that will be used in all
architectural diagrams for this chapter.

reader as would be caused by discussing a component's inputs and outputs without

explaining the actions occurring on the other end.

Figure 3-2 summarizes the highest-level interactions among processes. There are

three distinct components to this project: the Unmanned Aerial Vehicle (UAV), the

Ground Control Station (GCS), and any number of Ground Terminals (GTs). In line

with our story developed in Section 1.1, the UAV represents an entity controlled by

the DEA, the GCS represents the machine utilized by the DEA official acting as the

UAV's operator, and each GT represents a receiver of a local police department whose

jurisdiction is indicated by the oft-mentioned map interface present on the GCS.

The demonstration as a whole was designed around delivering video to a subset

of GTs specified by the GCS. Whenever the access list of GTs changes, all machines

are sent a new packet containing an encrypted version of the new key list. If a GT is

in the access list, they can decrypt the new content key using information stored by

LOCKMA that comes from their private certificate. If a GT is not currently specified

as having permission to access the video stream, it still receives data from the video

stream, but it is unable to decrypt it.

The GCS acts as a central control unit for key management: it determines which

machines should be allowed to decrypt the video stream, and it enforces this crypto-

graphically by sending keywraps, packets that contain content keys that only specified

machines can decrypt with their own long-term private keys. The UAV is the video

source, in charge of all symmetric-key encryption. It additionally acts as the delivery
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Figure 3-2: This diagram indicates all high-level interactions had among processes
and devices in our demonstration. This diagram merely covers what interactions were
present, rather than the details of the interactions. Each device will get its own design
diagram with more details later on in the chapter.

mechanism for key management packets: the model here is that all machines that are

capable of receiving video must be within receiving range of the UAV, but they do not

necessarily have any other direct or indirect connection to the GCS. Thus, whenever

the GCS constructs a new keywrap, it sends it exclusively to the UAV. The UAV

then sends it to all listening parties, who can only decrypt it if they are on the GCS's

access list. All of this takes place in a fraction of a second in the constrained-space

environment in which the project demonstration was conducted. Thus, the switch to

encrypting and decrypting using the new key found in the keywrap is able to happen

very quickly.

27

Key Vie
Management VidEnrpor

Process Ecytr

Device
Certificates

Unmanned Aerial
Vehicle

\1

Ue Ptrae4--- Web Server Canaemetr Certificates

Video

Ground Control Decryptor
Station

J



3.1.1 Threat Model

As with any project related to computer security, the idea of a model of potential

attackers on the system, or "adversaries", was considered and outlined before work

on the project began. The precise threat model is not the most vital aspect of this

project, due to the fact that our access control system can be generalized further

than our demonstration went, and the project as a whole is not intended to cover any

system-oriented attacks, which should be supplemented with other security measures.

Thus, this project's threat model will be briefly covered here.

The single most important secure system at play for present and future variations

of this demo, whose isolation is of the utmost importance, is the Public-Key Infras-

tructure (PKI) server, which distributes security certificates to all relevant parties

so that key wraps can function as intended. However, during the actual running of

this demo, the most important secure party is the GCS, which handles all of our key

management in a centralized way. For the sake of the demo itself, the GCS may as

well double as the PKI server, as it also keeps track of other parties' key agreement

credentials to hasten key distribution. This secure system is the same that the admin-

istrative user operates, and it is the machine around which our access control system

is centered. Therefore, this secure system, the GCS, being compromised is outside

of the scope of this project; it is expected to be in a secure area and to not accept

unnecessary traffic from external sources. If the GCS were to be compromised in the

real world, the PKI server, a different machine that genuinely has no contact with

the outside world, would distribute new certificates to a new GCS.

The UAV and other GTs, however, could be anywhere. By default, we assume

to have knowledge and control over the UAV's location, but could be allowing it to

wander as mobile surveillance. In the example described in Section 1.1, the UAV's

movement would still be controlled by the GCS operator, but its movement would be

dictated by necessity, not by a will to keep it away from potential attackers. Thus,

its physical security must be ignored.

The video receivers other than the physically secured system, in other words,
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the Ground Terminals, represent theoretical allies that we wish to share surveillance

video with. We assume to have knowledge but not control over their location. As per

Section 1.1, the two GTs we used represent the El Paso Police Department and the

Mexican Federal Police.

Thus, at any given time, either the UAV or GTs could be physically compromised.

We presume to have alternative communication set up among the operators of the

GTs; if they fail to check in or are otherwise clearly compromised, we have the ca-

pability to permanently disable their access to the UAV's video stream. If the UAV

itself is compromised, the mission must end but nothing relevant is lost; video does

not enter the persistent storage of its source. In the current form of the project, the

UAV will continue broadcasting using a now-compromised key until it is manually

disabled or runs out of power. The loss in this case is the physical hardware and

the device certificate; loss of hardware would certainly not be preventable by any

degree computer security, and a long-term security certificate is considered a neces-

sary storage element for LOCKMA's purposes. In some situations, loss of a security

certificate could be considered a loss of money, as some certificate authorities can be

expensive; in such cases, use of these certificates could be considered a detriment, or

the certificate would need to be more heavily protected within the system. However,

we assume for our purposes that certificates signed by our own central administrator

are sufficient, and such certificates are therefore free.

We assume that attackers may attempt any degree of cryptographic threat against

us, but currently NSA Suite B Cryptography is assumed to be secure. LOCKMA's

cryptographic security is not within the scope of this project. Potential system ex-

ploits that can be incurred regardless of a system's unwillingness to accept SSH or

Telnet traffic are also not in scope. If we were to become aware of such exploits,

the previous actions for physical compromise of the machines would still apply; other

systems can be responsible for the detection and prevention of such exploits.

In summary, the project's security goals are limited to the absolute security of the

network traffic sent among the utilized devices.
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3.2 Unmanned Aerial Vehicle

As discussed in Section 2.3, we utilized the Parrot AR Drone 2.0 in this project

[1]. Our primary purpose for the drone was the HD video feed that it transmits to

connecting machines. The UAV itself is pictured in Figure 3-3.

Figure 3-3: The Parrot AR Drone 2.0. This piece of hardware runs embedded Linux

and has a single-core ARM processor operating at 1.0 GHz. Its capabilities and sup-

port made it an ideal choice for demonstrating LOCKMA's capabilities as a software

component to be easily introduced into existing software.

This section discusses the design of the software we installed on the UAV. There

are two distinct but communicating processes we added to the UAV, both of which

we configured to launch on startup, whenever the UAV is turned on. A diagram

detailing the high-level interactions within the UAV is found in Figure 3-4.

3.2.1 Key Management Process

On the UAV, the KM process is in charge of both receiving and sending KM packets.

It communicates with three distinct entities: it receives from the GCS and sends

to both the GTs and to its own Video Encryptor process. Near the beginning of

its start-up phase but after establishing connections, it waits for a remote unlock
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Figure 3-4: This diagram indicates all high-level interactions for processes running
on the UAV. The UAV is responsible as a "go-between" to distribute keywraps from
the GCS to the GTs, and is of course responsible for broadcasting its encrypted video
stream.

command from the GCS's start-up phase; this remote unlock allows LOCKMA to be

fully initialized on the UAV. After this, most of its time is spent merely waiting for

input on its receiving socket.

When it receives such input, first it verifies its status as a key management mes-

sage, then it passes off the packets wholesale to the GTs, so as to avoid sending a

plaintext key or disturbing the message in a way that would disallow the GTs from

decrypting it. Finally, it decrypts the key and sends the new content key to the Video

Encryptor process locally. If it can't decrypt a key, it will continue using the old key,

but this should not normally happen, as any key the GCS sends should include the

UAV as a target recipient.

3.2.2 Video Encryptor Process

Due to the constraints of the UAV as it is commercially available, we could not

programmatically redirect the video directly into LOCKMA, and instead intercepted

it by connecting to the port locally. On Linux and most other operating systems,

this is sufficient for our security goals, as it prevents the traffic from going through
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the exposed network interfaces, thereby making it unable to be captured by packet-

sniffing adversaries.

As such, the Video Encryptor's main function is to listen locally for the video

stream, encrypt it, and send it off to all listening devices. It does this very frequently:

the video streams at 30 frames per second. After each frame, it checks to see whether

a key-containing message is also ready from the KM process. If so, it will accept

and inject the new key into its own LOCKMA process, at which point it sets a short

timer. This timer is to give the GTs enough time to decrypt and inject the relevant

key as well: once the timer has finished, this process will begin encrypting with the

new key. It will to encrypt with that key until it receives another one.

3.3 Ground Control Station

The GCS we used was a Dell laptop running Windows 7, but the technologies we used

are multi-platform. Only the binaries we compiled from C could not be immediately

reused on a machine running GNU/Linux, but these were easily configurable to be

recompiled for other platforms.

The GCS is, unsurprisingly, where most of the human-computer interaction occurs,

and where the most development was focused. A start-up script exists to launch all

backend components, at which point the user interface can be accessed from a web

browser, preferably Chrome for its graphics acceleration. Figure 3-5 shows the GCS's

UI.

This section offers a breakdown of the software utilized on the GCS. There were

four primary components, each of which we will discuss alongside any supporting

programs. A diagram detailing the high-level interactions within the GCS is found

in Figure 3-6.

3.3.1 Node.js Server

Building off of the node-dronestream project, the server's primary purpose is to serve

the user interface to a local port. However, aside from simply serving the page to
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Figure 3-5: The Ground Control Station's User Interface. Commands are initiated
with buttons located on the left panel. UAV virtual movement is controlled with
the map interface. Video is streamed to the upper-right; the image on-camera is a
photo of Juarez, a city in Mexico, for representational purposes. Current video access
permissions are displayed in the lower-right area. Notice that the map is an analogue
of the scenario presented in Figure 1-1.

a connecting web browser, this server needs four ongoing asynchronous connections

to three different entities: two distinct connections are necessary to the web page it

serves, one for streaming the video and one for acting on commands from the UI;

then, one connection is necessary for each of the Video Decryptor and KM Center,

the former for accepting the decrypted video stream and the latter once again for

acting on commands from the UI.

Node.js is usefully event-based, so there is no need to wait on sockets. On start-

up, connections are immediately established to the Decryptor and KM Center, and

further action is impossible until the UI page is opened. When this occurs, both

points of contact between the server and UI are established client-side (as the server

doesn't otherwise know when the client is finished rendering), and video immediately

begins streaming, getting passed directly through to the UI after a minor amount of

header processing.
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Figure 3-6: This diagram indicates all high-level interactions for processes running
on the GCS. The GCS features a UI from which access control commands are issued,
and acts on those by creating new keys for all devices to begin using for encryption
and decryption. The UI is also responsible for playback of the video stream from the
UAV.

At this point, the client using the UI is free to issue the commands available from

the interface. When the Node.js server sees such a message, it determines based on a

list of valid commands and its current state whether it needs to be passed to the KM

Center or discarded. A discarded message based on an invalid command warrants an

error message to be sent to the UI, as the UI should already lack the capability to send

an anomalous command. If a message is instead discarded because state remembered

from the GCS makes it no longer relevant, the UI is informed of this as well, so that

it has the opportunity to catch up on the current state; this latter issue can come up

if the UI web page was closed and re-started over the course of a demonstration.

The KM Center, which should only give information to the Node.js server after it

has received commands, will send success or failure responses to the Node.js server

that correspond to specific issued commands, sometimes with secondary information

attached. All of this information gets transmitted to the UI to deal with, and in
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the case of a success, such as in unlocking the device for use with LOCKMA, the

aforementioned state variables are set within the Node.js server to indicate this. The

server primarily functions as a go-between for the LOCKMA processes and the UI

(without a good full-socket interface for an HTML page), so there is not a need for a

heavy amount of processing involved.

3.3.2 User Interface

The UI for the GCS, and therefore for the Access Control system as a whole, is dis-

played in Figure 3-5. There are four key visual segments: the command interface,

the map/controller interface, the video stream, and the video access list. The lat-

ter two are not directly interactive, but are important displays for the sake of the

demonstration.

The command interface is used to start up LOCKMA on the GCS and the UAV.

It's also used to manually override the automatic key signalling system provided by

the map interface. The manual override system is displayed more closely in Figure

3-7. Lastly, the command interface displays the plaintext keys being utilized by the

GCS as they get generated-again, we're trusting this machine to be secure.

Mexicom

Disable all GTs

Figure 3-7: The Ground Control Station UI's interactive panel for manually overriding
access control permissions. Using this panel, an operator can make the system ignore
current permissions that would be implied by the state of the map interface, by
changing the switch from Automatic to Manual. From there, the checklist is enabled
so that the operator may manually specify which GTs should have video decryption
permissions. Clicking "Disable all GTs" automatically sets the switch to manual mode,
along with un-setting all GT access permissions.

The map interface at the center of Figure 3-5 uses the OpenLayers API to provide

a click interface for maneuvering the UAV in virtual space, so that a single click allows
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the virtual UAV to travel in a realistic path towards the clicked location. In this way,

we can direct the UAV into regions specified to be governed by specific GTs. The tiles

are loaded from the local TileStache tile server. On the map, the regions of control

are outlined and color-coded to clearly indicate which GT they belong to.

The video stream merely plays the video as it is taken by the UAV in real-time;

there should never be a pause, because the GCS should always have all keys that the

UAV uses for encryption. The video access list always displays the complete list of

GTs, and it indicates which of them should currently have access to the video stream,

according to the state of the UI itself, so one can examine whether this is reflected in

reality on the GTs.

The first step must always be to unlock LOCKMA on the local device, by inputting

the user password. This must go through the full process to the server then to the

GCS and back; the full processing time is under a second. The user will be notified

if the password was incorrect until a correct password is supplied, at which point the

UAV may be given the signal to unlock. When success is reported for this operation

as well, the map and command interfaces can each be used to determine how the

video keys get redistributed.

Key distribution can be set here to automatic or manual mode. In automatic

mode, the virtual location of the UAV determines which GTs have video access; if

the UAV is overlapping one or more GTs' color-coded regions of control, those GTs

should have a key to the video. In manual mode, a checklist is provided for each

known GT to determine if it has access or not.

Whenever the access list changes, the UI merely sends the new list to the Node.js

server, which forwards this information to the KM Center. Very soon after, the UI

will receive a key associated with the new list, which it will print to the screen in

hexadecimal.

In a real-space iteration of this project, the UAV's icon would not simply be

controlled by point-and-click in the map interface; instead, its position within the

interface would be detected by live GPS coordinates received from the UAV, which

would be operated by an independent UI developed specifically for operating such a
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device. Many such Uls already exist and behave effectively, so there would be no need

to develop another one. With a sufficiently automated UAV, the possibility exists to

control it using the map interface, but this could only be usable for basic surveillance,

rather than our motivational DEA chase scene.

3.3.3 Key Management Center

The KM Center connects to three points: the Node.js server, the local Video De-

cryptor, and the UAV's KM process. These connections are the first to be set up

on launch, after which the Center waits for input from the Node.js server. Nothing

meaningful can be accomplished until LOCKMA gets unlocked with the local user

password, so it waits for a successful unlock based on the server's supplied password.

When this is complete and it has sent the success response to the server, it then waits

for the word from the Node.js server to perform a remote unlock call on the UAV.

Finally, the KM Center enters its main loop, consisting of waiting for re-keying

commands from the Node.js server. When it receives such a command along with an

access list (that can be empty) of GTs to give access to the stream, it formulates a

new key, sends that to the local Video Decryptor and to the Node.js server, and uses

the signing credentials of the UAV and whichever GTs are on the access list to create

a keywrap that can only be decrypted by the relevant parties. It then sends the new

keywrap to the UAV for distribution to all listening GTs.

3.3.4 Video Decryptor

The Video Decryptor's direct connections have now all been covered: the Node.js

server, the KM center, and the Video Encryptor on the UAV. Like the other C

programs covered, the Decryptor sets up its connections first. When it starts receiving

video packets from the UAV, it immediately begins decrypting them with the shared

key, unless the UAV is still on from a previous demonstration and thus is using a

different key, which is the only case for the GCS in which decryption should be able

to fail. If and when a packet is successfully decrypted, it gets immediately shipped
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off to the Node.js server.

Similar to the UAV's Video Encryptor, alongside each video frame, the Decryptor

checks to see if a new key has come in from the KM Center, and if so, it injects the

key into its LOCKMA instance so it can stay up-to-date with the UAV's encryption.

3.4 Android Ground Terminals

The core functionality of GTs is a strict subset of that of the GCS: they can stream

video, and need LOCKMA user access, but cannot issue commands. In a previous

iteration of this project, Ground Terminals were on Windows 7 PCs with their user

interfaces being web pages in a similar style to the GCS. On Android, they function

the same way but end up more visually distinct, with login access to LOCKMA

required before the video stream even begins with the shared key. Both stages of the

Android UI are pictured in Figure 3-8.

CLICK HERE TO UNLOCK GT AND PLAY VIDEO
IF CONNECTED TO DRONE'S NETWORK,

Figure 3-8: The Ground Terminals' User Interface. On the first screen, the user

enters his/her LOCKMA password. On the second screen, the streaming video from

the UAV is displayed when the terminal is authorized to receive it (i.e. has the correct

video decryption key). The bars at the bottom of the GTs' video screens are color-

coded to match the map in the GCS User Interface. The green bar indicates that this

is the GT representing the El Paso Police Department, and the image on-camera is a

photo of El Paso, again for representational purpose.

Android separates out a UI thread from anything involving network operations,

and this dichotomy seems useful for separating our design overview, as well. A dia-

gram detailing the high-level interactions within the GTs is found in Figure 3-9.
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Figure 3-9: This diagram indicates all high-level interactions for threads found in the
Ground Terminal application. The GTs act only as receivers, accepting new keywraps
and featuring playback of the video stream whenever possible.

3.4.1 User Interface

As noted in Chapter 2, we built off of the Parrot AR.Freeflight open-source appli-

cation to make this project. This seemed more beneficial as a demonstration of the

LOCKMA component than making our own application from scratch because it best

demonstrates the ease with which LOCKMA can be incorporated into existing appli-

cations, rather than requiring an application to be built around LOCKMA. As such,

this UI is very familiar to those that have already used Freeflight; however, we have

stripped out extraneous features and added a login functionality to the home screen,

which is internally called the Dashboard.

When opening the application, the user is prompted to enter their LOCKMA user

password in a box on the Dashboard screen. This application can run on smartphones,

but our project was designed for tablets, so we decided to overwrite the default

Android password box functionality: instead of displaying the last character entered

into the box, all characters are hidden as they are typed, as expected of a password

entry field on a PC.

When the correct password has been input, the user is taken to a screen only

containing the video stream as it is being played. If a given GT is started early
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enough in the project's timeline, the default shared key should allow streaming to

begin immediately. While a GT's set of keys does not presently allow it to decrypt

the stream, an "ACCESS DENIED" message is displayed, overlaying the video. This

is to distinguish cryptographic enforcement from cases in which the connection to

the video stream is lost or the UAV is shut down, which will merely cause the video

playback to pause.

3.4.2 Backend Operations

We were required to utilize the Android NDK for C code, making use of a native thread

for accepting video input from the UAV and also handling all decryption and Key

Management messages. All of the new operations we added to the existing Freeflight

code base were, for simplicity, added to the same function within the original Freeflight

application. This function is the entry point where the video input was already being

accepted on its appropriate socket.

In the end, these new operations were still able to be mostly converted wholesale

from both the KM Process on the UAV and the Video Decryptor on the GCS. The

existing application implements a multi-stage video pipeline, so the important aspect

of this was getting video decrypted before the data got pushed to the socket stage's

output, and making sure that no garbage output (so, no output at all) was pushed

in the case that it couldn't be decrypted due to not holding the correct key.

In the case that the Android can suddenly no longer decrypt due to a key being

incorrect, the process detects this and sends a notification to a Java thread set up

specifically for this purpose. That thread then displays the "ACCESS DENIED" mes-

sage on the video-playing UI, whose video should be paused due to lack of incoming

decryptable video frames.

If the previous frame failed to decrypt but the current one succeeds, the UI is

once again informed of this change so that the "ACCESS DENIED" message can

be removed. We limit the frequency of these notifications by making it so that a

notification will not be sent unless the decryption status changes-in other words, if

the last frame was decrypted successfully, and this one was as well, there should not
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be any new notification. However, even when sending the message once every frame

during debugging, a performance drop was not observed.

3.5 Design Conclusion

In this chapter, we discussed, both generally and in depth, the design of each pri-

mary component of the project. The aesthetics of the available user interfaces were

displayed, and the core functionality of each process running on each system had its

internal functionality and external interfaces explained. As such, this chapter should

have allowed a well-versed programmer to effectively recreate this project, given the

same software resources.
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Chapter 4

Implementation Details

In this chapter, we discuss the project on a more technical level. We discuss the

requirements imposed by the technologies used, the steps taken during implementa-

tion, and the technical issues that had to be overcome along the way. We also provide

code snippets from across all platforms of the project in order to aid understanding

of some key areas.

Throughout the sections of this chapter, we utilize block diagrams to show the

architecture of our processes. Figure 4-1 explains how to read the diagrams that

appear.

Activity

Application
Progress

.ai Process onMain Same
Activity Machine

Data
Movement

Process
across

Network

Manual Input

Local Files

Data from
External
Source

Figure 4-1: This diagram indicates the shape-based notation that will be used in all
architectural diagrams for this chapter. Most of these are self-explanatory, but it is
worth noting that once a main activity is entered, it is not ended until a demonstration
is over. Applications that have a main activity exist for the purpose of that main
activity, and all other activities are initialization steps.
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4.1 Idiomatic Note

Before we begin our first implementation description, we'd like to mention one com-

mon idiosyncrasy among processes in this project: we used network sockets for all

inter-process communication, rather than merely for communication to external de-

vices. In some situations, this may not always be advised; however, for the common

platforms, the fact that communication to localhost does not go through a publicly

exposed network interface means that this is not a security issue unless a system has

broken into one of our devices, which in our use case should already be considered a

serious issue.

The primary reason that we chose to handle communication this way is for the

useful symmetry provided by the select idiom. Namely, at least one process per

machine wants to sit and wait in a loop until at least one source of input out of

multiple has been detected. Generally, there will be two options, a key management

message or a video frame; by waiting on both at once, we save performance and code

compared to being required to check on each one separately.

4.2 Unmanned Aerial Vehicle

As stated in Section 2.3, the UAV has an ARM processor and runs embedded Linux.

Thus, GCC for ARM devices is sufficient for compiling C programs to run on the

device. We used the Sourcery Codebench for ARM/LINUX due to the array of

libraries available roughly matching what is expected for x86 Linux.

As seen in the last chapter, there are two components running on the UAV, a Video

Encryptor and a Key Management Process. Thanks to the expectations present on

Linux, we were able to set these to start up as soon as the UAV is finished booting,

by adding a line to /etc/init.d/rcS to run our startup script. The files were built by

adding the source to CMake paths as part of the existing LOCKMA project, so that

LOCKMA could get linked automatically.
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4.2.1 UAV Key Management Process

The architecture for this process is found in Figure 4-2.

Remote Stored Keywrap GroundUnlock Certificates from GCS Terminalsfrom GCS

Keywrap
from GCS

i nitialize Initialize Load Handle
Sockets LOCKMA Credentials Keywraps

Unwrapped
Content Key

Video
Encryptor

Figure 4-2: This diagram shows the trend of execution, the inputs, and the outputs
of the Key Management process. Once LOCKMA is initialized, it repeatedly carries
out its task of distributing and unwrapping new keys.

The KM Process starts up by initializing its three sockets: one TCP socket to

connect to the Video Encryptor, a UDP socket for receiving KM Messages from the

GCS, and another UDP socket for forwarding KM Messages to the GTs. LOCKMA

initial set-up is handled as follows:

logger_init ();

initialize _os _services ()

memset ((void *) &lockma, 0, s i z e of (lockma_ t));

lockma. pwdentry_fn = app_ pwdentry _fn;

lockma. rngfn = apprng_fn;

lockma. readconfigfn = read_configfn;

lockma. writeconfig-fn = writeconfigfn;

lockma. appfree-fn = free ;
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lockma. get _currenttimefn = get current _time_fn

lockma. app _ pkg notify _ fn = demoapp pkg notify _ fn

lockma. app_pkgconfirmfn = apppkg conffn;

result = lockma initialize instance( &lockma )
assert( result -LOCKIA_RESULT_OK );

result = lockma_ process _ config( &lockma )
if ( result ! LOCCKMARESULTOK)

do_ provisioning( &lockma, SUBJ_INFO_COMMONNAME,

sizeof( SUBJ_INFOCOMMONNAME ) - 1 );

}

result lockma _application _package_ create( &lockma,

KEYPACKAGEDE4OMETA, s i z e o f (KEY PACKAGE_DEMOMETA),

&apppackage );

assert( result - LOCKMARESULTOK );

memset ((void *) crypto_channels , 0, sizeof( crypto_channels));

lockma. appctx = cryptochannels;

Some basic functionality of LOCKMA is initialized first. Then, LOCKMA's sys-

tem and callback functions for standard functionality, most of which come with useful

defaults from an existing test application, are set. Then, we verify that we have work-

ing configuration files, and give LOCKMA a blank slate for its current context.

After this, the process waits specifically for a remote unlock command from the

GCS, as it is unable to unwrap any keys until it is unlocked. It simply waits on a select

statement for this input. Eventually, the unlock will presumably succeed, or else the

application never moves forward, and the process can load its device certificates for

future decryption of keywrap packets. The reading of the certificates is done like so:
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read _ file ( FILEPATHSIGCERT, &cert data, &certdatalen );

lockma_ add _device _certificate( &lockina, certdata,

certdatalen , &certtype );

free( certdata );

readfile( FLEPATHKAGCERT, &certdata, &certdatalen );

lockma_ add _device_ certificate( &lockma, certdata,

certdatalen , &certtype );

free ( certdata );

As such, LOCMA does all key extraction, and only needs to be passed file contents.

When this is complete, the only responsibility left is to wait on new keywraps from

the GCS, in order to pass them on to the GTs. When a message is received from the

GCS, first the UAV verifies that it is the expected type (else doing nothing), then

performs a UDP broadcast of the packet so that the GTs may receive the keywraps

as well. For unwrapping a key, the LOCKMA call is simply:

lockma_ processkm message ( &lockma , dataptr , datalen ,

&km _message_ response);

Then, in LOCKMA's app_ pkg_ notify_ fn, which is called once a message has

been processed, we extract the key to pass to the Video Encryptor:

lockma key_mem_ptr keyptr;

const uint8 *meta = NULL;

uint32 metalen = 0;

lockma_ application_ package_ get _global_ meta ( apppkg, &meta,

&meta-len )

lockma application_ package_ get_ key( apppkg, 0,

&meta, &metalen, &keyptr );

Thus, at this point keyptr will hold the key that we can send through the local

TCP socket to the Video Encryptor.
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4.2.2 Video Encryptor

The architecture for this process is found in Figure 4-3.

Plaintext
Video

initialize initialize Encrypt
Sockts LCKMAVideo/Accept
Sockts LCKMAKeys

Encrypted
Video

Keys from All Listening
Prrocsss

Figure 4-3: This diagram shows the trend of execution, the inputs, and the outputs
of the Video Encryptor process. It occasionally has to accept a new key from the KM
Process, but it is constantly encrypting video frames.

The Encryptor also starts up by initializing its three sockets: one TCP socket

to monopolize the UAV's video stream output, one TCP socket to connect to the

KM Process locally, and one UDP socket to output encrypted video. Because the

Encryptor does not need to deal directly with KM Messages (only raw keys, from the

KM Process), LOCKMA startup is simplified from the full startup seen previously,

which included reading device certificates.

Once LOCKMA has been initialized, the terminal loop is immediately entered, in

the described way characteristic of this project. The two input TCP sockets waited

on with a select statement, as shown in the following code:

while (1)

I
FDZERO( &readfds );

FDSET ( videofd , &read fds );

FD_SET ( km_ fd, &read _fds );
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fdcount select ( highestfd , &readfds, NULL, NULL,

NULL ) ;

if ( fdcount 1 ) {

continue;

}
if ( FDISSET( videofd , &readfds )

{
Receive , encrypt , and broadcast

from the program. elf process.

broadcast _video_ stream( videofd

}
if ( FDISSET( km_fd, &read-fds ) )

{

)

the video stream

broadcast_fd );

Inject key request or encryption/decryption request.

service _ km _ request ( km_fd );

}
}

Most variables and functions should be self-explanatory, but the others will be

described.

The highestfd variable is initialized before the loop to be the higher value be-

tween videofd and km-fd, plus one. The broadcastvideostream function accepts

frames from videofd, encrypts them using the current key index with LOCKMA, and

sends the encrypted frames over the UDP socket broadcastfd to listening devices.

Encrypting with LOCKMA is handled simply as follows:

LOCKMARESULT

uint8

uint8

uint32

uint8

result ;

ic v IOCKMA_AES_GCM_AUTH_TAGSIZE];

auth_dataIAPPAUTHDATALEN];

ciphertextlen;

*payloadptr = *packetptr;
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sequencenbr = 1;

lockma_encrypt_ app-dataaes_ gcm (

aes _ core . channels [ active _ channel_ nbr key , 7/ key

(const uint8 *) &sequencenbr, /7 iv address

sizeof(uint32), iv length

plaintext _ ptr , // plaintext address

plaintext _len ,// plaintext length

(const uint8 *) auth_data, // auth data address

sizeof(authdata), 7/ auth data length

&payloadptr , 7/ ciphertext address

&ciphertext len , // ciphertext length

icv ); Integrity Check Value

sequence _nbr++;

Buffers need to be allocated where appropriate, but the only user-supplied data

that changes per run are the pointer to the unencrypted video frame (plaintextptr)

and the associated length of the frame. As noted in the code, we are utilizing the

AES GCM (Galois-Counter Mode) block cipher mode of operation, though LOCKMA

supports many other symmetric-key algorithms as well.

The service_km request function accepts a key from the TCP port connected

to the KM Process. LOCKMA supports multiple keys in memory simultaneously so

that the transition between two keys can be smooth and not require any dropped

information, so this key is sent alongside the relevant channel number that the key

should be used for. The function injects the key by simply copying its raw bytes into

the corresponding channel slot, as follows:

recvlen = reev(kmfd, km_msg, sizeof(km_t) 0);

memcpy (( void *) &aes core . channels [km_msg. channel nbr J. key ,
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(void *) km_rnsg. key, SYMMETRIC_KEYSIZE);

After this is done, a minor delay is set for setting activechannel nbr to equal

channel.channelnbr, so encryption may begin using this key, as shown in the broad-

castvideostream snippet.

4.3 Ground Control Station

The GCS is a Windows 7 PC running an x86 processor. The C programs written for

it were compiled with Microsoft Visual Studio 2010. Unlike the Ground Terminals,

which better demonstrated direct integration of LOCKMA into an existing project,

the GCS's C programs were built around LOCKMA: in general, the concept of a GCS

in our access control use case primarily exists for the purpose of key management,

so the GCS can act as its own standalone hub that does not truly require the ability

to listen to incoming traffic. However, it was beneficial for us to construct a Video

Decryptor for the GCS for demonstrative purposes, as the GCS is the only party that

should always be able to decrypt the video stream.

This machine gave an opportunity to show off LOCKMA-built applications feeding

into existing projects, as an alternative to integrating into applications directly as is

the case with the GTs: all of our modifications to the Node.js application were for

the sake of developing an accessible interface for issuing LOCKMA commands, and

were not relevant to actual video decryption.

4.3.1 Node.js Application

The architecture for this process is found in Figure 4-4.

As is usual with Node.js applications, the first thing we do is load up the packages

the server relies on. In this case, we used these packages: http, standard for serving

to the web; dronestream, the primary package upon which our UI was based; buffy,

as a useful parser for raw byte streams; net, useful for direct socket interfaces to other

programs; and ws, a fast WebSocket package for dynamic communication between the
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Connect Ul HTML Video Key Info

Request File Cache Data from from KM
Decryptor Center

Load Initialize HTTP Serve User Initialize Relay Video

Packages server Interface Page Sockets and KM Traffic

Ul HTML Access

Socket Ul Web GCS KM
5555 Page Center

Figure 4-4: This diagram shows the trend of execution, the inputs, and the outputs
of the Node.js server process. After loading the web page user interface, its primary
purpose is merely as an information relay.

server and its hosted web page. We then set up the actual HTTP server, which simply

pipes all files requested by a web browser so the web page can be reconstructed. Any

requested file not present on the server is simply ignored.

We then set the dronestream package object to listen to our Video Decryptor

(rather than the drone itself, which is its default setting), at which point the existing

project handles all future communication with the Video Decryptor, which should

only ever be sending properly-decrypted video. Finally, we make a new WebSocket

Server (WSS) to /io so that web pages have a convenient interface for contacting

the server. All connections to the Key Management Control Center are then also

handled within the WSS, because without a web page to talk to, the Node server

ferrying messages to and from the Control Center is not really useful to our demo.

On an initial connection to the web page, the WSS begins reacting to both connections

from the Control Center and the web page as follows:

ws. on ( 'message , function (data , flags ) {
wsopened = true ; // The web page has finished loading

values = JSON.parse(data);
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switch (values 10]) { / Each sends an appropriate message

77 to the KICV Center

case 0: 77 Ground Control Station Unlock

77 comes with password

case 1: 7/ UAV unlock - no extra data

case 9: / Re-key message.

}

gcs. socket

.on('data', function( buffer) {

parser . write ( buffer );

which = parser . ascii (4);

response = 0;

7/ these each update the response variable to indicate

7/ the Control Center response to a previous command

if (which = "GCSU") { /7 GCS Unlock

}
else if (which = "UAVU") { 7/ UAV Unlock

}
else if (which = "REY") { 77 Re-Key

}
7/sends the response to the web page

returnCall (which , response);
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});.

Simply put, these are convenient shorthand messages between the web page and

the KM Control Center. Certain formats are easier for JSON and certain are easier

for basic C string processing, and the Node server handles the transition step.

4.3.2 User Interface

The architecture for this interface is found in Figure 4-5.

HTML Map Tiles LOCKMA User Access Control
FlS7fo from
Serve foileStache Password UI Inputs

La HT LInitialize Map Initialize Key

Loagd HML Intea LOCKMA for Management
GCS Control

Password and Access
Associated ControLss
Commands Control Lists

Display Video NodejsStreaming Data from Server
Video Server

Figure 4-5: This diagram shows the trend of execution, the inputs, and the outputs
of the primary access control interface, whose parent process is a web browser. Its
primary role is to either accept user commands or contextually synthesize access
control lists, and send those to the Key Management Control Center. Because the
video streaming is provided by the foundational technology this UI was based off of,
it is largely an afterthought in comparison.

The UI is an HTML page with fairly basic CSS formatting. When it is initially

loaded, the video stream immediately gets connected through an interface already

provided by the node-dronestream project. The map loads, with OpenLayers draw-

ing from the TileStache server automatically, and the initial, pre-specified graphical

elements for the interface are drawn to the map based on latitude and longitude

coordinates.
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The commands issued from the control region on the left side of the screen (pic-

tured in Figure 3-5) are fairly straightforward: they provide info about the intent of

the command and any additional values associated; additional values include a pass-

word for unlocking LOCKMA (which is only sent over local interfaces, even through

the web browser) and the list of receiving GTs when a re-keying command is issued.

Once unlocks are done for both the GCS and UAV, re-keying commands can be

sent. These happen whenever the UI's reference of which machines should receive

keys changes. When set to manual mode, this is fairly straightforward: if a checkbox

changes values, a re-key is sent. When in automatic mode, the map is utilized. The

map interface is set up to respond to mouse clicks. For the sake of the emulation, the

virtual UAV follows the shortest realistic path to a clicked target for an airplane with

a predetermined velocity and turning radius. Then, the access control list is updated

based on graphical collisions of the virtual UAV and the specified regions of influence.

Whenever the ACL changes, a re-keying command is sent through the server. The

main loop, operating at 33 frames per second, is as follows:

if (goalSet && Math.abs(currentY - goalPoint 1]) < 50 &&

Math. abs (currentX - goalPoint 101) < 50) {
return;

}
v a,

if

r newDirection = 180 / Math.PI *

Math. atan2( goalPoint 11] - currentY,

goalPoint 101 - currentX);

(goalSet && currentDirection != newDirection) {

var goalDirection = (newDirection - currentDirection +

720) % 360

if (goalDirection < 180) {

if (goalDirection < ROTATIONAL_VEL)

rotateSymbol ( goalDirection );

els e

rotateSymbol (ROTATIONALVEL);
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}
else {

if (goalDirection > 360 - ROTATIONAL VEL)

rotateSymbol ( goalDirection);

else

rotateSymbol(-ROTATIONALVEL);

}
}
currentY += Math. sin (currentDirection * BAD_CONV) *

VEL_PERMS * 30;

currentX += Math. cos (currentDirection * RADCONV) *

VEL_PER_MS * 30;

var coords = latLong (currentX , currentY);

uav. move (coords );

map. panTo( coords );

currentPerns = checkCollisions (;

if (! currentPerms . plainE quals (previousPerms )) {
updateKeys ();

}

The above code calculates the exact latitude/longitude coordinates and angle to

which the virtual UAV should move after 30 milliseconds, moves and rotates the

virtual UAV on the displayed map to indicate the change, then sees if the list of

collisions is different from that of the previous frame. If it is, a re-keying message is

sent if the interface is set to automatic mode.

JavaScript does not have true concurrency within a single web page, so change in

the "goal point" can be caused by a registered click event that operates during the 30

millisecond break between frames. The operation cycle of the map interface does not
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incur sufficient computational load to cause lag in the video playback.

Feature Issue

In the earliest stage of development, Google Maps was used for the map interface

of the project. A key requirement of the project is that it needs to be executable in an

isolated space, entirely offline, and the Google Maps API is online-only, disallowing

users from creating a local copy. Many paths were followed to attempt to get an offline

version of Google Maps including, somewhat interestingly, an Android component

that Google was developing for exactly such offline use. In the end, it was determined

to be impossible for PCs to do this even for academic use.

Switching to OpenLayers not only solved this problem, but provided graphical

manipulation capabilities that in retrospect were even easier to utilize than Google

Maps' features, resulting in the cohesive virtual movement the project features today.

4.3.3 Key Management Control Center

The architecture for this process is found in Figure 4-6.

Password Stored Rekeying Unmanned
from Certificates Info from Aerial Vehicle

Node.js Node.js

Keywrap

Initialize Initialize Load Generate
Sockets LOCKMA Credentials Keywraps

Remote Unwrapped
Unlock Content Key

Unmanned Video
Aerial Vehicle Decryptor

Figure 4-6: This diagram shows the trend of execution, the inputs, and the outputs
of the KM Control Center process. Its main function is that when prompted by the
Node.js server, it generates a new keywrap to cryptographically enforce the specified
access control permissions.
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The Control Center on the GCS is where keys originate from. In reality, startup

looks very much like on the UAV's KM Process. The Control Center first sets up

a UDP socket to the UAV and a TCP socket to each of the Node.js server and the

Video Decryptor. Then, it simply waits on unlock commands for itself, which requires

a valid password, and then the UAV, so encryption keys can be changed.

The two unique scenes in the Control Center are loading client certificates and

newly encrypting keys. The following is how it loads certificates for the clients, rather

than merely its own device certificate:

uint8 certdata 110241;

uint8 *certdataptr = certdata;

uint32 datalen = 1024;

readfile ( file , &certdataptr , &datalen )

lockma_ cache recipient _ credential ( &lockma, *index,

certdataptr , datalen );

(*index)++;

As expected, it is very similar to loading its own certificates, but it applies to

the key agreement certificates only and allows data to be encrypted to them so that

only specified recipients may read it. In Key Management, this feature is exclusively

used to distribute symmetric keys, as PKE is more costly for large packets than

symmetric-key encryption.

Generating and encrypting a new key before sending the keywrap to the UAV is

done as follows:

lockma_ application package_ create( &lockma,

KEYPACKAGE_DEMO_N'ETA, si z e of (KEY PACKAGEDMOMEITA),

&apppkg );

key_ meta _data[o] = (uint8) channel _nbr;

apprngfn ( key metadata + KEYMETA_CHANNEL_LEN,
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KEYMETA_AESCIR_IV_LEN

cur time - htonl( (int32) time(NULL)

memcpy( key _meta_data + KEY_META_CHANNELLEN +

KEY_META_AES_CThIV_LEN, &cur _ time,

sizeof(cur _time) );

lockma application_ package add key_ meta( &lockma,

keymetadata, KEYMETA_LEN, apppkg );

lockma_ generate_ application _package ( &lockma ,

keywrapslotidx, apppkg );

lockma _ add -recipient( &lockma,

recipient _cache_ idx ,

keywrap _recipient _idx++;

keywrap _slot _ idx ,

keywrap _recipient

/ for UAV

_idx , NULL, 0);

for (i = 0; i < numgts &&i

if (gts-allowed(i))

< MAXGTS;

{
lockma_ add_ recipient ( klockma, keywrapslot

i + 1, keywrap_ recipient _ idx , NULL,

keywrap _recipient -idx++;

}

}

km msg data =NULL;

kmmsg datalen = 0;

lockma _get_ signing_ credential( &lockma, &kmmsgdata,

&km_msgdatalen, KMFALSE

keywrapdata = NULL;
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keywrap _ data_ len = 0;

lockmaget _keywrap ( &lockma, keywrap _slot _ idx , &keywrap data,

&keywrap datalen , KM_FALSE);

LOCKMA must first create a package for the keywrap, then add a key, generate

the package, and then add recipients. We always add the UAV as a recipient, then we

add the Ground Terminals that are in the current Access Control List that was sent

to us by the Node.js server. After that, we get the signing credential and keywrap

from the application package, which we can later send to the UAV for distribution.

4.3.4 Video Decryptor Process

The architecture for this process is found in Figure 4-7.

Encrypted
Video

Initialize Initialize VDe/cypt
Sockets LOCKMA Kieysccp

Decrypted
Video

Keys from NodejsGCS KM Server
Center

Figure 4-7: This diagram shows the trend of execution, the inputs, and the outputs of
the Video Decryptor process. As expected, its functionality almost perfectly mirrors
that of the Video Encryptor.

The Video Decryptor process is remarkably symmetric to the Encryptor on the

UAV. Its UDP socket is an input, and its second TCP socket, to the Node.js server, is

its output, and it performs decryptions instead of encryptions on the data. The only

other noticeable difference is that it does not need to set a delay on "switching" keys-

LOCKMA channel number is specified by an encrypted packet, so the Decryptor can

60



merely store an array of the most recent keys at once, so that it will definitely be

ready for decryption by the time the Encryptor's delay is finished and the new key

enters usage. The channel number for a key is specified by the KM Center on creation,

so it will always be the same between the Encryptor and Decryptor.

As expected, Video Decryptor establishes its sockets on startup, performs the

necessary subset of LOCKMA administrative actions, and enters its terminal loop.

On each iteration of the loop, it waits both for a key from the KM Center and for

a video frame from the UAV. After extracting the header data specifying channel

number from a received video frame, the relevant decryption command is:

lockma_ decryptapp data aes _gcm (
aes _ core. channels [active _ channel_ nbr ]. key, 77 key

(const uint8 *) &sequence-nbr, 77 iv address

sizeof ( uint32), 77 iv length

packet_ptr , 77 ciphertext address

(uint32) payload_len , 7/ ciphertext length

(const uint8 *) authdata, 77 auth data address

sizeof(auth data), 77 auth data length

icv-ptr , 77 Integrity Check Value

plaintextptr , 77 plaintext address

plaintextlen ); 77 plaintext length

The video frame as it originally came from the UAV's native output can now be

found at plaintext ptr, where it gets shipped off to the Node.js server for streaming.

4.4 Android Ground Terminal

The GTs are actually running a single application, albeit utilizing multiple threads (as

a requirement enforced by Android). As such, we provide the high-level architecture

for this application here, instead of in a later section. The architecture is found in

Figure 4-8.

As stated in Chapter 2, this was based on the Parrot AR.Freeflight Android ap-
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Figure 4-8: This diagram shows the trend of execution, the inputs, and the outputs
of the Ground Terminal application as a whole. It mostly consists of a rendering
thread and a video processing thread, which run after providing one's LOCKMA user
password. The pipeline thread is discussed in more depth later in this section.

plication. As such, more of our code structure was enforced upon us than on the

other two platforms. The Android devices we used were Asus Eee Pad Transformer

Primes, but the Android SDK's build system meant that our packages were runnable

on any Android machine running 4.1.0 or later.

Using the Android NDK for C code was one of the struggles of the project, as

documentation is relatively opaque. However, once understood, the steps for inclusion

are fairly straightforward, and will be discussed as part of the Key Management and

Encryption subsection. The LOCKMA code itself proved very easy to add to the

package, once the library was properly compiled and linked.

4.4.1 Android Application UI

The first stage of the UI simply presents a password entry screen with a button to

proceed. The code used to override the default Android password behavior, in order

to mask all characters properly rather than leaving the last character visible, can be

found in Appendix A.1. The "Dashboard" screen has otherwise been cleared.
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When logged in, the user is taken to the terminal activity, which features the

expected video playback. This activity features several sub-components that perform

the real graphical manipulations seen on screen, most notably the HudViewController,

which is where our changes were generally directed. This controller's VideoStageView

featured the actual acceptance of the video stream, which we had no reason to change

at the Java level for this project.

Due to the inability for the primary UI thread to perform network operations, we

spawned a new thread for other visual manipulations we wanted, which are based

in part on communication between the Java code and the native C code running

the video pipeline. On start up, this new thread detects the IP address of the GT

to determine how to color-code the bar at the bottom of the device, using a class

method of the HudViewController to place the correctly-colored bar at the bottom.

Then, using a basic Java socket and waiting for input in its own independent

thread, this extra class also causes the HudViewController to display or remove the

"ACCESS DENIED" message from the screen. All sprites involved get scaled by

conveniently-provided methods in the Sprite class to fit the Android screen they find

themselves on.

4.4.2 Video Stream Pipeline

The architecture for this thread is found in Figure 4-9.

As stated, Android disallows network operations in the primary UI thread. Of

course, due to the nature of requiring a video stream persistently posted to a screen

with other asynchronous commands in use throughout the original application, the

video pipeline utilized by Freeflight needs its own thread regardless.

The pipeline spawns from the entry point of the native code, which is invoked by

a service acting as a sub-component of the terminal activity. The primary change

here was removing additional extraneous threads from the process, which was done

more so for debugging purposes than for speed or application size. However, it's true

that in the end, the application is actually much smaller with LOCKMA as part of

this project than with its original feature set without LOCKMA.
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Figure 4-9: This diagram shows the trend of execution, the inputs, and the outputs
of the Video Pipeline, which runs as a sub-component of the Ground Terminal ap-
plication. Unlike those applications that we developed ourselves, the pipeline nature
of this means that no point of execution is exactly terminal, though all but the first
activity could be considered as such. Data is transferred from activity to activity
until FFMPEG eventually delivers it to the GT User Interface.

Another change was required for behavior we wanted in the application. Namely,

if video frames were not detected near the beginning of the pipeline, the application

would try to force the drone to reconnect to the Android device using a pre-specified

communication packet that tells the drone to drop all of its current connections and

reconnect to the sending machine. By this method, any device can actually in theory

wrest control of the drone (remember, it is actually a toy) from any other party. We

wanted the Video Encryptor to maintain control of the video stream, so this feature

was suppressed entirely. If at some stage of the pipeline a size of zero is detected, the

pipeline starts over from receiving a video packet.

Lastly, we changed the act of waiting on video frame input to utilize our select

idiom, waiting on both the video frame and key management messages, rather than

only the video frame.

Capability Issue

We mentioned in Chapter 3 that an earlier iteration of the demo featured GTs

that were PCs. One key reason for this was that there was an incredibly hard-to-
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track bug that presented itself when we switched the video pipeline from accepting

on TCP sockets to using UDP. Due to the nature and difficulty of debugging C code,

especially in threads not directly spawned by the Java Virtual Machine, this was

incredibly difficult to track down. The bug presented as a SIGBUS error at memory

address 0, which would normally be a segmentation fault.

Eventually, it was found to be a complex socket error triggered from within the

FFMPEG component that Freeflight uses to actually render H264 video frames (which

are the format the drone streams as). Further digging showed that this socket error

was a fairly ordinary issue that should merely trigger a reconnect attempt, but the

Android firmware we had at the time had a major bug that could not handle failed

writes to TCP sockets under certain conditions. After a dramatic series of events, the

bug was finally resolved by, indeed, a firmware update.

While tracking down the source of this issue, several interesting debugging tech-

niques were discovered for working simultaneously with C and Java code. Although,

most of them proved to only be useful from Java-spawned threads, and not from

threads spawned within native C code.

4.4.3 Key Management and Encryption

For this final piece, we effectively merged both the Video Decryptor from the GCS

and the KM Process from the UAV, and we instrumented a single file with all of

it, at the point in the existing C code accepted video frame data from the UAV.

At every stage after this, certain aspects of the header are checked and analyzed for

consistency, so there was no real option to postpone the decryption to the next stage

unless we wanted to risk breaking the existing streaming functionality.

It proved to be no real hurdle. LOCKMA initialization, including certificate read-

ing thanks to the password being input from the first UI screen, was done the first

time the pipeline was entered; from then, both key management and decryption hap-

pened when appropriate messages were received. The only real hassle was combining

network calls into their triggered function callbacks, but fundamentally, the code was

already there. Comparatively speaking, it was more work to find the relevant "socket
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entry point", back in the early stages of the project when the Android NDK was less

familiar, than it was to add LOCKMA instrumentation to the code itself.

Building LOCKMA for Android

While instrumenting code with LOCKMA calls proved as uneventful expected,

the build system was not so simple. The Android NDK is not the easiest tool to

navigate. Compiling LOCKMA for ARM using the correct processor was the most

difficult step. For most platforms, LOCKMA will be built locally and CMake can find

the right toolchain based on machine. Android projects, on the other hand, get built

for Android by other systems, and have a specialized toolchain for making libraries

that work on ARM for the Android OS. Thus, the real issue we found was with the

CMake system, which would still build x86 LOCKMA even when the Android NDK

was being told to compile it through its normal channels.

Luckily, the Android CMake project, noted in Appendix A.3, solved the issue for

us. With it, we simply generated a new platform-appropriate toolchain that CMake

could use more easily. The best part is that it was easily revertible, as setting CMake

to re-initialize would go back to re-using x86 Linux defaults. LOCKMA got built as

a static library for ARM, our project's include files were placed in the existing path

for the Android project, and linking LOCKMA with the NDK followed the same

route as with any other static library. No further issues occurred, and the default

build settings generated ARM code that was empirically sufficiently optimal for video

playback to not experience an observable delay.

4.5 Implementation Conclusion

In this chapter, we discussed the implementation details of the project and the issues

the project faced. Reading this chapter should have provided enlightenment on how

to make use of the LOCKMA library to provide fast, usable cryptography to an

existing application, most notably for a new access control system in line with the

one that we have built. We also went into the detail necessary for understanding

certain build environments, namely CMake and the Android SDK and NDK, that
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may have previously been unfamiliar. Most directly, we conveyed an idea of how the

demo fully came together into the form it holds today. The result of this project was

a great success, streaming live video in a way that does not incur a more noticeable

delay than the existing network delay, and that never introduced any extended lag

from operations leaking into future frame processing time.
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Chapter 5

Conclusions

The principal contributions of this thesis focused on developing a usable access control

system for active missions featuring multiple parties needing access to a data stream,

demonstrating an example use case while encouraging the use of access control in more

general systems, and demonstrating the usability of LOCKMA as a component and

its usefulness in developing this type of usable access control. This thesis determined

that LOCKMA's use is indeed sufficient for these purposes, and should serve as a

useful tool for those wanting to build security-conscious applications, especially access

control systems, with LOCKMA in the future.

Here, we document more precise results relating to the overhead our system intro-

duced, and also discuss other projects that are in-progress or being discussed for the

future. Then, we discuss what the author has learned in the process of developing

this work.

5.1 Technical Results of LOCKMA

LOCKMA proved to be both a small, fast, and easy-to-use component. When com-

piled both for ARM and x86, the size of the library component never exceeded 4

megabytes. The version compiled with Microsoft Visual Studio for x86 Windows was

2.5 MB. However, 4 MB is quite small enough even to put on an embedded platform.

As stated previously, the APK of our Freeflight modification, which had a few extra-
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neous features cut, was still smaller with LOCKMA added for both Key Management

and decryption of the video stream.

For speed, there were no human-observable issues; the inevitable delay incurred

by encryption and decryption was entirely overshadowed by the basic network delay

in streaming unencrypted video from the same source, when humans were comparing

them. In practice, for reference, the largest delay incurred by decryption was approx-

imately 16 milliseconds on the 1.4 GHz processor of the ASUS Transformer Prime, a

much slower processor than can be expected of a modern PC, for the largest frames

of over 20 kilobytes. This is compared to the expected break between frames of 33

ms, when streamed at 30 frames per second; it is a, greater percentage of an attempt

at streaming 60 frames per second, but there are two counterpoints:

e 60 fps would also be that much more taxing to the Android on its own, without

security. A more impressive GPU could admittedly serve to lessen that issue,

but the entire pipeline structure provided would still be doing twice as much

work.

e Most H264 frames are smaller than 20 kilobytes. Only reference frames are so

taxing; over 90% of the frames were under 7 kilobytes and were decrypted in

under 6 milliseconds, thus allowing the machine to catch up on frames very

quickly even if it were to fall behind.

On the PC, more variance but lower averages were found. The largest time taken

was again found to be about 16 milliseconds for a 22 kilobyte frame, but the major-

ity of the smaller frames were sub-millisecond. A scatterplot of PC performance of

LOCKMA's symmetric-key decryption is found in Figure 5-1.

Even with this degree of variance, the majority of frames are small enough that

decryption is incredibly fast on average. We found the average on the PC to be under

1.5 milliseconds consistently (1.35 milliseconds from the set used for Figure 5-1), and

H264 streams are structured such that you will never have an unexpected number of

consecutive large frames in a row, so even probabilistic drifting becomes impossible.

Encryption and decryption in counter mode both use the same direction of AES,
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LOCKMA AES GCM Performance

10000 15000
Ciphertext Length (Bytes)

20000

Figure 5-1: LOCKMA AES GCM decryption was measured on an x86 PC with a
2.3 GHz processor. No hardware acceleration was available on the system. CTR-
mode encryption and decryption is parallelizable, but there are finitely many CPUs
available. As such, the asymptotic growth of the encryption/decryption function is
linear on average. The potential range of run times also grows linearly, which means
that the function's time taken has nontrivial variance when encrypting or decrypting
sufficiently much data at once.

and all Message Authentication Codes (MACs) are unidirectional; thus, the speed of

encryption and decryption in AES GCM should always be the same when operating

on the same platform.

We conclude that LOCKMA will not bottleneck for any comparable video stream-

ing on a reasonably modern platform.

Asymmetric encryption happens much less frequently (exclusively for key man-

agement) and, as shown, can also be handled as a separate process entirely. Thus,

its speed is not strikingly relevant, though it is worth noting that it did not incur

human-noticeable delays in the Android application's video playback, in which keys
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were changed in the same thread as video was decrypted.

For CPU utilization, there were also no observable issues. The UAV, whose hard-

ware exists almost exclusively to be useful in being flown and relaying video frames,

and which certainly had the slowest processor (at 1 GHz and single-core), was still

not taxed even with two LOCKMA programs running on it. Load average for all

steps in streaming and encrypting video averaged 0.04. Load did spike as keywraps

were handled and decrypted, but even when we overloaded it with several keywraps

per second, the processor did not report more than 0.45 short-term load average; over

a complete run, medium-term load average never exceeded 0.08.

On the PC, LOCKMA-utilizing processes barely registered as even a blip on the

CPU radar, occasionally hitting 1% CPU utilization. Video rendering in the Chrome

browser was comparatively taxing.

Lastly and perhaps most importantly, my experience with LOCKMA showed me

how easy it is to augment existing code with it. There may be a non-trivial number

of function calls required to get Key Management fully functional, but those calls are

very symmetric across a given project, and LOCKMA is already usefully configured

to compile easily on both Windows and Linux. It was more work to integrate it into

Android, due to the toolchain issue and x86 Linux wanting to configure CMake for

running on its own platform by default, but this was already a solved issue.

5.2 Future Work

There are two access control augmentations that will allow us to leverage LOCKMA's

key management capabilities to demonstrate even more powerful systems. One in-

volves a minor change to our existing project that is a strict improvement in its

current capabilities. This is the act of being able to add brand-new GTs to a mission

that is already in-progress. The other, while it is certainly useful for access control

systems, is more geared as a demonstration of the generality of LOCKMA's key man-

agement techniques. This would be a very major change to our existing demo, and

would involve the removal of all application-specific encryption and decryption from
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the projects: we could use IPsec, the Internet Protocol security layer, for encryption

and decryption of communication between machines, and simply use LOCKMA to

control the relevant IPsec keys.

5.2.1 Dynamically Adding New Ground Terminals

This is a very direct augmentation to the current demo that is possible. Namely,

by allowing the GCS to accept new key agreement credentials over the network and

adding an interface for dynamically adding new color-coded regions to the OpenLay-

ers map interface, we can implement a system for an arbitrary number of potential

Ground Terminals to be added to the demonstration even after it has started up. Not

only is this a strict increase in the versatility of the project, but it also fits into our

original motivational model of the DEA chase scene--a suspect or culprit could travel

to any number of regions under any number of jurisdictions, and it would certainly

be useful to give the relevant police departments all available information for their

efficacy in the case to be maximized.

This requires a non-trivial upgrade in the systems we implemented for the GCS,

especially for the GUI, but for the GTs, the change is fairly minimal and occurs

exclusively in start-up.

5.2.2 LOCKMA for Key Management, IPsec for Encryption

Presently, LOCKMA is being used for application-specific encryption, as happens

with TLS. However, it has the capability to interact directly with IPsec, the Internet

Protocol security suite, which is an open standard specified by IETF RFC 4301 1171.

There is some amount of multicast support 1181, but it is not required to be imple-

mented, and even when it is, it can be difficult to work with. However, IPsec has an

invaluable feature, the ability to secure all communication between two systems or

groups of systems, and there are certainly use cases where LOCKMA's available key

management techniques are more desirable than the pairwise networked key agree-

ments required by IPsec currently for key management.
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Linux implements IPsec in its kernel, and has a useful forward-facing interface for

managing keys locally. With key distribution handled through LOCKMA, a group of

computers could easily set up IPsec to encrypt their traffic at the Internet Protocol

level, for example in a multi-party video conference using non-free (or non-open-

source) software that could not already usefully be instrumented with LOCKMA at

the application level. And once groups have this set up, it would work just as well

with any application, and the only new setup required would be for new machines or

groups of machines, rather than requiring a new machine to add LOCKMA separately

for every application it uses, which is presently what SSL/TLS has to do. Some work

has already been done in this area, but it is as of yet unfinished and untested. In

theory, however, the only requirement in Linux is interfacing existing LOCKMA key

management code with the IPsec command-line interface as the superuser.

5.3 Learning Experience

Working on this thesis has been one of the most thorough learning experiences of my

life. I have gained both technical knowledge and a deeper understanding of what it

means to work in computer security and on long-term projects.

5.3.1 New Technologies and Algorithms

Through research for this thesis, I have worked with a variety of tools and systems

for the first time in my life. Some of these have, in the meanwhile, already been used

in other aspects of my programming career. Others I am sure will serve me well in

the future.

I had never programmed for Android before, and in fact had never even uti-

lized Java Native Interface (JNI), which is how C/C++ code is utilized from Java.

Working with a pre-constructed project made the Java and User Interface side fairly

straightforward throughout my work, but the JNI and Android NDK left no shortage

of hair-pulling when I was working with the C side of the project, in which video

data was handled. This came even before instrumenting the code with LOCKMA; as
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stated in Chapter 4, the largest issue I dealt with ended up being solvable only by a

firmware update (or else completely overhauling the well-defined FFMPEG library),

but while attempting to debug this issue myself, I learned a variety of interesting

debugging techniques and features in the JNI that I would not have even needed in

order to complete the project as it exists today. Of course, I also learned how to link

new libraries into an Android project through the NDK, as part of adding LOCKMA

to it.

My JavaScript experience was also severely limited prior to work on this project.

I had worked with single-page HTML/JavaScript in the past, but this required me

to not only render dynamic content with JavaScript through networking, but also

resulted in developing server-side code with Node.js, which was quite the fun adven-

ture. It has heavily motivated me to invest more time in studying efficient multi-user

servers, which goes beyond the single-user server acting as a process go-between for

the sake of this demonstration.

LOCKMA itself, of course, was incredibly novel to work with. When I initially

began working with it, I was sadly skeptical that it could be so simple to instrument

code with its cryptography; in reality, it was just as simple to use then as it is now,

but it was poorly-documented when I was first introduced. It did not take long for me

to recognize that it merely needed its documentation to be written down properly to

become the tool it was meant to be. Compared to something like OpenSSL, utilizing

LOCKMA feels much easier. Though it's true that at present, LOCKMA serves a

different need in the first place. But at this point, I feel like I could guide anyone to

utilizing LOCKMA in their application.

Finally, my experience in this project has also caused me to look further into

Elliptic Curve Cryptography than I had considered previously. Around the middle

of my work on this project, I was taking an applied computer security class. The

final project was fairly open-ended, but one of the suggestions and, as a result, most

commonly-executed project was an "encrypted file system". For a multi-user system,

it is obvious that it would require some degree of public-key cryptography for the

sake of preventing universal user access. Everyone else in the class that went with
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this project defaulted to RSA. Using ECC, our PKE had three clear advantages over

RSA-using systems. Notably, these came from the fact that ECC private keys with

modern systems can be arbitrary bit strings, and the safety involved comes from the

curve used. This is contrasted with RSA, in which you need to pick two large primes

that when multiplied cannot be factored easily by any kind of inference (must be

sufficiently large and sufficiently far apart, etc.), and as such the RSA keys can really

only be effectively represented as numerical fields. The advantages we found are as

follows:

" Generation of many RSA keys is inherently going to be less safe over time. You

limit the number of primes near the size of the key you are trying to gener-

ate. Anyone not incredibly well-versed in the relevant mathematics concerning

primes will have a hard time even verifying that a key generator is going to be

safe when used. ECC keys, being allowed as arbitrary bit strings, can effectively

just be randomly generated, as with AES keys, so only the safety of the RNG

matters.

" ECC private keys are more versatile. Through the generation of a single private

key that corresponds to a certain public key, you can trivially make derivative

private keys by appending bits to the original private key. The resulting public

keys do not have an obvious correlation.

" ECC keys require less storage than RSA keys of the same security factor, which

makes them capable of being more ubiquitous throughout the project. It's not

merely about the raw number of users; through our derivative private keys, we

made use of derivative public keys throughout files in order to create anonymized

signatures to signal administrative permissions to files through our virtual file

server. Even attempting something similar would have been significantly more

costly with RSA keys, if it were possible without compromising the security of

the RSA system.

As such, while I had been introduced to the world of computer security prior to this
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project, I believe my introduction to elliptic curves heavily opened my eyes as to the

potential of modern public-key cryptography.

5.3.2 Non-technical Lessons

While there is less detail to go into on this subject, my non-technical lessons over the

course of this project were arguably more valuable to me as a computer scientist and

as a person.

The largest issue I had-which was fixed with an Android firmware update-was

an intermittent socket error. All told, it gave me about eight months of intermittent

headache. My time estimates on how long it would take me to fix the error were

always wrong, right up until the day I forced the update that fixed it. I was still

productive at points during this, for a couple months dropping Android entirely to

get a PC GT up and running, but the way I handled this after the initial wave of

debugging-which for a while appeared to be a success-simply was not correct. The

realistic time estimate for debugging when no debugging output I could get from

built-in Android tools appeared relevant was always "at least a few weeks" rather

than "I think I'll have it next Monday", but more importantly I should have asked

for help sooner. Even though it turns out there was no one I was working near

that was more familiar with the actual set-up I had-accepting signals from within

natively-spawned threads through the Android NDK-it was discussing the issue with

people that eventually led me to discovering that one of the software libraries being

used actually had a compatibility issue with older versions of the Android OS, thus

leading to the discovery of both the source of the error and the fix.

The other most notable lesson for me was how to manage my own work on a long-

term project. Before this work, I was still too used to school-sized projects that at

most took a few weeks of hardcore code diving. I had worked in a medium-sized team

once before developing a game consisting of a relatively sizeable code base; however,

even that was only 8 weeks long and further consisted of a thorough structure imposed

upon us. When I began this project, I very much dove in with the school mindset

of 'just code everything as I go", since it was a project that I was mostly able to

77



work on alone, though I had technical guidance from Dan Utin and worked directly

with another lab employee for compiling ARM binaries for the drone. As a result,

my organization was very poor, though in the early stages of the project, my output

somehow managed to keep up with expectations. As the project progressed, however,

and especially as the Android bug became more of an immediate issue, I had to figure

out more efficient ways to manage my time in order to not completely halt while the

bug itself was unsolved.

I began to develop a system in which I dynamically evaluated how much time a

halting task deserved so I could maintain enough time per day working on tasks that

were moving along more smoothly. In this way, I managed to avoid losing inertia

for tasks that could have taken much longer had I spent entire days focused only

on debugging one issue. Further, even having such issues at the back of my mind

motivated me to come up with more detailed plans for implementation timelines. By

the end of the project, I was able to much more closely keep to my ideal schedule in

putting the finishing touches on the Android Ground Terminals. Even now, I find

that setting smaller goals for myself in writing this thesis step by step has causes

me to be much more productive and efficient than I originally expected of myself, as

writing has always been an aversion of mine.
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Appendix A

Utilized Non-Critical Components

This chapter documents sources that were utilized but not warranted as being de-

scribed as whole project dependencies for their technical contributions in Chapter

2.

A.1 Proper Android Password Masking

This code was provided on StackOverflow from user chipiik for question 6360222.

class HiddenPassTransformationMethod implements

TransformationMethod {
char DOT = '\u2022 ';

COverride

public CharSequence getTransformation (
final CharSequence charSequence, final View view) {

return new PassCharSequence(cliarSequence);

}

@0Override

pulblic void onFocusChanged ( final View view,

final CharSequence charSequence, final boolean b,
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final int i, final Rect rect) {
//not hing to do here

private class PassCharSequence implements CharSequence

private final CharSequence charSequence;

public PassCharSequence(final CharSequence charSequence)

this .charSequence = charSequence;

}

@0verride

public char charAt(final int index) {

return DOT;

}

@ Override

public int length () {
return charSequence .length (;

}

@Override

public CharSequence subSequence(final int start ,

final int end) {

return new PassCharSequence(

charSequence .subSequence ( start

}

}

}
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A.2 iPhone-Style Auto/Manual Switch

For the switch viewable in our Ground Control Station User Interface, we utilized the

iOS Checkboxes project, free for academic use, and available at

http://ios-checkboxes.awardwinningfjords.com.

It is fairly straightforward to add and utilize in any web-based project.

A.3 Android CMake

The Android CMake project ended up greatly streamlining the build process for mak-

ing LOCKMA work correctly for Android applications. Once the correct toolchain is

integrated into the Makefiles through CMake, the built library can be added to the

JNI for an application the same way as any other static library. This system can be

found at

https://code.google.com/p/android-cmake/.
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